
1

JSCert
A Formalisation of JavaScript in Coq

Martin Bodin

CC7125-1 / MA7125-1

15th and 20th of November

2

Previously

JavaScript is complex;
JavaScript is specified by ECMAScript;
Translating ECMAScript into big-step is long and not scalable;
We can translate each steps of ECMAScript into one
pretty-big-step rule;
JSCert is a translation of the core of JavaScript into
Coq/pretty-big-step;
JSCert is accompanied with an interpreter, JSRef;
We can run JSRef against test suites.

3

Why is JavaScript so Complex?

Initially, JavaScript was designed for small scripts done by
non-professional programmers.
Also, only designed in 10 days.
Don’t break the web!
There are actually efforts to make JavaScript simpler:

for (/* ... */ of /* ... */) iteratively replacing
for (/* ... */ in /* ... */);
the strict mode;
etc.

Inertia is the biggest enemy here, but we can fight it
progressively.

4

Why Big-step wouldn’t work in JSCert?

What is great about JavaScript
To do anything about JavaScript, you have to be able to scale.

JavaScript forces us to do things in a scalable way.
Big-step does not scale on ECMAScript.
Pretty-big-step does.

Scaling
In semantic size (900 rules just for the core, but what about
libraries?);
In program size (7,500 lines just for Google’s main page?);
In time (ECMAScript 6, 7, 8, ES.Next, …).

4

Why Big-step wouldn’t work in JSCert?

What is great about JavaScript
To do anything about JavaScript, you have to be able to scale.

JavaScript forces us to do things in a scalable way.
Big-step does not scale on ECMAScript.
Pretty-big-step does.

Scaling
In semantic size (900 rules just for the core, but what about
libraries?);
In program size (7,500 lines just for Google’s main page?);
In time (ECMAScript 6, 7, 8, ES.Next, …).

5

Making Coq Proofs Scale

6

Why proof automation works?

7

JSCert Specification Coverage

Chapters 1–7: how to read ECMAScript;
Chapters 8–14, 16: core JavaScript;
Chapters 15: standard library.

8

The for (/* ... */ in /* ... */) construct

“is: for (lhse in e) s” is evaluated as follows.

1 Let exprRef be the result of evaluating e.
2 Let exprValue be GetValue (exprRef).
3 If exprValue is null or undefined, return (normal, empty, empty).
4 Let obj be ToObject (exprValue).
5 Let V = empty.
6 Repeat

1 Let P be the name of the next property of obj whose Enumerable
attribute is true. If there is no such property, return
(normal,V, empty).

2 Let lhsRef be the result of evaluating the lhse (it may be
evaluated repeatedly).

3 Call PutValue (lhsRef,P).
4 Let stmt be the result of evaluating s.
5 If stmt.value is not empty, let V = stmt.value.
6 If stmt.type is break and stmt.target is in the current label set,

return (normal,V, empty).
7 If stmt.type is not continue or stmt.target is not in the current

label set, then
1 If stmt is an abrupt completion, return stmt.

8

The for (/* ... */ in /* ... */) construct

“is: for (lhse in e) s” is evaluated as follows.

1 Let exprRef be the result of evaluating e.
2 Let exprValue be GetValue (exprRef).
3 If exprValue is null or undefined, return (normal, empty, empty).
4 Let obj be ToObject (exprValue).
5 Let V = empty.

6 Repeat
1 Let P be the name of the next property of obj whose Enumerable

attribute is true. If there is no such property, return
(normal,V, empty).

2 Let lhsRef be the result of evaluating the lhse (it may be
evaluated repeatedly).

3 Call PutValue (lhsRef,P).
4 Let stmt be the result of evaluating s.
5 If stmt.value is not empty, let V = stmt.value.
6 If stmt.type is break and stmt.target is in the current label set,

return (normal,V, empty).
7 If stmt.type is not continue or stmt.target is not in the current

label set, then
1 If stmt is an abrupt completion, return stmt.

8

The for (/* ... */ in /* ... */) construct

“is: for (lhse in e) s” is evaluated as follows.

1 Let exprRef be the result of evaluating e.
2 Let exprValue be GetValue (exprRef).
3 If exprValue is null or undefined, return (normal, empty, empty).
4 Let obj be ToObject (exprValue).
5 Let V = empty.

6 Repeat
1 Let P be the name of the next property of obj whose Enumerable

attribute is true. If there is no such property, return
(normal,V, empty).

2 Let lhsRef be the result of evaluating the lhse (it may be
evaluated repeatedly).

3 Call PutValue (lhsRef,P).
4 Let stmt be the result of evaluating s.
5 If stmt.value is not empty, let V = stmt.value.
6 If stmt.type is break and stmt.target is in the current label set,

return (normal,V, empty).
7 If stmt.type is not continue or stmt.target is not in the current

label set, then
1 If stmt is an abrupt completion, return stmt.

The mechanics and order of enumerating the properties (Step 1) is
not specified. Properties of the object being enumerated may be
deleted during enumeration, [they will then] not be visited. If new
properties are added to the object being enumerated during
enumeration, [they] are not guaranteed to be visited in the active
enumeration. A property name must not be visited more than once in
any enumeration. Enumerating the properties of an object includes
enumerating properties of its prototype.

9

Zooming Out

10

What is the most difficult part of a formalisation?

You have to convince other people (often non-Coq people) that
your semantics is the right one.

This is actually not about Coq: Coq is useful for the people
who will use your semantics, not for you;
Be sure to understand the original language:

What is the most important: the specification or interpreters?
The language community?

11

The JSCert Project

;

Coq definitions
Industrial world

JSRef
∼ 3,000 lines of code

5,126 tests passed
out of 11,725

Ru
nn

in
g

te
st

s

JSCert
∼ 900 rules Correctness

∼ 6,000 lines of proof

∼ 900 steps
∼ 200 pages

St
ep

/
ru

le
co

rre
sp

on
de

nc
e

12

Bugs found

Bugs in interpreters
Invalid return values of try {/* ... */} finally
{/* ... */} blocks;
Changing dead code altered the final result.

Bugs in ECMAScript
Broken algorithm;
Some cases forgotten in the Enumerate method.

Bugs in test suites
Tests checking the value of unspecified fields;
Bugs in tests, mimicking implementation bugs.

Reporting bugs are great way to make people trust you!
http://jscert.org/popl14/?full#20

http://jscert.org/popl14/?full#20

13

Increasing the Coverage of
JSCert

14

Coverage of JSCert

How to easily add Chapter 15?

15

Reusing already existing libraries

Philippa Gardner et al. “A Trusted Mechanised
Specification of JavaScript: One Year On”. In: CAV.
2015.

15

Reusing already existing libraries

Philippa Gardner et al. “A Trusted Mechanised
Specification of JavaScript: One Year On”. In: CAV.
2015.

16

Bisect
Let us test ECMAScript!

A code coverage tool for OCaml applied on JSRef, which is closed
to ECMAScript:

1 let run_call_full max_step s c l vthis args =
2 (*[3311]*)(fun fO fS n -> (*[3311]*)if n=0 then
3 (*[0]*)fO () else (*[3311]*)fS (n-1))
4 (fun _ -> (*[0]*)Coq_result_bottom)
5 (fun max_step’ ->
6 (*[3311]*)let run_expr’ = run_expr max_step’ in
7 (*[3311]*)if_some (run_object_method object_call_ s l)
8 (fun c0 ->
9 match c0 with
10 | Coq_call_default ->
11 (*[2555]*)entering_func_code runs’ s c l vthis args
12 | Coq_call_after_bind -> (*[0]*)Coq_result_stuck
13 | Coq_call_prealloc b -> (*[756]*)run_call’ s c b args))
14 max_step

16

Bisect
Let us test ECMAScript!

A code coverage tool for OCaml applied on JSRef, which is closed
to ECMAScript:

1 let run_call_full max_step s c l vthis args =
2 (*[3311]*)(fun fO fS n -> (*[3311]*)if n=0 then
3 (*[0]*)fO () else (*[3311]*)fS (n-1))
4 (fun _ -> (*[0]*)Coq_result_bottom)
5 (fun max_step’ ->
6 (*[3311]*)let run_expr’ = run_expr max_step’ in
7 (*[3311]*)if_some (run_object_method object_call_ s l)
8 (fun c0 ->
9 match c0 with
10 | Coq_call_default ->
11 (*[2555]*)entering_func_code runs’ s c l vthis args
12 | Coq_call_after_bind -> (*[0]*)Coq_result_stuck
13 | Coq_call_prealloc b -> (*[756]*)run_call’ s c b args))
14 max_step

JSCert/JSRef enabled to test the coverage of the test suite for the
first time!

17

JSExplain

Using JSCert/JSRef

http://ajacs.inria.fr/jsexplain/driver.html

https://github.com/jscert/jsexplain

Central idea
Everyone can read and understand JSRef;
We could use the interpreter to explain JavaScript’s
behaviours;
JSRef should be able to generate everything else.

http://ajacs.inria.fr/jsexplain/driver.html
https://github.com/jscert/jsexplain

18

Implement real browser behaviours

The initial heap is different;
Some behaviours (like Function.prototype.toString ()) are
implementation-dependent.

We could formalise all these
By adding special rules into JSCert;
By adding a special argument to the predicates red_expr to
denote the browser;
By executing their JavaScript code to build another initial
heap.

19

Logics for JavaScript?

Complex, but possible

Philippa Gardner, Sergio Maffeis, and Gareth Smith.
“Towards a Program Logic for JavaScript”. In: POPL.
2012.
Simon Holm Jensen, Anders Møller, and
Peter Thiemann. “Type Analysis for JavaScript”. In:
SAS. 2009.
Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival.
“Automatic Analysis of Open Objects in Dynamic
Language Programs”. In: SAS. 2014.

20

The JSCert Project

;

Coq definitions
Industrial world

JSRef
∼ 3,000 lines of code

5,126 tests passed

Ru
nn

in
g

te
st

s

JSCert
∼ 900 rules Correctness

∼ 6,000 lines of proof

∼ 900 steps
∼ 200 pages

St
ep

/
ru

le
co

rre
sp

on
de

nc
e

21

1 Previously

2 Zooming Out

3 Increasing the Coverage of JSCert

	Previously
	Zooming Out
	Increasing the Coverage of JSCert

