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Previously

JavaScript is complex;
JavaScript is specified by ECMAScript;
Translating ECMAScript into big-step is long and not scalable;
We can translate each steps of ECMAScript into one
pretty-big-step rule;
JSCert is a translation of the core of JavaScript into
Coq/pretty-big-step;
JSCert is accompanied with an interpreter, JSRef;
We can run JSRef against test suites.
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Why is JavaScript so Complex?

Initially, JavaScript was designed for small scripts done by
non-professional programmers.
Also, only designed in 10 days.
Don’t break the web!
There are actually efforts to make JavaScript simpler:

for (/* ... */ of /* ... */) iteratively replacing
for (/* ... */ in /* ... */);
the strict mode;
etc.

Inertia is the biggest enemy here, but we can fight it
progressively.
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Why Big-step wouldn’t work in JSCert?

What is great about JavaScript
To do anything about JavaScript, you have to be able to scale.

JavaScript forces us to do things in a scalable way.
Big-step does not scale on ECMAScript.
Pretty-big-step does.

Scaling
In semantic size (900 rules just for the core, but what about
libraries?);
In program size (7,500 lines just for Google’s main page?);
In time (ECMAScript 6, 7, 8, ES.Next, …).
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Making Coq Proofs Scale
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Why proof automation works?
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JSCert Specification Coverage

Chapters 1–7: how to read ECMAScript;
Chapters 8–14, 16: core JavaScript;
Chapters 15: standard library.
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The for (/* ... */ in /* ... */) construct

“is: for (lhse in e) s” is evaluated as follows.

1 Let exprRef be the result of evaluating e.
2 Let exprValue be GetValue (exprRef).
3 If exprValue is null or undefined, return (normal, empty, empty).
4 Let obj be ToObject (exprValue).
5 Let V = empty.
6 Repeat

1 Let P be the name of the next property of obj whose Enumerable
attribute is true. If there is no such property, return
(normal,V, empty).

2 Let lhsRef be the result of evaluating the lhse (it may be
evaluated repeatedly).

3 Call PutValue (lhsRef,P).
4 Let stmt be the result of evaluating s.
5 If stmt.value is not empty, let V = stmt.value.
6 If stmt.type is break and stmt.target is in the current label set,

return (normal,V, empty).
7 If stmt.type is not continue or stmt.target is not in the current

label set, then
1 If stmt is an abrupt completion, return stmt.
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The mechanics and order of enumerating the properties (Step 1) is
not specified. Properties of the object being enumerated may be
deleted during enumeration, [they will then] not be visited. If new
properties are added to the object being enumerated during
enumeration, [they] are not guaranteed to be visited in the active
enumeration. A property name must not be visited more than once in
any enumeration. Enumerating the properties of an object includes
enumerating properties of its prototype.
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Zooming Out
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What is the most difficult part of a formalisation?

You have to convince other people (often non-Coq people) that
your semantics is the right one.

This is actually not about Coq: Coq is useful for the people
who will use your semantics, not for you;
Be sure to understand the original language:

What is the most important: the specification or interpreters?
The language community?
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The JSCert Project

;

Coq definitions
Industrial world

JSRef
∼ 3,000 lines of code

5,126 tests passed
out of 11,725

Ru
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JSCert
∼ 900 rules Correctness

∼ 6,000 lines of proof

∼ 900 steps
∼ 200 pages
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Bugs found

Bugs in interpreters
Invalid return values of try {/* ... */} finally
{/* ... */} blocks;
Changing dead code altered the final result.

Bugs in ECMAScript
Broken algorithm;
Some cases forgotten in the Enumerate method.

Bugs in test suites
Tests checking the value of unspecified fields;
Bugs in tests, mimicking implementation bugs.

Reporting bugs are great way to make people trust you!
http://jscert.org/popl14/?full#20

http://jscert.org/popl14/?full#20
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Increasing the Coverage of
JSCert
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Coverage of JSCert

How to easily add Chapter 15?
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Reusing already existing libraries

Philippa Gardner et al. “A Trusted Mechanised
Specification of JavaScript: One Year On”. In: CAV.
2015.
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Bisect
Let us test ECMAScript!

A code coverage tool for OCaml applied on JSRef, which is closed
to ECMAScript:

1 let run_call_full max_step s c l vthis args =
2 (*[ 3311 ]*)(fun fO fS n -> (*[ 3311 ]*)if n=0 then
3 (*[ 0 ]*)fO () else (*[ 3311 ]*)fS (n-1))
4 (fun _ -> (*[ 0 ]*)Coq_result_bottom)
5 (fun max_step’ ->
6 (*[ 3311 ]*)let run_expr’ = run_expr max_step’ in
7 (*[ 3311 ]*)if_some (run_object_method object_call_ s l)
8 (fun c0 ->
9 match c0 with
10 | Coq_call_default ->
11 (*[ 2555 ]*)entering_func_code runs’ s c l vthis args
12 | Coq_call_after_bind -> (*[ 0 ]*)Coq_result_stuck
13 | Coq_call_prealloc b -> (*[ 756 ]*)run_call’ s c b args))
14 max_step
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JSCert/JSRef enabled to test the coverage of the test suite for the
first time!
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JSExplain

Using JSCert/JSRef

http://ajacs.inria.fr/jsexplain/driver.html

https://github.com/jscert/jsexplain

Central idea
Everyone can read and understand JSRef;
We could use the interpreter to explain JavaScript’s
behaviours;
JSRef should be able to generate everything else.

http://ajacs.inria.fr/jsexplain/driver.html
https://github.com/jscert/jsexplain
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Implement real browser behaviours

The initial heap is different;
Some behaviours (like Function.prototype.toString ()) are
implementation-dependent.

We could formalise all these
By adding special rules into JSCert;
By adding a special argument to the predicates red_expr to
denote the browser;
By executing their JavaScript code to build another initial
heap.
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Logics for JavaScript?

Complex, but possible

Philippa Gardner, Sergio Maffeis, and Gareth Smith.
“Towards a Program Logic for JavaScript”. In: POPL.
2012.
Simon Holm Jensen, Anders Møller, and
Peter Thiemann. “Type Analysis for JavaScript”. In:
SAS. 2009.
Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival.
“Automatic Analysis of Open Objects in Dynamic
Language Programs”. In: SAS. 2014.
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