MA1101-5 Introducción al Álgebra

Profesor: Pablo Dartnell Auxiliar: Juan Pedro Ross

Fecha: Domingo 1 de Julio de 2018

Guía control recuperativo

Resumen, para que vean que no han aprendido poco:

 \blacksquare Conjunto potencia: Dado A un conjunto P(A) es el conjunto de todos los subconjuntos de A.

$$X \in P(A) \Leftrightarrow X \subseteq A$$

Sea $f:A\to B$ una función.

- f es inyectiva $\Leftrightarrow (\forall x, y \in A) \ f(x) = f(y) \Rightarrow x = y$.
- f es sobreyectiva $\Leftrightarrow (\forall y \in B)(\exists x \in A) \ f(x) = y$.
- f es biyectiva $\Leftrightarrow f$ es inyectiva y sobreyectiva.
- Si f es biyectiva, tiene inversa f^{-1} , y es tal que $(\forall x \in A)(\forall y \in B)(f(x) = y \Leftrightarrow f^{-1}(y) = x)$.
- $g \circ f$ SOLO TIENE SENTIDO CUANDO $B \subseteq C$.
- $g \circ f$ inyectiva $\Rightarrow f$ inyectiva.
- $g \circ f$ sobreyectiva $\Rightarrow g$ sobreyectiva.
- $g \wedge f$ inyectivas $\Rightarrow f \circ g$ inyectiva.
- $g \wedge f$ sobreyectivas $\Rightarrow f \circ g$ sobreyectiva.
- $g \wedge f$ biyectivas $\Rightarrow f \circ g$ biyectiva con $(f \circ g)^{-1} = g^{-1} \circ f^{-1}$
- Dado $A' \subseteq A$, de define el conjunto **imagen de** A' como

$$f(A') = \{ y \in B \mid (\exists x \in A') f(x) = y \}.$$

 \blacksquare Dado $B'\subseteq B,$ de define el conjunto **preimagen de** B' como

$$f^{-1}(B') = \{x \in A \mid f(x) \in B'\}$$

- $f(A_1 \cup A_2) = f(A_1) \cup f(A_2)$.
- \mathcal{R} es **refleja** ssi $(\forall x \in A) \ x \mathcal{R} x$.
- \mathcal{R} es simétrica ssi $(\forall x, y \in A)$ $x\mathcal{R}y \Rightarrow y\mathcal{R}x$.
- \mathcal{R} es antisimétrica ssi $(\forall x, y \in A) (x\mathcal{R}y \land y\mathcal{R}x) \Rightarrow x = y.$
- \mathcal{R} es **transitiva** ssi $(\forall x, y, z \in A) (x\mathcal{R}y \land y\mathcal{R}z) \Rightarrow x\mathcal{R}z$.
- R es relación de orden ssi es refleja, antisimétrica y transitiva.

- R es relación de equivalencia ssi es refleja, simétrica y transitiva.
- Si \mathcal{R} es una relación de orden, diremos que es un **orden total** si para cada $x, y \in A$ $(x\mathcal{R}y \vee y\mathcal{R}x)$. De lo contrario, se dirá que es un **orden parcial**.
- Si R es de equivalencia y x ∈ A
 [x]_R = {y ∈ A | xRy} es la clase de equivalencia de x asociada a R.
- A/\mathcal{R} es el conjunto de las clases de equivalencia inducidas por \mathcal{R} y se le llama **conjunto cuociente**.
- Inducción **primera forma** $[(\forall n \geq n_0)p(n)] \Leftrightarrow [p(n_0) \land (\forall n \geq n_0)(p(n) \Rightarrow p(n+1))].$
- Inducción **segunda forma** $[(\forall n \geq n_0)p(n)] \Leftrightarrow [p(n_0) \land (\forall n \geq n_0)\{[(\forall k, n_0 \leq k \leq n)p(k)] \Rightarrow p(n+1)\}].$
- $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}.$
- $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$
- $\sum_{k=1}^{n} k^3 = \frac{(n(n+1))^2}{4}.$
- \blacksquare Suma telescópica: $\sum_{k=p}^q a_k a_{k-1} = a_q + a_{p-1}.$
- Binomio de Newton: $(x+y)^n = \sum_{k=0}^n \binom{n}{k} x^k y^{n-k}$.
- \bullet Suma geométrica: $\sum_{k=0}^n r^k = \frac{r^{n+1}-1}{r-1},$ si $r \neq 1.$
- $|A| \le |B| \land |B| \le |A| \Leftrightarrow |A| = |B|$
- $A \subseteq B \Rightarrow |A| \le |B|$
- Si A es infinito, entonces $|\mathbb{N}| \leq |A|$
- Q y Z son numerables.
- La unión numerable de conjuntos numerables es numerable
- Si A, B son conjuntos numerables, entonces $A \times B$ es numerable.

P1. (Functiones y sumatorias) Considere las funciones $f: \mathbb{N} \to \mathbb{R} \setminus \{0\}$ y $g: \mathbb{R} \setminus \{0\} \to \mathbb{R}$ definidas por

$$f(n) = 1 - \sum_{k=0}^{n} \frac{k}{(k+1)!}, \quad (\forall n \in \mathbb{N})$$

$$g(x) = x^{-1}, \ \forall x \in \mathbb{R} \setminus \{0\}$$

- (a) Expresar f(n) en función de n (resolver la suma).
- (b) Verificar de $Im(g \circ f) \subseteq \mathbb{N}$. Es $g \circ f$ invectiva/ epiyectiva/ biyectiva?. Justifique.

P2. (Funciones, inducción y conjuntos:) Sea U conjunto universo y $A, B \subseteq U$. Se define:

$$\begin{array}{ccc} f: \mathcal{P}(U) & \longrightarrow \mathcal{P}(U) \\ X & \longmapsto f\left(X\right) = A \cap \left(B \cup X\right) \end{array}$$

- (I) Pruebe de $f \circ f = f$
- (II) Pruebe que $(\forall n \geq 1) f^n = f$.
- (III) Si $A \neq U$ o $B \neq \emptyset$, pruebe que f no es inyectiva.
- (IV) Si $A \neq U$ o $B \neq \emptyset$, pruebe que f no es sobreyectiva.
- (v) ¿Cómo sería f si fuese una función biyectiva?
- (VI) Determine condiciones para que

$$g: \mathcal{P}(U) \longrightarrow \mathcal{P}(U)$$

$$X \longmapsto g(X) = ((A \cap B)^c \setminus (A \cap X))^c$$

sea biyectiva.

P3. (Divisibilidad e inducción:)

- a) Sea $z \in \mathbb{Z}$ demuestre, sin usar inducción, que $\forall n \in \mathbb{N}$, se tiene que $1-z^n$ siempre es divisible por 1-z.
- b) Sea $z \in \mathbb{Z}$ demuestre, usando inducción, que $\forall n \in \mathbb{N}$, se tiene que $1-z^n$ siempre es divisible por 1-z.
- c) Concluya que si $a, b \in \mathbb{Z}$ y a divide a b entonces a b divide a $a^n b^n$.
- d) Demuestre que todos los números de la forma, 12, 102, 1002, ... son divisibles por 6.

P4. (Sumatorias e inducción:)

- (a) Demuestre que $\sum_{k=1}^{n} \frac{1}{k+1} \sum_{j=1}^{k} j = \frac{n(n+1)}{4}$
- (b) Demuestre usando inducción que

$$\forall n \ge 2: \sum_{k_1=1}^m \frac{1}{k_1+1} \sum_{k_2=1}^{k_1} \frac{1}{k_2+1} \sum_{k_3=1}^{k_2} \frac{1}{k_3+1} \cdots \sum_{k_n=1}^{k_{n-1}} k_n = \frac{m(m+1)}{2^n}$$

P5. (Inducción) Determine el menor $n_0 \in \mathbb{N}$ a partir del cual es válida la desigualdad $3n+2 < 2^n$.

P6. (Relaciones, composición de funciones:) Sea A un conjunto no vacío y $f:A\to A$ una función biyectiva. Denotaremos por f^{-1} a la inversa de f. Para $n\ge 1$ definiremos f^n como la composición de ella consigo misma n veces y si n<0 definimos $f^n=(f^{-1})^{|n|}$. Si n=0 ponemos $f^0=Id_A$.

Considere la relación en A definida como:
$$xRy \Leftrightarrow \exists n \in \mathbb{Z}, f^{(n)}(x) = y$$

- a) Probar que R es una relación de equivalencia
- b) Calcule A/R suponiendo que $A = \{0, 1, 2, ..., 2n\}$ y que

$$f(x) = \begin{cases} x+2 & 0 \le x \le 2n-2 \\ 0 & x = 2n \\ 1 & x = 2n-1 \end{cases}$$

- **P7.** (Relaciones, imagen y pre-imágen) Sea U universo y $f:U\longrightarrow U$ una función cualquiera (no necesariamente biyectiva), en $\mathcal{P}(\mathcal{U})$ se definen la relaciones $A\mathcal{R}B\Leftrightarrow f(f^{-1}(A))\subseteq f(f^{-1}(B))$ y $A\mathcal{S}B\Leftrightarrow f^{-1}(f(A))\subseteq f^{-1}(f(B))$.
 - a) Demuestre que ambas son reflexivas y transitivas.
 - b) Considere $U = \{1, 2, 3\}$ y f(1) = 1, f(2) = 1, f(3) = 3 y vea que ocurre con la antisimetría
 - c) Determine condiciones sobre f para que ambas sean de orden.