LIVERPOOL

PHYS370 — Advanced Electromagnetism

Part 3:
Electromagnetic Waves in Conducting Media

Electromagnetic Wave Equation

Recall that in a “simple” dielectric material, we derived the
wave equations:

V2E — ueE = 0 (1)

V2B —pusB = 0 2)
To derive these equations, we used Maxwell's equations with
the assumptions that the charge density p and current density J

were zero, and that the permeability 4 and permittivity € were
constants.

We found that the above equations had plane-wave solutions,
with phase velocity:
1
VIE
Maxwell's equations imposed additional constraints on the
directions and relative amplitudes of the electric and magnetic
fields.
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v =

(3)

Electromagnetic Wave Equation in Conductors

How are the wave equations (and their solutions) modified for
the case of electrically conducting media?

We shall restrict our analysis to the case of ohmic conductors,
which are defined by:

J=0oE (4)

where o is a constant, the conductivity of the material.

All we need to do is substitute from equation (4) into Maxwell’s
equations, then proceed as for the case of a dielectric...
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Plane Monochromatic Wave in a Conducting Material

In our “simple” conductor, Maxwell's equations take the form:

V-E =0 (5)
V-B =0 (6)
VxE = —B (7)
VxB = ,u&:ﬁ-l—uf (8)

where J is the current density. Assuming an ohmic conductor,
we can write:

J=cE (9)
so equation (8) becomes:
Vx§2u65+paﬁ (10)

Taking the curl of equation (7) and making appropriate
substitutions as before, we arrive at the wave equation:

V2E — poB — ucE =0 (11)
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Plane Monochromatic Wave in a Conducting Material

The wave equation for the electric field in a conducting
material is (11):

V2E — poE — peE =0 (12)
Let us try a solution of the same form as before:

B(F,t) = Eyel @t=F7) (13)

Remember that to find the physical field, we have to take the
real part. Substituting (13) into the wave equation (11) gives
the dispersion relation:

—k? — jwpo + wpe =0 (14)

Compared to the dispersion relation for a dielectric, the new
feature is the presence of an imaginary term in o. This means
the relationship between the wave vector k and the frequency w
is a little more complicated than before.
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Plane Monochromatic Wave in a Conducting Material

From the dispersion relation (14), we can expect the wave
vector k to have real and imaginary parts. Let us write:

k=a—jj3 (15)
for parallel real vectors @ and §.

Substituting (15) into the dispersion relation (14) and taking
real and imaginary parts, we find:

1 1 o2 1/2

B="" (17)

and:

Equations (16) and (17) give the real and imaginary parts of
the wave vector k in terms of the frequency w, and the material
properties u, € and o.
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Plane Monochromatic Wave in a Conducting Material

Using equation (15) the solution (13) to the wave equation in a
conducting material can be written:

E(7,t) = Boed Wt=a) =07 (18)

The first exponential factor, /(“t=@7) gives the usual
plane-wave variation of the field with position ¥ and time ¢;
note that the conductivity of the material affects the
wavelength for a given frequency.

The second exponential factor, e P gives an exponential decay
in the amplitude of the wave...
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Plane Monochromatic Wave in a Conducting Material

Eo
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Plane Monochromatic Wave in a Conducting Material

In a “simple” non-conducting material there is no exponential
decay of the amplitude: electromagnetic waves can travel for
ever, without any loss of energy.

If the wave enters an electrical conductor, however, we can
expect very different behaviour. The electrical field in the wave
will cause currents to flow in the conductor. When a current
flows in a conductor (assuming it is not a superconductor)
there will be some energy changed into heat. This energy must
come from the wave. Therefore, we expect the wave gradually
to decay.
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Plane Monochromatic Wave in a Conducting Material

The varying electric field must have a magnetic field associated
with it. Presumably, the magnetic field has the same wave
vector and frequency as the electric field: this is the only way
we can satisfy Maxwell's equations for all positions and times.
Therefore, we try a solution of the form:

B(F,t) = Byel@t=F7) (19)

Now we use Maxwell's equation (7):

VxE=-B (20)
which gives:

E X EO = wéo (21)
or:

.k -

BO = —X EO (22)

w
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Plane Monochromatic Wave in a Conducting Material

The magnetic field in a wave in a conducting material is related
to the electric field by (22):

. Eo.
BOZ*XEO (23)
w

As in a non-conducting material, the electric and magnetic
fields are perpendicular to the direction of motion (the wave is
a transverse wave) and are perpendicular to each other.

But there is a new feature, because the wave vector is complex.

In a non-conducting material, the electric and magnetic fields
were in phase: the expressions for the fields both had the same
phase angle ¢g. In complex notation, the complex phase angles
of the field amplitudes EO and Eo were the same.

In a conductor, the complex phase of k gives a phase difference
between the electric and magnetic fields.
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Plane Monochromatic Wave in a Conducting Material

In a conducting material, there is a difference between the
phase angles of Eg and Bp, given by the phase angle ¢ of k.
This is:

tang = s (24)
[0
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