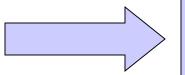

GF 3022-1: Contaminación Atmosférica Laura Gallardo, Profesora Asociada, Departamento de Geofísica, Directora del Centro de Ciencia del Clima y la Resiliencia, Universidad de C Foto: M. I. Cortez LGK GF3022 SP 2017

Contenidos de hoy


- Tiempo de recambio
- Ecuación de continuidad
 - Términos
 - Deducción
 - Descomposición de Reynolds
 - Adveccióny mezcla turbulenta
 - Procesos y modularización

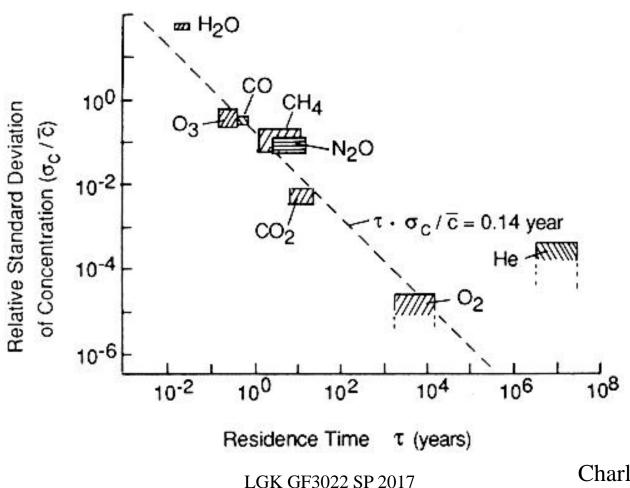
$$\frac{\partial c}{\partial t} = -\vec{\mathbf{v}} \cdot \nabla c - c \nabla \cdot \vec{\mathbf{v}} - \nabla \cdot (\langle \mathbf{c}' \vec{\mathbf{v}}' \rangle) + Q - S$$

+CI & CB

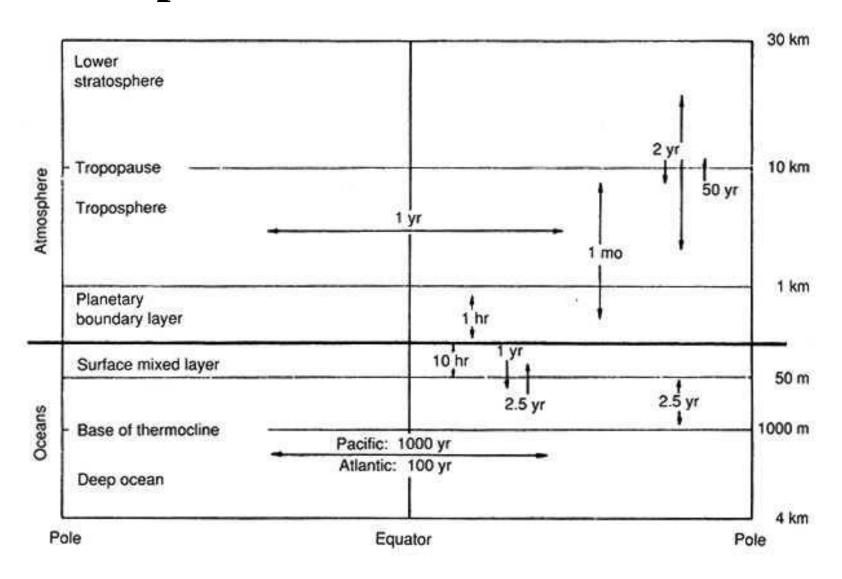
Tiempo de Recambio T Turn-over time

Fuentes (Q [kg/s])

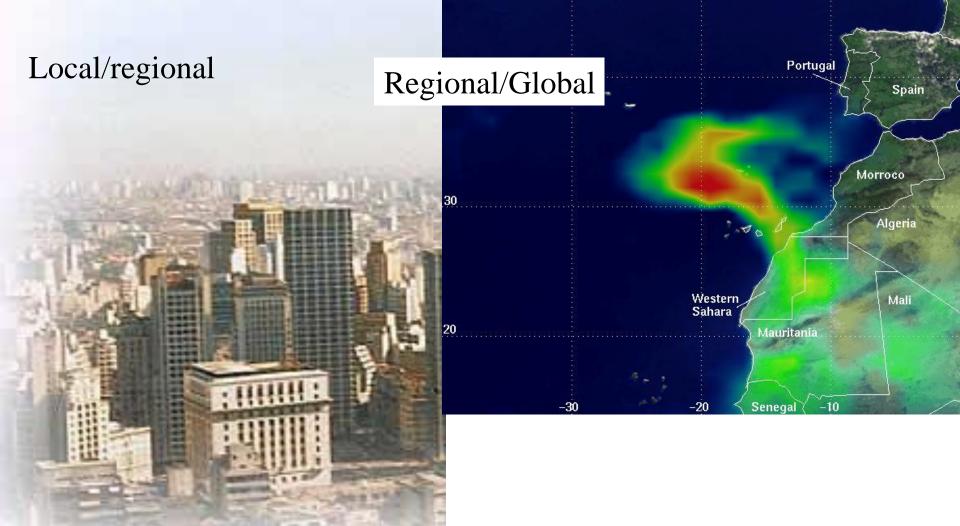
Recipiente de masa M [kg]


Sumideros (S[kg/s])

$$\tau = \frac{M}{S}[s]$$


$$\frac{dM}{dt} = Q - S$$

Tiempo de recambio y variabilidad


Charlson, 1992

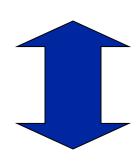
Tiempos característicos de mezcla

Escalas de tiempo y espacio características

Problema	Escala	Escala	Escala de
	horizontal	vertical	tiempo
Locales	<decenas de<="" th=""><th><cientos de<="" th=""><th>< 1 hr</th></cientos></th></decenas>	<cientos de<="" th=""><th>< 1 hr</th></cientos>	< 1 hr
	km	m	
Mesoescálicos	decenas a	< 1 km	<10 hr
	cientos de		
	km		
Regionales	cientos a	<5 km	1-5 días
	miles de km		
Globales	>miles de	toda la	> 1 año
	km	atmósfera	

Local/micro
LGK GF3022 SP 2017

Asado dieciochero


Por hacer (y presentar en 3 transparencias)

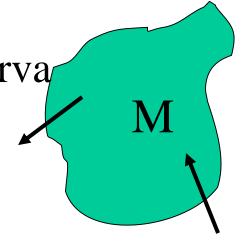
- Estimar las escalas espacial y temporal
- Identificar una traza atmosférica relevante y discutir su tiempo de recambio. ¿Qué se puede decir de la variabilidad espacial de las concentraciones de esta traza?
- ¿Hay un origen antrópico en estos problemas?
- ¿Qué efectos tienen los problemas presentados?

Subir a U-cursos!!!

$$\frac{\partial c}{\partial t} = -\vec{\mathbf{v}} \cdot \nabla c - c \nabla \cdot \vec{\mathbf{v}} - \nabla \cdot (\langle c' \vec{\mathbf{v}}' \rangle) + Q - S$$

+CI & CB

Dispersión y transformaciones

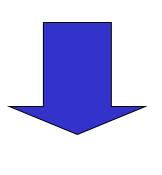

Emisiones

Remoción

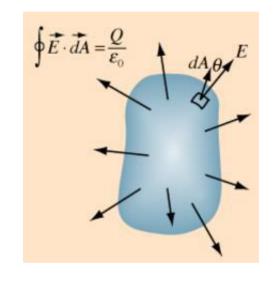
¿De dónde viene la ecuación de continuidad?

Lavoisier (1789) la masa se conserva

Sea un volumen arbitrario V que contiene una masa

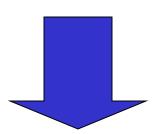


$$\frac{\mathbf{M}}{\partial t} \frac{\partial M}{\partial t} = \frac{\partial}{\partial t} \int_{V} c dV = \int_{A=\partial V} \vec{F} \cdot d\vec{A} + \int_{V} (Q - S) dV$$


$$\frac{\partial M}{\partial t} = \frac{\partial}{\partial t} \int_{V} c dV = \int_{A=\partial V} \vec{F} \cdot d\vec{A} + \int_{V} (Q - S) dV$$

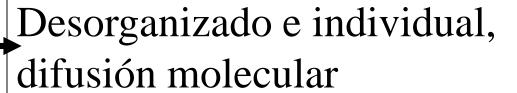
Gracias a Gauss...

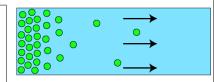
El flujo de un campo vectorial a través de una superficie cerrada S que contiene el volumen V es igual a la integral de la divergencia del campo vectorial sobre el volume V



$$\frac{\partial M}{\partial t} = \frac{\partial}{\partial t} \int_{V} c dV = \int_{V} -\nabla \cdot \vec{F} dV + \int_{V} (Q - S) dV$$

Como V es arbitrario...


$$\frac{\partial M}{\partial t} = \frac{\partial}{\partial t} \int_{V} c dV = \int_{V} -\nabla . \vec{F} dV + \int_{V} (Q - S) dV$$


Hasta ahora, formalmente correcto pero casi sin sentido físico

$$\frac{\partial c}{\partial t} = -\nabla . \vec{F} + Q - S$$

of Page And Advantage

Transporte
Atmosférico
¿Qué es **F**?

Organizado y colectivo, siguiendo el viento promedio

$$\vec{F} = c\vec{v}$$

Ergo...

$$\frac{\partial c}{\partial t} = -\nabla . \vec{F} + Q - S$$

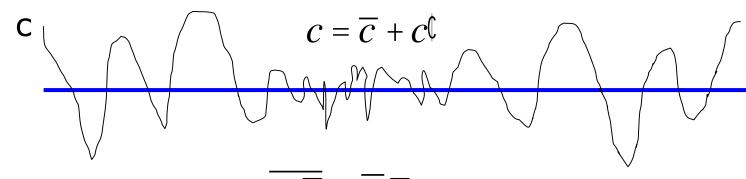
Tiene más sentido pero sigue siendo una entelequia

$$\frac{\partial c}{\partial t} = -\nabla \cdot (c\vec{\mathbf{v}}) + \kappa \nabla^2 c + Q - S$$

)22 SP 2017

Pero en la práctica...

1. La difusión molecular es casi siempre


$$\frac{\partial c}{\partial t} = -\nabla \cdot (c\vec{\mathbf{v}}) + \kappa \nabla^2 c + Q - S$$

2. Las variables se conocen sólo como promedios temporales y/o espaciales (Partición de Reynolds)

$$c = \overline{c} + c'$$
 $\vec{v} = \overline{\vec{v}} + \vec{v}'$

Partición de Reynolds

Las variables se pueden expresar en términos de un valor promedio y fluctuaciones en torno a este

Se cumple que

$$\overline{c}$$
 $\overline{\overline{U}} = \overline{c}$ $\overline{\overline{U}} = 0$

$$\frac{\partial c}{\partial t} = -\nabla \cdot (c\vec{\mathbf{v}}) + Q - S$$

$$\frac{\partial (\bar{c} + c')}{\partial t} = \frac{\partial (\bar{c} + c')}{\partial t} = \frac{\text{Partición de Reynolds}}{\nabla \cdot \nabla \cdot ([\bar{c} + c'][\bar{\mathbf{v}} + \bar{\mathbf{v}}'])} + [Q + Q'] - [S + S'] \qquad \text{Promediando}$$

$$\frac{\partial \bar{c}}{\partial t} = -\bar{\mathbf{v}} \cdot \nabla \bar{c} - \bar{c} \nabla \cdot \bar{\mathbf{v}} - \nabla \cdot (\langle c' \bar{\mathbf{v}}' \rangle) + \bar{Q} - \bar{S}$$

$$NB. \langle x \rangle \equiv \overline{x}$$

Usando las identidades...

$$\frac{dc}{dt} = \frac{\partial c}{\partial t} + \vec{\mathbf{v}} \cdot \nabla c$$

$$\nabla . (c\vec{\mathbf{v}}) = \vec{\mathbf{v}}.\nabla c + c\nabla . \vec{\mathbf{v}}$$

À la Euler....modelos Eulerianos (advección explícita)

$$\frac{\partial c}{\partial t} = -\vec{\mathbf{v}} \cdot \nabla c - c \nabla \cdot \vec{\mathbf{v}} - \nabla \cdot (\langle c' \vec{\mathbf{v}}' \rangle) + Q - S$$

À la Lagrange...modelos Lagrangianos (advección implícita)

$$\frac{dc}{dt} = -c\nabla \cdot \vec{\mathbf{v}} - \nabla \cdot (\langle \mathbf{c}' \vec{\mathbf{v}}' \rangle) + Q - S$$

Advección

$$\frac{\partial c}{\partial z} = -\vec{\mathbf{v}} \cdot \nabla c + \dots$$

$$\frac{\partial c}{\partial t} = -\mathbf{u} \frac{\partial c}{\partial x}$$

$$\frac{\partial c}{\partial t} = -\mathbf{v} \frac{\partial c}{\partial y}$$

$$\frac{\partial c}{\partial t} = -\mathbf{w} \frac{\partial c}{\partial z}$$

El arrastre a través del flujo medio (advección) prevalece en la horizontal pues, en general, los vientos horizontales son mucho mayores que los verticales.

Hay excepciones importantes

Lecturas recomendadas de hoy

- Rodhe, H., 2000: Modeling Biogeochemical Cycles, en Earth System Science: from biogeochemical cycles to global change. Vol. 72 en International Geophysics Series. Jacobson et al., editores. Elsevier Ltd.
- Jacob, 2007Cap 1
 (http://acmg.seas.harvard.edu/education/jacob_lectures_ctms_chap1.pdf)