MA1101-1 Introducción al Álgebra

Profesor: Leonardo Sánchez C. Auxiliar: Marcelo Navarro

Auxiliar 12: Conjuntos Infinitos

30 de julio de 2018

- |A| = |B| si existe una función $f: A \to B$ bivectiva.
- $|A| \leq |B|$ si existe una función $f: A \to B$ inyectiva.
- |A| < |B| si existe una función $f: A \to B$ inyectiva, pero no existe una función biyectiva $g: A \to B$
- Se tienen las siguientes propiedades:
 - 1. $|A| \le |A|$
 - 2. Si $A \subseteq B$, entonces $|A| \leq |B|$
 - 3. Si $|A| \le |B|$ y $|B| \le |C|$, entonces |A| < |C|
- Teorema Cantor-Bernstein-Schöeder

$$|A| \le |B| \land |B| \le |A| \Rightarrow |A| = |B|$$

- Cardinal de la imagen de un conjunto Si $f:A\to B$ es función, entonces $|f(A)|\le |A|$
- N es infinito y si un conjunto A cumple que $|A| = |\mathbb{N}|$, entonces se dirá que A es numerable. Por otro lado si un conjunto A cumple que $|A| \leq |\mathbb{N}|$ se dirá que A es a lo más numerable.
- $|\mathbb{N}|$ es el menor cardinal infinito.
- Todo conjunto infinito A inmediatamente cumple que $|A| \ge |\mathbb{N}|$. Es decir, A es infinito si y sólo si $|A| \ge |\mathbb{N}|$.
- Sea A un conjunto infinito tal que $|A| \leq |\mathbb{N}|$, entonces A es numerable, es decir, $|A| = |\mathbb{N}|$
- Sea A infinito y B finito. Entonces $|A \cup B| = |A \setminus B| = |A|$

- \mathbb{Z} y \mathbb{Q} son numerables.
- Sea A_1, A_2, \ldots, A_n una colección finita de conjuntos numerables, entonces $\bigcup_{i=1}^n A_i$ también es numerable
- Sea A_1, A_2, \ldots, A_n una colección finita de conjuntos numerables, entonces

$$\prod_{i=1}^{n} A_i = A_1 \times \dots \times A_n$$

también es numerable.

Una consecuencia de esto es que $\mathbb{N}^n, \mathbb{Z}^n$ y \mathbb{Q}^n son numerables, con $n \in \mathbb{N}, n \geq 1$

- Sea $(A_i)_{i\in\mathbb{N}}$ una colección numerable de conjuntos numerables, entonces $\bigcup_{i\in\mathbb{N}} A_i$ es numerable.
- Sea $(A_i)_{i \in \mathcal{I}}$, $\mathcal{I} \subseteq \mathbb{N}$, una colección a lo más numerable de conjuntos a lo más numerables (i.e. $|A_i| \leq |N|$). Entonces $\bigcup_{i \in \mathcal{I}} A_i$ es a lo más numerable
- El producto de una familia numerable de conjuntos finitos de tamaño dos no es numerable Ej: $\prod_{i \in \mathbb{N}} \{x_i, y_i\}$ donde $x_i, y_i \in \mathbb{R}$ para todo $i \in \mathbb{N}$
- Teorema Cantor

Sea A un conjunto entonces $|A| < |\mathcal{P}(A)|$

- Un conjunto A se dirá no numerable si $|\mathbb{N}| < |A|$
- \mathbb{R} , $\mathcal{P}(\mathbb{N})$, |(a,b)|, |(a,b)|, |[a,b)| y |[a,b]| son no numerable, con $a,b\in\mathbb{R}$, a< b

P1. [Strings y números binarios]

- a) Demuestre que el conjunto de todos los strings que se pueden generar a partir de símbolos en $\{0,1\}$, es infinito numerable.
- b) Demuestre que el conjunto de todas las secuencias binarias infinitas es no numerable.
- c) [**Propuesto**] Demuestre que el conjunto de las novelas que pueden ser escritas en español es numerable.

Nota: Un string o palabra es una cadena finita de caracteres

P2. [Infinito vs Finito]

Demuestre que si $B \subseteq A$, A es infinito y B finito, entonces $A \setminus B$ es infinito.

P3. [Irracionales]

Demuestre que los irracionales son no numerables

P4. [Verdadero o Falso]

Sean A, B, C, D conjuntos. Demuestre o de un contraejemplo de:

- a) Si |A| = |B| y $|A \times C| = |B \times D|$, entonces |C| = |D|.
- b) Si |A| = |B|, $A \cap C = \emptyset$, $B \cap D = \emptyset$ y $|A \cup C| = |B \cup D|$ entonces |C| = |D|. Donde el simbolo \cup representa la union disjunta.
- c) Si $A \subset B \Longrightarrow |A| < |B|$

P5. [Triangulos]

Demuestre que el conjunto de todos los triangulos cuyos vertices son elementos de $\mathbb{Q} \times \mathbb{Q}$ es numerable. Propuesto: ¿Que ocurre si, en el mismo problema, en vez de pensar en triángulos pensamos en polígonos?

P6. [Conjunto de funciones]

Considere el conjunto $A \neq \emptyset$, se define el conjunto $\mathcal{F} = \{f : \{1, 2, 3\} \rightarrow A \mid f \text{ es función}\}.$

- a) Demuestre que $|\mathcal{F}| = |A^3|$ **Hint:** para $f \in \mathcal{F}$ considere la tupla (f(1), f(2), f(3))
- b) Demuestre que si A es numerable, entonces \mathcal{F} tambien lo es.

P7. [Recorrido de un insecto]

Un insecto debe cubrir, saltando de izquierda a derecha, la distancia desde 0 a 1 en una recta. En cada punto de su recorrido, el insecto puede elegir entre saltar directamente hacia el uno (y así completar su viaje), o avanzar la mitad del tramo que le falta por cubrir.

Pruebe que la colección de recorridos (secuencias de pasos) por los que puede optar nuestro insecto, es numerable.

P8. [Suma de conjuntos]

Sean $A, B \subseteq \mathbb{R}$ numerables. Demuestre que el conjunto $A + B = \{a + b : a \in A, b \in B\}$ es numerable.