MA1101-8 Introducción al álgebra

Profesor: Maya Stein Auxiliar: Juan d'Etigny S.

Trabajo dirigido 2

28 de agosto 2018

- **P1.-** Sean $0, z, w \in \mathbb{C}$ complejos que forman un triángulo rectángulo que tiene su ángulo recto en el origen
 - a) Demuestre que $\overline{z}w + \overline{w}z = 0$
 - b) Usando lo anterior verifique que $|z w|^2 = |z|^2 + |w|^2$
- **P2.-** a) En la **P6** de la auxiliar 8 (propuesto), se pidió calcular $\sum_{k=1}^{n} \operatorname{sen}(2k)$. Intente resolverla ahora usando su conocimiento de números complejos. Resuelva además la suma $\sum_{k=1}^{n} \cos(k\theta)$ (si quiere se puede revisar la **P5** de la auxiliar 13, donde está guiado)
 - b) Considere la ecuación $\overline{z_0}z + z_0\overline{z} + k = 0$, donde $k \in \mathbb{R}$, $z_0 \in \mathbb{C}$. Demuestre que representa una recta perpendicular a $\overline{0P_0}$ donde P_0 es el punto del plano asociado al z_0
 - c) Sea $x_n + iy_n = (1 + i\sqrt{3})^n$. Probar la relación recurrente $x_{n-1}y_n x_ny_{n-1} = x^{2n-2}\sqrt{3}$
 - d) Si $z^n = 1$ y $(z+1)^n = 1$, demuestre que n es divisible 6 y que $z^3 = 1$
- **P3.-** a) Demuestre que $e^{i\frac{2k\pi}{n}}$ con $k\in\{1,..,n-1\}$ y $n\geq 2$, es raíz del polinomio complejo $p(z)=1+z+..+z^{n-1}$. De esto deduzca que $p(z)=\prod_{k=1}^{n-1}(z-e^{i\frac{2k\pi}{n}})$ (podría servirle revisar la **P3c** de la auxiliar 14)
 - b) Use la parte anterior (le debería servir conjugando) para deducir que

$$\frac{n^2}{2^{n-1}} = \prod_{k=1}^{n-1} (1 - \cos(\frac{2k\pi}{n}))$$

c) Finalmente concluya que

$$\prod_{k=1}^{n-1} \sec(\frac{2k\pi}{n}) = \frac{n}{2^{n-1}}$$

P4.- Considere el polinomio de coeficientes reales no nulos:

$$p(x) = x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

- a) Demuestre que si p posee una raíz imaginaria pura, entonces $a_1^2 + a_0 a_3^2 = a_1 a_2 a_3$
- b) Si $a_3 = -8$, $a_2 = 24$, encuentre el valor que debe tener a_0 de modo que $x_0 = 2$ sea una raíz cuádruple.

P5.- Determine un polinomio cuadrático con coeficientes reales que admita como raíz

$$z_0 = \frac{i}{1 + i + \frac{i}{1 - i + \frac{i}{1 + i}}}$$

- **P6.-** Sea $F: \mathbb{R}[x] \to \mathbb{R}$, definida para todo polinomio $p \in \mathbb{R}[x]$ de la forma $p(x) = \sum_{k=0}^{n} a_k x^k$ como $F(p) = \sum_{k=0}^{n} a_k$. Es decir, F es la función que a todo polinomio le asocia la suma de sus coeficientes.
 - a) Estudie inyectividad y sobreyectividad de F.
 - b) Sea $p \in \mathbb{R}[x]$ tal que F(p) = 0. Encuentre $x \in \mathbb{R}$ tal que p(x) = 0.
- **P7.-** a) Considere el conjunto: $F = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ es biyectiva}\}$. Muestre que (F, \odot) , donde \odot es la composición de funciones, es un grupo.
 - b) Considere ahora el conjunto $L = \{f : \mathbb{R} \to \mathbb{R} \mid f \text{ es lineal o afín no constante}\}$. Es decir, L es el conjunto de todas las funciones lineales biyectivas que van de \mathbb{R} en \mathbb{R} .
- **P8.-** Sea $(A, +, \cdot)$ un anillo con unidad, $x \in A$ se dice *nilpotente* si $\exists n \in \mathbb{N}$, tal que $x^n = 0$. Demuestre:
 - a) 1-x nilpotente $\Rightarrow x$ es invertible para la segunda operación.
 - b) En el anillo $(\mathbb{Z}_n, +_n, \cdot_n)$ vea que: \mathbb{Z}_n tiene elementos nilpotentes $\iff n$ es divisible por el cuadrado de un natural k > 1
- **P9.-** Muestre que en un cuerpo $(\mathcal{K}, +, \cdot)$, no es necesario exigir la conmutatividad de la primera operación. Traten de hacerla solos, y si no les resulta pidan un hint :-)
- **P10.-** Calcule, $\forall n \in \mathbb{N}$, el valor de $\sum_{j=0}^{2n} {2n \choose j}$ y de $\sum_{j=0}^{2n} {2n \choose j} (-1)^j$. A partir de los resultados anteriores calcule

$$\sum_{k=0}^{2n} \binom{2n}{2k}$$