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Part II

Second Session: Design of labor markets: National Resident Matching
Program (NRMP)

I Many-to-one Matching Markets
I The NMRP
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Many-to-one Matching Markets

In this session we want to analyze markets where one sided of the
market is matched with more than one element on the other side.

Our model will reflect the features of University admissions but it can
be use for Labor markets.

We will present the case of the reform of the market for medical
resident as an example o Market Design.
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Many-to-one Matching Markets: The Model

Let us consider a bilateral market with two finite disjoint sets
S = {s1, s2, ..., sm} and C = {c1, c2, ..., cn} ,

I Each student s ∈ S can be matched with at most one college.
I Each college c ∈ C has a capacity of qc : it can be matched to at most
qc students.
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Preferences

The preferences of each student s ∈ S are represented by a linear
order on C ∪ {s} .
The preferences of each College c ∈ C are represented by a linear
order on S ∪ {c} .
The college admission problem is fully described by a triplet (C, S, P )
where P is a preference profile containing a full description of the
agent’s preferences.
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The Basic Many-to-one Matching Model

Definition

A matching on (C, S) is a function µ : C ∪ S → 2S ∪ C.

1 | µ(s) |= 1 for every student s and µ(s) = s if µ(s) /∈ C;

2 | µ(c) |≤ qc for every college c, and µ(c) ∈ 2S ∪ c ;

3 For all s ∈ S and c ∈ C, we have that µ(s) = c⇔ s ∈ µ(c).
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Preferences

Definition

The preference relation �c over set of students is responsive (to the
preferences P (c) over individual students) if, whenever
µ′(c) = µ(c) ∪ {s} \ σ for σ ∈ µ(c), and s /∈ µ(c), then µ′(c) �c µ(c) if an
only if sP (c)σ.
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Preferences

Example

(G. Katsenos) We assume that we have three students and two colleges.
The colleges quotas are defined in their preferences:

P (s1) = c2, c1, s1

P (s2) = c2, c1, s2

P (s3) = c1, c2, s3

�c1= {s1, s3}, {s1, s2}, {s2, s3}, {s1}, {s2}, {c1},
�c2= {s1, s3}, {s2, s3}, {s1, s2}, {s3}, {s2}, {s1}, {c2}
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Preferences

µ1 =
c1 c2

{s1, s3} {s2}
- blocked by (c2{s1, s2})

µ2 =
c1 c2

{s1, s2} {s3}
- blocked by (c2{s1, s3})

µ3 =
c1 c2

{s2, s3} {s1}
- blocked by (c2{s1, s2})

µ4 =
c1 c2
{s2} {s1, s3}

- blocked by (c1{s2, s3})

µ5 =
c1 c2
{s1} {s2, s3}

- blocked by (c2{s1,s3})
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Preferences

Notice that {s1, s3} �c1 {s1, s2} but {s2} �c1 {s3};
Also, {s1, s3} �c2 {s2, s3} but {s2} �c2 {s1}.
The colleges’ preferences are not responsive.

Also responsiveness allows us to represent colleges’ preferences as
rankings of individual students.
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Stability

Like in the one-to-one matching problem a matching is stable if it is
individually rational and it is not blocked by a college-student pair.
Formally:

Definition

A matching µ is stable if:

@s ∈ S such that s �s µ(s).

@c ∈ C such that µ(c) \ {s} �c µ(c) for some s ∈ µ(c).
@(s, c) ∈ S × C such that c �s µ(s) and µ(c) \ σ ∪ {s} �c µ(c) , for
some some σ ∈ µ(c).
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Group Stability

We have seen that a matching can be block by deviations of more
than two agents. If it is not we can say that the matching is group
stable Formally,

Definition

A matching µ is blocked by a coalition if there is a group A ⊆ S ∪C and a
matching µ′ 6= µ such that

For each s ∈ A, µ′(s) ∈ A and µ′(s) �s µ(s);

For all colleges c ∈ A, we have σ ∈ µ′(c) \ µ(c) implies that σ ∈ A
and µ′(c) �c µ(c).
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Group Stability

Definition

A matching µ is group stable if it is not blocked by a coalition A ⊆ S ∪C.

Lemma: Under responsive and transitive preferences a matching µ is
group stable if and only if it is stable.

Proof: Clearly group stability implies stability. The other direction:
Suppose that a matching is not group stable and the blocking
coalition A includes an agent that blocks the matching µ individually.
Then the allocation µ is not stable. Under responsive and transitive
preferences the preferences over a group will not decrease if we change
a student for a better one so a couple college-student can block µ.
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Existence of Stable Matchings

Theorem

(GS 1962) When preferences are responsive, there is a stable matching in
the college admissions problem.
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Many-to-One DA Algorithm

Step 1:

I a) Each student proposes to his first choice. If this is preferred to
remaining unmatched. Otherwise he does not propose.

I b) Each college tentatively accepts the qc most preferred applications
it receives, among those which are acceptable; some positions might be
empty - copies of itself -.

Step 2:

I a) Each student that has been rejected in Step 1 proposes to his next
choice if it is preferred to remaining unmatched. Otherwise he does
not propose.

I b) Each college tentatively accepts the qc most preferred applications
it receives, possibly rejecting previous applications; some positions
might be empty - copies of itself -.
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The Deferred Acceptance Algorithm

Step k:

I a)Each student that has been rejected in Step k-1 proposes to his
next choice if it is preferred to remaining unmatched. Otherwise he
does not propose.

I b) Each college tentatively accepts the qc most preferred applications
it receives, possibly rejecting previous applications; some positions
might be empty - copies of itself -.

Last Step: The algorithm ends after a step in which no proposals are
made. At this point all tentative allocation become final and
constitute the outcome of the algorithm.
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The Equivalent Marriage Market

Using the college admission model we can transform it into a related
marriages market:

I Men: The students S = {s1, s2, ..., sm} .
I Women: Each of the colleges’ open positions:
C =

{
c11, c

2
1, ..., c

q1
1 , c

1
2, c

2
2, ..., c

q2
2 , c

1
n, c

2
n, ..., c

qn
n

}
,
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The Equivalent Marriage Market

Men’s preferences: clk �s c
l′
k′ ⇔ ck �s ck′ to make the preferences

strict we use a tie-braking rule: clk �s c
l′
k ⇔ l < l′.

Women’s preferences: s �clk
s′ ⇔ s �ck s

′.
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The Equivalent Marriage Market

Lemma: Under responsive preferences a matching µ in the college
admission problem is stable if and only if the corresponding matchings
in the related marriage market are stable.

Remark: If the preferences in the college admission problem are
strict, a matching in that problem correspond to a unique matching in
the associated marriage problem. Otherwise they might be several
corresponding matchings.
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Some Results

The transformation of the college admissions problem into a marriage
market allows us to generalize some previous results:

I Optimal Matching Theorem: In the college admissions problem the
College-optimal (Student-Optimal) is given by the DA algorithm when
colleges (students) proposing.

I Lattice Theorem: In the college admissions problem the set of stable
matching forms a lattice with respect to the partial other of students
(or colleges) preferences.

I Opposite preferences: In the college admissions problem the preferences
of colleges and student over stable matching are opposed.

I Rural Hospital Theorem: In the college admissions problem the set of
students or colleges positions that remain unmatched are the same.
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Strategic Behavior

In the college admissions problem colleges can misrepresent their
preferences and its quota. Therefore:

Theorem

In the college admissions problem, there is no strategy proof mechanism.

.

Theorem

In the college admissions problem, with one strategic side:

When only colleges behave strategically, no matching mechanism is
strategy proof.

When only students behave strategically, the student-proposing DA
algorithm is strategy proof.
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The NRMP

We will discuss the redesign of the NRMP (at
http://www.nrmp.org/) algorithm in 1990s.

1900s: The matching began as a decentralized market.

Unraveling:

I 1930s: Hiring was completed 1/2 year before graduation.
I 1940s: Hiring was done up to 2 years before graduation.
I 1945: To halt unraveling medical schools agree not to release

information about students until shortly before graduation.
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The NRMP

Congestion:

I 1945: Offers remain open for 10 days.
I 1949. Offers remain open for 12 hours.

In 1952 the NRMP was introduced due to the dissatisfaction with the
previous match procedure (Roth, Alvin; Elliott Peranson,1999) that
suffers from unraveling and congestion.

The NRMP was a hospital-proposing DA algorithm.
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The NRMP

1950s: 95% appointments made though the NIMP.

1970s: It suffers for a decline in the participation rates to 85%.

1980s: the algorithm was specially unpopular with couples. It changes
to accommodate them and participation increases.

1990s: Participation declines again.

The NRMP algorithm saw only minor and incremental changes after
its institution in 1952 until 1997.
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The NRMP

Groups such as the American Medical Student Association and others
advocated to reconsider the current algorithm.

In 1995 the Board of Directors of the NRMP commissioned a
preliminary research program for the evaluation of the current
algorithm and of changes to be considered in its operation and
description, and a study comparing a new algorithm with the existing
one.

The new algorithm by Roth and Peranson was adopted in May 1997
and has been in use since its first application in March 1998.

It was based on the student-proposing DA algorithm but
accommodating couples.

The study showed that the net effect of the change on actual
matches has been minimal.

Matteo Triossi (CEA, DII) Matching and Market design August 17, 2017 25 / 59



What are the issues?

The original NRMP favors the hospitals.

The original NRMP was manipulable.

The NRMP has special features called “match variations”:

I Couples,
I Hospital programs that fill even number of positions,
I Hospital programs with positions that, if vacant, revert to other

programs.
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What are the issues?

The NRMP is / can be made to be stable.

Can some be math or not depending on the algorithm.

Theory points to potential problem with variations: We can do
numerical analysis and that is what Roth and Peranson did.
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Descriptive Statistic of NRMP

1987 1993 1994 1995 1996

APPLICANTS

Applicants with ROLs 20071 20916 22353 22937 24749

Applicants who are coupled 694 854 892 998 1008

PROGRAMS

Active Programs with ROL 3170 3622 3662 3745 3758

Programs with Even Match 4 2 6 7 8

Total Quota Before Match 19973 22737 22801 22806 22578
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The New Roth and Peranson Algorithm

The RP algorithm is based on the student-proposing DA algorithm
but accommodating couples.

The algorithm allows couples to express preferences for pairs of
hospital programs.

It first run the DA without couples and then add the couples one by
one.

If some one is displaced, then he or she is allowed to apply later in the
algorithm.

An example at:
http://www-personal.umich.edu/˜jeffshuo/nrmpcouples.html
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The New Roth and Peranson Algorithm

Roth and Vande Vate (1990) proof that starting for a any matching,
there is a sequence of blocking pairs that leads to a stable matching
in one to one matching without couples.

Ma, Jinpeng (1996) not all stable matchings can be reached by a
Roth-Vande Vate mechanism, and some are more likely to appear
than others.

Matteo Triossi (CEA, DII) Matching and Market design August 17, 2017 30 / 59



Difference Between Hospital and College Proposing DA

http://www.stanford.edu/˜alroth/phase1.html
1987 1993 1994 1995 1996

APPLICANTS

Number of Applicants Affected 20 16 20 14 21

Applicant Proposing Preferred 12 16 11 14 12

Program Proposing Preferred 8 0 9 0 9

New Matched 0 0 0 0 1

New Unmatched 1 0 0 0 0

PROGRAMS

Number of Programs Affected 20 15 23 15 19

Applicant Proposing Preferred 8 0 12 1 10

Program Proposing Preferred 12 15 11 14 9

Prog. with New Position(s) Filled 0 0 2 1 1

Prog. with New Unfilled Position(s) 1 0 2 0 0
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Possible Manipulation by Students

Upper limit in the number of applicant who could benefit by
truncating their list at one above their original match point. This is
called truncation and for students the truncation correspondence is
exhaustive (Roth and Vande Vate, 1991).

1987 1993 1994 1995 1996

Program-Proposing Algorithm 12 22 13 16 11

Applicant-Proposing Algorithm 0 0 2 2 9
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Possible Manipulation by Hospitals

Upper limit in the number of hospitals who could benefit by
truncating their list at one above their original match point. (For
Hospitals the truncation correspondence is not exhaustive (Kojima
and Pathak, 2009).

1987 1993 1994 1995 1996

Program-Proposing Algorithm 15 12 15 23 14

Applicant-Proposing Algorithm 27 28 27 36 18
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Capacity Manipulation

Upper limit number of programs that could improve their remaining
matches by reducing quota (Sonmez 1997).

1987 1993 1994 1995 1996

Program-Proposing Algorithm 28 16 32 8 44

Applicant-Proposing Algorithm 8 24 16 16 32

Hospitals can both manipulate capacities and preferences and do not
need to use truncations but this was not considered by Roth and
Peranson.
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Conclusion

The R-P Algorithm does reasonably well but we need to know more.
Simulations on generated data (Kojima y Pathak 2009) and
additional theoretical analysis are our tools of trade.
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Capacity Manipulation

The ability of a mechanism to achieve stable allocations is decisive in its
success and its endurance (see Roth and Sotomayor 1990 and Roth 2003).
Unfortunately stable matching are prone to manipulations:

preference manipulation (Dubins and Friedman 1981 ....)

capacity manipulation (Sönmez 1997, Konishi and Unver 2006)

capacity and preference manipulation in large markets (Kojima y
Pathak 2009).
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Capacity Manipulation

The possibility of strategically reducing capacity is a concern when
designing school mechanisms.
There is no stable-revelation mechanism able to prevent capacity
manipulation!
Sönmez, T., 1997. Manipulation via capacities in two-sided matching
markets. Journal of Economic Theory 77 (1), 197 – 204.
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Capacity Manipulation

Romero-Medina, Antonio and Triossi, Matteo, (2013). Games with
Capacity Manipulation: Incentives and Nash Equilibria. Social Choice and
Welfare

games of capacity manipulation: necessary and sufficient condition for
non-manipulability.

games with capacity manipulation: some results.
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Matching markets

Matching Market (H, I, q, P )

H = {h1, ..., hm} hospitals

I = {i1, ..., in}
PH = (Ph1 , ..., Phm) hospitals’ preferences over subset of interns,
responsive.

PI = (Pi1 , ...Pin) be a list of interns’ preferences over hospitals.

i is acceptable to h if {i}Ph∅. A (h) ⊆ I interns who are acceptable
to h.

h is acceptable to i if hPii. A (i) ⊆ H hospitals that are acceptable
to i.

qh: maximum numbers of interns hospital h can hire is h’s capacity
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Matching Markets

Hospitals’ preferences over subset of interns PH are responsive iff:
for all I ′ ⊂ I and for all interns i, i′ ∈ I:

I ′ ∪ {i}PhI
′ ∪ {i′} ⇔ iPhi

′

I ′ ∪ {i}PhI
′ ⇔ i ∈ A (h).

A hospital h has strong monotonic preferences if it strictly prefers group
of acceptable interns of larger cardinality to sets of acceptable interns of
smaller cardinality.
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Capacity Reporting Games

Under responsiveness the set of stable matchings is not empty:

ϕI student optimal stable matching

ϕH hospital optimal stable matching

The set of stable matchings is a Lattice

The capacity reporting game induced by ϕV (V = H, I) is a normal
form game of complete information.
The set of players is H and the strategy space of hospital h is {1, ..., qh}.
The outcome function is ϕV .
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Results

Lemma: The equilibria of any capacity manipulation games are stable if
and only if truth-telling is a dominant strategy.
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Cycles and Stability

If an hospital has strong monotonic preference then any capacity reporting
game has a Pure Strategy NE (Konishi and Unver).
But under the hospital optimal stable rule it does not necessary yields a
stable outcome.
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Cycles and Stability: Example

Hospitals: h1, h2.
Interns i1, i2.
Monotonic Ph1 : {i1, i2} , {i1} , {i2} Ph2 : {i1, i2} , {i2} , {i1}.
LetPi1 : h2, h1 and letPi2 = h1, h2.
When the quotas are (2, 2) , (1, 2) and (2, 1), the unique stable matching is

µ1
h1 h2
{i2} {i1}

When the quota is (1, 1) the hospital-optimal stable matchings is

µ2
h1 h2
{i1} {i2}

(1, 1) is a NE when the quota is (2, 2) yielding µ2 as outcome which is
blocked by (h1, i1).
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Cycles and Stability

Definition

A cycle (of length T + 1) in hospitals preferences is given by h0, ..., hT
with hl 6= hl+1

a for i = 0, ...T and distinct i0, i1, ..., iT such that

1 i0Ph0iTPhT
iT−1....i1Ph1i0 ,

2 for every l, il+1 ∈ A (hl) ∩A (hl+1).

Hospitals preferences are acyclical if they have no cycles of length 2.

aFrom now on indices are considered modulo T + 1.
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Cycles and Stability

There is an alternating list of hospitals and interns “on a circle” such that
every hospital in the cycle prefers the intern on its clockwise side to the
intern on its counterclockwise side and find both acceptable.
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Cycles and Stability

Acyclicity is weaker than common preference (Konishi and Unver (2006)).
The definition of a cycle in interns’ preference is specular.

A simultaneous cycle arises when there is an alternating list of hospitals
and interns “on a circle” such that every hospital (resp. intern) prefers the
intern (resp. hospital) on its clockwise side to the intern (resp hospital) on
its counterclockwise side and find both acceptable.
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General Results

Proposition: Assume that no simultaneous cycle exists and let V = H, I.
Then:

1 Stating the true capacities is a dominant strategy under any stable
rule ϕ.

2 The stable set of (H, I, q, P ) is a singleton for every q.

3 The capacity revelation games induced by all stable rules ϕ have the
same pure strategy Nash equilibrium outcome for every q: the unique
stable matching of (H, I, q, P ).
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General Results

Assume that either the preferences of the hospitals or the preference of the
interns are acyclical and let ϕ be a stable rule.

1 Stating the true capacities is a dominant strategy under ϕ.

2 The stable set of (H, I, q, P ) is a singleton for every q.

3 The capacity revelation games induced by all stable rules ϕ have the
same Nash equilibrium outcome for every q: the unique stable
matching of (H, I, q, P ).

Acyclicity of the preferences of one side of the market is the minimal
conditional guaranteeing 1., 2. and 3 under ϕH .
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The Intern Optimal Stable Matching.

A generalized cycle (of length T + 1) at h is given by a cycle in
hospital’s preferences h = h0, ..., hT , i0, i1, ..., iT and by i−1 such that:
i0Ph0i−1Ph0iT . Hospitals preferences are weakly acyclical if, there is no
generalized cycle at any h. We will call intern i−1, intruder.

A non-monotonic cycle at h is given by M,M ′ ⊆ I, with |M | < |M ′|
such that:

1 MPhM
′

2 Let M ′ \M =
{
i1, ..., is

}
. For k = 1, ..., s there is a generalized cycle

at h, hk0, ..., h
k
Tk , i

k
−1, i

k
0, i

k
1, ..., i

k
Tk , T k ≥ 1 such that ik = ik0 and

ik−1, i
k
T s ∈M \M ′.

3 For k 6= k′, ikl 6= ik
′

l′ for all l = 0, ...T k, l′ = 0, ...., T k′ .
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The Intern Optimal Stable Matching is more difficult to
manipulate!

Proposition: Assume that no non-monotonic cycle exists. Then:

1 Stating the true capacities is a dominant strategy under ϕI .

2 The capacity revelation game induced by ϕI yields the intern-optimal
stable matching at equilibrium.

The condition is the minimal one that guarantees 1. and 2.
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The Intern optimal stable matching: Corollary

Corollary: Under the following conditions stating the true capacity is a
dominant strategy in capacity revelation game induced by ϕI . The game
yields the intern optimal stable matching at every Nash equilibrium.

1 The preferences of the hospitals are strongly monotonic in population.

2 The maximum length of every preference cycle is two.
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Games with capacity manipulation

Games where:

1 Hospitals state their capacities.

2 Agents play an extensive form game given the capacity reported in 1.
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Games with capacity manipulation: Findings

1 Hospitals state their capacities.

2 Agents reports their preferences given the capacity reported in 1 and
ϕI is implemented.

Proposition
If preferences are acyclical, the games implements the unique stable
matching under iterated elimination of weakly dominated strategies.

Notice
The result does not hold if ϕH is used, nor under no non-monotonic cycles.
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Pre-arranged matching

What if hospitals and doctors can get to an agreement before the
mechanism is played?
Sönmez, T., 1999. Can pre-arranged matches be avoided in two-sided
matching markets? Journal of Economic Theory 86 (1), 148 – 156.
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Conclusion

intern-optimal stable matching is harder to manipulate than hospitals’.

However, in games with capacity manipulation non manipulability
seems to require stronger conditions.
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