Universidad de Chile Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática 22 de Diciembre de 2017

Rúbrica Control N°1 MA2002

Profesor: Gonzalo Flores G. Auxiliar: Nicolás Zalduendo V.

- **P1.** (a) (0.5 ptos.) Calcula correctamente $h_1 \nabla h_2$.
 - (0.5 ptos.) Calcula correctamente la divergencia del resultado anterior.
 - (1 pto.) Reordena e identifica términos para concluír el resultado.
 - (b) (0.5 ptos.) Identifica en la igualdad a demostrar una igualdad del tipo teorema de Gauss.
 - (1 pto.) Verifica que se cumples las hipótesis de este teorema.
 - $\bullet \ (0.5 \ \mathrm{ptos.})$ Aplica correctamente el teorema de la divergencia y concluye.
 - (c) (1 pto.) Justifica por qué es posible intercambiar los roles de f y g en la igualdad anterior.
 - (1 pto.) Utiliza dichas igualdades y ordena términos correctamente para concluír el resultado buscado.
- P2. (a) (0.5 ptos.) Bosqueja el paraboloide y la esfera.
 - (0.3 ptos.) Obtiene una ecuación para Γ o bien justifica la forma de dicha curva.
 - (0.2 pto.) Bosqueja Γ .
 - (b) (0.5 ptos.) Parametriza la curva Γ .
 - \bullet (0.5 ptos.) Verifica las hipótesis del teorema de Stokes.
 - (0.5 ptos.) Parametriza una superficie S tal que $\partial S = \Gamma$.
 - (0.5 ptos.) Obtiene el rotor de \vec{F} y obtiene el valor de la integral.

Alternativamente

- (0.5 ptos.) Parametriza la curva Γ .
- (0.5 ptos.) Plantea correctamente la integral a calcular.
- (1 pto.) Obtiene el valor de la integral anterior.
- (c) (1 pto.) Calcula el rotor de \vec{F} .
 - (0.5 ptos.) Plantea la integral indicada.
 - (0.5 ptos.) Calcula la integral anterior.
 - (1 pto.) Explica la supuesta contradicción con el teorema de Stokes.
- **P3.** (a) (0.5 ptos.) Menciona que ambos campos son C^1 en \mathbb{R}^3 .
 - (1 pto.) Calcula el rotor de \vec{F}_1 .
 - (0.5 ptos.) Calcula el rotor de \vec{F}_2 .
 - (1 pto.) Obtiene correctamente potenciales para \vec{F}_1 .
 - (b) (1 pto.) Parametriza la curva Γ.
 - (0.5 ptos.) Calcula la integral para \vec{F}_1 .
 - (1.5 ptos.) Calcula la integral para \vec{F}_2 .