JSCert

A Formalisation of JavaScript in Coq

Martin BODIN

CC7125-1 / MA7125-1

15t and 20" of November

Previously

JavaScript is complex;
JavaScript is specified by ECMAScript;
Translating ECMAScript into big-step is long and not scalable;

We can translate each steps of ECMAScript into one
pretty-big-step rule;

JSCert is a translation of the core of JavaScript into
Coq/pretty-big-step;

JSCert is accompanied with an interpreter, JSRef;

@ We can run JSRef against test suites.

Why is JavaScript so Complex?

Initially, JavaScript was designed for small scripts done by
non-professional programmers.

Also, only designed in 10 days.

Don't break the web!
There are actually efforts to make JavaScript simpler:
o for (/* ... */ of /* ... */) iteratively replacing
for (/* ... */ in /* ... */);
o the strict mode;
e etc.

Inertia is the biggest enemy here, but we can fight it
progressively.

Why Big-step wouldn’t work in JSCert?

What is great about JavaScript

To do anything about JavaScript, you have to be able to scale.

@ JavaScript forces us to do things in a scalable way.
@ Big-step does not scale on ECMAScript.
@ Pretty-big-step does.

Why Big-step wouldn’t work in JSCert?

What is great about JavaScript

To do anything about JavaScript, you have to be able to scale.

@ JavaScript forces us to do things in a scalable way.
@ Big-step does not scale on ECMAScript.
@ Pretty-big-step does.

@ In semantic size (900 rules just for the core, but what about
libraries?);

@ In program size (7,500 lines just for Google's main page?);

@ In time (ECMAScript 6, 7, 8, ES.Next, ...).

Making Coq Proofs Scale

Why proof automation works?

| red stat while ; forall § C labs
stat § C Cstat_while 1 l!bs 51 t2 resvalue_empty) o_->
TeiTStat 8 6 Cotatlunile labe el t2)

| red stat u/hlle 1 : furall 5 C labs el t2 rv
ec 5 C (s ¥pr_get_value_conv sueﬁyta boolean el) yl ->

spi
red stat 5 C !stut whlle 2 labs el t2 rv
red_stat § C (stat while_1 labs el t2 rv) o

| red_stat_while_2 false : forall 50 § C labs el 2 r
red_stat 58 C (stat_uhile_2 labs el 2 rv (vret 5 false)) (out_ter 5 rv)

| red_stut_uhlle.E_true i forall 58 5 C labs el t2 rv ol o,

o
Feds stat 5 D (stut while3 labs el t2 rv ob)
Fedictat 980 (stafouhi1a.2 labs el t2 1y (uret % trued) o

Definition run-statuhile runs S C ry labs el &2) result =

c (run_ewpr_get value runs S C el) Fhusi 11

= convert_value_to_boolean vi in
if b then
rsd stat 5 D (stat mmlg 4 labs el t2 rv' o —_¥lf ter (runs_type_stat runs 51 C t2) (fun 52 R >
Fed ctat 89 € (staf whils.o labs el £2 rv (out_ter 5 R)) o Felry 1= {7 res_value R O resvalueenpty then res_yalue R elze rv in
Let loop =) runs_tupe_stat_while runs 52 G ru’ labs el t2 in

ifh res.. tuue R restupe-continue

v

| red stut mhlle E i fnrull rv 50 5 C labs el t2 rv' R o,
> resvalue_empty then res_value R else rv) ->

| red_stat_uhile_d_continue : forall § G labs el 12 rv R o, Pee el T T ¢
reelype R 5 reptune continge 1\ epptabel in R dabs ifb res_tupe R = restupe_break /\ res_label_in R labs then
e R R R A e e e 50

| red_stat_while_d_not_continue ; forall 5 C labs el t2 rv R o, ifb res_tupe R <> restype_normal then
(res_tupe R = restupe_continue /\ res label in R Labs) %5 T 92 R
red_stat 5 C (stat_uhile s labs el t2 rv
Rt R R R A T

I red_stat-uhile S bresk ; forall § C labs el 42 rv R
s_type R = restype_break /\ res_label_in R labs
i Fl e b ot P N o e

else Toop tt

else logp tt)
else res_ter 51 rv)

| red.: stat while_S_not_break : forall § C labs el t2 rv R o,
(res_type R = restype_break /\ res_ lubsl 1n R lubs) -

Fed iat a0 Cotat uhi1a b Tabs el 12y ¥
red_stat § C (stat_while 5 labs el t2 rv R) n

| red stut uhlle 6_abort : forall §C labs el 2 rv R,
< restype_normal ->
Feds stat 5 C (stat_while_6 labs el t2 rv R) (out_ter § R)

| red_stat_while_6_normal : forall 5 C labs el t2 rv R o,
res_tuy; e R restuue normal -»

C (s fiile 1 labs el 2 rv) o ->
tatS C (st! hile_6 labs el t2 rv R) o

rel

| red_stst_sbort : forsll 5 C extt o,

_of_ext_stat extt = Some o ->

abort o

~ abort_ intercepted_stat extt -
red_stat §

JSCert Specification Coverage

secma secma secma secma

@ Chapters 1-7: how to read ECMAScript;
@ Chapters 8-14, 16: core JavaScript;

@ Chapters 15: standard library.

The) construct

‘is: for (lhse in e) s" is evaluated as follows.

Let exprRef be the result of evaluating e.

Let exprValue be GetValue (exprRef).

If exprValue is null or undefined, return (normal, empty, empty).
Let obj be ToObject (exprValue).

Let V= empty.

©00 0O0O0CO

Repeat

@ Let P be the name of the next property of obj whose Enumerable
attribute is true. If there is no such property, return

(normal, V, empty).

Let /hsRef be the result of evaluating the lhse (it may be

evaluated repeatedly).

Call PutValue (lhsRef, P).

Let stmt be the result of evaluating s.

If stmt.value is not empty, let V = stmt.value.

If stmt.type is break and stmt.target is in the current label set, 8

©

0000

The

) construct

‘is: for (lhse in e) s” is evaluated as follows.

@ Repeat

(1}

©

© 0000

Let P be the name of the next property of obj whose Enumerable
attribute is true. If there is no such property, return
(normal, V, empty).
Let /hsRef be the result of evaluating the lhse (it may be
evaluated repeatedly).
Call PutValue (lhsRef, P).
Let stmt be the result of evaluating s.
If stmt.value is not empty, let V = stmt.value.
If stmt.type is break and stmt.target is in the current label set,
return (normal, V, empty).
If stmt.type is not continue or stmt.target is not in the current
label set, then

@ If stmt is an abrupt completion, return stmt.

The) construct

‘is: for (lhse in e) s" is evaluated as follows.

@ Repeat

@ Let P be the name of the next property of obj whose Enumerable
attribute is true. If there is no such property, return
(normal, V, empty).

The mechanics and order of enumerating the properties (Step 1) is
not specified. Properties of the object being enumerated may be
deleted during enumeration, [they will then| not be visited. If new
properties are added to the object being enumerated during
enumeration, [they] are not guaranteed to be visited in the active
enumeration. A property name must not be visited more than once in
any enumeration. Enumerating the properties of an object includes
enumerating properties of its prototype.

/Zooming Out

What is the most difficult part of a formalisation?

You have to convince other people (often non-Coq people) that
your semantics is the right one.

@ This is actually not about Coq: Coq is useful for the people
who will use your semantics, not for you;
@ Be sure to understand the original language:

o What is the most important: the specification or interpreters?
The language community?

10

The JSCERT Project

~ 900 rules ~ 3,000 lines of code
JSCBRT Correctness ISRER
JSCerr ~ 6,000 lines of proof
g [
B 1 - gl Coq definitions
—| & o0 Industrial world
g8 E

5,126 tests passed

~ 900 steps
out of 11,725

~ 200 pages

11

Bugs found

Bugs in interpreters

@ Invalid return values of try {/* ... */} finally
{/* ... */} blocks;

@ Changing dead code altered the final result.

Bugs in ECMAScript

@ Broken algorithm;

@ Some cases forgotten in the Enumerate method.

Bugs in test suites

@ Tests checking the value of unspecified fields;

@ Bugs in tests, mimicking implementation bugs.

Reporting bugs are great way to make people trust you!
http://jscert.org/popll4/?full#20 12

http://jscert.org/popl14/?full#20

Increasing the Coverage of

JSCert

13

Coverage of JSCert

secma secma secma secma ecma

How to easily add Chapter 157

14

Reusing already existing libraries

JSRef Interpreter

JSCert
Mechanised
Specification

A

4

Y

ECMAScript 5
Standard

Interpreter :
(Coq) I
|
1] |
Extracted |
Interpreter |
(OCaml) |
Parser
OCaml Interpreter | _ (Google I
Frontend Closure) |
_____________ 1
Test262
Test Suite

Philippa Gardner etal. “A Trusted Mechanised

Specification of JAVASCRIPT: One Year On".

2015.

In: CAV.

15

Reusing already existing libraries

i JSRef Interpreter- — — — — — — — 1
JSCert | |
Mechanised *‘Zl—r Int?ég:e)ter ;I |
Specification |
|] v8 Array
A | Library |
|| Extracted (s) |
0 Interpreter |
I| “(ocamn) |
| —
v 1| ocaml interpreter | _] e Parser |
ECMAScript 5 | Frontend (Esprima,...) |
Standard | 0@ === ﬁ ______ 4
Test262
Test Suite
Philippa Gardner etal. “A Trusted Mechanised
Specification of JAVASCRIPT: One Year On". In: CAV.
2015.

15

Bisect

Let us test ECMAScript!

10

11

12

13

14

A code coverage tool for OCaml applied on JSRef, which is closed
to ECMAScript:

let run _call full max step s c Ll vthis args =
(*[7%) (fun fO fS n -> (*[|888@1]*)if n=0 then
(1% f0 () etse (<[|B8EWI*)fS (n-1))
(fun -> (*[.]*)Coq_result_bottom)

(fun max_step’ ->

(&l J7*)let run expr’ = run_expr max _step’ in
(*[J*)if some (run_object method object call s 1)
(fun cO ->

match cO with

| Cog call default ->

(*[-]*)entering_func_code runs’ s ¢ 1 vthis args

| Coq call after bind -> (*[@M]*)Coq result stuck

| Coq call prealloc b -> (*] J*)run_call’ s c b args))
max_step

16

Bisect

Let us test ECMAScript!

A code coverage tool for OCaml applied on JSRef, which is closed
to ECMAScript:

1 | let run_call full max step s ¢ 1 vthis args =

. (*[']*)(fun f0 fs n -> (*[|8838]*)1if n=0 then
*

5 <[[ll*)f0 () else (+[[888@1*)fs (n-1))

4 (fun _ -> (*[.]*)Coq_result_bottom)

5 (fun max_step’ ->

6 (=] J7*)let run expr’ = run_expr max _step’ in

7 (*[J*)if some (run_object method object call s 1)
8 (fun cO® ->

9 match cO with

10 | Cog call default ->

1 (*[-]*)entering_func_code runs’ s ¢ 1 vthis args

12 I Can ral11 aftar hind -~ 7/M@1%)can recil+ ctuck

13 JSCert/JSRef enabled to test the coverage of the test suite for the

1 first timel
\)

16

JSExplain

FCMAScript Language test262
L remewes G W
o a1e2|Pasei 737 a1 251 Pkt ka0

Using JSCert/JSRef

@ http://ajacs.inria.fr/jsexplain/driver.html

@ https://github.com/jscert/jsexplain

Central idea

@ Everyone can read and understand JSRef;

@ We could use the interpreter to explain JavaScript's
behaviours;

@ JSRef should be able to generate everything else.
17

http://ajacs.inria.fr/jsexplain/driver.html
https://github.com/jscert/jsexplain

Implement real browser behaviours

@ The initial heap is different;

@ Some behaviours (like Function.prototype.toString ()) are
implementation-dependent.

We could formalise all these

o By adding special rules into JSCert;

e By adding a special argument to the predicates red_expr to
denote the browser;

@ By executing their JavaScript code to build another initial
heap.

18

Logics for JavaScript?

Complex, but possible

Philippa Gardner, Sergio Maffeis, and Gareth Smith.
“Towards a Program Logic for JavaScript”. In: POPL.
2012.

Simon Holm Jensen, Anders Mgller, and
Peter Thiemann. “Type Analysis for JAVASCRIPT". In:
SAS. 2009.

Arlen Cox, Bor-Yuh Evan Chang, and Xavier Rival.
“Automatic Analysis of Open Objects in Dynamic
Language Programs”. In: SAS. 2014.

19

The JSCERT Project

~ 900 rules ~ 3,000 lines of code
JSCBRT Correctness ISRER
JSCerr ~ 6,000 lines of proof
g [
B 1 - gl Coq definitions
—| & o0 Industrial world
g8 E

o st ran 2782 Pass 2757 P75 o a0

5,126 tests passed

~ 900 steps
~ 200 pages 20

@ Previously

© Zooming Out

© Increasing the Coverage of JSCert

21

	Previously
	Zooming Out
	Increasing the Coverage of JSCert

