MA1101-5 Introducción al Álgebra

Profesores: Pablo Dartnell Auxiliares: Juan Pedro Ross Fecha: Martes 21 de Agosto.

Guía examen

- **P1.** Pruebe que el producto de las n raíces n-ésimas de la unidad es igual a $(-1)^{n-1}$.
- **P2.** Sean $z \in \mathbb{C} \setminus \{0\}$, un complejo dado, $n \geq 2$ $\{z_0, ..., z_{n-1}\}$ las raíces n-ésimas de z. Calcule:

$$\sum_{k=0}^{n-1} \frac{1}{z_k}$$

- **P3.** Considere el polinomio $p(x) = x^4 + 2$. Determine las raíces de p y escriba su factorización tanto en $\mathbb{R}[x]$ como en $\mathbb{C}[x]$.
- **P4.** Determinar $p \in \mathbb{R}[x]$ un polinomio mónico de grado 3, que satisfaga las siguientes condiciones.
 - p(0) = p(2) = 0
 - El resto de dividir p(x) por (x-1) es el mismo que el resto obtenido al dividir p(x) por (x-3)
- **P5.** Resolver en \mathbb{C} la ecuación $z^6 2iz^3 1 = 0$ indicando la multiplicidad de cada raíz.
- **P6.** Sea $p(x) = 6x^5 25x^4 + 16x^3 + 21x^2 18x$. Sabiendo que p admite 3 raíces enteras no negativas, factorice p.
- **P7.** Pruebe que:

$$p(x) = \sum_{i=1}^{6} \frac{(-1)^{i}}{(i+1)^{2}} \left(\sum_{k=1}^{i} 4k^{3}x^{i-1}\right) = 36x^{5} - 25x^{4} + 16x^{3} - 9x^{2} + 4x - 1$$

Además averigüe si tiene raíces enteras.

- **P8.** Se define en $\mathbb{C} \setminus \{0\}$ la relación \mathcal{R} dada por $z_1 \mathcal{R} z_2 \Leftrightarrow z_1 \cdot \overline{z_2} \in \mathbb{R}$.
 - a) Demuestre que \mathcal{R} es una relación de equivalencia.
 - b) Muestre que $[z]_{\mathcal{R}} = \{a \cdot z | a \in \mathbb{R} \setminus \{0\}\}.$
- **P9.** a) Sean $m, n \in \mathbb{N}$, $m, n \ge 2$. Pruebe que si z es raíz n-ésima de la unidad y w es raíz m-ésima de la unidad, entonces existe $k \in \mathbb{N}$, $k \ge 2$ tal que $z \cdot w$ es raíz k-ésima de la unidad.
 - b) Sea $G = \{w \in \mathbb{C} | \exists n \in \mathbb{N}, n \geq 2, w^n = 1\}$, es decir G es la unión para $n \geq 2$ de las raíces n-ésimas de la unidad. Pruebe que (G, \cdot) es subgrupo de $(\mathbb{C} \setminus \{0\}, \cdot)$ donde \cdot es la multiplicación habitual de \mathbb{C} .
 - c) Pruebe que $\varphi:(G,\cdot)\to (G,\cdot)$, tal que $\varphi(w)=\frac{1}{w}$ es un isomorfismo.
- **P10.** Para $z \in \mathbb{C}, z \neq 0$, demuestre que:

$$(z + \frac{1}{z}) \in \mathbb{R} \Leftrightarrow Im(z) = 0 \lor |z| = 1.$$

- **P11.** Sea $f: \mathbb{C} \to \mathbb{C}$ con $f(z) = \overline{z}$. Demuestre que f es un isomorifismo entre $(C, +, \cdot)$ y $(C, +, \cdot)$.
- **P12.** Si

$$\sum_{k=1}^{n} a_k = \frac{n^2 + 5n}{3}$$

Determinar a_n .

P13. Considere los conjuntos $S_1 = \{3k : k \in \mathbb{Z}\}$ y $S_2 = \{2k : k \in \mathbb{Z}\}$. ¿Son grupos $(S_1, +)$ y $(S_2, +)$? ¿Qué hay sobre $(S_1 \cup S_2, +)$?