

Clase auxiliar # 8

Series de tiempo: estabilidad y modelos dinámicos

¡Recordar!

- Autocorrelación de orden k: $ho_k = \frac{Cov(Y_t, Y_{t-k})}{DS(Y_t)DS(Y_{t-k})}$
- Proceso AR(p)
 - Forma escalar: $Y_t = \sum_{i=1}^p \rho_i Y_{t-i} + U_t$

$$\bullet \ \, \textbf{Forma matricial:} \underbrace{\begin{pmatrix} Y_t \\ Y_{t-1} \\ \vdots \\ Y_{t-p+1} \end{pmatrix}}_{\mathcal{Y}_t} = \underbrace{\begin{pmatrix} \rho_1 & \rho_2 & \cdots & \rho_{p-1} & \rho_p \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix}}_{P} \underbrace{\begin{pmatrix} Y_{t-1} \\ Y_{t-2} \\ \vdots \\ Y_{t-p} \end{pmatrix}}_{\mathcal{Y}_{t-1}} + \underbrace{\begin{pmatrix} U_t \\ 0 \\ \vdots \\ 0 \end{pmatrix}}_{\mathcal{U}_t}$$

- Estabilidad
 - AR(1): $|\rho_1| < 1$.
 - **AR(p):** $|\lambda_i| < 1 \ \forall j$, donde λ_i son los valores propios de la matriz P.
- Estacionariedad
 - Fuerte: $f(Y_t,...,Y_{t-k})=f(Y_{t-j},...,Y_{t-k-j}) \ \forall k,j \in \mathbb{Z}$
 - **Débil:** $\mathbb{E}(Y_t|t)$, $\mathbb{V}(Y_t|t)$ y $Cov(Y_t,Y_{t-k}|t)$ no son funciones de t $\forall t,k$.
- Estacionalidad: existencia de patrones estacionales (repetitivos) en los datos observados.
- Impactos en modelos dinámicos:
 - Horizonte finito o corto plazo: $\sum_{j=0}^{J} \frac{\partial \mathbb{E}(y_t|x_t, x_{t-1}, ...)}{\partial x_{t-j}}$.
 - Impactos permanentes: $\sum_{j=0}^{\infty} \frac{\mathbb{E}(y_t|x_t, x_{t-1}, \ldots)}{\partial x_{t-j}}$

1. Demostraciones

Demuestre que en un modelo AR(1) estable donde el coeficiente asociado al primer rezago es ρ_1 y los errores son ruidos blancos no autocorrelacionados de varianza σ^2 se cumplen las siguientes propiedades:

1

1. $\mathbb{E}(Y_t) = 0$

$$\begin{split} Y_t &= \sum_{j=0}^{\infty} \rho_1^j U_{t-j} + \underbrace{\lim_{j \to \infty} \rho_1^j Y_{t-j}}_{=0 \text{ (estabilidad)}} \\ \Rightarrow Y_t &= \sum_{j=0}^{\infty} \rho_1^j U_{t-j} \\ \Rightarrow \mathbb{E}(Y_t) &= \sum_{j=0}^{\infty} \rho_1^j \underbrace{\mathbb{E}(U_{t-j})}_{=0 \text{ ruidos blancos}} = 0 \end{split}$$

2.
$$\mathbb{V}(Y_t) = \frac{\sigma^2}{1-\rho_1^2}$$

$$Y_t = \sum_{j=0}^{\infty} \rho_1^j U_{t-j}$$

Dado que los errores no están correlacionados $Cov(U_i,U_j)=0 \ \forall i\neq j$, la varianza de la suma es la suma de las varianzas.

$$\Rightarrow \mathbb{V}(Y_t) = \mathbb{V}\left(\sum_{j=0}^{\infty} \rho_1^j U_{t-j}\right) = \sum_{j=0}^{\infty} \mathbb{V}(\rho_1^j U_{t-j}) = \sum_{j=0}^{\infty} \rho_1^{2j} \underbrace{\mathbb{V}(U_{t-j})}_{\sigma^2} = \sigma^2 \sum_{j=0}^{\infty} (\rho_1^2)^j = \sigma^2 \frac{1}{1 - \rho_1^2}$$

3. Demuestre que en un modelo AR(1) ($y_t = \beta x_t + u_t$) la autocorrelación de los errores ($u_t = \rho u_{t-1} + \varepsilon_t$) equivale a una especificación dinámica incompleta (omisión de rezagos de x e y).

$$y_{t} = \beta_{1}x_{t} + u_{t}$$

$$\Rightarrow y_{t} = \beta x_{t} + \rho u_{t-1} + \varepsilon_{t}$$

$$\Rightarrow y_{t} = \beta x_{t} + \rho (y_{t-1} - \beta x_{t-1}) + \varepsilon_{t}$$

$$\Rightarrow y_{t} = \beta x_{t} + \rho y_{t-1} - \rho \beta x_{t-1} + \varepsilon_{t}$$

2. Estabilidad en AR(2)

Considere el proceso AR(2) de la forma $Y_t = 5Y_{t-1} - 6Y_{t-2} + U_t$.

1. Escriba dicho proceso de forma matricial

Queremos escribir el proceso de la forma $\mathcal{Y}_t = \mathcal{Y}_{t-1} + U_t$. La matriz P y los vectores \mathcal{Y}_t , \mathcal{Y}_{t-1} y U_t están dados por:

$$P = \begin{pmatrix} \rho_1 & \rho_2 & \cdots & \rho_{p-1} & \rho_p \\ 1 & 0 & \cdots & 0 & 0 \\ 0 & 1 & \ddots & \vdots & \vdots \\ \vdots & \ddots & \ddots & 0 & \vdots \\ 0 & \cdots & 0 & 1 & 0 \end{pmatrix} = \begin{pmatrix} \rho_1 & \rho_2 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 5 & -6 \\ 1 & 0 \end{pmatrix}$$

$$\mathcal{Y}_t = \begin{pmatrix} Y_t \\ Y_{t-1} \\ \vdots \\ Y_{t-p+1} \end{pmatrix} = \begin{pmatrix} Y_t \\ Y_{t-1} \end{pmatrix}, \ \mathcal{Y}_{t-1} = \begin{pmatrix} Y_{t-1} \\ Y_{t-2} \\ \vdots \\ Y_{t-p} \end{pmatrix} = \begin{pmatrix} Y_{t-1} \\ Y_{t-2} \end{pmatrix}, \ \mathcal{U}_t = \begin{pmatrix} U_t \\ 0 \\ \vdots \\ 0 \end{pmatrix} = \begin{pmatrix} U_t \\ 0 \end{pmatrix}$$

Finalmente, la expresión matricial del modelo es:

$$\begin{pmatrix} Y_t \\ Y_{t-1} \end{pmatrix} = \begin{pmatrix} 5 & -6 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} Y_{t-1} \\ Y_{t-2} \end{pmatrix} + \begin{pmatrix} U_t \\ U_{t-1} \end{pmatrix}$$

2. Encuentre los valores y vectores propios de la matriz P.

Primero obtendremos los valores propios.

$$|P - \lambda I| = \left| \begin{pmatrix} 5 - \lambda & -6 \\ 1 & 0 - \lambda \end{pmatrix} \right| = -\lambda(5 - \lambda) - (-6) = \lambda^2 - 5\lambda + 6 = (\lambda - 3)(\lambda - 2)$$

Luego, los valores propios los $\lambda_1=3$ y $\lambda_2=2$. Por lo tanto, la matriz diagonal de valores propios Λ es:

$$\Lambda = \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix}$$

Ahora obtendremos los vectores propios. Hay que encontrar los vectores v_i que satisfacen $(P - \lambda_i I)v_i = 0$. Lógicamente, tendremos tantos vectores como valores propios.

Caso $\lambda_1 = 3$

$$(P - \lambda_1 I)v_1 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 2 & -6 \\ 1 & -3 \end{pmatrix} \begin{pmatrix} v_{11} \\ v_{12} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Esto equivale al siguiente sistema de ecuaciones:

$$var{1} 2v_{11} - 6v_{12} = 0$$

$$v_{11} - 3v_{12} = 0$$

$$\Rightarrow v_{11} = 3v_{12}$$

Cualquier (v_{11},v_{12}) que satisfaga esta relación puede definir a primer vector propio. Consideremos:

$$v_1 = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$$

Caso $\lambda_1=2$

$$(P - \lambda_2 I)v_2 = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

$$\Rightarrow \begin{pmatrix} 3 & -6 \\ 1 & -2 \end{pmatrix} \begin{pmatrix} v_{21} \\ v_{22} \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

Esto equivale al siguiente sistema de ecuaciones:

- $3v_{11} 6v_{12} = 0$
- $v_{11} 2v_{12} = 0$

$$\Rightarrow v_2 1 = 2v_2 2$$

Cualquier (v_{21}, v_{22}) que satisfaga esta relación puede definir a primer vector propio. Consideremos:

$$v_2 = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$

Luego, la matriz V, cuyas columnas son los vectores propios de P es:

$$V = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}$$

3. Muestre cómo sería la descomposición espectral de la matriz P.

$$P = V\Lambda V^{-1} = \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 3 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 3 & 2 \\ 1 & 1 \end{pmatrix}^{-1}$$

4. Señale si el proceso es o no estable y explique por qué.

Un modelo AR(p) es estable $\Leftrightarrow |\lambda_j| < 1 \forall \lambda_j$, donde λ_j son los valores propios de la matriz $P = V \Lambda V^{-1}$.

De esta manera $Y_t = \sum_{j=0}^{\infty} P^j U_{t-j} + \lim_{j \to \infty} P^j Y_{t-j}$ sería finito.

En este caso, se tiene que:

$$|\lambda_1| = |3| = 3 > 1 \land |\lambda_2| = |2| = 2 > 1$$

Por lo tanto, el modelo no es estable.

3. Modelo dinámico

Para este problema utilizaremos la base de datos contenida en el archivo Auxiliar 08 - BD Modelo Dinámico.xlsx y consideraremos el siguiente modelo:

$$y_t = \rho_1 y_{t-1} + \rho_2 y_{t-2} + \alpha_0 x_t + \alpha_1 x_{t-1} + u_t$$

1. Estime este modelo mediante Stata.

Ver archivo Auxiliar 08 - Código.do.

. reg y 1.y 12.y x 1.x, noconstant

Source	SS	df	MS	Numbe	Number of obs		498
					494)	>	
Model	38,2678997	4	9,5669749	2 Prob	> F	=	0,0000
Residual	,020078568	494	,00004064	5 R-sq	uared	=	0,9995
				- Adj 1	R-squared	=	0,9995
Total	38,2879783	498	,0768834	9 Root	MSE	=	,00638
У	Coef.	Std. Err.	t	P> t	[95% Co	nf.	Interval]
У							
L1.	,4096449	,0262441	15,61	0,000	,35808:	1	,4612088
L2.	,1153166	,0162318	7,10	0,000	,083424	7	,1472084
ж							
	,2035142	,0009122	223,11	0,000	,201721	9	,2053064
L1.	,0424878	,0053586	7,93	0,000	,031959	4	,0530163

2. Utilizando operadores de rezago, calcule el impacto del aumento permanente de la variable x sobre el valor esperado de la variable y.

$$y_{t} = \rho_{1}y_{t-1} + \rho_{2}y_{t-2} + \alpha_{0}x_{t} + \alpha_{1}x_{t-1} + u_{t}$$

$$\Rightarrow y_{t} = \rho_{1}Ly_{t} + \rho_{2}L^{2}y_{t} + \alpha_{0}x_{t} + \alpha_{1}x_{t-1} + u_{t}$$

$$\Rightarrow y_{t}(1 - \rho_{1}L - \rho_{2}L^{2}) = \alpha_{0}x_{t} + \alpha_{1}x_{t-1} + u_{t}$$

El rezago de una constante es la misma constante...

$$\Rightarrow y_t = \frac{\alpha_0 x_t + \alpha_1 x_{t-1} + u_t}{1 - \rho_1 - \rho_2}$$
$$\Rightarrow \mathbb{E}(y_t) = \frac{\alpha_0 x_t + \alpha_1 x_{t-1}}{1 - \rho_1 - \rho_2}$$

Queremos calcular $\sum_{j=0}^{\infty} rac{\partial \mathbb{E}(y_t)}{\partial x_{t-j}}.$ Notemos que:

$$\frac{\partial \mathbb{E}(y_t)}{\partial x_{t-j}} = \begin{cases} \frac{\alpha_0}{1-\rho_1-\rho_2} & si \quad j = 0\\ \frac{\alpha_1}{1-\rho_1-\rho_2} & si \quad j = 1\\ 0 & si \quad j > 1 \end{cases}$$

$$\Rightarrow \sum_{j=0}^{\infty} \frac{\partial y_t}{\partial x_{t-j}} = \frac{\alpha_0 + \alpha_1}{1-\rho_1 - \rho_2} \approx \frac{0,2035 + 0,0425}{1-0,4096 - 0,1153} \approx 0,5178$$