

Auxiliar 4 - Derivadas y Preparación C1

Profesor: Raúl Uribe Auxiliar: Javier Gómez

- Aplicaciones de las derivadas: Monotonía $(f \nearrow si f' > 0)$, concavidad (f cóncava positiva si <math>f'' > 0), análisis de puntos de críticos (máximos/mínimos locales), L'Hopital para límites indefinidos, expansiones de Taylor.
- TVM Generalizado: Sean $f, g : [a, b] \to \mathbb{R}$ derivables en (a, b) con $g(a) \neq g(b)$ y $g'(x) \neq 0$ para todo $x \in (a, b)$. Entonces $\exists c \in (a, b)$ tal que $\frac{f'(c)}{g'(c)} = \frac{f(b) f(a)}{g(b) g(a)}$.
- **P1.** Encuentre las dimensiones del cono de máximo volumen que puede ser inscrito en una esfera de radio R (el contorno de la base y la punta del cono tocan la superficie de la esfera).
- **P2.** Sea f continua en $[0,\infty)$, derivable en $A=(0,\infty)$ y tal que f(0)=0. Dado que f'(x) es creciente en A, utilice el TVM para probar que $\forall x\in A,\ f'(x)\geq \frac{f(x)}{x}$. Concluya que la función $\frac{f(x)}{x}$ es creciente en A.
- **P3.** Sea una función de clase C^n definida en un intervalo I con $x_0 \in I$ que satisface:

$$f'(x_0) = f''(x_0) = \dots = f^{(n-1)}(x_0) = 0, \quad f^{(n)}(x_0) \neq 0.$$

Dado que $g(x) = x - \frac{f'(x)}{f''(x)}$, expanda en Taylor para definir g(x) en x_0 de forma que sea continua y calcule $g'(x_0)$.

- **P4.** Sea $f: \mathbb{R} \to \mathbb{R}$ una función dos veces derivable con f(0) = f'(0) = 0. Para a > 0 se define $g(x) = f(x) \left(\frac{x}{a}\right)^2 f(a)$. Demuestre que $\exists \xi \in (0, a)$ tal que $a^2 f''(\xi) = 2f(a)$.
- **P5.** Considere la función $f(x) = 1 + xe^x$, se pide:
 - Dominio, continuidad y estudiar si es que existen puntos de continuidad reparable.
 - Asíntotas, si las hay.
 - Estudiar crecimiento, míximos y mínimos.
 - Demostrar que f tiene un unico cero en [-2, -1].
 - Estudiar la convexidad y puntos de inflexión (si los hay) de f.
 - Hacer un bosquejo del gráfico de f.