MA1101-8 Introducción al álgebra

Profesor: Maya Stein Auxiliar: Juan d'Etigny S.

Auxiliar 14

24 de agosto de 2018

Ejercicio de práctica: Encuentre las soluciones de la ecuación $w^n = -1$

- **P1.-** Sean $w_0, w_1, ..., w_{n-1}$ las raíces n-ésimas de la unidad ordenadas de manera usual (es decir, según argumento creciente)
 - a) Demuestre que $S = w_0 w_1 + w_1 w_2 + ... + w_{n-2} w_{n-1} + w_{n-1} w_0 = 0$
 - b) Demuestre la siguiente relación de ortogonalidad:

$$\sum_{k=1}^{n} \overline{w_j^k} w_l^k = \begin{cases} 1, & \text{si } j = l \\ 0, & \text{si } j \neq l \end{cases}$$

- c) Sea $z \in \mathbb{C}$ fijo. Calcule $\sum_{j=0}^{n-1} (z + w_j)^n$
- d) Sea w una raíz cúbica de la unidad con $w\neq 1,$ demuestre que $(1+w)^3+(1+w^2)^9+(1+w^3)^6=62$
- **P2.-** Sea Ω_n el conjunto que contiene las n-ésimas raíces de la unidad, y sea M_n el conjunto que contiene todos los morfismos entre $(\mathbb{Z}_n, +)$ y $(\mathbb{C} \setminus \{0\}, \cdot)$. El objetivo de este problema es mostrar que: $|\omega_n| = |M_n|$:
 - a) Sea $f: \mathbb{Z}_n \to \mathbb{C} \setminus \{0\}$ un morfismo. Muestre que $f([k]) = f([1])^k$, y deduzca que f([1]) es raíz n-ésima de la unidad.
 - b) Recíprocamente, muestre que si w es raíz n-ésima de la unidad, entonces $f: \mathbb{Z}_n \to \mathbb{C} \setminus \{0\}$ dada por $f([k]) = w^k$ está bien definida y es un morfismo.
 - c) Concluya
- **P3.-** a) Considere $p(x) = 4x^4 2x^3 3$ y $d(x) = 2x^2 3$. Encuentre un par de polinomios $q, r \in \mathbb{R}[x]$ tales que p(x) = q(x)d(x) + r(x). con gr(r) < gr(d).
 - b) Sea $p(x) = x^5 + ax^2 + b$ y $q(x) = x^3 + cx + 1$. Determine los valores de $a, b, c \in \mathbb{C}$ para que q|p.
 - c) Pruebe que para todo $n \in \mathbb{N}$ tenemos que $(x-1)|(x^n-1)$.
 - d) Sean $p,q,r\in\mathbb{R}[x]$ tales que p(q-r)=q(p-r) y $gr(r)\geq 0.$ Demuestre que p=q.
- **P4.-** Determinar $p \in \mathbb{R}[x]$ un polinomio mónico de grado 3, que satisfaga las siguientes condiciones:
 - p(0) = p(2) = 0
 - El resto de dividir p(x) por (x-1) es el mismo que el resto obtenido al dividir p(x) por (x-3)