


Auxiliar 3

P1. Una barra gira con velocidad angular constante ω_0 respecto a un punto \mathcal{O} , manteniéndose siempre en un mismo plano vertical. Sobre la barra desliza una partícula de masa m sobre la cual actúan la gravedad, la normal que la barra ejerce y una fuerza motriz radial $F(t)\hat{r}$. El movimiento resultante es tal que la partícula se desplaza con rapidez constante, v_0 , respecto de la barra (ver figura).

- a) Determine el mínimo valor de v_0 tal que la partícula nunca se despegue de la barra.
- b) Si v_0 tiene el valor obtenido en (a), determine la fuerza F(t) en función del tiempo t. Considere que en t=0 la barra pasa por la posición horizontal y la partícula para por el punto \mathcal{O} .
- c) Determine el ángulo θ que forma la barra con la horizontal cuando F alcanza su mayor valor positivo.
- **P2.** Considere un cohete de masa inicial m_0 , si este está sujeto a la fuerza de gravedad y su taza de quema de combustible es α . Encuentre la velocidad que tiene el cohete como función del tiempo.
- **P3.** Una barra ideal de largo R y de masa despreciable está apoyada en una base de masa m_2 , mientras que en el otro extremo tiene una partícula de masa m_1 . La masa m_2 puede moverse sólo en la dirección vertical. Si inicialmente, la vara está en su posición vertical y es ligeramente perturbada fuera de su posición de equilibrio (rapidez angular muy pequeña). La masa m_1 comienza a caer y durante un intervalo de tiempo finito el extremo inferior de la vara no se despega. El problema busca describir la dinámica previa al eventual movimiento de m_2 .

- a) Escriba las ecuaciones de movimiento para ambas masas y determine la rapidez angular con la que cae m_1 en función de θ .
- b) Determine la magnitud de la fuerza de reacción vertical que el suelo ejerce sobre m_2 en función de las masa y el ángulo θ . ¿Qué valor toma para $\theta = 0$?
- c) Determine la relación entre las masas m_1 , m_2 y el ángulo $\theta = \theta_d$ para que sea posible el despegue de la base de la vara (m_2) . ¿Existe alguna restricción entre las magnitudes de las masas para la existencia de una ángulo de despegue θ_d ? ¿Qué rango angular es posible?