MA1101-7 Introducción al Álgebra Profesor: José Soto San Martín. Auxiliar: Ilana Mergudich Thal. Fecha: Jueves 26 de abril de 2018

Auxiliar 7: Funciones

- **P1.** Sea $f: E \to F$ una función. Demuestre que:
 - (a) $(\forall A, B \subseteq E) f(A) \setminus f(B) \subseteq f(A \setminus B)$.
 - (b) $[(\forall A, B \subseteq E) f(A) \setminus f(B) = f(A \setminus B)] \Leftrightarrow f$ es inyectiva.
 - (c) $(\forall Y \subseteq F) f(f^{-1}(Y)) \subseteq Y$.
 - (d) $[(\forall Y \subseteq F) \ Y = f(f^{-1}(Y))] \Leftrightarrow f$ es sobreyectiva.
- **P2.** Sean A y B dos conjuntos y $f: A \to B$ una función. Se define la función:

$$G: \mathcal{P}(B) \to \mathcal{P}(A)$$

 $Y \mapsto G(Y) = f^{-1}(Y)$

Pruebe que G es invectiva si y solo si f es sobrevectiva.

- **P3.** Sea E el conjunto de referencia y $A, B \subseteq E$. Sea $f : A \to B$ y $C \subseteq A$. Se define $g : C \to B$ tal que $g(x) = f(x) \ \forall x \in C$. Demuestre que $\forall D \subseteq B, \ g^{-1}(D) = C \cap f^{-1}(D)$.
- **P4.** Sean $f: A \to B$ y $G: B \to C$ dos funciones.
 - (a) Demuestre que si $C_0 \subseteq C$, entonces se cumple la siguiente propiedad para el conjunto preimagen:

$$(g \circ f)^{-1}(C_0) = f^{-1}(g^{-1}(C_0))$$

(b) Demuestre que si $A_0 \subseteq A$, entonces se cumple la siguiente propiedad para el conjunto preimagen:

$$g \circ f(A_0) = g(f(A_0))$$