

Auxiliar 14: Formas Cuadraticas

Fecha: 22 de Noviembre 2017

Resumen:

■ Dada $A \in \mathcal{M}_{nn}$ simetrica, definimos $q : \mathbb{R}^n \to \mathbb{R}$ como:

$$x \to q(x) = xAx^t$$

- Sea $A \in \mathcal{M}_{nn}$ simetrica, decimos que es definida positiva si $\forall x, q(x) > 0$. Si -A es definida positiva diremos que A es definida negativa.
- Sea $A \in \mathcal{M}_{nn}$ simetrica, las siguientes proposiciones son equivalentes:
 - 1. A es definida estrictamente positiva
 - 2. Los valores propios de A son estrictamente positivos
 - 3. Los menores principales de A:

$$A^{(1)} = [A_{11}] \quad A^{(2)} = \begin{vmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{vmatrix} \quad A^{(n)} = |A|$$

Son todos estrictamente positivos.

- 4. El metodo de Gauss permite escalonar A solo con operaciones del tipo $E_{pq}(\lambda)$ con p < q y ademas los pivotes son todos estrictamente positivos.
- **P1** a) Supongamos que 0 < a < b < c y considere la matriz:

$$A = \begin{pmatrix} a & a & a \\ a & b & b \\ a & b & c \end{pmatrix}$$

Pruebe que A es definida positiva.

- b) Supongamos que $u_1, \dots u_n \in \mathbb{R}^n$
 - (i) Pruebe que:

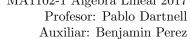
$$B = \sum_{i=1}^{n} u_i u_i^t$$

es semi-definida positiva. Ademas pruebe que si $x^tBx=0$, para algun $x\in\mathbb{R}^n$ entonces para todo $i=1,\ldots n$ se tiene que $u_i^tx=0$

- (ii) Suponga ademas que $\{u_1, \dots u_n\}$ es una base de \mathbb{R}^n , pruebe que B es definida positiva.
- **P2** a) Demuestre las siguientes implicancias:
 - (i) Si $A \in \mathcal{M}_{nn}(\mathbb{R})$ es simetrica y definida positiva, entonces A es invertible y A^{-1} es simetrica y definida positiva.
 - (ii) Si $A \in \mathcal{M}_{nn}(\mathbb{R})$ es simetrica y definida positiva y $Q \in \mathcal{M}_{nn}(\mathbb{R})$ es invertible, entonces QAQ^t es simetrica y definida positiva.
 - b) Sea $A \in \mathcal{M}_{nn}(\mathbb{R})$ simetrica y definida positiva y B la matriz por bloques $2n \times 2n$, $B = \begin{pmatrix} A & A \\ A & A \end{pmatrix}$ entonces:
 - i) Dado $x \in \mathbb{R}^{2n}$ con $x \neq 0$, descomponga $x = \begin{pmatrix} y \\ z \end{pmatrix}$ con $y, z \in \mathbb{R}^n$ y demuestre que:

$$x^t B x = (y+z)^t A (y+z)$$

ii) Demuestre que B es semi-definida positiva pero no definida positiva.



P3 Considere la matriz:

$$A = \begin{pmatrix} 2 & 2 & -1 \\ 2 & -1 & 2 \\ -1 & 2 & 2 \end{pmatrix}$$

- a) Calcule los valores y vectores propios de A.
- b) De una base ortonormal de vectores propios de A.
- c) Escriba A de la forma $A = PDP^t$. Considere que si P es una matriz con columnas ortonormales, entonces $P^{-1} = P^t.$