MA1101-8 Introducción al álgebra

Profesor: Maya Stein Auxiliar: Juan d'Etigny S.

Auxiliar 8

29 de junio de 2018

Recuerdo:
$$\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$$
, $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$, $\sum_{k=0}^{n} r^k = \frac{r^{n+1}-1}{r-1}$

P1.- Calcule las siguientes sumas:

a)
$$\sum_{k=3}^{n-1} (k-2)(k+1)$$
 (suponiendo que $n \ge 4$)

$$b) \sum_{k=1}^{n} \frac{k2^k}{(k+2)!}$$

c)
$$\sum_{k=1}^{n} (k^2 + 1)k!$$

$$d) \sum_{k=1}^{2n} (-1)^k k^2$$

P2.- Sea $a \in \mathbb{R}$, con $a \neq 1$. Muestre que:

$$\sum_{i=1}^{n} \sum_{j=1}^{i} a^{i+j} = \frac{a(a^{2n+2} - a^{n+2} - a^{n+1} + a)}{(a-1)^2(a+1)}$$

- **P3.-** Sea $k_0 \in \mathbb{N}$ un número natural fijo cualquiera y $n \in \mathbb{N}$ un número impar cualquiera. Demuestre que la suma de los n números consecutivos a partir de k_0 (incluyéndolo), es divisible en los naturales por n.
- **P4.-** a) Considere la siguiente expresión, escríbala como suma doble y resuelva:

$$S = 1 + \frac{1+2}{2} + \frac{1+2+3}{3} + \dots + \frac{1+2+\dots+n}{n}$$

b) Repita lo anterior para:

$$Q = 1 + \frac{1}{1+2} + \frac{1}{1+2+3} + \dots + \frac{1}{1+2+\dots+n}$$

c) Finalmente considere, para algún $b \in \mathbb{R}$:

$$R = 1 + 2(1+b) + 3(1+b+b^2) + \dots + (n+1)(1+b+\dots+b^n)$$

P5.- Propuesto: Muestre sin usar inducción, que:

$$\sum_{k=1}^{n} \frac{2k+1}{k^2(k+1)^2} = 1 - \frac{1}{(n+1)^2}$$

- P6.- Propuesto: Resuelva las siguientes sumas (para ambas, puede servir recordar la propiedad telescópica):
- P7.- Propuesto: Calcule:

$$\sum_{k=1}^{n} \sum_{j=1}^{k^2} \frac{n+k^2}{(n+j-1)(n+j)}$$

P8.- Propuesto: Sean $x,y\in\mathbb{R}-\{0\}$ distintos. Pruebe sin usar inducción que $\forall n\geq 1$:

$$\sum_{k=0}^{n-1} x^{n-1-i} y^i = \frac{x^n - y^n}{x - y}$$