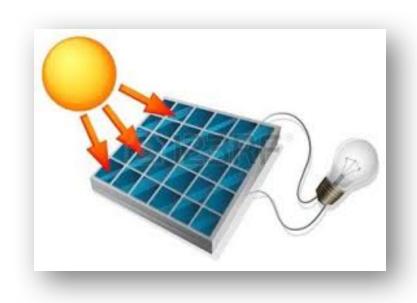
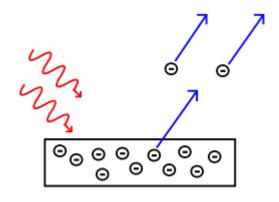


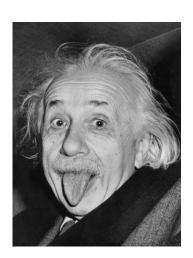
Departamento de Física

Corriente alterna: Celdas fotovoltaicas

Marcos Flores Carrasco Departamento de Física

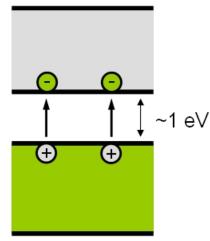

mflorescarra@ing.uchile.cl


Celda Fotovoltaica

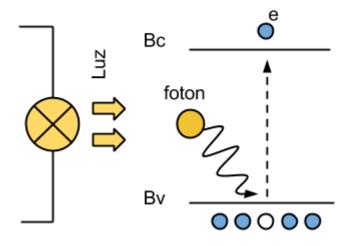

Celda fotovoltaica: Dispositivo electrónico que permite transformar la energía lumínica (fotones) en energía eléctrica (flujo de electrones libres) mediante el efecto fotoeléctrico, generando energía solar fotovoltaica

Generación par electrón-hueco

Efecto fotoeléctrico (premio nobel 1921) consiste en la emisión de electrones por un material cuando se lo ilumina con radiación electromagnética.

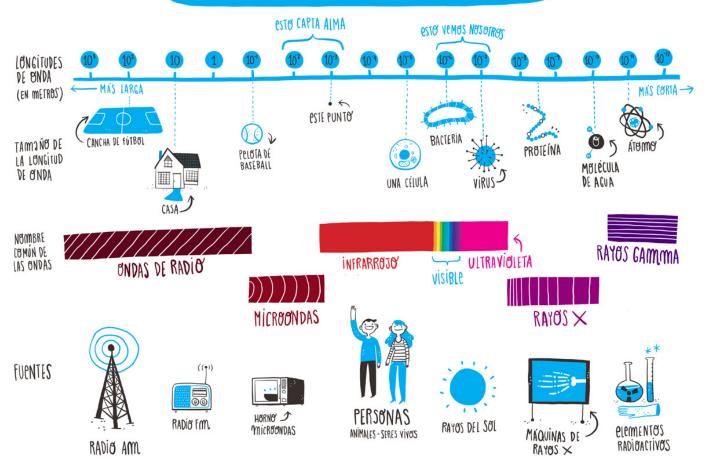

Energía de un fotón absorbido = Energía necesaria para liberar 1 electrón + energía cinética del electrón emitido.

$$E_{fot\acute{o}n} = \phi + KE$$

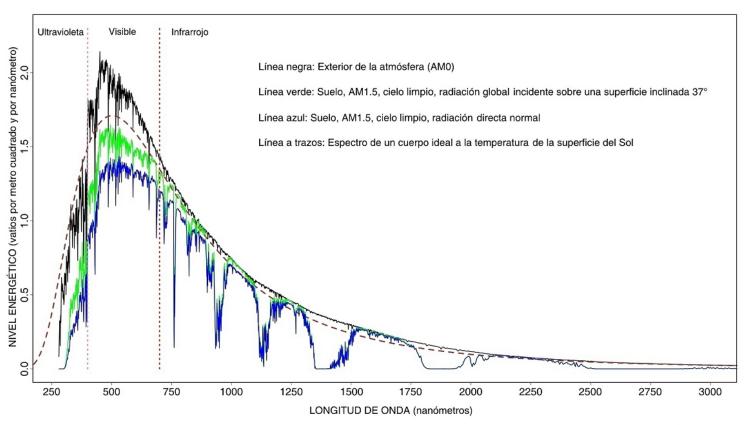

Generación par electrón-hueco

Semiconductor

Banda de valencia



$$E = \frac{hc}{\lambda} = h\nu = hf$$


$$h = 6,626 \times 10^{-34} Js$$

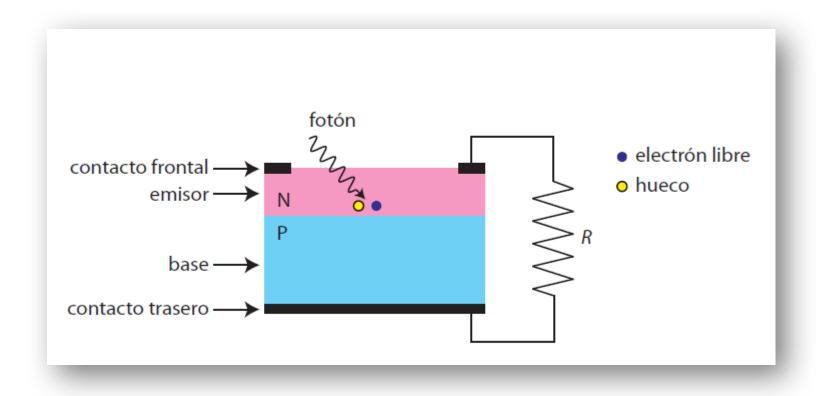
 $c \approx 3 \times 10^8 \text{ m/s}$
 $1 \text{ eV} = 1,6 \times 10^{-19} J$

Energía de los fotones

CL ESPECTRO ELECTROMAGNÉTICO

Energía de los fotones

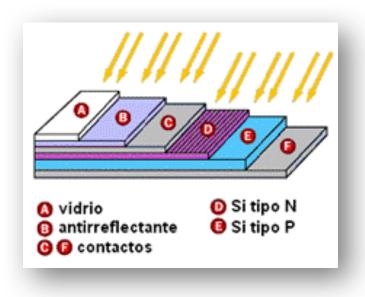
Espectro solar medido bajo tres diferentes masas de aire (longitud relativa de la atmósfera que han de atravesar los rayos).


Energía de los fotones

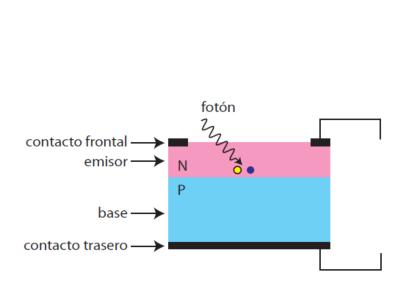
color	longitud de onda (nm)	frecuencia (THz)	Energía (eV)
rojo	625-740	405-480	1,68-1,98
naranja	590-625	480-510	1,98-2,10
amarillo	565-590	513-530	2,10-2,19
verde	520-565	530-580	2,19-2,38
azul	450-520	580-670	2,38-2,76
añil	430-450	670-700	2,76-2,88
violeta	380-430	700-790	2,88-3,26

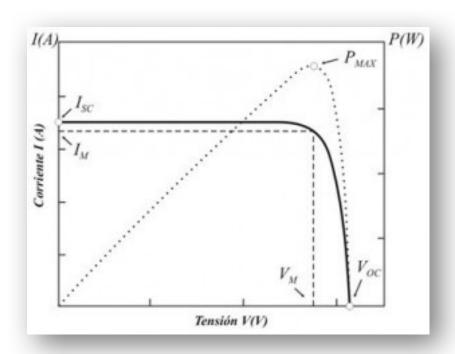
Material	Symbol	Band gap (eV) @ 300K
Silicon	Si	1.11
Selenium	Se	1.74
Germanium	Ge	0.67
Silicon carbide	SiC	2.86
Aluminum phosphide	AlP	2.45
Aluminum arsenide	AlAs	2.16
Aluminum antimonide	AlSb	1.6
Aluminum nitride	AIN	6.3
Diamond	С	5.5
Gallium(III) phosphide	GaP	2.26
Gallium(III) arsenide	GaAs	1.43
Gallium(III) nitride	GaN	3.4
Gallium(III) sulfide	GaS	2.5
Gallium antimonide	GaSb	0.7

Material	Symbol	Band gap (eV) @ 300K
Indium(III) nitride	InN	0.7
Indium(III) phosphide	InP	1.35
Indium(III) arsenide	InAs	0.36
Zinc oxide	ZnO	3.37
Zinc sulfide	ZnS	3.6
Zinc selenide	ZnSe	2.7
Zinc telluride	ZnTe	2.25
Cadmium sulfide	CdS	2.42
Cadmium selenide	CdSe	1.73
Cadmium telluride	CdTe	1.49
Lead(II) sulfide	PbS	0.37
Lead(II) selenide	PbSe	0.27
Lead(II) telluride	PbTe	0.29
Copper(II) oxide	CuO	1.2


Mecanismo de operación

Mecanismo de operación


Celda solar real



Caracterización de una celda

Voltaje circuito abierto (V_{oc}): se refiere al Voltaje en Circuito Abierto. Es el máximo voltaje que la celda puede producir para un nivel dado de intensidad de luz incidente.

Celda Fotovoltaica

El punto de potencia máxima:

$$P_{MAX} = V_{MP} I_{MP}$$

Dado que Imp < Isc y Vmp < Voc, se tiene que siempre Pmax < Isc Voc

La resistencia característica de la celda fotovoltaica:

$$R_c = \frac{V_{MP}}{I_{MP}},$$