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PREFACE

This series of physics problems and solutions, which consists of seven
volumes — Mechanics, Electromagnetism, Optics, Atomic, Nuclear and
Particle Physics, Thermodynamics and Statistical Physics, Quantum Me-
chanics, Solid State Physics and Relativity, contains a selection of 2550
problems from the graduate school entrance and qualifying examination
papers of seven U.S. universities — California University Berkeley Cam-
pus, Columbia University, Chicago University, Massachusetts Institute of
Technology, New York State University Buffalo Campus, Princeton Uni-
vergity, Wisconsin University — as well as the CUSPEA and C. C. Ting’s
papers for selection of Chinese students for further studies in U.S.A. and
their solutions which represent the effort of more than 70 Chinese physicists
plus some 20 more who checked the solutions.

The series is remarkable for its comprehensive coverage. In each area
the problems span a wide spectrum of topics while many problems overlap
several areas, The problems themselves are remarkable for their versatil-
ity in applying the physical laws and principles, their uptodate realistic
situations, and their scanty demand on mathematical skills. Many of the
problems involve order of magnitude calculations which one often requires
in an experimental situation for estimating a quantity from a simple model.
In short, the exercises blend together the objectives of enhancement of one’s
understanding of the physical principles and ability of practical application.

The solutions as presented generally just provide a guidance to solving
the problems, rather than step by step manipulation, and leave much to
the students to work out for themselves, of whom much is demanded of the
basic knowledge in physics. Thus the series would provide an invaluable
complement to the textbooks.

The present volume for Electromagnetism consists of five parts: elec-
trostatics, magnetostatic and quasi-stationary electromagnetic fields, cir-
cuit analysis, electromagnetic waves, relativity and particle-field interac-
tions, and contains 440 problems. 34 Chinese physicists were involved in
the task of preparing and checking the solutions.

In editing, no attempt has been made to unify the physical terms,
units and symbols. Rather, they are left to the setters’ and solvers’ own
preference so as to reflect the realistic situation of the usage today. Great
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pains has been taken to trace the logical steps from the first principles to
the final solutions, frequently even to the extent of rewriting the entire
solution. In addition, a subject index has been included to facilitate the
location of topics. These editorial efforts hopefully will enhance the value
of the volume to the students and teachers alike.

Yung-Kuo Lim
Editor



INTRODUCTION

Solving problems in school work is the exercise of the mind and ex-
amination questions are usually picked from the problems in school work.
Working out problems is an essential and important aspect of the study of
Physics.

Major American Universily Ph.D. Qualifying Questions and Solutions
is 8 series of books which consists of seven volumes. The subjects of each
volume and the respective referees (in parentheses) are as follows:

1. Mechanics (Qiang Yan-qi, Gu En-pu, Cheng Jia-fu, Li Ze-hua, Yang

De-tian)

2. Electromagnetism (Zhao Shu-ping, You Jun-han, Zhu Jun-jie)

3. Optics (Bai Gui-ru, Guo Guang-can)

4. Atomic, Nuclear and Particle Physics (Jin Huai-cheng, Yang Bao-
zhong, Fan Yang-mei)

5. Thermodynamics and Statistical Physics (Zheng Jiu-ren)

6. Quantum Mechanics (Zhang Yong-de, Zhu Dong-pei, Fan Hong-yi)

7. Solid State Physics, Relativity and Miscellaneous Topics (Zhang Jia-lu,

Zhou You-yuan, Zhang Shi-ling)

This series covers almost all aspects of University Physics and contains
2550 problems, most of which are solved in detail.

The problems have been carefully chosen from 3100 problems, of which
some came from the China—U.S. Physics Examination and Application Pro-
gram, some were selected from the Ph.D. Qualifying Examination on Ex-
perimental High Energy Physics sponsored by Chao Chong Ting. The rest
came from the graduate school entrance examination questions of seven
world-renowned American universities: Columbia University, University of
California at Berkeley, Massachusetts Institute of Technology, University of
Wisconsin, University of Chicago, Princeton University and State Univer-
sity of New York, Buffalo.

In general, examination problems in physics in American universities
do not involve too much mathematics; however, they are to a large ex-
tent characterized by the following three aspects: some problems involving
various frontier subjects and overlapping domains of science are selected
by professors directly from their own research work and show a “modern
style”. Some problems involve broad fields and require a quick mind to

vii



viii Introduciion

analyse, while the methods needed for solving the other problems are sim-
ple and practical but requires a full “touch of physics”. Indeed, we ven-
ture to opine that the problems, as a whole, embody to some extent the
characteristics of American science and culture, as well as the philosophy
underlying American education.

Therefore, we considered it worthwhile to collect and solve these prob-
lems and introduce them to students and teachers, even though the effort
involved was extremely strenuous. As many as a hundred teachers and
graduate students took part in this time-consuming task.

A total of 440 problems makes up this volume of five parts: electrostat-
ics (108), magnetostatic and quasi-stationary electromagnetic fields (119),
circuit analysis (90), electromagnetic waves (67), and relativity, particle-
field interactions (56).

In scope and depth, most of the problems conform to the undergrad-
uate physics syllabi for electromagnetism, circuit analysis and electrody-
namics in most universities. However, many of them are rather profound,
sophisticated and broad-based. In particular, problems from American uni-
versities often fuse fundamental principles with the latest research activities.
Thus the problems may help the reader not only to enhance understanding
in the basic principles, but also to cultivate the ability of solving practical
problems in a realistic environment.

International units are used whenever possible, but in order to conform
to some of the problems, Gaussian units are also used. This in fact would
give the student broader training and wider experience,

This volume is the result of collective efforts of 34 physicists involved
in working out and checking of the solutions, among them Zheng Dao-chen,
Hu You-qiu, Ning Bo, Zhu Xue-liang, and Zhao Shu-ping.
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PART 1

ELECTROSTATICS






1. BASIC LAWS OF ELECTROSTATICS (1001-1023)

1001
A static charge distribution produces a radial electric field
—br
e
E=A4 Te,. s

where A and b are constants.
(a) What is the charge density? Sketch it.

(b) What is the total charge Q7
(MIT)

Solution:
(a) The charge density is given by Maxwell’s equation

p=V-D=¢V.-.E.
AsV - uv=Vu - v+uV.v,

V-E:A[V(e"")-:'—z+e‘°'v- (‘:—,)]

Making use of Dirac’s delta function §(r) with properties

s(x)=0 for r#0,
=00 for r=0,

/ §(r)dV =1 if V encloses r=0,
v

=0 if otherwise,
v2 _1_ =V.V .l_ =V- & = —4x6(r).
r r r?

be =t =br
pP=gA| - —Ter - e, + 4xe~""8(r)

we have

Thus

=-=3 e~ + 4xeo A b(x).

3



4 Problems & Solutions on Eleciromagnetism

Hence the charge distribution consists of a positive charge 47regA at the
origin and a spherically symmetric negative charge distribution in the sur-
rounding space, as shown in Fig. 1.1.

P(r)

dmtegAB(r)

(b) The total charge is

Q= / pav

all space

00 —br
= _/ _eo_Afze_. Arridr + / 4megA é(r)dV
0

all space

= dmeo Ale | + d7eo A

= —4meg A+ 4nggA=0.

It can also be obtained from Gauss’ flux theorem:

Q= lim ¢ ¢E-dS
s

T —~+00
-br
. Ser
= lim — '47”‘2
r—o00 r

= lim 4nepde™b =0,
r-—00

in agreement with the above.
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1002

Suppose that, instead of the Coulomb force law, one found experimen-
tally that the force between any two charges ¢; and g2 was

Fip= 0192 (1-+or2)

- 3 Cr,
47I’€o 12

where « is a constant.

(a) Write down the appropriate electric field E surrounding a point
charge g.

(b) Choose a path around this point charge and calculate the line
integral § E - dl. Compare with the Coulomb result.

(c) Find § E - dS over a spherical surface of radius r, with the point
charge at this center. Compare with the Coulomb result.

(d) Repeat (¢) at radius r; + A and find V -E at a distance r; from the
point charge. Compare with the Coulomb result. Note that A is a small
quantity.

(Wisconsin)

Solution:
(a) The electric field surrounding the point charge ¢ is

E(r) = e 1 (1 -+Var)e,,

4wep 2

where r is the distance between a space point and the point charge ¢, and
e, is a unit vector directed from ¢ to the space point.

e,

(]
A4

Fig. 1.2

(b) As in Fig. 1.2, for the closed path L we find

dl-e, =dlcosf =dr
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and

47e

= s~ £ Q) +vaga( )] =0

From Coulomb’s law Fy5 = G’;"ﬁ"erm we can obtain the electric field
of the point charge

fE dl= f—-—z-(l—\/——)dr

Clearly, one has

E.-dl=0.
L

So the Coulomb result is the same as that of this problem.

(c) Let S be a spherical surface of radius r; with the charge ¢ at its
center. Defining the surface element dS = dSe,, we have

]fE-ds = 41l’€o r,(l J/arr)ds
= La- vam).
&g

From Coulomb’s law and Gauss’ law, we get

fE-ds:i.
s €o

The two results differ by L. /ary.
(d) Using the result of (c), the surface integral at r; + A is

fnds: L(1- Valn +8)).

Consider a volume V'’ bounded by two spherical shells S; and S; with radii
r=r; and r = r; + A respectively. Gauss’ divergence theorem gives

f E-dS=| V-EdV.
S14S, v
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As the directions of dS on S; and S; are outwards from V', we have for

small A

L[ alr D) + vam] = Tl + AP - 34 Blemr,
0

As & <€ 1, we can approximately set

n
(l + -é) ~14 né- .
™ r1
Thus one gets

V.E(r=r)= ——‘/E—ﬁn.

On the other hand, Coulomb’s law would give the divergence of the electric
field produced by a point charge ¢ as

V.E(r) = E‘%s(r).

1003

Static charges are distributed along the z-axis (one-dimensional) in the
interval —a < z’ < a. The charge density is

plz') for |'|<a
0 for |2'|>a.

(a) Write down an expression for the electrostatic potential ®(z)at a
point z on the axis in terms of p(z’).

(b) Derive a multipole expansion for the potential valid for z > a.

(c) For each charge configuration given in Fig. 1.3, find
(i) the total charge Q = [ pdz’,
(ii) the dipole moment P = [ z'pdz’,
(iii) the quadrupole moment Q.- = 2 [ z'2pdz’,
(iv) the leading term (in powers of 1/z) in the potential & at a
point = > a.
(Wisconsin)
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q .
(M =0 T
-9 +q .
(") z! ;% ' = % ;.
q 29 q .
am e o=z =
Fig. 1.3

Solution:
(a) The electrostatic potential at a point on z-axis is

a

p(z’)
®(z) = 4weq [_a |z — z'ldz

{b) For 2 > a,a > =’ > —a, we have

1 _1+.’D’+312+
le—2| = 22 23 "

Hence the multipole expansion of ¢(z) is

(z)_4m[/ p(:)d +/—ap(z')rd +/_“p(a;')zd +. ]

(c) The charge configuration (I) can be represented by
plz') = ¢é(z"),
for which
() @=g¢; (i) P=0; (i) Q:=0; (iv) ¥(z)=

wEQT

The charge configuration (II) can be represented by

, , . a , a
p(z')y = —q&(z + —2) +q6(z -~ —2> ,
for which

(i) @Q=0; (i) P=gqa; () Qs z=0; (iv) @¥(z)=-

41reoz’
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The charge configuration (III) can be represented by
’ 1, @ 1_ 48 /
plz') = q6<z + 5) +q5(:c - 5) - 296(<'),
for which

2
i) Q@=0; (i) P=0; (iii) Q. =qa’; (iv) ‘D(z):s:;oza-

1004

Two uniform infinite sheets of electric charge densities 40 and —o
intersect at right angles. Find the magnitude and direction of the electric
field everywhere and sketch the lines of E.

( Wisconsin)

Solution:
First let us consider the infinite sheet of charge density +o. The mag-
nitude of the electric field caused by it at any space point is

o
E=—.
250
The direction of the electric field is perpendicular to the surface of the
sheet. For the two orthogonal sheets of charge densities +o, superposition
of their electric fields yields

Via

FE= eq

The direction of E is as shown in Fig. 1.4,

+d -q

Y

Fig. 1.4
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1005
Gauss’ law would be invalid if
(a) there were magnetic monopoles,
(b) the inverse-square law were not exactly true,
(c) the velocity of light were not a universal constant.
(ccT)
Solution:

The answer is (b).

1006
An electric charge can be held in a position of stable equilibrium:
(a) by a purely electrostatic field,
(b) by a mechanical force,
(c) neither of the above.
(ccr)
Solution:

The answer is (c).

1007

If P is the polarization vector and E is the electric field, then in the
equation P = aE, « in general is:

(a) scalar, (b) vector, (c) tensor.
(cer)
Solution:

The answer is (c).

1008

(a) A ring of radius R has a total charge +Q uniformly distributed on
it. Calculate the electric field and potential at the center of the ring.
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(b) Consider a charge ~Q constrained to slide along the axis of the
ring. Show that the charge will execute simple harmonic motion for small
displacements perpendicular to the plane of the ring.

(Wisconsin)
Solution:

As in Fig. 1.5, take the z-axis along the axis of the ring. The electric
field and the potential at the center of the ring are given by

The electric field at a point P on the z-axis is given by

- Qz o
B(z) = dmeo(R2 + 2231277

Thus a negative charge —@Q at point p is acted upon by a force

— Q*z o
F(z) = —41r£o(R2 +22)3/3°F

As z € R, F(z) x z and —Q will execute simple harmonic motion.

1009
An amount of charge ¢ is uniformly spread out in a layer on the surface
of a disc of radius a.

(a) Use elementary methods based on the azimuthal symmetry of the
charge distribution to find the potential at any point on the axis of sym-
metry.
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(b) With the aid of (a) find an expression for the potential at any point
r(|r| > @) as an expansion in angular harmonics.
( Wisconsin)
Solution:

(a) Take coordinate axes as in Fig. 1.6 and consider a ring formed by
circles with radii p and p + dp on the disc. The electrical potential at a
point (0,0, z) produced by the ring is given by

1 q 27xpdp

4reo ma? \fp? 4 2
Integrating, we obtain the potential due to the whole ring:
a
_ q __pdp
‘P(Z) - A 27"5002 /——p2 ¥ 22
(Va?+ 22 —|z]).

27re a2

(b) At a point |r| > a, Laplace’s equation VZp = 0 applies, with

solution
> b,
o(r,0) = E (anr + i ) P,(cos ).

n=0

As p — 0 for r — co, we have a, = 0.
In the upper half-space, z > 0, the potential on the axis is ¢ = ¢(r,0).

As P,(1) = 1, we have
) by
lp(?’, 0) = Z rntl

n=0
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In the lower half-space, z < 0, the potential on the axis is ¢ = ¢(r, 7). As
Pa(—1) = (-1)”, we have

00 n bn
plrm) =) (-1 5
n=0

Using the results of (a) and noting that for a point on the axis e = z, we
have for z > 0

o0
by
Ernﬂ = (Va2 +r2—r)

41\'6 a?

However, a8

a2\ /2 1/a? 1E~-1)/a? 2
dl =14 ={ = 222
(1+r2) +2(r2)+ 21 (,.2) +

the equation becomes

oo

rntl 27I’£00 = n! r2

n=0

Comparing the coefficients of powers of r gives

¢ -1 G-nt)) o

bagn—1 =0, bap_2=
n-1 ’ " 27!'6()02 n!

Hence, the potential at any point r of the half-plane z > 0 is given by

o 1c1 _ —-n
‘P(r):' q E 2(2 ) n( +l)

2mepa !
6()n

x (g)im—le"_g(cosﬂ), (z > 0).



14 Problems & Solutions on Electromagnetism

Similarly for the half-plane z < 0, as (—=1)2*~2 = 1 we have

00 171 1
_ q §(§—l)§—n+l)
wlr) = 27epa g !

x (g—)zn_le,,_g(cos ) (2<0).

Thus the same expression for the potential applies to all points of space,
which is a series in Legendre polynomials.

1010

A thin but very massive disc of insulator has surface charge density o
and radius R. A point charge +Q is on the axis of symmetry. Derive an
expression for the force on the charge.

(Wisconsin)
Solution:

Refer to Problem 1009 and Fig. 1.6. Let Q be at a point (0,0, z) on
the axis of symmetry. The electric field produced by the disc at this point

is
E,____‘l_(__‘___l),
2e0 \VaZ + 2

whence the force on the point charge is

copo 9t
F‘QE‘m(‘ J—I—)

By symmetry the direction of this force is along the axis of the disc.

1011

The cube in Fig. 1.7 has 5 sides grounded. The sixth side, insulated
from the others, is held at a potential ¢;. What is the potential at the
center of the cube and why?

(MIT)
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:
t
{
e b
[l »

s

Fig. 1.7

Solution:
The electric potential ¢. at the center of the cube can be expressed as
a linear function of the potentials of the six sides, i.e.,

¢ =) Cidi,

where the C;’s are constants. As the six sides of the cube are in the same
relative geometrical position with respect to the center, the C;’s must have
the same value, say C. Thus

$c=C3 .

If each of the six sides has potential ¢¢, the potential at the center will
obviously be ¢¢ too. Hence C = %. Now as the potential of one side only
is ¢o while all other sides have potential zero, the potential at the center is

$0/6.

1012

A sphere of radius R carries a charge @, the charge being uniformly
distributed throughout the volume of the sphere. What is the electric field,
both outside and inside the sphere?

(Wisconsin)
Solution:
The volume charge density of the sphere is

Q

=L
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Take as the Gaussian surface a spherical surface of radius r concentric with
the charge sphere. By symmetry the magnitude of the electric field at all
points of the surface is the same and the direction is radial. From Gauss’

law |
}(E-ds=_/pdv
£o

we immediately obtain

_ _Qr
T 4wegr3d (r2 R),
Qr
= ——————-47r€oR3 (r S R) .
1013

Consider a uniformly charged spherical volume of radius R which con-
tains a total charge Q. Find the electric field and the electrostatic potential
at all points in the space.

( Wisconsin)

Solution:
Using the results of Problem 1012
Qr
= — <
E, 4regR3’ (1‘ - R)
Qr
Ey= ——— >R
2 4dregrd (?‘ - )
and the relation between electrostatic field intensity and potential
v(p) = / E-d,
P
we obtain

R oG
501(1')-':/ E1~dl'+/ E,; . dr
r R

R Qrar *  Qdr
» AmeqR3  JR 4dmeor?

2
=§,,—Z—ﬁ(3—%) (r<R),
or(r)= [ Badr= 2

47I’601‘

(r>R).
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1014

For a uniformly charged sphere of radius R and charge density p,

(a) find the form of the electric field vector E both outside and inside
the sphere using Gauss’ law;

(b) from E find the electric potential ¢ using the fact that ¢ — 0 as
r — 0o.

(Wisconsin)

Solution:

(a) Same as for Problem 1013.

(b) Referring to Problem 1013, we have

3
for r>R, =£—p-,
3€or
_PR ([, T
for r<R,¢—6€o(3 R’)'
1015

In the equilibrium configuration, a spherical conducting shell of inner
radius a and outer radius b has a charge ¢ fixed at the center and a charge
density o uniformly distributed on the outer surface. Find the electric field

for all r, and the charge on the inner surface.
(Wisconsin)

Solution:
Electrostatic equilibrium requires that the total charge on inner surface
of the conducting shell be —¢. Using Gauss’ law we then readily obtain

q
E —
(r) Trear? forr<a,
E=0 fora<r<b,
1 A4nbio ob?
E(r) = mr_ze' = €—o'3e, forr>0b.

1016

A solid conducting sphere of radius ry has a charge of +Q. It is sur-
rounded by a concentric hollow conducting sphere of inside radius r2 and
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outside radius r3. Use the Gaussian theorem to get expressions for
(a) the field outside the outer sphere,
(b) the field between the spheres.

(c) Set up an expression for the potential of the inner sphere. It is not
necessary to perform the integrations.
(Wisconsin)
Solution:

Because of electrostatic equilibrium the inner surface of the hollow
conducting sphere carries a total charge —Q, while the outer surface carries
a total charge +Q. Using Gauss’ law

fE ds = Qtot

€o

where Q.o is the algebraic sum of all charges surrounded by a closed surface
s, we obtain

(a)  E(r)= gmer  (r>m3)
(b) E(l‘) = r"q;,e, (1'2 >r> 7'1)

(c) Using the expression for the potential ¢(p) = fp°° E-dl, we find the
potential of the inner sphere:

a
(n) = /,l 47eq r2 4111‘:0r2

1017

The inside of a grounded spherical metal shell (inner radius R; and
outer radius Ry) is filled with space charge of uniform charge density p. Find
the electrostatic energy of the system. Find the potential at the center.

(Wisconsin)

Solution:

Consider a concentric spherical surface of radius r(r < R;). Using
Gauss’ law we get

)
E=-=—e,.
Py

Wi
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As the shell is grounded, ¢(R;) = 0,E = 0(r > R;). Thus

R, p
o(r) = / Edr = GTO(R? —~r?).

The potential at the center is

1

—_ 2 2
‘p(o) - GEOPRI *

The electrostatic energy is

1 1 R, 20 R}
= [cppdV == | L (R2-+%).p -daridr= L.
w /2p¢p Vv 2/0 Geo(Rl r®)-p-4xridr e

1018

A metal sphere of radius a is surrounded by a concentric metal sphere
of inner radius b, where b > a. The space between the spheres is filled
with a material whose electrical conductivity o varies with the electric field
strength E according to the relation ¢ = K E, where K is a constant. A
potential difference V is maintained between the two spheres. What is the
current between the spheres?

(Wisconsin)

Solution:
Since the current is

I=j.S=0¢E.-S=KE?.S=KE?.4xr?,

the electric field is

and the potential is

a a / I 1 ’ 7 b

Hence the current between the spheres is given by

I =4xKV?/In(b/a).
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1019

An isolated soap bubble of radius 1 cm is at a potential of 100 volts. If
it collapses to a drop of radius 1 mm, what is the change of its electrostatic
energy?

(Wisconsin)
Solution:
If the soap bubble carries a charge Q, its potential is

Q

41’501‘ )

Forr=r;=1cm, V = V) =100V, we have Q = 4xepr, V. As the radius
changes from ry to r, = 1 mm, the change of electrostatic energy is

T 8meory  8meory

AW Q2 Q2 = 2150(1'1 Vl)2 (l - i)

r2 ™
1 1
—_ ~12 -12 2
=27 x 8.85 x 107'% x (107'* x 100)* x (ﬁ)'_:’_ﬁri>
=5x10"%).
1020

A static electric charge is distributed in a spherical shell of inner radius
R; and outer radius R3. The electric charge density is given by p = a + br,
where r is the distance from the center, and zero everywhere else.

(a) Find an expression for the electric field everywhere in terms of r.

(b) Find expressions for the electric potential and energy density for
r < R;. Take the potential to be zero at r — co.
(SUNY, Buffalo)

Solution:

Noting that p is a function of only the radius r, we can take a concentric
spherical surface of radius r as the Gaussian surface in accordance with the
symmetry requirement. Using Gauss’ law

fE-dS: %/p(r)dr,
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we can get the following results:
(a) Electric field strength.

Forr< Ry, E; =0.
For Ry < r < Ry, using the relation 47r’E; = :—: ] ;l (a + br')r2dr
we find

__1 a5 b, 4
Ez—a;g[g(r —R?)'l' Z(r —R:)]l‘.
For R; > r, from 4xr?E3 = 4 l’::(“ + br')'2dr! we get
_ 1 Ja 3, b 4
B = 5308 - R+ 3 - D).

(b) Potential and the energy density for r < R;.
Noting that ¢(co) = 0, the potential is

00 R[ ﬂ: [e o]
<P(r)=/ E-dl=(/ +/ +/ )E-dr
r r R, Rj3
= Lim-my+ -
o3 17T 4 vy
Also, as E; = 0(r < R;), the energy density for r < R; is

€
W:%E?:O.

1021

An electric charge @ is uniformly distributed over the surface of a
sphere of radius r. Show that the force on a small charge element dq is
radial and outward and is given by

1
dF = EEdq,
where E = ﬁﬁ- is the electric field at the surface of the sphere.
(Wisconsin)

Solution:
The surface charge density is given by

Q

o= .
4xrl
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As shown in Fig. 1.8, we consider a point P inside the sphere close to an
area element ds. The charge dg on this area element will produce at the
point P an electric field which is approximately that due to a uniformly
charged infinite plate, namely,

o
Eip=——n,
26'0

where n is a unit vector normal to ds in the outward direction.

Fig. 1.8

The electric field is zero inside the sphere. Hence, if we take Eqp as
the electric field at P due to all the charges on the spherical surface except
the element ds, we must have

Ep=Eip+Eqp=0.

Therefore,

E z ns —
2P = = n.
2¢0 8xeor?

As P is close to ds, Eop may be considered as the field strength at ds due
to the charges of the spherical surface. Hence, the force acting on ds is

dF = quzp = %Edqn s

where E = Q/4meor? is just the field strength on the spherical surface.

1022

A sphere of radius R, has charge density p uniform within its volume,
except for a small spherical hollow region of radius Ry located a distance a
from the center.
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(a) Find the field E at the center of the hollow sphere.
(b) Find the potential ¢ at the same point.
(UC, Berkeley)
Solution:

(a) Consider an arbitrary point P of the hollow region (see Fig. 1.9)
and let
OP=r,QP=r',00=a, r=r-—a.

Fig. 1.9

If there were no hollow region inside the sphere, the electric field at the
point P would be

P
Ei=—r.
! 3€or

If only the spherical hollow region has charge density p the electric field at
P would be »
E;= —r'.

2 3€or

Hence the superposition theorem gives the electric field at P as
P
E=E;-E;=-—a.

1 2 35‘)&
Thus the field inside the hollow region is uniform. This of course includes
the center of the hollow.

(b) Suppose the potential is taken to be zero at an infinite point. Con-

sider an arbitrary sphere of radius R with a uniform charge density p. We
can find the electric fields inside and outside the sphere as

%, r<R,
E(r)= R:
i?,r, r>R.
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Then the potential at an arbitrary point inside the sphere is

¢=</rR+/R°°)E-dr=%(3R2—r2), (1)

where r i1s the distance between this point and the spherical center.

Now consider the problem in hand. If the charges are distributed
throughout the sphere of radius Ry, let ¢; be the potential at the center
O’ of the hollow region. If the charge distribution is replaced by a small
sphere of uniform charge density p of radius R; in the hollow region, let the
potential at O’ be ¢2. Using (1) and the superposition theorem, we obtain

= ¢y — g = P-(3R? — a?) — L (3R2 —
¢0' - ¢1 ¢2 - 660 (3Rl a ) 660 (3R2 0)

= 5o B(RY - RY) - a”).

1023

The electrostatic potential at a point P due to an idealized dipole layer
of moment per unit area T on surface S is

1 T-T
¢P—m/"r_3‘ds,

where r is the vector from the surface element to the point P.

(a) Consider a dipole layer of infinite extent lying in the z-y plane of
uniform moment density 7 = 7e,. Determine whether ¢ or some derivative
of it is discontinuous across the layer and find the discontinuity.

(b) Consider a positive point charge ¢ located at the center of a spher-

ical surface of radius a. On this surface there is a uniform dipole layer r

and a uniform surface charge density 0. Find 7 and o so that the poten-

tial inside the surface will be just that of the charge ¢, while the potential

outside will be zero. (You may make use of whatever you know about the
potential of a surface charge.)

(SUNY, Buffalo)

Solution:

(a) By symmetry the electrostatic potential at point P is only depen-
dent on the z coordinate. We choose cylindrical coordinates (R, 8, z) such
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that P is on the 2-axis. Then the potential at point P is

¢p = — [ TEds 1/1:-ds.
r

47eq 3 T 4meg

As r? = R? 4+ 22,dS = 2nRdR, we get

p _2rrz [ RdAR __{ 3=, 2>0,
P_41reo 0 \/(R2+z5)3— —5:—0, 2<0.

Hence, the electrostaic potential is discontinous across the z-y plane (for
which z = 0). The discontinuity is given by

T T T
A= — — [ = — ) = —.
¢ 2¢ ( 260) €0
(b) It is given that ¢ = 0 for r > a. Consequently E = 0 for r > a.

Using Gauss’ law
fE -dS = Q ,
€o

we find that o - 4ma® + ¢ = 0. Thus

- _ q
47a?’

If the potential at infinity is zero, then the potential outside the spherical
surface will be zero everywhere. But the potential inside the sphere is
= 4—#. For r = a,p = 4—1335" so that the discontinuity at the spherical
surface 1s

___19
A¢ = 4xega

We then have £ = — L giving




26 Problems & Solutions on Eleciromagnetism

2. ELECTROSTATIC FIELD IN A CONDUCTOR (1024-1042)

1024

A charge Q is placed on a capacitor of capacitance C;. One terminal is
connected to ground and the other terminal is insulated and not connected
to anything. The separation between the plates is now increased and the
capacitance becomes C, (Cy < Cy). What happens to the potential on the
free plate when the plates are separated? Express the potential V2 in terms
of the potential V.

(Wisconsin)

Solution:

In the process of separation the charge on the insulated plate is kept
constant. Since Q@ = CV/, the potential of the insulated plate increases as C
has decreased. If V| and V5 are the potentials of the insulated plate before
and after the separation respectively, we have

Ci
Vz_aV,.

1025

Figure 1.10 shows two capacitors in series, the rigid center section of
length b being movable vertically. The area of each plate is A. Show that
the capacitance of the series combination is independent of the position
of the center section and is given by C = :—_‘_-% If the voltage difference
between the outside plates is kept constant at Vp, what is the change in the
energy stored in the capacitors if the center section is removed?

(Wisconsin)
i :
b

T i

]

_C
A

oo

Fig. 1.10
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Solution:

Let d; be the distance between the two upper plates and d; be the
distance between the two lower plates. From Fig. 1.10 we see that

di+dy;=a-b,
_€oA _eoA
Cl— dl )Cz— dz .

For the two capacitors in series, the total capacitance is

0102 _ Aeo _ ACo
C1+Cg - d1+d2 Ta-=b"
As C is independent of d; and dj, the total capacitance is independent of

the position of the center section. The total energy stored in the capacitor
is

C=

A V¢
2a-b)°

The energy stored if the center section is removed is

W,_AEQVoz
T 2

1
W= Ec"/‘)2 =

and we have
- A€0V02 b

4 —
w-w " 2(a-b)a’

1026

A parallel-plate capacitor is charged to a potential V and then dis-
connected from the charging circuit. How much work is done by slowly
changing the separation of the plates from d to d’ # d? (The plates are
circular with radius r » d.)

( Wisconsin)
Solution:
Neglecting edge effects, the capacitance of the parallel-plate capacitor

isC= “ﬁﬁ and the stored energy is W = $CV?. As the charges on the
plates, @ = £CV, do not vary with the separation, we have

V’=g;V.
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The energy stored when separation is d’ is

2
W' = %C’(—C-'-V) =

Thus the change of the energy stored in the capacitor is

1 !
AW =W'-W = %CV”(%—I) = §CV2(%-—1).

Therefore, the work done in changing the separation from d to d' is

gomr?(d — d)V?
2d2 )

1027

A parallel-plate capacitor of plate area 0.2 m? and plate spacing 1 cm
is charged to 1000 V and is then disconnected from the battery. How much
work is required if the plates are pulled apart to double the plate spacing?
What will be the final voltage on the capacitor?

(€0 = 8.9 x 10~'2 C?/(N - m?))

{ Wisconsin)
Solution:

When the plates are pulled apart to double the plate spacing, the
capacitance of the capacitor becomes C' = %, where C = 5‘% is the ca-
pacitance before the spacing was increased. If a capacitor is charged to a
voltage U, the charge of the capacitor is @ = CU. As the magnitude of the
charge @ is constant in the process, the change of the energy stored in the
capacitor is

_IQ2 1Q2_1 2_1 2
AW=se"3c~3¢c -2
€0AU? 8.9 x 10712 x 0.2 x (10°)?
2Gd 2 x 0.01

=89x107%J.
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AW is just the work required to pull the plates apart to double the plate
spacing. As the charge Q is kept constant, the final voltage is given by

CU=CU',or U'=2U0=2000V.

1028

Given two plane-parallel electrodes, space d, at voltages 0 and V;, find
the current density if an unlimited supply of electrons at rest is supplied to
the lower potential electrode. Neglect collisions.

(Wisconsin; UC Berkeley)

Solution:
Choose z-axis perpendicular to the plates as shown in Fig. 1.11. Both
the charge and current density are functions of z. In the steady state

dj(z)
=90.
dx
0 Vo
0 L— ————— d—-—-—. X

Fig. 1.11
Hence j = —joe;, where jo is a constant. Let v(z) be the velocity of the
electrons. Then the charge density is

= _Jdo_
p(z) - v(z) 4

The potential satisfies the Poisson equation

d?V(z) _ p(z) __Jdo
dz2 g eov(z)’
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Using the energy relation mv?(z) = eV, we get

V(z) _ jo m
dz? " g\ 2eV(z)’

To solve this differential equation, let u = 4. We then have

£V _du_dudv _ du
dz? ~ dz  dV dz av'

and this equation becomes
udu = AV-4dv,

where A = i—:\/% Note that 42 = 0 at z = 0, as the electrons are at rest
there. Integrating the above gives

or
V-tdv = 24%dz.

AsV =0for z =0 and V =V} for £ = d, integrating the above leads to

H
403 _ o4l Jo
W =24td= 2( ‘/26) d.

Finally we obtain the current density from the last equation:

f e e 4€0Vo 28Voe
)= —Jo€r = 9d2 —m T .
1029

As can be seen from Fig. 1.12, a cylindrical conducting rod of diameter

d and length [ (I > d) is uniformly charged in vacuum such that the electric

field near its surface and far from its ends is Ey. What is the electric field
at r > ! on the axis of the cylinder?

(UC, Berkeley)
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I__

r

()
T

L

—~ld e
Fig. 1.12

Solution:

We choose cylindrical coordinates with the z-axis along the axis of the
cylinder and the origin at the center of the rod. Noting { » d and using
Gauss’ theorem, we can find the electric field near the cylindrical surface
and far from its ends as

A

0= —e
1€od o

where ) is the charge per unit length of the cylinder and e, is a unit vector
in the radial direction. For r » I, we can regard the conducting rod as a
point charge with Q@ = Al. So the electric field intensity at a distant point
on the axis is approximately

pe_ @ _ Eud
T 4mwegr? T 4r2

The direction of E is along the axis away from the cylinder.

1030
An air-spaced coaxial cable has an inner conductor 0.5 cm in diameter
and an outer conductor 1.5 cm in diameter. When the inner conductor is
at a potential of +8000 V with respect to the grounded outer conductor,
(a) what is the charge per meter on the inner conductor, and
(b) what is the electric field intensity at r = 1 cm?
(Wisconsin)
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Solution:

(a) Let the linear charge density for the inner conductor be A. By
symmetry we see that the field intensity at a point distance r from the axis
in the cable between the conductors is radial and its magnitude is given by

Gauss’ theorem as N

T 2weer

Then the potential difference between the inner and outer conductors is

b
A
V= /a Edr = Sree In(b/a)

with a = 1.5 e¢m, b = 0.5 cm, which gives

_ 2meoV 27 x 8.9 x 10712 x 8000
~ In(b/a) In(1.5/0.5)
=4.05x 10" C/m.

(b) The point r = | cm is outside the cable. Gauss’ law gives that its
electric intensity is zero.

1031

A cylindrical capacitor has an inner conductor of radius r; and an
outer conductor of radius r;. The outer conductor is grounded and the
inner conductor is charged so as to have a positive potential V5. In terms
of Vo, 71, and ro,

(a) what is the electric field at r? (ry < r < r3)

(b) what is the potential at 7

(c) If a small negative charge @ which is initially at r drifts to r, by
how much does the charge on the inner conductor change?

(Wisconsin)

Solution:
(a) From Problem 1030, we have

Vo r

E(r) = ln(rz/rl)ﬁ

(1']<7'<1?2).
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(b)
Voln(ra/r)

In(ra/ry)

(c) Let the change of the charge on the inner conductor be AQ =
Q1 — Q2 with @; = CVy. When a negative charge Q moves from r to
r1, the work done by electrostatic force is @Q(Vo — V). This is equal to a
decrease of the electrostatic energy in the capacitor of

r
V(r):Vo—/ E.dr=
ri

%-%=Q(V0—V)-
As Q is a small quantity, we have approximately
Q1+Q2%2Q:.
Hence &AQ Q-7
2C = (W )
or

_Q . Qln(r/r)
AQ= Vo(vo V)= In(ry/ry)

1032

A very long hollow metallic cylinder of inner radius r¢ and outer radius
ro+Ar(Ar < ro) is uniformly filled with space charge of density po. What
are the electric fields for » < ro,r > ro + Ar, and ro + Ar > r > rg?
What are the surface charge densities on the inner and outer surfaces of
the cylinder? The net charge on the cylinder is assumed to be zero. What
are the fields and surface charges if the cylinder is grounded?

(Wisconsin)

Solution:

Use cylindrical coordinates (r, p,z) with the z-axis along the axis of
the cylinder. Gauss’ law gives the field intensity as

E\(r)= gz-ge,. for r<ry,
2

Eqx(r) = g::o e, for r>ro+ Ar,
0

E3(r) = 0. for ro <r<ryg+Ar.
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The surface charge density o on a conductor is related to the surface electric
intensity E by E = % with E' in the direction of an outward normal to the
conductor. Thus the surface charge densities at r = rg and r = ro + Ar are
respectively

o(ro) = —eo E1(ro)
— _PoTo
=-=
o(ro + Ar) = goEa(ro + Ar)
_ __por§
- 2(1‘0 + Ar) )

If the cylinder is grounded, then one has

E=0 for r>ro+ Ar,
o(ro+ Ar) =0 for r=ro+ Ar,

E and ¢ in other regions remaining the same.

1033

An air-filled capacitor is made from two concentric metal cylinders.
The outer cylinder has a radius of 1 cm.

(a) What choice of radius for the inner conductor will allow a maximum
potential difference between the conductors before breakdown of the air
dielectric?

(b) What choice of radius for the inner conductor will allow a maximum
energy to be stored in the capacitor before breakdown of the dielectric?
(c) Calculate the maximum potentials for cases (a) and (b) for a break-
down field in air of 3 x 10° V/m.
(UC, Berkeley)

Solution:

(a) Let E, be the breakdown field intensity in air and let Ry and Ry
be the radii of the inner and outer conductors respectively. Letting 7 be
the charge per unit length on each conductor and using Gauss’ theorem,
we obtain the electric fiield intensity in the capacitor and the potential
difference between the two conductors respectively as

R
. = T er, V=/ T _dr= — ln&.
2weor R, 2meor 2re0 Ry
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As the electric field close to the surface of the inner conductor is strongest

we have
r

= 2‘M’€oR1 ’
Accordingly, we have

Vb Eb Rl ln

R )
dVb R, R,
dR = E;[ln +R1Rz(_ R?)] = (ln R - l)

In order to obtam the maximum potential difference, Ry should be such that
%‘- =0,ie,In Il =lor R = %1. The maximum potential difference is
then
Ry
Vinax = _Eb

(b) The energy stored per unit length of the capacitor is

W= —rV = neo B} R’ ln
Rl
and

dw Ry ,Ri( R
TR, = oo [23, In =2 + R? Rz(— Ri')]

= neoE}R) (2 In 5—2 - l) .
R

For maximum energy storage, we require ﬁ"{: =40, ie, 2ln§11 =1or

= 53‘- In this case the potential difference is

1
V= ngEb.
(c) For (a),
Vma,(:—R—zE’b ¥x3 0°=1.1x10%V.
For (b),
0.01 x 3 x 10° 3
Vmu-2fR2Eb— 2/e =92x10°V.
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1034

In Fig. 1.13 a very long coaxial cable consists of an inner cylinder
of radius a and electrical conductivity o and a coaxial outer cylinder of
radius . The outer shell has infinite conductivity. The space between the
cylinders is empty. A uniform constant current density j, directed along
the axial coordinate 2, is maintained in the inner cylinder. Return current
flows uniformly in the outer shell. Compute the surface charge density on
the inner cylinder as a function of the axial coordinate z, with the origin
z = 0 chosen to be on the plane half-way between the two ends of the cable.

(Princeton)

Fig. 1.13

Solution:

Assume that the length of the cable is 2{ and that the inner and outer
cylinders are connected at the end surface z = —I. (The surface z = I
may be connected to a battery.) The outer cylindrical shell is an ideal
conductor, whose potential is the same everywhere, taken to be zero. The
inner cylinder has a current density j = oE, ie., E = ;} = {;-ez, so that its
cross section z = const. is an equipotential surface with potential

V=L,

In cylindrical coordinates the electric field intensity at a point (r, ¢, z) inside
the cable can be expressed as

E(r,¢,2) = E.(r,2)e, + E,(r,2)e, .

As the current does not change with z, E,(r, z) is independent of z also.
Take for the Gaussian surface a cylindrical surface of radius r and length dz
with z-axis as the axis. We note that the electric fluxes through its two end
surfaces have the same magnitude and direction so that their contributions
cancel out. Gauss’ law then becomes

E.(r,2) - 2wrdz = A(2)dz/eo,
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where A(z) is the charge per unit length of the inner cylinder, and gives

Az
E (r,z)= E"g'?)o.

Hence, we obtain the potential difference between the inner and outer con-
ductors as

V(z)= /b E.(r,z)dr = ;\ﬁ)-ln b .

wEQ a

As V(z) = —-f;(z + [), the above gives

_2meoV(z) _  2me0j(z+1)
Az) = ln(za/a) - a;)n(b/a)

The surface charge density at z is then

Mz) _ iz +1)

7s(2) = 27a ~ acln(b/a)’
Choosing the origin at the end surface with z = —!, we can write
_ . foiz
os(2) = acln(b/a)’
1035

A finite conductor of uniform conductivity & has a uniform volume
charge density p. Describe in detail the subsequent evolution of the system
in the two cases:

(a) the conductor is a sphere,
(b) the conductor is not a sphere.
What happens to the energy of the system in the two cases?
(UC, Berkeley)
Solution:

Let the permittivity of the conductor be . From V-E = p/e, V- J +
%§=0andJ=aE, we get

0 o - -
b§=_zp’ or p=ppe” ¥, and V-E:g—ze o
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(a) If the conductor is a sphere, spherical symmetry requires that E =
E,e,. Hence
18

18 apy b0
V-E—ﬁar(rE,-)—eE )

giving
Por _ =4 pPor _ g
E(r,t) = 3 e + E(0,t) = 3 e )

opor _ sz

J=0¢E= 3¢ e e, .

Note that E(0,t) = 0 for symmetry. It is evident that for t — oo, E =
0,p = 0, and J = 0 inside the conductor. Thus the charge is uniformly
distributed on the spherical surface after a sufficiently large time.

(b) If the conductor is not a sphere, the solution is more complicated.
However we still have that

|Eloce=%t, |J|ox e %t, pox e 5.

This means that E, J and p inside the conductor each decays exponentially
to zero with the time constant £. Eventually the charge will be distributed
only on the conductor’s surface. As for the energy change let us first con-
sider the case (a). The electric field outside the conductor is always the
same, while the field inside will change from a finite value to zero. The net
result is that the electric energy decreases on account of loss arising from
conversion of electric energy into heat. For case (b) the field outside the
conductor will depend also on & and ¢ but the qualitative result is still the
same, namely, the electric energy decreases with time being transformed
into heat. In short, the final surface charge distribution is such that the

electric energy of the system becomes a minimum. In other words, the
conductor will become an equipotential volume.

1036

A spherical conductor A contains two spherical cavities as shown in
Fig. 1.14. The total charge on the conductor itself is zero. However, there
is a point charge +¢; at the center of one cavity and +¢. at the center of
the other. A large distance r away is another charge +¢4. What forces
act on each of the four objects A, ¢3,¢c, and ¢47 Which answers, if any,
are only approximate and depend on r being very large. Comment on the
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uniformities of the charge distributions on the cavity walls and on A if r is
not large.
(Wisconsin)

o)
|
|
I
|
®

9a
9 9c

Fig. 1.14

Solution:

Charges outside a cavity have no influence on the field inside because
of the electrostatic shielding by the conductor. On account of spherical
symmetry the forces acting on the point charges ¢, and ¢ at the center of
the cavities are equal to zero. By electrostatic equilibrium we see that the
surfaces of the two spherical cavities carry a total charge —(g + ¢.), and,
since the sphere A was not charged originally, its spherical surface must
carry induced charges g5 + g.. As r is very large, we can approximate the
interaction between sphere A and point charge g4 by an electrostatic force
between point charges ¢qp + g. at the center and ¢4, namely

p = o +a)
4rgor?
This equation, however, will not hold for r not sufficiently large.

The charge distribution over the surface of each cavity is always uni-
form and independent of the magnitude of r. However, because of the
effect of ¢4, the charge distribution over the surface of sphere A will not be
uniform, and this nonuniformity will become more and more evident as r
decreases.

1037

A spherical condenser consists of two concentric conducting spheres of
radii a and b (a > b). The outer sphere is grounded and a charge Q is placed
on the inner sphere. The outer conductor then contracts from radius a to

radius a’. Find the work done by the electric force.
(UC, Berkeley)
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Solution:

The electric fields at r < b and r > a are both zero. At b < r < a the
electric field is Q

= e
4megr? T

Hence the field energy is

2 2
240 @ (11
W= / (41ro )4wrdr_81rso(b a)'

When the outer spherical surface contracts from r = a to r = a', the work
done by the electric force is equal to the decrease of the electric field energy

Wa_Wa’-:'&z—(—l-{-%) =Q2(a—a1)’

87ep a 8repaa’

1038
A thin metal sphere of radius b has charge Q.
(a) What is the capacitance?

(b) What is the energy density of the electric field at a distance r from
the sphere’s center?

(c) What is the total energy of the field?
(d) Compute the work expended in charging the sphere by carrying
infinitesimal charges from infinity.

(e) A potential V is established between inner (radius a) and outer
(radius b) concentric thin metal spheres. What is the radius of the inner
sphere such that the electric field near its surface is a minimum?

(Wisconsin)

Solution:

(a) Use spherical coordinates (r,6,¢). The electric field outside the
sphere is

E(r) =

Let the potential at infinity be zero, then the potential at r is

V(r)=/r°° Q_ 4= .1

4weor’? 4mey 1

e .
4meqr?
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Hence the capacitance is

-9 _
C= V(b) = 47l'€ob.
(b) we(r) = 4D E = JeoB = ¥
3
(c) We=4V(b)Q = E;Q-,,
It may also be calculated from the field energy density w.(r):

W, =/ we(r')dV' = /°° e L 4rr'dy’ = @
) rob b 2% 16m2¢q r'4 8meob

(d) The work expended in charging the sphere by carrying infinitesimal
charges in from infinity is

¢ Q4 @

dmeo b 8megd

Q
w=[vi@mue = [

e

as expected.

(e) Suppose that the inner sphere carries a charge Q. Fora < r <}
the field intensity is
Q

E(T) = mor—zer .

The potential difference between the concentric spheres is

b )
_ _ Q 1, Q (1 1>
V_/a E(r) dr—/a 4meg r2dr_ NEACERIA

In terms of V we have

4‘n’€ov
Q=m7_71
a b
and
4regV _ | 4

E(r)=

0 (d b) (d b
In part.iculal‘, we have

Vv Vb

O EEmpT e
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From %9- = 0, we see that E(a) is aminimum at a = %, and the minimum
value is
4V

Emi,,(a) = -—b— .

1039

A conducting sphere with total charge Q is cut into half. What force
must be used to hold the halves together?
(MIT)

Solution:

The charge is entirely distributed over the surface with a surface charge
density of 0 = Q/4xR?, where R is the radius of the sphere. We know
from Problem 1021 that the force exerting on a surface element dS of the
conducting sphere is \

dF = 2—ds .
260

Use the coordinate system shown in Fig. 1.15. The plane where the sphere
is cut in half is taken to be the zoz plane. The repulsive force between
the two half-spheres is perpendicular to the cut plane, so that the resultant
force on the right-half must be along the y-axis. The magnitude of the
resultant force is

2 L x
F= /dFsinOsinw: "-R’/ sin<pd<p/ sin? 0d6
250 0 0
_%0’R* _  Q?
- 280 - 327l'€oR2 )
This is the force needed to hold the two halves together.

z

17
A

Fig. 1.15
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1040

A particle of charge ¢ is moved from infinity to the center of a hollow
conducting spherical shell of radius R, thickness ¢, through a very tiny hole
in the shell. How much work is required?

(Princeton)

Solution:

The work done by the external force is equal to the increase of the
electric field energy of the whole system.

The electric field intensity at a point distance r from the point charge ¢
is E = g71-. When ¢ is at infinity the electric energy of the whole system
is

w =/ %’-E’dv,
o0

integrating over all space, since, as the distance between the spherical shell
and q is infinite, the field due to ¢ at the conducting sphere can be taken
to be zero.

After ¢ is moved to the center of the conducting spherical shell, as the
shell has no effect on the field inside, the electric intensity at a point inside
the shell is still 77—, r being the distance of the point from ¢. At a point
outside the shell, Gauss’ law shows that the electric intensity is still ;=i
Hence the electric energy of the system remains the same as W but minus
the contribution of the shell itself, inside whose thickness the field is zero.
Thus there is a decrease of energy

R+t 2
—AW = fof _Q 2
AW —/’; 2 (4”60'.2) 4xridr

-2 (L 1)
—81150 R R+t)’

which is equal to the negative work done by the external force.

1041

A capacitor is made of three conducting concentric thin spherical shells
of radii a,b and d(a < b < d). The inner and outer spheres are connected
by a fine insulated wire passing through a tiny hole in the intermediate
sphere. Neglecting the effects of the hole,

(a) find the capacitance of the system,
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(b) determine how any net charge @p placed on the middle sphere
distributes itself between the two surfaces of the sphere.

(Columbia)

Solution:

(a) Suppose that the charge of the inner spherical shell is @; and the
charge of the outer shell is —@Q,. Then the charges on the inner and outer
surfaces of the middle spherical shell are —Q, and +Q; (Q1,Q2 > 0) as
shown in Fig. 1.16. The electric field intensities are as follows:

Qir

zm, (a(r(b),
Qor

=G€_";'3, (b<r<d,

E=0, (r<a,r>d).

The potential at a point P is given by

w(p)=/:E-dr

with ¢(00) = 0. Thus we have

D=0, o= (5-1).

As the inner and outer spherical shells are connected their potentials should
be equal. Hence

_ @ (1 1y, Q (1 1Y _
#(a) = 4meq (E h b) t 4wso(b d) =0,
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o (t-4)--(3-})

The potential differences of the spherical shells are

= p(a) — p(b) = —p(b),
Vas = ¢(d) — (b) = —(b) .

Thus the capacitance between the inner sphere and the inner surface of the
middle spherical shell is

whence

=91 __ G
Cab - Vab - ‘P(b) )

and the capacitance between the outer surface of the middle shell and the
outer shell is
Q _ Q2

Via go(b)

The capacitance of the whole system can be considered as Cgp and Cpq in
series, namely

< 1 1 )“ 1 ( 1 1)“ 4meqad
C= -+ — = -] — — — — .
Ca  Cha p()\Q2 @ d—a
(b) The net charge Qp carried by the middle shell must be equal to
Q2 — @1, so that

Coa =

a(d - b) d(b — a)

Ql= b(d )QB) Qz:b(d—a)QB

This is to say, the inner surface of the middle shell will carry a total charge

%%E%QB while the outer surface, —é——H ::: Qs.

1042

A long conducting cylinder is split into two halves parallel to its axis.
The two halves are held at V5 and 0, as in Fig. 1.17(a). There is no net
charge on the system.

(a) Calculate the electric potential distribution throughout space.
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(b) Calculate the electric field for r > a.
(c) Calculate the electric field for r < a.
(d) Sketch the electric field lines throughout space.
(MIT)
Solution:

(a) Use conformal mapping to map the interior of the circle |z| = a
onto the upper half of the w-plane by the transformation Fig. 1.17(b)

(55)
w=1 .
z+a
The upper and lower arcs of the circle are mapped onto the negative
and positive axes (u-axis) of the w-plane respectively.

Y
V=" ! ey 1} tu,v
a r
5 - x - > u
V= V=0
V=0
(a) #plane (b) u-plane

Fig. 1.17

The problem is now reduced to finding a function V harmonic in the
upper half of w-plane and taking the values 0 for u > 0 and V; for u < 0. Use
the function V = A + B, where A, B are real constants, as 0 = Im {In w}
is harmonic. The boundary conditions give B = 0, A = V/x. Hence

V:?lm{ln[ii;:]}

Vo .rcosf —a+ irsinf
= Im<{In [t

s rcosf 4+ a+ irsinf
Vo {ln' r? — a? 4 2iarsin g }

=—1
— 1(rcos0+a)2+rzsin20

2arsinf

=Y 1-i-arct.a.n
T xl2 Ir2 —a?|]"’
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(b) For r >> a, we have

| 4

zﬁ 1+2asin0 =ﬁ+2Voasin0,
x |2 r 2 rr

and hence

oV _ 2Vpasind

o
16V 2Va
Br==1%0 = " =0
4
Fig. 1.18

(c) For r < a, we have

Vo é;_ L 2rsin0] W + 2Vprsind

2 a 2 na
and hence
E = _59_11 _ _2Vpsind ,
LoV _ %
Eg = Tl 0

(d) The electric field lines are shown in Fig. 1.18.

—-— — —
’

47
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3. ELECTROSTATIC FIELD IN A DIELECTRIC MEDIUM
(1043-1061)

1043

The space between two long thin metal cylinders is filled with a mate-
rial with dielectric constant €. The cylinders have radii a and b, as shown
in Fig. 1.19.

(a) What is the charge per unit length on the cylinders when the
potential between them is V with the outer cylinder at the higher potential?

(b) What is the electric field between the cylinders?

e

L7/

(Wisconsin)

e~

Fig. 1.19

Solution:

This is a cylindrical coaxial capacitor with a capacitance per unit

length of

27e
C=——.
In($)

As the outer cylinder is at the higher potential, we have from Q = CV the
charges per unit length on the inner and outer cylinders:

Gauss’ law then gives the electric field intensity in the capacitor:

ANV .
T 2mer T rIn(§)
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1044

Calculate the resistance between the center conductor of radius a and
the coaxial conductor of radius b for a cylinder of length ! 3> b, which is
filled with a dielectric of permittivity £ and conductivity ¢. Also calculate
the capacitance between the inner and outer conductors.

(Wisconsin)
Solution:

Letting V be the voltage difference between the inner and outer con-
ductors, we can express the electric field intensity between the two conduc-
tors as

E(r) = —~ 1()

Ohm’s law J = ¢E then gives the current between the two conductors as

[=2xrlJ = ﬂ :
]n(;)
The resistance between the inner and outer conductors is thus
R= Z = ln(‘%)
I 2zlo

Since the field is zero inside a conductor, we find the surface charge
density w of the inner conductor from the boundary relation E = ¥, i.e.,

= am)
Thus the inner conductor carries a total charge Q@ = 27alw. Hence the
capacitance between the two conductors is

Q 2mel
C=== .

V()

1045

Two conductors are embedded in a material of conductivity 10-4Q/m
and dielectric constant ¢ = 80¢y. The resistance between the two con-
ductors is measured to be 10%Q. Derive an equation for the capacitance
between the two conductors and calculate its value.

(UC, Berkeley)
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Solution:

Suppose that the two conductors carry free charges @ and —Q. Con-
sider a closed surface enclosing the conductor with the charge Q (but not
the other conductor). We have, using Ohm’s and Gauss’ laws,

I=fj-dS=faE-dS=afE-dS=ag.

If the potential difference between the two conductors is V, we have V =
IR = ”—‘Q-R, whence
c=9_°¢
TV eR’

Numerically the capacitance between the conductors is

80 x 8.85 x 10=12 -n
C= —(gtraqgs— = T08x 107" F.

1046

Consider a long cylindrical coaxial capacitor with an inner conductor
of radius a, an outer conductor of radius b, and a dielectric with a dielectric
constant K(r), varying with cylindrical radius r. The capacitor is charged
to voltage V. Calculate the radial dependence of K(r) such that the energy
density in the capacitor is constant (under this condition the dielectric has
no internal stresses). Calculate the electric field E(r) for these conditions.

(Wisconsin)

Solution:

Let A be the charge per unit length carried by the inner conductor.
Gauss’ law gives

A
D)= gy

as D is along the radial direction on account of symmetry.
The energy density at r is
D? A?
20K(r) ~ 8w2eor?K(r)’

1
U(T) = §ED =

If this is to be independent of r, we require r2K(r) = constant = k, say,
ie, K(r)=kr=2.
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The voltage across the two conductors is

b '\ b
V=- Edr = - /rdr
x a

Hence

giving

1047

Find the potential energy of a point charge in vacuum a distance z
away from a semi-infinite dielectric medium whose dielectric constant is K.

(UC, Berkeley)
Solution:

Use cylindrical coordinates (r, ¢, z) with the surface of the semi-infinite
medium as the z = 0 plane and the z-axis passing through the point charge
¢, which is located at z = z. Let op(r) be the bound surface charge density
of the dielectric medium on the z = 0 plane, assuming the medium to carry
no free charge.

The normal component of the electric intensity at a point (r, ¢,0) is

— qz op(r)
Ea(r) = 4meo(r? + 22)3/2 20

on the upper side of the interface (2 = 04). However, the normal component
of the electeric field is given by

o qz _ op(r)
Bua(r) = Ameg(r2 + 22)3/2 2¢

on the lower side of the interface (z = 0_). The boundary condition of the
displacement vector at z = 0 yields

€oE¢1(r) = EQKE,g(r) .
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Hence
(1-K)gz

op(r) = 27(1 + K)(r2 + z2)2/2 °
The electric field at the point (0,0,z), the location of ¢, produced

by the distribution of the bound charges has only the normal component
because of symmetry, whose value is obtained by

E _/ op(r)zdS _ (1- K)qx? /’°° rdr (1-K)q
T J Ameo(r2 + 22)3/2 T 4x(1 4 K)eo Jo (r2 +22)% T 167(1 + K)eoz?’

where the surface element dS has been taken to be 2xrdr. Hence the force
acted on the point charge is

(1-K)¢®

F= =
98 = {6x (i ¥ K)eor?

The potential energy W of the point charge ¢ equals the work done by
an external force in moving ¢ from infinity to the position z, i.e.,

z = 2 2
- _ r_ (I—K)q! ' _ (I_K)?
W= _/oo Fdz' = /oo 161r(1+K)soz’2dz T 167(1 + K)eoz

1048

The mutual capacitance of two thin metallic wires lying in the plane
z =0 1is C. Imagine now that the half space z < 0 is filled with a dielectric
material with dielectric constant ¢. What is the new capacitance?

(MIT)

Solution:

As shown in Fig. 1.20, before filling in the dielectric material, one of the
thin conductors carries charge +@Q, while the other carries charge —Q. The
potential difference between the two conductors is V and the capacitance
of the system is C = Q/V. The electric field intensity in space is E. After
the half space is filled with the dielectric, let E’ be the field intensity in
space. This field is related to the original one by the equation E' = KE,
where K is a constant to be determined below.
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pr—————

y
/ . -Q
VI S
( wires
Fig. 1.20
We consider a short right cylinder across the interface z = 0 with its
cross-section at z = 0 just contains the area enclosed by the wire carrying
charge +Q and the wire itself. The upper end surface S; of this cylinder is
in the space z > 0 and the lower end surface S5 is in the space z < 0. Apply
Gauss’ law to this cylinder. The contribution from the curved surface may

be neglected if we make the cylinder sufficiently short. Thus we have, before
the introduction of the dielectric,

}{p.dsﬁo/‘ E-dS+eo/ E-dS=Q, (1)

82

and, after introducing the dielectric,

fD’-dS:eo/ E’-dS+e/ E .dS=Q. (2)
s n 33

Note that the vector areas S; and S; are equal in magnitude and oppo-
site in direction. In Eq. (1) as the designation of 1 and 2 is interchangeable
the two contributions must be equal. We therefore have

/E-dS:/E%lS:—Q;.
51 P 260

Equation (2) can be written as

K(eo/ E-dS+e/ E-ds) =Q,
L 31 3
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or ( + )K
Eg T &
Lo=me=0,

whence we get
- 2c0 E = 260E
€o+e’ e+eo’

To calculate the potential difference between the two conductors, we
may select an arbitrary path of integration L from one conductor to the
other. Before filling in the dielectric material, the potential is

v=-/E-d1,
L

while after filling in the dielectric the potential will become

V'=—/E'-dl=—K/E-dl=KV.
L L

Hence, the capacitance after introducing the dielectric is

_Q_ Q@ _e+eo
C"v"xv" 20 ¢

1049

A parallel plate capacitor (having perfectly conducting plates) with
plate separation d is filled with two layers of material (1) and (2). The first
layer has dielectric constant ¢;, conductivity o,, the second, £4,03, and
their thicknesses are d, and d,, respectively. A potential V is placed across
the capacitor (see Fig. 1.21). Neglect edge effects.

(a) What is the electric field in material (1) and (2)7

(b) What is the current flowing through the capacitor?

(c) What is the total surface charge density on the interface between
(1) and (2)7

(d) What is the free surface charge density on the interface between
(1) and (2)7

(CUSPEA)
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€).% _E.' I o

% _E., !. dy

Fig. 1.21

Solution:

(a) Neglecting edge effects, the electric fields £, and E3 in material
(1) an (2) are both uniform fields and their directions are perpendicular to
the parallel plates. Thus we have

V= E]dl + Ezd: . (1)

As the currents flowing through material (1) and (2) must be equal, we
have
0‘1E] = dzEz . (2)

Combination of Egs. (1) and (2) gives

_ Vag _ V0'1
1= dyog + dyoy ! 2= dyoy +dgoy

(b) The current density flowing through the capacitor is

ooV

T Gt de

Its direction is perpendicular to the plates.
(c) By using the boundary condition (see Fig. 1.21)

n -(Ez ol El) = 0’¢/€o s

we find the total surface charge density on the interface between material
(1) and (2)
go(o1 — a3)V

ot = €o(Ez - El) = d]dz + dzdl )
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{(d) From the boundary condition
n °'(D2 ot Dl) =n- (EzEg - 61E1) =0y,
we find the free surface charge density on the interface

oy = (o162 — 0261)V
1™ Tdios + dyo

1050

In Fig. 1.22, a parallel-plate air-spaced condenser of capacitance C
and a resistor of resistance R are in series with an ac source of frequency
w. The voltage-drop across R is Vx. Half the condenser is now filled with
a material of dielectric constant ¢ but the remainder of the circuit remains
unchanged. The voltage-drop across R is now 2Vgp. Neglecting edge effects,
calculate the dielectric constant ¢ in terms of R,C and w.

(Columbia)

B

Fig. 1.22

Solution:

When half the condenser is filled with the material, the capacitance of
the condenser (two condensers in parallel) becomes

,_C  eC _ 1 €
C'= 2+§;;—2<1+€0)C.

The voltage across R is VR/Z, where V is the voltage of the ac source and
Z is the total impedance of the circuit. Thus
R

R+ 35

-

} R
R+ e
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where j = v/—1. Therefore we get

6
wICH1+ £)

1

2
R+ e

4R* 4+

Solving this equation, we obtain

e = (_“_ - 1)5
T \VI-3R:C%? o

1051

A capacitor is made of two plane parallel plates of width a and length
b separated by a distance d(d < a,b), as in Fig. 1.23. The capacitor has a
dielectric slab of relative dielectric constant K between the two plates.

(a) The capacitor is connected to a battery of emf V. The dielectric
slab is partially pulled out of the plates such that only a length z remains
between the plates. Calculate the force on the dielectric slab which tends
to pull it back into the plates.

(b) With the dielectric slab fully inside, the capacitor plates are charged
to a potential difference V and the battery is disconnected. Again, the
dielectric slab is pulled out such that only a length x remains inside the
plates. Calculate the force on the dielectric slab which tends to pull it back
into the plates. Neglect edge effects in both parts (a) and (b).

J——b—Q—-

Fig. 1.23

Solution:

Treating the capacitor in Fig. 1.23 as two capacitors in parallel, we
obtain the total capacitance as

__ Kza  eo(b—z)a _eo(K —l)ax  eoba _ eo[(K ~ 1)z +bla
C=eog+—5 = P R d '
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Consider the charging of the capacitor. The energy principle gives
1
VdQ = d(ivzc) + Fdz.

(a) As V = constant, Q = CV gives

VdQ = VidC.
Hence
— lv'é’ig = M.

F 2 dzx 2d

Since K > 1,F > 0. This means that F tends to increase z, i.e., to
pull the slab back into the plates.

(b) Since the plates are isolated electrically, d@Q = 0. Let the initial
voltage be V5. As initially z = 5,Co = €0 £22 and Q = CyV,. The energy
principle now gives

A1, N\ . 4V VidC
F—_E(EVC)——VCdz*sz'

v d(Q)_ Q dC

dz ~ dz\C)~ ~C%dz’

C

the above becomes

Foglv_@dc_q i
T ¥dz 2C?dr ~ 2C? dr
- eoKz(K - l) gb_’_ 2
T(K-Dz+b22d

Again, as F > 0 the force will tend to pull back the slab into the plates.

1052

A dielectric is placed partly into a parallel plate capacitor which is
charged but isolated. It feels a force:

(a) of zero  (b) pushing it out  (c) pulling it in.
(ccr)
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Solution:
The answer is (c).

1053

A cylindrical capacitor of length L consists of an inner conductor wire
of radius a, a thin outer conducting shell of radius b. The space in between
is filled with nonconducting material of dielectric constant e.

(a) Find the electric field as a function of radial position when the
capacitor is charged with Q. Neglect end effects.

(b) Find the capacitance.

(c) Suppose that the dielectric is pulled partly out of the capacitor
while the latter is connected to a battery of potential V. Find the force
necessary to hold the dielectric in this position. Neglect fringing fields. In
which direction must the force be applied?

(CUSPEA)

Solution:

(a) Supposing that the charge per unit length of the inner wire is —A
and using cylindrical coordinates (r, ¢, z), we find the electric field intensity
in the capacitor by Gauss’ theorem to be

A -Q

——e, = e .
2Qrer © 2meLlr |

(b) The potential difference between the inner and outer capacitors is

b
Ve [Bde= 2 (Y).
a 27e a

Hence the capacitance is

AL _ 2mel

C=v= in(%)

(c) When the capacitor is connected to a battery, the potential dif-
ference between the inner and outer conductors remains a constant. The
dielectric is now pulled a length z out of the capacitor, so that a length
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L — z of the material remains inside the capacitor, as shown schematically
in Fig. 1.24. The total capacitance of the capacitor becomes

_ 2meox | 2me(L —z)
" In(Y) In(¢)

2meg | € €
ln(%) [EoL + (l - Eo)z] )

7 :l'V

- tex e —]

Fig. 1.24

C

Pulling out the material changes the energy stored in the capacitor and
thus a force must be exerted on the material. Consider the energy equation

Fdz = VdQ — %V’dC.
As V is kept constant, dQ = VdC and we have

1,,,dC  meoV? ( € )
F=:vi=—= 1-=
27 dr in(3) £o

as the force acting on the material.

As e > €p, F < 0. Hence F will tend to decrease z, i.e., F is attractive.
Then to hold the dielectric in this position, a force must be applied with
magnitude F' and a direction away from the capacitor.

1054
As in Fig. 2.15, you are given the not-so-parallel plate capacitor.

(a) Neglecting edge effects, when a voltage difference V is placed across
the two conductors, find the potential everywhere between the plates.

(b) When this wedge is filled with a medium of dielectric constant ¢,
calculate the capacitance of the system in terms of the constants given.
(Princeton)
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Fig. 1.25

Solution:

(a) Neglecting edge effects, this problem becomes a 2-dimensional one.
Take the z-axis normal to the diagram and pointing into the page as shown
in Fig. 1.25. The electric field is parallel to the zy plane, and independent
of z.

Suppose that the intersection line of the planes of the two plates crosses
the z-axis at Q’, using the coordinate system shown in Fig. 1.26. Then

—— bd

00’ = —, 6 = arctan E’

a b
where 8 is the angle between the two plates. Now use cylindrical coordi-
nates (r,0, z’) with the z'-axis passing through point O’ and parallél to the
z-axis. Any plane through the 2/-axis is an equipotential surface according
to the symmetry of this problem. So the potential inside the capacitor will
depend only on §:
‘P(", 9) zl) = ‘P(a) '

V4
/
/r__‘d———‘ﬁ ) :d‘a
== TOT 2
o' (o] b X
Fig. 1.26

The potential ¢ satisfies the Laplace equation

2 1 d%p

=7 =0
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whose general solution is
0(8) = A+ B6.

Since both the upper and lower plates are equipotential surfaces, the
boundary conditions are

(,0(0) = 0, go(oo) =V N

whence A = 0, B = V/8,. For a point (z,y) inside the capacitor,
bd
= arctan [y/ (z + :)] .

(2.y) = V8 _ Varctan [v/(=+ )]
Y= 5 T arctan($) ’

Hence

(b) Let Q be the total charge on the lower plate. The electric field
inside the capacitor is

E=-Veo=——- = —-—8ep.

For a point (z,0) on the lower plate, § = 0,r = %,4 + z and E is normal to
the plate. The surface charge density o on the lower plate is obtained from
the boundary condition for the displacement vector:

Ve

o0=ef=—-—xr—r—-.
00(%-}-2)

Integrating over the lower plate surface, we obtain

w b
Ve eVw d+a
= dS = — Py v ana— == ‘
Q ]“ S [0 dz/o 90(%+z)dx arctan‘i-ln( d )

Hence, the capacitance of the capacitor is

C=|_Q_|_ Ew ln(d+a).

v "~ arctan d
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1055

Two large parallel conducting plates, each of area A, are separated by
distance d. A homogeneous anisotropic dielectric fills the space between
the plates. The dielectric permittivity tensor £;; relates the electric dis-
placement D and the electric field E according to D; = Z?=1 €ijE;j. The
principal axes of this permittivity tensor are (see Fig. 1.27): Axis 1 (with
eigenvalue ¢, ) is in the plane of the paper at an angle 8 with respect to the
horizontal. Axis 2 (with eigenvalue £3) is in the paper at an angle 5 —8 with
respect to the horizontal. Axis 3 (with eigenvalue £3) is perpendicular to
the plane of the paper. Assume that the conducting plates are sufficiently
large so that all edge effects are negligible.

(a) Free charges +Qr and —QF are uniformly distributed on the left
and right conducting plates, respectively. Find the horizontal and vertical
components of E and D within the dielectric.

(b) Calculate the capacitance of this system in terms of A,d,¢; and 8.

(Columbia)
m m
E)
n e E
-0
£
d
‘QF 'QF
Fig. 1.27

Solution:

(a) Let n be a unit normal vector to the left plate. As E = 0 inside the
plates, the tangential component of the electric field inside the dielectric
is also zero because of the continuity of the tangential component of E.
Hence, the electric field intensity inside the dielectric can be expressed as

E=FEn.
Resolving E along the principal axes we have
E,=Fcosf, FE;=FEsin, E3s=0.
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In the coordinates (&, €2, €3) based on the principal axes, tensor ¢;; is a
diagonal matrix

eqr 0 0
(6ij)=10 e 0
0 0 €3

and along these axes the electric displacement in the capacitor has compo-
nents
Di=e61Ei=¢1Fcos8, Dy=¢eEsin, D3=0. $3)]

The boundary condition of D on the surface of the left plate yields
D, =0y =Qr/A.
That is, the normal component of the electric displacement is a constant.

Thus
_or

Dy cosf + Dysinf = D,, = 1 (2)

Combining Egs. (1) and (2), we get
Qr

= A(gy cos? 0 + g45in% )

E

Hence the horizontal and vertical components of E and D are

Qr

E,.=F = , E=0,
" A€y cos? 8 + 4 5in” 8) :
QrF . Qr(e1 — €2)sinf cosd
Dn=2F D, = Dysin— Dycosf = =,
A St 295Y= U(ey cos? 0 + ez sin 0)

where the subscript ¢t denotes components tangential to the plates.
{(b) The potential difference between the left and right plates is

v:/mu: Qrd

A(ey cos? 8 + €4 sin® 0)

Therefore, the capacitance of the system is

Qr _ Alejcos?f+ ¢ sin? 9)

C=5 d




Electrostatics 65

1056

It can be shown that the electric field inside a dielectric sphere which
is placed inside a large parallel-plate capacitor is uniform (the magnitude
and direction of Eq are constant). If the sphere has radius R and relative
dielectric constant K. = ¢£/¢o, find E at point p on the outer surface of the
sphere (use polar coordinates R,0). Determine the bound surface charge
density at point p.

(Wisconsin)

Solution:

The electric field inside the sphere is a uniform field Eq, as shown
in Fig. 1.28. The field at point p of the outer surface of the sphere is
E = E,e, + E.ey, using polar coordinates. Similarly E; may be expressed
ag

Eo = Eo cOs 0e, - Eo sin aeo .

]
P
£ [
f J\/Se

- 7
\ /
Fig. 1.28

From the boundary conditions for the electric vectors at p we obtain
eEgcos® =eoE,, —Egsind=E,.

Hence
E = K. FEqcosfe, — Epsinfleg.

The bound surface charge density at point p is ¢y = P - e,, where P is the
polarization vector. As P = (¢ — €9)Eg, we find

0, = (¢ —€0)Eocos8 = €o(K. — 1)Egcosb.
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1057

One half of the region between the plates of a spherical capacitor of
inner and outer radii a and b is filled with a linear isotropic dielectric of
permittivity ¢; and the other half has permittivity €4, as shown in Fig. 1.29.
If the inner plate has total charge @ and the outer plate has total charge
—Q, find:

(a) the electric displacements D; and D3 in the region of €; and ¢3;
(b) the electric fields in €, and €2;
(c) the total capacitance of this system.

(:

Fig. 1.29

(SUNY, Buffalo)

Solution:

We take the normal direction n at the interface between the dielectrics
€1 and ¢; as pointing from 1 to 2. The boundary conditions at the interface
are

Ey = Ey, Dy =Dsn.

If we assume that the field E still has spherical symmetry, i.e.,
E; = E; = Ar/r?,

then the above boundary conditions may be satisfied. Take as Gaussian
surface a concentric spherical surface of radius r (a < r < ). From

fD -dS=Q,
we obtain

2n(e1 +e2)A=Q,
or

_ Q
A= 27r(€1 + 62) ’
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We further find the electric intensity and displacement in regions 1 and 2:

Ey= 9
Ei=E, = 21!(61 + 52)1'3 !
€1Qr _ €9Qr

' = 2%(er + e2)r3’ D2 = 27(ey +€q)r3

Consider the semispherical capacitor 1. We have

Vs = / A, _A® A—a) a)

and 0 b
wELQ
C = Q1 _ 27e1ab
Vab b—a
A similar expression is obtained for C2. Treating the capacitor as a com-
bination of two semispherical capacitors in parallel, we obtain the total
capacitance as

27 (e, +£z)ab
b—a '

C =

1058

Two concentric metal spheres of radii a and b(a < b) are separated by
a medium that has dielectric constant € and conductivity o. At time ¢t =0
an electric charge ¢ is suddenly placed on the inner sphere.

(a) Calculate the total current through the medium as a function of
time.

(b) Calculate the Joule heat produced by this current and show that it
is equal to the decrease in electrostatic energy that occurs as a consequence
of the rearrangement of the charge.

(Chicago)
Solution:

(a) At t = 0, when the inner sphere carries electric charge g, the field

intensity inside the medium is

q

Eo = 4rer?
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and directs radially outwords. At time ¢ when the inner sphere has charge
q(t), the field intensity is

E(t) = %

Ohm’s law gives the current density j = oE. Considering a concentric
spherical surface of radius r enclosing the inner sphere, we have from charge
conservation

—%q(t) = 4nr?j(t) = arrig E(t) = %q(t).

The differential equation has solution

q(t) = qe~ <.
Hence
q ~ey
t = ——e -
B(t,r) drerz® "
. oq -2y
(€ = €,
i) 4«51’26

The total current flowing through the medium at time ¢ is
I(t) = 4mr?j(t,r) = %ge_%' .
(b) The Joule heat loss per unit volume per unit time in the medium
is

(tr) = B=oB? = L -t
wt,)=3-B=ol = oo

and the total Joule heat produced is

too b 2 q2 1 1
= dt dr - t = —= .
w /o /; r-dnriw(t,r) 87re(a b)

The electrostatic energy in the medium before discharging is

b 2 2

E

Wo = d,.4,,,.2.5_0:_‘1_(l_l)_
a 2 87e

Hence W = W.
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1059

A condenser comprises two concentric metal spheres, an inner one of
radius a, and an outer one of inner radius d. The region a < r < b is filled
with material of relative dielectric constant K, the region d < r < ¢ is
vacuum (K = 1), and the outermost region ¢ < r < d is filled with material
of dielectric constant K. The inner sphere is charged to a potential V with
respect to the outer one, which is grounded (V = 0). Find:

(a) The free charges on the inner and outer spheres.

(b) The electric field, as a function of the distance r from the center,
for the regions: a<r<b, b<r<c,c<r<d.

(c) The polarization charges at r =a,r=b,r=cand r=4d.

(d) The capacitance of this condenser.

(Columbia)

Solution:

(a) Suppose the inner sphere carries total free charge Q. Then the
outer sphere will carry total free charge —Q as it is grounded.

(b) Using Gauss’ law and the spherical symmetry, we find the following
results:

E= Q

Wer, (a<r<b),

__9Q
E-4m_0r2e,., b<r<o,
Q (c<r<d).

= 417601(27’2 ers
{(¢) Using the equations
Op=1n- (P1 —-Pz), P:eo(K— I)E,

we obtain the polarization charge densities

_ Q 1-K _
o'p—m K, at r=a,
_Q K-l _
UP—-47rb2 78 at r=0b
- Q 1-K _
UP—47rc2 7 at r=c
-1
——-—Q——&_ at r:d.

P= Gl K,
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(d) The potential is

ve-[Ea= |G- Da+ G-+ G- D)

Therefore, the charge in the inner sphere is

_ 4xeg Ky K3abedV
" Kjab(d - c) + K1 Kzad(c - b) + Kzcd(b—a)’

Q

and the capacitance is

Q 4xeq K1 Kqabed

V = Kiab(d—c) + K1 Kzad(c — b) + Kzcd(b—a)

1060
The volume between two concentric conducting spherical surfaces of
radii a and b(a < b) is filled with an inhomogeneous dielectric constant
€o
1+ Kr'

where €g and K are constants and r is the radial coordinate. Thus D(r) =
¢E(r). A charge Q is placed on the inner surface, while the outer surface
is grounded. Find:

£ =

(a) The displacement in the region a < r < b.
(b) The capacitance of the device.
(¢) The polarization charge density in a < r < b.
(d) The surface polarization charge density at r = a and r = b.
(Columbia)
Solution:
(a) Gauss’ law and spherical symmetry give

_Q
D_47rr2e" (a<r<b).

(b) The electric field intensity is
Q

=a—€0—r;(l+Kr)e,., (a<r<d).
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Hence, the potential difference between the inner and outer spheres is

b
V=/th=lL 1.1, kml).
a 4mep \a b a

The capacitance of the device is then

Q 4xegabd

V = (b—a)+ abK In(b/a)’

(c) The polarization is

QK

P:(C—ED)E=—41".

e,.

Therefore, the volume polarization charge density at a < r < b is given by

_ _ 1 0 (QKr\ _ QK
Pp = v'P—rzar(h')—tim"'
(d) The surface polarization charge densities at r = a, b are

op = at r=a; o =-4 at r=2»0.

1061
For steady current flow obeying Ohm’s law find the resistance between
two concentric spherical conductors of radii a < b filled with a material of
conductivity o. Clearly state each assumption.
(Wisconsin)
Solution:

Suppose the conductors and the material are homogeneous so that the
total charge Q carried by the inner sphere is uniformly distributed over its
surface. Gauss’ law and spherical symmetry give

L
4rer?

where ¢ is the dielectric constant of the material. From Ohm’s law j = ¢E,
one has

E(r) =

._ oQ
1= Txer? &
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Then the total current is
o
I=¢j.dS=-Q.
f J p Q

The potential difference between the two conductors is

o L § I /1 1
ve- [ Ea=- [l m(;'z)'

giving the resistance as

4. TYPICAL METHODS FOR SOLUTION OF
ELECTROSTATIC PROBLEMS — SEPARATION OF
VARIABLES, METHODS OF IMAGES, GREEN’S
FUNCTION AND MULTIPOLE EXPANSION (1062-1095)

1062

A dielectric sphere of radius a and dielectric constant €y is placed in
a dielectric liquid of infinite extent and dielectric constant €2. A uiform
electric field E was originally present in the liquid. Find the resultant
electric field inside and outside the sphere.

(SUNY, Buffalo)
Solution:

Let the origin be at the spherical center and take the direction of the
original field E to define the polar axis z, as shown in Fig. 1.30. Let the
electrostatic potential at a point inside the sphere be ®,, and the potential
at a point outside the sphere be $,. By symmetry we can write ®; and $»
as

o, = E (A,,r + fH)P,,(cosG),

n=0

¢, = Z (C r 4+ ?H)P,;(cosﬂ)

n=0
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where A,, B, Cy, Dy are constants, and P, are Legendre polynomials. The
boundary conditions are as follows:

(1) ®, is finite at r = Q.
(2) ®3lr~00 = ~Ercos§ = —ErPy(cos§).
(3) &1 = Bzlr=a, 1% = 2% |r=q.

Fig. 1.30

From conditions (1) and (2), we obtain
Bn:O, Clz_E, Cn———'o(n#l).
Then from condition (3), we obtain

— EaPy(cos§) + E ;?%Pn (cosb) = Z Ana" P, (cosb),
n n

— €& [EPl(cos 0) + E(n + l)gﬁPn(cos 0)] =€, EA,.a"“'lP,.(cos 0).

These equations are to be satisfied for each of the possible angles 6. That
is, the coefficients of P,(cosd) on the two sides of each equation must be
equal for every n. This gives
_ 352 , L = &1 — &2 Eaa,
€1+ 2€2 €1+ 2¢e2

An=Dy=0, (n#1).
Hence, the electric potentials inside and outside the sphere can be expressed
as

it

Ay

362
d, =- E (]
1 P T 252 rcost,

£y — €2 fa 3
P, = |} - —= (=
2 [l €x+2€2(7‘) ]Ercosa,
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and the electric fields inside and outside the sphere by

352
= - = E
E, ve, Tl (r<a),
_ _ €1 —€2 3 3(E-r)r__lii
E, = V<I>2_E+€1+2€2a[ % el (r>a).
1063

Determine the electric field inside and outside a sphere of radius R
and dielectric cosntant € placed in a uniform electric field of magnitude Eq
directed along the z-axis.

(Columbia)
Solution:
Using the solution of Problem 1062, we have

360

E]=€+2€0E0, (1‘<R),
€—€g 3(Eo -r)r Eg
E2=E0+€+25_0R3[ 5 -'7,-, (1‘>R).
1064

A sphere of dielectric constant ¢ is placed in a uniform electric field
Ep. Shaw that the induced surface charge density is

E— &g
€+ 20

o(0) = 3eoEq cost,

where 0 is measured from the E; direction. If the sphere is rotated at
an angular velocity w about the direction of Ey, will a magnetic field be
produced? If not, explain why no magnetic field is produced. If so, sketch
the magnetic field lines.

(Wisconsin)
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Solution:
The solution of Problem 1063 gives the electric field inside the sphere

a8 3e
0
= Eo,
€+ 20
which gives the polarization of the dielectric as
_ _ 3eo(e —€0)
P=(c—c)E= €+ 2¢ E

The bound charge density on the surface of the dielectric sphere is

3eo(e

a(f)=n- e )Eocoso,

n being the unit vector normal to the surface. The total electric dipole
moment is then

_4 4reo(e — €o)
P= 3wR‘3p €+ 2¢ 1o, BB

Note that P has the same direction as Eq. Then when the sphere is rotated
about the direction of Ey, P will not change. This implies that the rotation
will not give rise to a polarization current and, therefore, will not produce
a magnetic field.

1065

A perfectly conducting sphere is placed in a uniform electric field point-
ing in the z-direction.

() What is the surface charge density on the sphere?

(b) What is the induced dipole moment of the sphere?

(Columbia)

Solution:

(a) The boundary conditions on the conductor surface are

® = constant = ®,, say,

a®
g =-—0,

or
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where ®, is the potential of the conducting sphere and o is its surface
charge density. On account of symmetry, the potential at a point (r, 8, ¢)
outside the sphere is, in spherical coordinates with origin at the center of

the sphere,
¢ = Z (C r "H)P (cos@). (1)

n=0

Let Ep be the original uniform electric intensity. As r — oo,
® = —Eorcost = —EgrPy(cosf).

By equating the coefficients of P,(cosf) on the two sides of Eq. (1), we
have

Co=0, Ci=-Ey, Dy =Ega®, C,=D,=0 for n>1.

Hence
3

& = —Eprcosf + Eo: cosf, 2)

where a is the radius of the sphere. The second boundary condition and
Eq. (2) give
o = 3egFycosf.

(b) Suppose that an electric dipole P = Pe, is placed at the origin,
instead of the sphere. The potential at » produced by the dipole is

1 1 Pcost
®p = _41I"€0P . V(;) - 471'601‘2 '

Comparing this with the second term of Eq. (2) shows that the latter cor-
responds to the contribution of a dipole having a moment

P= 47reoa3E0 ,

which can be considered as the induced dipole moment of the sphere.

1066

A surface charge density o(6) = ogcos# is glued to the surface of a
spherical shell of radius R (¢ is a constant and 0 is the polar angle). There
is a vacuum, with no charges, both inside and outside of the shell. Calculate
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the electrostatic potential and the electric field both inside and outside of
the spherical shell.
(Columbia)

Solution:

Let @, ®_ be respectively the potentials outside and inside the shell,
Both ®4 and ®_ satistify Laplace’s equation and, on account of cylindrical
symmetry, they have the expressions

@y =) bar " 'Pu(cosf), (r> R);
=0

d_ = Zanr"P,,(cosg) , {r<R).
n=0

The boundary conditions at » = R for the potential and displacement vector
are

o_ = ¢+ )
a(0) = oo Py(cos ) = eo(

or or

8% a¢+)

Substituting in the above the expressions for the potentials and equating
the coefficients of P,(cos ) on the two sides of the equations, we obtain

a, =b,=0 for n#1,
a9 79
=— b =—R f =1.
ay 350, 1 35‘0 or n
Hence
aoR®
+= Sear? cosf, r>R,
- = gﬂ:cosﬂ, r<R.
360
From E = —V® we obtain
200 R3 oo R
+ = 36‘())7’3 cosfe, + 3207'3 sinfey, r> R,
E-:—-—U—De,, r< R.
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1067

Consider a sphere of radius R centered at the origin. Suppose a point
charge g is put at the origin and that this is the only charge inside or outside
the sphere. Furthermore, the potential is & = V; cos @ on the surface of the
sphere. What is the electric potential both inside and outside the sphere?

(Columbia)

Solution:

The potential is given by either Poisson’s or Laplace’s equation:
Vie_ = ——q-é(r), r<R;
€0
V3¢, =0, r>R.

The general solutions finite in the respective regions, taking account of the
symmetry, are

+2Anr Po(cos8), r<R,

41!’601‘

(>

B
>, = E rﬂ%P,,(cosO), r>R.

n=0

Then from t.he condition ¥_ = &, = Vocosd at r = R we obtain A =
4,,03,/41 —9- ,B1 =VoR? By = 0,A, = B, =0for n # 0,1, and hence

q q Vocost

~ T fmeer dmeR T R v TR
2
®, = V(:f cosf, r>R.
1068

If the potential of a spherical shell of zero thickness depends only on
the polar angle 8 and is given by V(8), inside and outside the sphere there
being empty space,

(a) show how to obtain expressions for the potential V (r,8) inside and
outside the sphere and how to obtain an expression for the electric sources
on the sphere.
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(b) Solve with V(8) = Vo cos? 6.
The first few of the Legendre polynomials are given as follows:
29
Po(cos@) =1, Pi(cos8)=cosf, Py(cosf)= ﬁo%-l- .
We also have

L 4
/ Po(cos0)Pn(cosf)sinfdd =0 if n#m
0

and
" p2 in 0d9 2
[) Pn(CCB 0) sin = m B
(Wisconsin)
Solution:

(a) Since both the outside and inside of the spherical shell are empty
space, the potential in the whole space satisfies Laplace’s equation. Thus
the potential inside the sphere has the form

[e o]
@, = Za,.r"P,,(cos 6),
n=0

while that outside the sphere is

o0

bn
&y = Z n+1P (cos8).

n=0

Letting the radius of the shell be R, we have

V() = i an R" Py(cosf).

n=0

Multiplying both sides by Pn(cos®)sin#df and integrating from 0 to 7, we

obtain

e Rn_2n+l
n

/ V(6) P (cos8)sin 8d6 .
Hence

[2n+l

A V(6) Pp(cosf)sin 0d0] Pp(cos 6)r™,

n-'O
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and similarly

i [(211 + DR / V(6) Pn(cos8) sin 0d0] P"—r(::—fez .

The charge distribution on the spherical shell is given by the boundary
condition for the displacement vector:

oo od
0(0) = &9 arl - 0—2‘

|_R or lr=r

Z [(2"“)2 / V(6)Pa (coso)smodo]P (cos ).

(b) From

V(6) = Vocos? 8 = —2-:-3V—0P2(cos )+ %Pg(cos ),

we obtain
/0' V(8)Pn(cos ) sin 6df = %Vo, for n=0;
/Ox V(8)P,(cos @) sin 8d6 = -;1—5Vo, for n=2;
/0’r V(8)P,(cosB)sinfdé =0, for n#0,2.
Hence
o, = % + %Pg(cos()) R"’ , (r<R)
@, = -‘g‘—rR+2V"P2( 9)73‘ (r>R)

a(8) = 5;_}‘;0_[1 + 5Pp(cos )] .

1069

A conducting sphere of radius a carrying a charge ¢ is placed in a
uniform electric field Ey. Find the potential at all points inside and outside
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of the sphere. What is the dipole moment of the induced charge on the
sphere? The three electric fields in this problem give rise to six energy
terms. Identify these six terms; state which are finite or zero, and which
are infinite or unbounded.

(Columbia)
Solution:

The field in this problem is the superposition of three fields: a uniform
field Eq, a dipole field due to the induced charges of the conducting sphere,
and a field due to a charge ¢ uniformly distributed over the conducting
sphere.

Let ®; and ¥, be the total potentials inside and outside the sphere
respectively. Then we have

V2§, = Vi@, =0, & =0,
where ®; is a constant. The boundary conditions are

P, =P, for r=a,
&, = —~EgrPi(cosd) for r— 0.

On account of cylindrical symmetry the general solution of Laplace’s equa-

tion is
P, = Z (a,.r + — n+1 ) Pn(cos@).

n

Inserting the above boundary conditions, we find
ay=—FEy, bo=ady, b = Eoa®,

while all other coefficients are zero. As o = —£q(%52) we have

x
q=/ (360EQC
o

r=a’

co%o ) 27a?sin 0d8 = 4raeq o,

or
q

47|’€oa )

&y =
So the potentials inside and outside the sphere are

_ q
<I>1_41rt-:a’ (r<a),

E003
+—3 cosf, (r>a).

P, = —FEgrcosf +
€or
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The field outside the sphere may be considered as the superposition of three
fields with contributions to the potential &, equal to the three terms on
the right-hand side of the last expression: the uniform field Eo, a field due
to the charge ¢ uniformly distributed over the sphere, and a dipole field
due to charges induced on the surface of the sphere. The last is that which
would be produced by a dipole of moment P = 4weoa3E, located at the
spherical center.

The energies of these three fields may be divided into two kinds: elec-
trostatic energy produced by each field alone, interaction energies among
the fields.

The energy density of the uniform external field Eq is %Eﬁ Its total
energy [ 2 E2dV is infinite, i.e. W) — oo, since E; extends over the entire
space.

The total electrostatic energy of an isolated conducting sphere with

charge ¢ is
oo 2 2
— €0 q 24, 9
W, _/a 2 (41reor2> 4mridr 8wega’
which is finite.

The electric intensity outside the sphere due to the dipole P is

3 2a°E, 3E,sind
E3=—V(E:: cosa): a ocosﬂer+a 0 8in e

3 r3

The corresponding energy density is

w3 = §eoE3 = ?,._6(4“’8 6 + sin® 9)
6 2
_ Epg G EO 2
_—2—7(1+3COS 0)

As the dipole does not give rise to a freld inside the sphere the total elec-
trostatic energy of P is

6 2 00 2x 1
Wi = /w;;dV = €°a2E° / ;I;dr‘/ d<p/ (1+ 3cos®f)dcosd
a | -1

4mega’
= 5,

which is also finite.
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For the conducting sphere with total charge ¢, its suface charge density
is 0 = g/4wa®. The interaction energy between the sphere and the external
field E; is then

Wig = / o -(—FEgacos 9)27ra2 sin 8d@

qaEo
2

L s
/ cosfdcos@ =0.
[}

Similarly, the interaction energy of the conducting sphere with the field of
dipole P is

x 3
W23=/ o’~(E:: 0080)2W028in0d0=0.
0

The interaction energy between dipole P and external field E; is
1 3 p2
W13 = _EP . Eo = —27Epa EO f

which is finite. The appearance of the factor -‘2— in the expression is due
to the fact that the dipole P is just an equivalent dipole induced by the
external field E,.

1070

A conducting spherical shell of radius R is cut in half. The two hemi-
spherical pieces are electrically separated from each other but are left close
together as shown in Fig. 1.31, so that the distance separating the two halves
can be neglected. The upper half is maintained at a potential ¢ = ¢¢, and
the lower half is maintained at a potential ¢ = 0. Calculate the electrostatic
potential ¢ at all points in space outside of the surface of the conductors.
Neglect terms falling faster than 1/r* (i.e. keep terms up to and including
those with 1/r* dependence), where r is the distance from the center of
the conductor. (Hints: Start with the solution of Laplace’s equation in the
appropriate coordinate system. The boundary condition of the surface of
the conductor will have to be expanded in a series of Legendre polynomials:
Pi(z) = 1, P(z) = z, Pa(z) = §2* — §, Pas(z) = §2° - §=.

(Columbia)
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Solution:

Use spherical coordinates (r,0, ¢) with the origin at the spherical cen-
ter. The z-axis is taken perpendicular to the cutting seam of the two
hemi-spheres (see Fig. 1.31). It is readily seen that the potential ¢ is a
function of r and 0 only and satisfies the following 2-dimensional Laplace’s
equation,

10 /(,00 1 345
r_zar( 3r>+rzsin055(s 30) 0, (r2R).

Fig. 1.31

The general solution of this equation is

A
¢ = Zr_,;‘TP,(coso), (r>R).
=0

Keeping only terms up to [ = 3 as required, we have

3
A
Z o7 Pi(cosf).
i1=0 ’J
The boundary condition at r = R is

do, for 0<0<%,
0, for T<6<n

been=10) = {

f(8) can be expanded as a series of Legendre polynomials, retaining terms
uptol=3

3
£(8) ) BiP(cosf)
1=0
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where, making use of the orthogonality of the Legendre polynomials,

B = 3.24.’_1 / £(8)Py(cos8) sin 8d0
0

1
= w/o P(z)dz.

Integrating the first few Legendre polynomials as given, we obtain

1 1
/ Py(z)dz = / dz =1,
0 0
1 1 1
/ Py (z)dz = / zdz = 3
0 0
1 1 1
/ Py(z)dz = / 182 —1)dz =0,
0 o 2

1 1
/ Ps(z)dz = / l(5:173 —3z)dz = —<,
b ) 2 B

which in turn give

From
3 A
Sh=r~ Y Saghi= > BiR,
=0 =0
we further get
Al=R*'B
Hence
3 i+1
R R 3/R\?
¢~ZB](:) P{(COSO)—¢0{5;+Z(;') cosf
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1071

As can be seen in Fig. 1.32, the inner conducting sphere of radius a
carries charge Q, and the outer sphere of radius b is grounded. The distance
between their centers is ¢, which is a small quantity.

(a) Show that to first order in ¢, the equation describing the outer
sphere, using the center of the inner sphere as origin, is

r(0) = b+ ccosf.

(b) If the potential between the two spheres contains only ! = 0 and
! = 1 angular components, determine it to first order in c.
( Wisconsin)

Fig. 1.32

Solution:

(a) Applying the cosine theorem to the triangle of Fig. 1.32 we have
to first order in ¢

b2 = c? 4+ +2 — 2crcosf ~ r? — 2crcosd,
or

ra % (2ccoso+ \/4c2cos"‘0+b2) x~b+ccosf.

(b) Using Laplace’s equation V2® = 0 and the axial symmetry, we can
express the potential at a point between the two spheres as

00 B,
o= g (A,.r' + m)ﬁ(coso) .
Then retaining only the ! = 0,1 angular components, we have,

¢=Ao+&+(A1r+§-;—)coso.
r r
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As the surface of the inner conductor is an equipotential, ¢ for r = a should
not depend on #. Hence

By
Ala+a—2=0. (1)

The charge density on the surface of the inner sphere is

3%
7=\
r=a

and we have ;
/ o27xa’sin0df = Q.
0
This gives
By = L @
4160 ’

Then as the outer sphere is grounded, ® = 0 for r & b 4 ccosf. This gives

By By
Ao-’-m"‘[Al(b'}'CCOBO)-"m] cosh =0. (3)

To first order in ¢, we have the approximations

-1
(b+ccosf)™ =471 (l + % cose)

(1-§coso)
(1 - 2—;c030)

Q-In--

-2
(b+ccos)"? = b"(l + -‘;-cosﬁ) ~

@I~

Substituting these expressions in Eq. (3) gives

Bo Boc
Ao+ b +( 2

B,

+Ab+ — %

)costO, (4)

neglecting ccos? @ and higher order terms. As (4) is valid for whatever
value of 4, we require

AO"'ﬁ:or

5
Boc
Tl +A16+Ti—=0
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The last two equations, (1) and (2) together give

___ @9
Ao - 47|'€0b !

_ Qc B = Qca®
T dneo(b® —ad)’ ' T dmeo(b® — ad)
Hence the potential between the two spherical shells is

o= rm i i 5Tl (]}

Ay

1072

Take a very long cylinder of radius » made of insulating material. Spray
a cloud of electrons on the surface. They are free to move about the surface
so that, at first, they spread out evenly with a charge per unit area 0. Then
put the cylinder in a uniform applied electric field perpendicular to the axis
of the cylinder. You are asked to think about the charge density on the
surface of the cylinder, o(#), as a function of the applied electric field E,.
In doing this you may neglect the electric polarizability of the insulating
cylinder.

(2) In what way is this problem different from a standard electrostatic
problem in which we have a charged conducting cylinder? When are the
solutions to the two problems the same? (Answer in words.)

(b) Calculate the solution for (#) in the case of a conducting cylinder
and state the range of value of E; for which this solution is applicable to
the case described here.

(Chicago)
Solution:

Use cylindrical coordinates {p, 8, z) with the z-axis along the cylindrical
axis and the direction of the applied field given by 4 = 0. Let the potentials
inside and outside the cylinder be ¢; and ¢y respectively. As a long cylinder
is assumed, o1 and @y are independent of z. As there is no charge inside
and outside the cylinder, Laplace’s equation applies: V¢ = Vipy = 0.
The boundary conditions are

d 7]
ol ()= ()],

#1lp~0 s finite,
@11]pmo0 = —Eqpcosf.
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Note the first two conditions arise from the continuity of the tangential
component of the electric intensity vector. Furthermore as the electrons
are free to move about the cylindrical surface, Ey = 0 on the surface at
equilibrium. As z is not involved, try solutions of the form

D
p1=A1+Bilnp+Cyipcosld + 7‘cos€,

D
o= A2+ Balnp+Capcost + -’;cose.

Then the above boundary conditions require that
Bi=Dy=0, Cp=-E,,
and
D,
A1+ Circosd = Ay + Bylnr —~ E rcosf + —'-_-cosa,

—C)sinf = E;sinf - %sina =0.

The last equation gives
Ci=0, Dy=E.;?.

Applying Gauss’ law to unit length of the cylinder:

}{Eu ds=3,
€o
i.e.,
B 1
-2 9rr = —ag - 271,
r €o
we obtain o
r
B, = -
€o

Neglecting any possible constant potential, we take A; = 0. Then

1
Ay =Blar= _TJod nr'
€o
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We ultimately obtain the following expressions

oorinr
p1=— G s EX=0y
111]
1 E,r?
¢n=‘00:np“ apcosf + —2 cosf,
[

oor Eqr?
En= ($+E¢cos0+ ;2 cosﬂ)e,

r2
- E, (1 - -;2-) sinfey,

P(o) = Dll, lp:r =09+ 2¢oFE, cosf.

(a) The difference between this case and the case of the cylindrical con-
ductor lies in the fact that #(8) can be positive or negative for a conductor,
while in this case 0(d) < 0. However, when |E;| < ||, the two problems
have the same solution.

(b) For the case of a conducting cylinder the electrostatic field must
satisfy the following:

(1) Inside the conductor Ej = 0 and ¢ is a constant.
(2) Outside the conductor

Vien=0,

a

The solution for ¢y is the same as before. For the solution of the con-
ductor to fit the case of an insulating cylinder, the necessary condition is
|Ea| < |32, which ensures that the surface charge density on the cylinder
is negative everywhere.

1073

Two semi-infinite plane grounded aluminium sheets make an angle of
60°. A single point charge +q is placed as shown in Fig. 1.33. Make a large
drawing indicating clearly the position, size of all image charges. In two or
three sentences explain your reasoning.

(Wisconsin)
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Fig. 1.33

Solution:

As in Fig. 1.33, since the planes are grounded, the image charges are
distributed symmetrically on the two sides of each plane.

1074
A charge placed in front of a metallic plane:
(a) is repelled by the plane,
(b) does not know the plane is there,

(c) is attracted to the plane by a mirror image of equal and opposite
charge.
(cer)
Solution:

The answer is (c).

1075

The potential at a distance r from the axis of an infinite straight wire
of radius a carrying a charge per unit length o is given by

o

1
In - + const.
2r r
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This wire is placed at a distance b >> a from an infinite metal plane, whose
potential is maintained at zero. Find the capacitance per unit length of the
wire of this system.

(Wisconsin)

Solution:

In order that the potential of the metal plane is maintained at zero,
we imagine that an infinite straight wire with linear charge density —o is
symmetrically placed on the other side of the plane. Then the capacitance
between the original wire and the metal plane is that between the two
straight wires separated at 2.

The potential (r) at a point between the two wires at distance r from
the original wire (and at distance 2b — r from the image wire) is then

ag
(p(r):ir-]n;—ﬁ;lnib_—r.

So the potential difference between the two wires is

4 2—a o, 2b
V=<p(a)——qp(2b—a)=;r-ln( - )z;ln—;—.

Thus the capacitance of this system per unit length of the wire is

1076

A charge ¢ = 2uC is placed at a = 10 cm from an infinite grounded
conducting plane sheet. Find

(a) the total charge induced on the sheet,
(b) the force on the charge g,

(c) the total work required to remove the charge slowly to an infinite
distance from the plane.
(Wisconsin)

Solution:

(a) The method of images requires that an image charge —gq is placed
symmetrically with respect to the plane sheet. This means that the total
induced charge on the surface of the conductor is —gq.
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(b) The force acting on +q is

-1 ¢ =9 x10° M
= Ireg (20) 0.22

=09N,

where we have used ¢y = m'sl_xlﬁ C2?/(N.m?).

(c) The total work required to remove the charge to infinity is

W—/mFdr—/w L & 4o £ 093
~Ja T Jo A4meo(2r)2 T 16meoa

1077

Charges +¢,—q lie at the points (z,y,2) = (,0,a),(—a,0,a) above a
grounded conducting plane at z = 0. Find

(a) the total force on charge +q,

(b) the work done against the electrostatic forces in assembling this
system of charges,

(c) the surface charge density at the point (a,0,0).
(Wisconsin)

Solution:

(a) The method of images requires image charges +g¢ at (—a,0, —a)
and —q¢ at (a,0,—a) (see Fig. 1.34). The resultant force exerted on +q¢ at
(a,0,qa) is thus

:4120[—(2i)2e='(2;)2e‘+(2\/1'a (l2e”+—2 )]
2
(G C G S E

This force has magnitude

(V2-1)¢*

F= 327eqal
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It is in the z2-plane and points to the origin along a direction at angle 45°
to the z-axis as shown in Fig. 1.34.

z

(-a,0,a) {a,0,a)
[ ]
-q F .q
/
45°
TITTTITTTT X
+q -q
[ ] [ ]
(-a,0,-a) (a,0,-a)
Fig. 1.34

(b) We can construct the system by slowly bringing the charges +q
and —¢ from infinity by the paths

Ly:z=2z,y=0,

Ly:z=-z,y=0,
symmetrically to the points (a, 0, a) and (—a,0, a) respectively. When the
charges are at ({,0,1) on path L; and (—!,0,{) on path L, respectively, each

suffers a force ‘-‘3/75;—3!: whose direction is parallel to the direction of the

path so that the total work done by the external forces is

w=-2/um=2/co V2-1¢,  (V2-1)¢*

327mepl? T 167eoa

oo

(c) Consider the electric field at a point (a,0,0%) just above the con-
ducting plane. The resultant field intensity E; produced by +q at (a,0,a)
and —q at (a,0,—a) is

___ X
Ei= 4mweqa? s
The resultant field E; produced by —q at (—a,0,a) and +q at (—a,0, -a)
' 2q 1

2= 41!'60(12 me, ’
Hence the total field at (a,0,0%) is

- =9 (1 _
E-E1+E2-2t€oa2(5¢5 1)3;,
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and the surface charge density at this point is

q 1
=ggl = 2o ——1].
7 =% 2xepal (5\/5 )

1078

Suppose that the region z > 0 in three-dimensional space is filled
with a linear dielectric material characterized by a dielectric constant ¢,
while the region z < 0 has a dielectric material £;. Fix a charge —¢ at
(z,y,2) = (0,0,a) and a charge ¢ at (0,0, —a). What is the force one must
exert on the negative charge to keep it at rest?

(Columbia)

Solution:

Consider first the simple case where a point charge ¢; is placed at
(0,0,a). The method of images requires image charges ¢} at (0,0, —a) and
qY at (0,0,a). Then the potential (in Gaussian units) at a point (z,y, 2) is
given by
a9 qf

= — 4 —, >0, = —, <0),
o, +€17'2 (z>0), o2 P (2<0)

where

ri=Vz2+y 4+ (z—a)?, rp=Vz2+y2+(z+a)?.
Applying the boundary conditions at (z,y,0):
6 1 6¢2

Y1 = p2, El'a—i- —Ezwy
we obtain
€1 — €9 q
e1(e1 +€2) t

Similarly, if a point charge ¢z is placed at (0,0, —a) inside the dielectic ¢3,
its image charges will be ¢} at (0,0,a) and ¢ at (0,0, —a) with magnitudes

fn=aq=

ro__ " €2 — €
9 =19 6—*——“2(51_’_82)92-
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When both ¢; and g2 exist, the force on ¢; will be the resultant due to
92,4y and g¢f. It follows that
_an | an  an
4a2ey,  4aZey;  4aeq
__f1ize @ g
e1er +€2) 4a?  2(e1 +e2)a?’
In the present problem ¢; = —¢, ¢2 = +¢, and one has
_ _a-e ¢ ¢ __. ¢
6;(61 + €3) 4a? 2(ey + 62)02 4eqa? '
Hence, a force —F is required to keep on —gq at rest.

1079

When a cloud passes over a certain spot on the surface of the earth a
vertical electric field of E = 100 volts/meter is recorded here. The bottom
of the cloud is a height d = 300 meters above the earth and the top of the
cloud is a height d = 300 meters above the bottom. Assume that the cloud
is electrically neutral but has charge +¢ at its top and charge —q at its
bottom. Estimate the magnitude of the charge ¢ and the external electrical
force (direction and magnitude) on the cloud. You may assume that there
are no charges in the atmosphere other than those on the cloud.

(Wisconsin)

Solution:

We use the method of images. The positions of the image charges are
shown in Fig. 1.35. Then the electric field intensity at the point 0 on the
surface of the earth is

1 ¢ 1 ¢
E=12. = =2 —
4meq d2 4meq (2d)2°

whence we get.

2
q:M=6.7X10_4C.

3
The external force acting on the cloud is the electrostatic force between the
image charges and the charges in the cloud, i.e.,

2 1 1 1 1
F= e [ @ TGzt @aye T (4(1)2]

2
__9__[2__1__.1_] =—405x 1073 N.
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This force is an attraction, as can be seen from Fig. 1.35.

0¥F

?Q—*—Q—-{

d
[
d
Lo,
Fig. 1.35
1080

A point charge ¢ is located at radius vector s from the center of a
perfectly conducting grounded sphere of radius a.

(a) If (except for g) the region outside the sphere is a vacuum, calculate
the electrostatic potential at an arbitrary point r outside the sphere. As
usual, take the reference ground potential to be zero.

(b) Repeat (a) if the vacuum is replaced by a dielectric medium of
dielectric constant €.

(CUSPEA)
Solution:
We use the method of images.

(a) As shown in Fig. 1.36, the image charge ¢’ is to be placed on the
line oq at distance s’ from the spherical center. Lettingn = ,n'=%=1%,

8
the potential at r is

)= oy [0 ]

4reo ljr—s|  |r—

_ 1 9, _ ¢
" dmeg | lrn—sn'] T jrn—s'n’]]
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The boundary condition requires ¢(r = a) = 0. This can be satisfied if

2
d==-%, &=L
s’ s

The electrostatic uniqueness theorem then gives the potential at a point r
outside the sphere as

¢(r) = 4:50 [[, - sl j/s:;sl] '

(b) When the outside of the sphere is filled with a dielectric medium
of dielectric constant €, we simply replace ¢ in (a) with . Thus

é(r) = :{f; [|r 1 sl Ir j/;;,,;] '

1081

Two similar charges are placed at a distance 26 apart. Find, approx-
imately, the minimum radius a of a grounded conducting sphere placed
midway between them that would neutralize their mutual repulsion.

(SUNY, Buffalo)
Solution:

We use the method of images. The electric field outside the sphere
corresponds to the resultant field of the two given charges +¢ and two image
charges +¢’. The magnitudes of the image charges are both ¢’ = —¢§, and
they are to be placed at two sides of the center of the sphere at the same
distance ¥’ = 9;- from it (see Fig. 1.37).
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1 ¢ q I
! I
| N

| L |
[ SN LI S

Fig. 1.37

For each given charge +¢, apart from the electric repulsion acted on
it by the other given charge +g, there is also the attraction exerted by the
two image charges. For the resultant force to vanish we require

G s S s
- 2
W5 6+5)

= 5[ (§) o)+ | = B

The value of a(a < b) that satisfies the above requirement is therefore
approximately

]
Q
0| o

1082

(a) Two equal charges +Q are separated by a distance 2d. A grounded
conducting sphere is placed midway between them. What must the radius
of the sphere be if the two charges are to experience zero total force?

(b) What is the force on each of the two charges if the same sphere,
with the radius determined in part (a), is now charged to a potential V?

(Columbia)
Solution:
(a) Referring to Problem 1081, we have ro = d/8.
(b) When the sphere is now charged to a potential V, the potential
outside the sphere is correspondingly increased by

Vro Vd

b= — = —

r 8r '
where r is the distance between the field point and the center of the sphere.
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An additional electric field is established being

Vd
E=-V¢= &z

Therefore, the force exerted on each charge +Q is

—op=%
F=QF= i
The direction of the force is outwards from the sphere along the line joining
the charge and the center.

1083
A charge q is placed inside a spherical shell conductor of inner radius r
and outer radius r;. Find the electric force on the charge. If the conductor
is isolated and uncharged, what is the potential of its inner surface?
(Wisconsin)
Solution:

Apply the method of images and let the distance between ¢ and the
center of the shell be a. Then an image charge ¢' = —"1¢ is to be placed

at b= 55- (see Fig. 1.38). Since the conductor is isolated and uncharged, it
is an equipotential body with potential ¢ = g, say. Then the electric field
inside the shell (r < r) equals the field created by ¢q and ¢'.

Fig. 1.38

The force on the charge g is that exerted by ¢':
2

SN |
4meo(b — a)? 47reo(£a: — a)?
6T1q2

T dmeo(r? —a2)?’
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In zone r > ry the potential is pout = z;1=. In particular, the potential
of the conducting sphere at r = ry is

q
47!’607’2 '

Psphere =

Owing to the conductor being an equipotential body, the potential of the
inner surface of the conducting shell is also ;1.

1084

Consider an electric dipole P. Suppose the dipole is fixed at a distance

zo along the z-axis and at an orientation § with respect to that axis (i.e.,

P-e, = |P|cos®). Suppose the zy plane is a conductor at zero potential.
Give the charge density on the conductor induced by the dipole.

(Columbia)

Solution:

As shown in Fig. 1.39, the dipole is P = P(sin#, 0, cos #), and its image
dipole is P/ = P(—sin#,0,cos8). In the region z > 0 the potential at a
point r = (z,y,2) is

(r) = 1 | Plzsin@+ (z— z0)cosd]  P[—zsin0 + (2 + 20) cos 6]
wir) = dmeg | [z2+y2 + (2 — 20)2)3/2 22+ 2+ (z+ z,_0)2]3/2
x

N
N
N
. J
o P48

<
N

b—2g —=—20 —{
J
Fig. 1.39

The induced charge density on the surface of the conductor is then
3¢ Pcosd
o=t~ == 2 4 2 34 ,2\3/2
0z lz=0 2m(z2 + y? + 23)
3Pzo(—zsin @ + 29 cos §)
27(z? + y? + 23)%/2
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1085

Two large flat conducting plates separated by a distance D are con-
nected by a wire. A point charge Q is placed midway between the two
plates, as in Fig. 1.40. Find an expression for the surface charge density
induced on the lower plate as a function of D,Q and z (the distance from
the center of the plate).

(Columbia)

| = - |

,

Fig. 1.40

1y ? i

Solution:

We use the method of images. The positions of the image charges
are shown in Fig. 1.41. Consider an arbitrary point A on the lower plate.
Choose the zz-plane to contain A. It can be seen that the electric field at
A, which is at the surface of a conductor, has only the 2z-compenent and
its magnitude is (letting d = &)

o Q o
* 7 dmeo(d? +27) (2 + 22)1/2
Q 2-3d
" 4meo[(3d)? + 27 [(3d)? + 27
Q 2.5d

+ 47r£o[(5d)2 + 2?) : [(5d)2 + z2]1/2 =

(-1)"(2n+1)
41reo Z [(n + %)21)2 +22p/2°

Accordingly,

6(z) = —goE, = -

Do~  (-1)"(2n+1)
A E (n+1)?D*+ =2pl2°
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Fig. 1.41
1086

Two large parallel conducting plates are separated by a small distance
4z. The two plates are gounded. Charges Q and —@Q are placed at distances
z and 3z from one plate as shown in Fig. 1.42.

(a) How much energy is required to remove the two charges from be-
tween the plates and infinitely apart?

(b) What is the force (magnitude and direction) on each charge?
(c) What is the force (magnitude and direction) on each plate?

(d) What is the total induced charge on each plate? (Hint: What is
the potential on the plane midway between the two charges?)

(e) What is the total induced charge on the inside surface of each plate
after the —Q charge has been removed, the +Q remaining at rest?
(MIT)

Solution:

(a) The potential is found by the method of images, which requires
image charges +Q at --- — 9z, ~52,3z,7z,11z-.. and image charges —Q
at...—7z,—3z,52z,92,13z, - - - along the z-axis as shown in Fig. 1.43. Then
the charge density of the system of real and image charges can be expressed
as

p= f: (1)1 Q8(x — (2k + 1)x]

k=-00

where § is the one-dimensional Dirac delta function.
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Fig. 1.42 Fig. 1.43

The electrostatic field energy of the system is

1 1 1
=z QU—§QU+—§QU-,

where U, is the potential at the +Q charge produced by the other real and
image charges not including the +Q itself, while U_ is the potential at the
—@Q charge produced by the other real and image charges not including the
—-Q itself. As

1 2Q 2Q 2Q
Us = mo [ (21-) Y ) 6o T ]
1 -Qln2
L L
41re z Z( D "k 4meoz '

an2

U-=-Us= 4meoz’

we have 0

= _41reoz n2

Hence the energy required to remove the two charges to infinite distances
from the plates and from each other is —W.

(b) The force acting on +@Q is just that exerted by the fields of all the
other real and image charges produced by (. Because of symmetry this
force is equal to zero. Similarly the force on —@Q is also zero.

(c) Consider the force exerted on the left conducting plate. This is
the resultant of all the forces acting on the image charges of the left plate
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(i.e., image charges to the left of the left plate) by the real charges +Q,-Q
and all the image charges of the right plate (i.e., image charges to the right
side of right plate).

Let us consider first the force Fy acting on the image charges of the
left plate by the real charge +Q:

2 2 2 s —1)n-t
P Q Q Q Z( n)2 ’

1= dmeo(2z)?  4meq(4z)? tee= 167eox?

n=1

taking the direction along +z as positive.
We next find the force F, between the real charge —@Q and the image
charges of the left plate:

_ Q2 Q2 o Q2 s (_l)n~l
R = 4meo(4x)? + 47eo(67)2 " 16mepz? Z n?

n=2

Finally consider the force F3 acting on the image charges of the left
plate by the image charges of the right plate:

_ Qz Ll (_l)n—l
Fs= 167eqx? E E nz

_ _ Qz o0 o0 (—1)“
F=FR+Fh+F= 16meqz? Z E n?
m=1n=m

Qz 2 3 4 _ Q2 oo (_l)n—l
Bregz\ 2 i@ @t ) 167reo:1:2§=-:1 nt

Using the identity

n=1 n
we obtain @
F= In2
161!’50132 n

This force directs to the right. In a similar manner, we can show that the

magnitude of the force exerted on the right plate is also equal to ﬁ%, In2,
its direction being towards the left.
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(d) The potential on the plane z = 0 is zero, so only half of the lines
of force emerging from the +Q charge reach the left plate, while those
emerging from the —Q charge cannot reach the left plate at all. Therefore,
the total induced charge on the left plate is -g-, and similarly that of the
right plate is %

(e) When the +Q charge alone exists, the sum of the total induced
charges on the two plates is —Q. If the total induced charge is —Q, on
the left plate, then the total reduced charge is —Q + Q. on the right plate.
Similarly if —Q alone exists, the total induced charge on the left plate is
Q — Q. and that on the right plate is +Q_, by reason of symmetry. If the
two charges exist at the same time, the induced charge on the left plate is
the superposition of the induced charges produced by both +Q and —Q.
Hence we have, using the result of (d),

Q_QQ::=_

1)

Q
2
or

3
Qa::ZQ-

Thus after —@Q has been removed, the total induced charge on the inside
surface of the left plate is —3Q/4 and that of the right plate is —Q/4.

1087

What is the least positive charge that must be given to a spherical
conducter of radius a, insulated and influenced by an external point charge
+q at a distance r > a from its center, in order that the surface charge
density on the sphere may be everywhere positive? What if the external
point charge is —¢?

(SUNY, Buffalo)

Solution:

Use Cartesian coordinates with the origin at the center of the sphere
and the z-axis along the line joining the spherical center and the charge
g. It is obvious that the greatest induced surface charge density, which is
negative, on the sphere will occur at (0,0, a).

The action of the conducting spherical surface may be replaced by that
a

of a point charge (—2¢) at (0,0, "r—’) and a point charge ($4) at the spherical

r
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center (0,0,0). Then, the field E at (0,0,44) is

S I S B ]
dxeola? (r—a)® (a-)2]

- tje_ ¢ __gt],
dregg lar (r—a)* (r—a)?2] "’

Hence, the maximum negative induced surface charge density is

1 1 r/a ]

= =2 _ -
6°"€°E"~41r[ar (r—a)® (r—a)?

If a positive charge Q is given to the sphere, it will distribute uniformly on
the spherical surface with a surface density Q/4xa?. In order that the total
surface charge density is everywhere positive, we require that

—o - dma® = o2 ny_t 1
Q2 -0 4na ‘aq[(l-’.a)(r—a)’ ar]
_ a*(3r—a)

- r(r-a)’q'

On the other hand, the field at point (0,0,—a_) is

q [l+ 1 r/a ]er

T T4neoira " (r+a)?  (r+a)?

If we replace ¢ by —¢, the maximum negative induced surface charge density
will occur at (0,0, —a). Then as above the required positive charge is

QZ—U-47ra2=—60-47ra2(— g )[l + ! r/a ]

4xeg ra ' (r+a)? (r+a)?

_ s a? ar | _ ¢a®(3r+a)
=i+ o - ) = So

1088

(a) Find the electrostatic potential arising from an electric dipole of
magnitude d situated a distance L from the center of a grounded conducting
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sphere of radius a; assume the axis of the dipole passes through the center
of the sphere.

(b) Consider two isolated conducting spheres (radii a) in a uniform
electric field oriented so that the line joining their centers, of length R, is
parallel to the electric field. When R is large, qualitatively describe the
fields which result, through order R~4.

(Wisconsin)
Solution:

(a) Taking the spherical center as the origin and the axis of symmetry
of the system as the z-axis, then we can write P = de,. Regarding P as a
positive charge ¢ and a negative charge —¢ separated by a distance 2! such
that d = }EI(!) 2ql, we use the method of images. As shown in Fig. 1.44, the

coordinates of ¢ and —q are respectively given by
g: z=-L+1l, —q: z=-L-1.

Let ¢; and ¢, be the image charges of ¢ and —q respectively. For the
spherical surface to be of equipotential, the magnitudes and positions of ¢;
and ¢ are as follows (Fig. 1.44):

a a?
n=-7— 1 a (0,0,—IT1),

a a2
q2 = L—_Hq at (0,0,—'171—1) .

h
H_’—‘
)~
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the magnitudes and positions may be expressed as

—a? 2
ql=_gq-"‘i at (0,0,_"_“__‘_)’

L 212 L L?
a ad a® a¥
=797 3737 at (0,0.—-I:+F),

where we have used d = 2¢l. Hence, an image dipole with dipole moment
P =3 Zf,ie, %:-P and an image charge ¢’ = ——; may be used in place
of the action of ¢q; and ¢g2. Both P’ and ¢’ are located at v = (0,0, —f—)
(see Fig. 1.45). Therefore, the potential at r outside the sphere is the
superposition of the potentials produced by P, P/, and ¢', i.e.,

q P .(r-7) P-(r+Le,)]
oLlr—r'| e—r3 [r+ Le,[®

p(r) =

1 [ ad
= 41r€0 L2(7'2 a r cosf + _’)1/2

a3d(rcosf + & ) d(rcosé + L)
L3(r? + ¢ ﬂ" cosf + & 43)3/2 © (r2 + 2rLcosf + L2)3/2

¥
P P <o

Tt}
M
2 =
P

Fig. 1.45

z

(b) A conducting sphere of radius a in an external field E corresponds
to an electric dipole with moment P = 4weoa®E in respect of the field
outside the sphere. The two isolated conducting spheres in this problem
may be regarded as one dipole if we use the approximation of zero order.
But when we apply the approximation of a higher order, the interaction
between the two conducting spheres has to be considered. Now the action
by the first sphere on the second is like the case (a) in this problem (as the
two spheres are separated by a large distance). In other words, this action

can be considered as that of the image dipole P/ = }%-Z-P and image charge
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¢ = -5 As a? < L, the image dipole and charge can be taken to be
approximately located at the spherical center. Thus the electric field at a
point outside the spheres is the resultant of the fields due to a point charge
¢’ and a dipole of moment P + P’ = (1 + %)P at each center of the two
spheres. The potential can then be expressed in terms through order 1/R*.

1089

An electric dipole of moment P is placed at a distance r from a per-
fectly conducting, isolated sphere of radius a. The dipole is oriented in the
direction radially away from the sphere. Assume that r 3> a and that the
sphere carries no net charge.

(a) What are the boundary conditions on the E field at the surface of
the sphere?

(b) Find the approximate force on the dipole.
(MIT)

Solution:

(a) Use spherical coordinates with the z-axis along the direction of the
dipole P and the origin at the spherical center. The boundary conditions
for E on the surface of the sphere are

E‘,.:a/eo, E¢=0,

where o is the surface charge density.

(b) The system of images is similar to that of the previous Problem
1088 and consists of an image dipole P’ = (%)3P and an image charge
¢ =-%ar = ge,. In addition, an image charge ¢ = —~¢' is to be
added at the center of the sphere as the conducting sphere is isolated and
uncharged. However, since r >» a, we can consider ¢’ and ¢” as composing
an image dipole of moment P = “7'} . 9;’- = %;—P.

As r > a, the image dipoles P’ and P” may be considered as approx-
imately located at the center of the sphere. That is, the total image dipole
moment is

3
Pimage = P/ + P” = 2(%) P.

The problem is then to find the force exerted on P by P image-
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The potential at a point r produced by Pjage is

1 P -r
plr) = o —meget

xepg 13

and the corresponding electric field is

3(r-P; r — r’Pinage
E(r) = - Vp(r) = ( ""945%0?5 mage

At the location of P, r = re;, the field produced by Pimage is then

= = e, = P.
2mepr® ~ weor® © weor®

The energy of P in this field is

3 p2
W=-P-E= -1‘—55 ,
TEPT
which gives the force on P as
3 p?2 3
F=—VW=—6a P _Ga PP
wEQTT wEgr?

1090

Suppose that the potential between two point charges ¢; and ¢, sepa-
rated by r were actually q1g2¢~ K" /r, instead of ¢1¢2/r, with K very small.
What would replace Poisson’s equation for the electric potential? Give the
conceptual design of a null experiment to test for a nonvanishing K. Give
the theoretical basis for your design.

(Chicago)

Solution:

With the assumption given, Poisson’s equation is to be replaced by

V2 + K2¢ = —4mp

in Gaussian units, where p is the charge density.
To test for a nonvanishing K, consider a Faraday cage in the form of
a conducting spherical shell S, of volume V/, enclosing and with the center
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at ¢, as shown in Fig. 1.46. Let the radius vector of g2 be rj. Denoting a
source point by r’ and a field point by r, use Green’s theorem

/ (VV'2¢ — gV2Y)aV’ = ]{(¢V’¢ — ¢V'y) - dS’.
v s

Choose for ¢ the potential interior to S due to ¢, which is external to S,
given by
V2 + K24 =0,

as p = 0 (being the charge density corresponding to the distribution of ¢)
inside S, and for ¥ a Green’s function G(r,r') satisfying

V3G = —47é(r —1'),
G=0 on S,

where §(r — r') is Dirac’s delta function.

S 9,

Fig. 1.46

The integrals in the integral equation are as follows:
/ ¢vl2¢dvl :/ le2¢dvl — _1{2/ G¢dV',
v v v
/ ¢V IpdV’ = / $V2GAV' = —41r/ $(r,x')8(r — ')AV’ = —4ng(r),
v v v
f'/’v'di'ds':}{GV'tﬁ-dS':O as G=0 on S,
N S
de’v/)-dS’ = ¢sf V'G-ds' = ¢5/ v2Gdv'
s v

= —4rdg [/ §(r —x")dV' = —4ngs
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as ¢ =const.= ¢g, say, for S a conductor. Note that the divergence theorem
has been used in the last equation.
The integral equation then gives

é(r) = Zl; (41r¢s + K? /v G¢dV')
K2
= ¢s + 4—77/v G(r,x)¢(r,x')aV’.

If K =0, then ¢(r) = ¢s, i.e., the sphere V is an equipotential volume so
that no force will be experienced by q;. If K # 0, then ¢(r) will depend on
r so that g; will experience a force —q;V¢.

Hence measuring the force on q; will determine whether or not X = 0.

1091

A very long conducting pipe has a square cross section of its inside
surface, with side D as in Fig. 1.47. Far from either end of the pipe is
suspended a point charge located at the center of the square cross section.

(a) Determine the eletric potential at all points inside the pipe, perhaps
in the form of an infinite series.

(b) Give the asymptotic expression for this potential for points far from
the point charge.

(c) Sketch some electric field lines in a region far from the point charge.
(Hint: avoid using images.)
(UC, Berkeley)

rr—b—-r

Fig. 1.47
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Solution:

(a) Poisson’s equation for the potential and the boundary conditions
can be written as follows:

V2p = ~2L6(2)6(y)5(2)
9’I::ﬂ)/z =0,
"”ly=tn/2 =0.
By Fourior transform
o0
sk = [ elmunetds,
the above become
(& + &n — K)oz, v, k) = - 26(2)8(y),
32,98, oapja =0 (1)
¢(z’y’k)|y=iD/2 =0.

Use F(Q) to denote the functional space of the functions which are equal
to zero at £ = :t% ory= :t%. A set of unitary and complete basis in this
functional space is

2 (2m+1)rz (@em'+)ry 2 (@m+l)xs . 2n'xy
D Ccos D cos D ' D COs D sin D

! - - ¢
2 (2m ;l)ly , %sln 2nl')rz sin 2nD:r: .

2 oin 2nxz
psin=p

cos

mm >0,n,n" >1.

In this functional space §(x)6(y) may be expanded as

2 o0 ’ -
5(z)é(y) = (—;—) Z'_o cos (2m-;l)m: cos (2m ;1) v, (2)

Letting ¢(z,y, k) be the general solution in the following form,

1 41
(2m+ Uz cos (2m' + )7y

¢(z,y,k)= Z ¢mm’(k)c°s D D ) (3)

m,m’=0
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and substituting Eq. (3) into Eq. (1), we find from Eq. (2) that
Q [+) 2m+1l)rz cos 2m'41)r

cos
@(z,y, k) = 7 .
( €D2 ;:0 k2 + (!2m+l!l')2 + (!2m -,tl [l)g

Applying the integral formula

] eikz Al
k=T M , (A>0),
oo K24+ A2 A ( )

we finally obtain

(z , z) _ 2Q i cos!2m+1!1w congm’+1!r!
PEDE = 26D 2 Om+ 1 £ @m + 1)

e~ BVOmITTREm ) |

(b) For points far from the point charge we need only choose the terms
with m = m’ = 0 for the potential, i.e.,

\/_Q mr 1ry 4—]:]
£o1rD cos o cos

(c) For the region z > 0, the asymptotic expression of the electric field
forz» Dis

E, = —%ﬁ = go%q-smfcos—le ’g"‘
E,:—%’f:@‘ cos "sin%e"q",
‘—Sg-cos § cos Fe” Bes

The electric lines of force far from the point charge are shown in Fig. 1.48.

|
|

Fig. 1.48
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1092

Consider two dipoles P; and P, separated by a distance d. Find the
force between them due to the electrostatic interaction between the two
dipole moments, for arbitrary orientation of the directions of P, and P,.
For the special case in which Py is parallel to the direction between the
two dipoles, determine the orientation of P, which gives the maximum
attraction force.

(Columbia)

Solution:

In Fig. 1.49 the radius vector r is directed from P, to P,. Taking
the electric field produced by P; as the external field, its intensity at the
position of P is given by

_3(P, -r)r—r’P,;

E
© 4megrs

Hence the force on P is

F= (P2 . V)Ec
3
= dmeor? {r’[(P1 - Py)r + (Py -r)Py + (P - 1)P1] = 5(Py -r)(Py - 1)r}.
P )
\ r /8
Fig. 1.49

If Pyflr, let Py-r = Porcosf. Then Py - P2 = Py P3 cos# and the force
between P; and P5 becomes

3

T 4megrs

{—3P, Py cosfr + PirP,} .

The maximum attraction i1s obviously given by 8 = 0°, when P is also
parallel to r. This maximum is

3P1 Pgl‘
2megrs

Fmax - -

Note that the negative sign signifies attraction.
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1093

An electric dipole with dipole moment P, = P,e, is located at the
origin of the coordinate system. A second dipol€ of dipole moment Pz =
Pse, is located at (a) on the +z axis a distance r from the origin, or (b)
on the +y axis a distance r from the origin. Show that the force between
the two dipoles is attractive in Fig. 1.50(a) and repulsive in Fig. 1.50(b).
Calculate the magnitude of the force in the two cases.

(Columbia)

X
(a) (b)
Fig. 1.50
Solution:
The electric field produced by P, is
_ Py-r _ P, 3P cosBA
Er= v(41r€or3) T dmeerd + dreerd

where 0 is the angle between P and r. The interaction energy between P;

a.nd P1 is
PP 3P,

bl COi
dmegrd  dweord

Hence the components of the force acting on P; are

_OW. 3PP, 9P P

We=—P2'E1= 820.

F, = = — 26
" Or  4meort Ameor? st
18W, 3PPy .
Fa——; 58 = " Zmeqrt sinf cosf .

(a) In this case § = 0 and we have
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The negative sign denotes an attractive force.
(b) In this case § = § and we have

_ 3PP,
"7 4xegrt’

F0=0)

The positive sign denotes a repulsive force.

1094

An electric dipole of moment P = (P,,0,0) is located at the point
(0, ¥0,0), where zo > 0 and yo > 0. The planes z = 0 and y = 0 are
conducting plates with a tiny gap at the origin. The potential of the plate
at z = 0 is maintained at V; with respect to the plate y = 0. The dipole is
sufficiently weak so that you can ignore the charges induced on the plates.
Figure 1.51 is a sketch of the conductors of constant electrostatic potentials.

(a) Based on Fig. 1.51, deduce a simple expression for the electrostatic
potential ¢(z,y).
{b) Caleulate the force on the dipole.
(MIT)

Fig. 1.51

Solution:

(a) Any plane passing through the z-axis is an equipotential surface
whose potential only depends on the angle @ it makes with the y = 0 plane:

#(z,y) = 4(0).
Accordingly, Laplace’s equation is reduced to one dimension only:

d*¢

@ =0
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with the solution oVi

taking into account the boundary conditions ¢ = 0 for 6 =0 and ¢ = Vj
for 6 = 7. This can also be written in Cartesian coordinates as

_ 2 y
#(z,y) = = arctan (a:) .
(b) The field is then

2Vo y x

Hence, the force acting on the dipole (P,,0,0) is

OE
F=(P -V)E=P g corere
_ 2V0Pz(_ 2z0y0 o + z3 — yi e )
T (=B+93)? " (34432 Y)°
1095

Inside a smoke precipitator a long wire of radius R has a static charge

A Coulombs per unit length. Find the force of attraction between this wire

and an uncharged spherical dielectric smoke particle of dielectric constant

¢ and radius a just before the particle touches the wire (assume a < R).
Show all work and discuss in physical terms the origin of the force.

(SUNY, Buffalo)

Solution:

As a € R, we can consider the smoke particle to lie in a uniform field.
In Gaussian units the field inside a spherical dielectric in a uniform external
field is (see Problem 1062)

3

Ein = 2_+€Eex .
The small sphere can be considered an electric dipole of moment
4 5 3e=1), _ 4xa(e-1)
P-swa e+2 7 e+2 Bex -
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The energy of the polarized smoke particle in the external field is

1 2mad(e — 1)
=——P.E,, = ——02>__ 2
W=—sP E. e,

E.x is radial from the axis of the wire and is given by Gauss’ flux theorem
2 A
Eo =
T 2

e, .

Hence
_(e=1)a®»?
2x(e +2)r?’

and the force exerting on the smoke particle is

W =

(€ = 1)a®A?

F=-VW :_—Wer.

Just before the particle touches the wire, r = R and the force is

_ (- l)a:’,\ze
T me+2)R3TT

The negative sign shows that this force is an attraction. This force is
caused by the nonuniformity of the radial field since it is given by —VW.
The polarization of the smoke particle in the external field makes it act like
an electric dipole, which in a nonuniform field will suffer an electric force.

5. MISCELLANEOUS APPLICATIONS (1096—-1108)

1096

A sphere of radius a has a bound charge @ distributed uniformly over
its surface. The sphere is surrounded by a uniform fluid dielectric medium
with fixed dielectric constant £ as in Fig. 1.52. The fluid also contains a
free charge density given by

p(x) = —kV(r),

where k£ is a constant and V{(r) is the electric potential at r relative to
infinity.
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(a) Compute the potential everywhere, letting V = 0 at r — oo.
(b) Compute the pressure as function of r in the dielectric.

(Princeton)
Fig. 1.52
Solution:
The electric potential satisfies Poisson’s equation
k
V2V(r)=—§=-%r), r>a. (1)

Considering the spherical symmetry of this problem, we have V(r) = V(r).
Equation (1) then becomes

1d/{,dv\ k
—zd—( F)’"V(")’ r>a.

Writing V = u/r, one has
d?u
dr?
The solutions of Eq. (2) can be classified according to the values of k:
(1) If & > 0, the solution is

u=Aexp(:!: \/Er)
€

V= éexp(:t \/Er)
r €

The condition V = 0 for r — oo indicates that only the negative exponent
is allowed. Gauss’ theorem for the spherical surfaces,

_Jov
sar

k
= Eu. (2)

Accordingly,

ds=Q,
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then determines the coefficient A as

Ao Qe
4x(aa + 1)

where a = \/kfc. On the other hand, as there is no electric field inside
the sphere, the potential inside is a constant equal to the potential on the

surface. Therefore
e|r(l—l')
s r>a
V(!‘) = { 111aa+l$r 4
4:¢Za¢+li ’ r S a.

Stability of the fluid means that
pa+n-T = const,

where n = e,, T is Maxwell’s stress tensor. If the fluid is still, the constant
is equal to zero and one has

ve. = —e, - T,
As ¢ is fixed, we further have

1 AUNG N

0 00

Hence, the pressure is

e(l+ar)? ,
2TV ().

-_£ 2
(2) If k < 0, with 82 = —k/e, the solution of Eq. (2) becomes
_ B ifr
Vir)= e

with real part B
V(r) = - cos(Br).

Substitution in Gauss’ theorem

av
-ﬁwds_q
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gives
B= Q
4x(Basin fla + cos fa)

Hence the electric potential is

gcooE¢
V_{4t asin fatcos fa)r ? r>a,
Itaiﬁatmﬂa-}-ii ' r S a,

and the pressure is

_€e(fr+tanfr+1)°
2 r?

-t 2 _

1097

Vi(r).

123

Flat metallic plates P, P/, and P” (see Fig. 1.53) are vertical and the
plate P, of mass M, is free to move vertically between P’ and P”. The
three plates form a double parallel-plate capacitor. Let the charge on this
capacitor be ¢g. Ignore all fringing-field effects. Assume that this capacitor
is discharging through an external load resistor R, and neglect the small
internal resistance. Assume that the discharge is slow enough so that the

system is in static equilibrium at all times.

Fig. 1.53

(a) How does the gravitational energy of the system depend on the

height h of P?

(b) How does the electrostatic energy of the system depend on h and

on the charge ¢?
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(¢) Determine h as a function of g.
(d) Does the output voltage increase, decrease, or stay the same as this
capacitor discharges?
( Wisconsin)
Solution:
(a) The gravitational energy of the system is

(b) We suppose that the distance between P and P’ and that between
P and P” are both d. Also suppose that each of the three plates has width
a and length I, and when h = hg, the top of plate P coincides with those
of plates P’ and P”. The system may be considered as two capacitors in
parallel, each with charge ¢/2 and capacitance

_ 600([ + h - ho)

¢ d

when the height of P is h.
The electrostatic energy stored in the system is then

2 2
w,=9.1 1) 1___¢d
2\2/ C  deoa(l+h—hy)
(c) The total energy of the system is
___¢d
460(1(1 + h— ho)

Since the discharge process is slow, P for each ¢ will adjust to an equilibrium
position h where the energy of the system is minimum. Thus for each g,

|, =0, giving

W=W,+W,= + Mgh.

d
eoaMg

=1 -
h._2 +ho—1.

Therefore, h varies linearly with g¢.

(d) As the system is discharging through R, ¢ decreases and h decreases
also. Hence the output voltage

q/eoa(l+h—ho) Mgd
Vo= = =

2 d Epa

does not vary with ¢, i.e., V, remains constant as the capacitor discharges.
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1098

A capacitor consisting of two plane parallel plates separated by a dis-
tance d is immersed vertically in a dielectric fluid of dielectric constant K
and density p. Calculate the height to which the fluid rises between the
plates

(a) when the capacitor is connected to a battery that maintains a
constant voltage V' across the plates, and

(b) when the capacitor carries a charge @, but is not connected to a
battery.

Explain physically the mechanism of the effect and indicate explicitly
how it is incorporated in your calculation. (You may neglect effects of

surface tension and the finite size of the capacitor plates.)
(UC, Berkeley)

Solution:

When the capacitor is charged, it has a tendency to attract the dielec-
tric fluid. When the electrostatic attraction is balanced by the weight of
the excess dielectric fluid, the fluid level will rise no further. As shown in
Fig. 1.54, let b be the width and a the length of the plates,  be the height
of the capacitor in contact with the fluid, and h be the height to which the
fluid between the plates rises from the fluid surface. Then the capacitance
of the capacitor (in Gaussian units) is

C= 4—1%[K:c+(a—z)] = Z:—d[(K—l)z+a],

where K is the dielectric constant of the fluid.

(a) If the voltage V does not change, as shown in Problem 1051 (a),
the dielectric will be acted upon by an upward electrostatic force

_ (K =12

F. 87a

_L(a-x)
gl

/
% —]

N

/‘-—}—-

Fig. 1.54
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This force is balanced by the weight mg = pghbd in equilibrium. Hence
the rise is

h= VHK - 1)
T 8wpgd?

(b) If the charge Q is kept constant instead, then according to Problem
1051 (b) the electrostatic force is

. Q2 dC _ 2mdQ(K 1)

F=scid = K=s+af

At equilibrium the fluid level will rise to a height

QYK -1)
= pPK - Dz+alP

1099

A cylindrical capacitor is composed of a long conducting rod of radius
a and a long conducting shell of inner radius b. One end of the system
is immersed in a liquid of dielectric constant ¢ and density p as shown
in Fig. 1.55. A voltage difference V is switched on across the capacitor.
Assume that the capacitor is fixed in space and that no conduction current
flows in the liquid. Calculate the equilibrium height of the liquid column
in the tube.
(MIT)

76

/

T
| ~ib—Q

Fig. 1.55
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Solution:

Let ! be the length of the cylinder, and z the length of the dielectric
contained in the cylinder. Neglecting edge effects, the capacitance is

_ 2x{(e — €0)z + €0l]
C==—"Tfol

As the voltage difference Vj across the capacitor is kept constant, according
to Problem 1051 the upward force acting on the dielectric is

Fo Y2 dC _ mle—e)Wd
2 dz In(bja)

This force is in equilibrium with the gravity force:

w(e — Eo)Vo2

In(b/a)

= pg - (b — a®)h,

giving
h= (e —€)V¢
pa(t — a?)In(5/a)

1100

As in Fig. 1.56, the central plate, bearing total charge @, can move as
indicated but makes a gastight seal where it slides on the walls. The air on
both sides of the movable plate is initially at the same pressure pp. Find
value(s) of z where the plate can be in stable equilibrium.

(UC, Berkeley)

x

1
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Fig. 1.56
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Solution:

Initially, as the voltages on the two sides of the central plate are the
same, we can consider the three plates as forming two parallel capacitors
with capacitances C; and Cy. When the central plate is located at position
z, the total capacitance of the parallel capacitors is

A A 2AL

C=C+C= T all=0) i)

Hence the electrostatic energy of the system is

W _l_Q_2_€oQ2(L2—£2)
cTeC T 4AL '

As the charge Q) is distributed over the central plate, when the plate moves
work is done against the electrostatic force. Hence the latter is given by

dr ~ 2AL

F, =

As F > 0, the force is in the direction of increasing z. As an electric
conductor is also a good thermal conductor, the motion of the central plate
can be considered isothermal. Let the pressures exerted by air on the left
and right sides on' the central plate be p; and p; respectively. We have by
Boyle’s law

_ _PolL _ ml
pl—'L+I: PZ—L_z-
When the central plate is in the equilibrium position, the electrostatic force
is balanced by the force produced by the pressure difference, i.e.,

Fe =(P2—P1)Ar
or
Q3%pz _ 2ApoLx
2AL T L2 —2z2°

This determines the equilibrium positions of the central plate as

4p0A2)%

=4L -
z== (l 0
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1101

Look at the person nearest to you. If ke (or she) is not already spher-
ical, assume that he (or she) is. Assign him (or her) an effective radius R,
and recall that he (or she) is a pretty good electrical conductor. The room is
in equilibrium at temperature T" and is electromagnetically shielded. Make
a rough estimate of the rms electrical charge on that person.

(Princelon)

Solution:

The capacitance of a conducting sphere of radius R is C' = 4wgoR. If
the sphere carries charge Q, then its electric energy is Q?/2C. According
to the classical principle of equipartition of energy,

0?
& = L,

2 2
\/(—2_—2=\/ClcT,

where k is Boltzmann’s constant.
Taking R = 0.5 m, T = 300 K, we get

\/Q: = \/4meoRET

= /47 x 8.85 x 10-12 x 0.5 x 1.38 x 10-23 x 300
=48x 10"'¢ C.

or

1102

An isolated conducting sphere of radius a is located with its center at
a distance z from a (grounded) infinite conductor plate. Assume z 3 a
find

(a) the leading contribution to the capacitance between sphere and
plane;

(b) the first (non-vanishing) correction to this value, when the capaci-
tance is expressed in terms of a power-series expansion in a/z;

(c) to leading order the force between sphere and plane, when the
sphere carries a charge Q. What is the energy of complete separation of
the sphere from the plane? How does this energy compare with the energy
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of complete separation of two such spheres, with charges +Q and —Q,
initially spaced apart by a distance 2z? Explain any difference between
these two values.

(Columbia)

Solution:

(a) To leading order, we can regard the distance between the conduct-
ing sphere and the conductor plane as infinite. Then the capacitance of
the whole system corresponds to that of an isolated conducting sphere of
radius a, its value being

C = 4nepa.

(b) To find the first correction, we consider the field established by a
point charge Q at the spherical center and its image charge —Q at distance
z from and on the other side of the plane. At a point on the line passing
through the spherical center and normal to the plane the magnitude of this

field is
Q Q

b= dmeo(z — h)2  4dmeo(z + h)2’

where h is the distance from this point to the plane. The potential of the
sphere is then

z—-a

_ Z~a _ Q Z—a Q
V= _./o Edh = 4mweo(z — h)lo 4meo(z+ h)

-9 [+ 1.9 1-1)
" 4mega 2z —al ~ 4mega 22/

Hence the capacitance is

1]

_9 a
C’_V~41rsoa 1+2z

and the first correction is 2meoa?/z.

(c) When the sphere carries charge @, the leading term of the force
between it and the conducting plane is just the attraction between two
point charges Q and —) separated by 2z. It follows that

Qz
T T 16megz?
The energy required to completely separate the sphere from the plane is

0o 00 2 2
W,=—] Fdr:/ Q dr = qQ

16meor? ~ 16mepz
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On the other hand, the energy of complete separation of the two charges Q
and —@Q, initially spaced by a distance 2z, is

00 00 Q2 Qz
Wa = —./2’ Fdr = . 4160,.2(11' = y— =2W;.

The difference in the required energy is due to the fact that in the first case
one has to move Q) from z to oo while in the second case one has to move
Q from z to oo and —Q from —z to —oo, with the same force —Q?/4reor?
applying to all the three charges.

1103

A dipole of fixed length 2R has mass m on each end, charge +Q; on one
end and —Q); on the other. It is in orbit around a fixed point charge +Q;.
(The ends of the dipole are constrained to remain in the orbital plane.)
Figure 1.57 shows the definitions of the coordinates r,8,a. Figure 1.58
gives the radial distances of the dipole ends from +@Q;.

(a) Using the Lagrangian formulation, determine the equations of mo-
tion in the (r,0, a) coordinate system, making the approximation r » R
when evaluating the potential.

(b) The dipole is in a circular orbit about @, with ¥ ~ # & § ~ 0 and
a € 1. Find the period of small oscillations in the a coordinate.
(Wisconsin)

002
a ,’,Y

”~

r - az

[*]

o))
Fig. 1.57 Fig. 1.58
Solution:

(a) The angle between the dipole and the polar axis is (f + a), so the
angular velocity of the dipole about its center of mass is (8+¢&). The kinetic
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energy of the dipole is then

T = %-2m-(1"2+r20'2)+%-2mR2-(é+d)2
= mr? + m(r? + R?)8? + mR%? + 2mR%a .

Moreover, the potential energy of the dipole is

1 Q2 1 i@z

4reg T4 Ameg r.

V=

re = Vr2+ R2+2rRcosa = r\/l :{:2§ cosa + (-I’l:")2

zr\/1i2—?cosazr(1:|:%'2~§cosa) =r+ Rcosa,

1 1 2R cosa N _2Rcosa

— ~
ry T r? — R2cos?a r2

?

and the potential energy is

. @Qi1Q2 2Rcosa
T 4neq r2

The above give the Lagrangian L = T — V. Lagrange’s equation
4 3_L> _oL
dt \ or or

Q2 _ 2Rcos

gives

T N2 =0:
mr — mr6? + dres 3 0; (1)

of the other Lagrange’s equations:

d(oLy oL

dt\ 50 a6
gives

(+* + R)§ + R*a 4+ 2mrid =0, (2)
and 4 (k) — 8L = ¢ gives

Woa Q1Q2 sina
mR(a + 8) + dreq | 12 =0. 3)

Equations (1)-(3) are the equations of the motion of the dipole.
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(b) As ¥ ~ # = 0, r is a constant. Also with § = 0,0 < 1 (i.e,,
sin o = a), Eq. (3) becomes

mRa+ 3922 _ g
41!'80 r?

This shows that the motion in « is simple harmonic with angular frequency

@Q: 1

4req mRr?’

The period of such small oscillations is

27 41l'€o
T=—=2nx -mRr?.
w V Q:Q:

1104

The Earth’s atmosphere is an electrical conductor because it contains
free charge carriers that are produced by cosmic ray ionization. Given that
this free charge density is constant in space and time and independent of
the horizontal position.

(a) Set up the equations and boundary conditions for computing the
atmospheric electric field as a function of altitude if the near-surface field
is constant in time and vertical, has no horizontal variation, and has a
magnitude of 100 volts/meter. You may assume that the surface of the
Earth is perfectly flat if you wish.

(b) Estimate the altitude dependence of the conductivity.
(¢) Solve the equations of part (a) above.
(UC, Berkeley)
Solution:

(a) This problem is that of a steady field in a conductor. The continuity
equation V - E + %’f = 0 and Ohm’s law j = o E give the basic equation

d _

taking the z-axis along the vertical.
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The given boundary condition is
El;=¢ =100 V/m.

(b) Since the frequency of collision between a free charge and the
atmospheric molecules is proportional to the density of the latter, while
the conductivity is inversely proportional to the collision frequency, the
conductivity will be inversely proportional to the density of atmospheric
molecules. For an isothermal atmosphere the number density of the atmo-
spheric molecules is

n= noe—%‘,"' ,

where m is the average mass of a molecule, g is the acceleration of gravity,
k is Boltzmann’s constant, and T is the absolute temperature. Besides,
the conductivity is also proportional to the number density of the free
charges. As this density is assumed to be independent of altitude, the
altitude dependence of the conductivity can be given as

o =ooe (2)
(¢) Equation (1) gives

dE _ _Edo

dz = o dz

Using Eq. (2) and integrating we have

E = Ege~ W

where Eq = 100 V/m.

1105

Two flat plates, each 5 cm in diameter, one copper, one zinc (and both
fitted with insulating handles), are placed in contact (see Fig. 1.59) and
then briskly separated.

(a) Estimate the maximum charge one might expect to find on each
plate after complete (3> 5 cm) separation.

(b) Volta in experiments of this sort (c.1795) observed charges of the
order (in our units) of 10~° Coulomb. Compare this result with your esti-
mate in (a), reconciling any difference.
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(c) What charge would be expected if the plates, before separation,

were arranged as in Fig. 1.607
(Columbia)

a EZZ2ZA4cu

Cy
Zn é
Fig. 1.59 Fig. 1.60

Solution:

(a) When the two plates are in contact, they can be taken as a parallel-
plate capacitor. Letting § be their separation and V be the potential dif-
ference, the magnitude of charge on each plate is

@=CV= ____«eo(g-)?v .
é
As d = 0.05 m, taking the contact potentialas V ~ 1072V and § ~ 10-1°m
we obtain
Q~17x10"7C.

(b) The above estimated value is greater than the experimental results
of Volta (= 10~ C). This is probably caused by the following. First of all,
due to the roughness of the plates’ surfaces, their average separation might
be larger than 107! m. Secondly, in the separating process the charges
might accumulate on some ridges of the plates (also because of roughness),
so that some of the charges might cancel between the two plates.

(c) According to Fig. 1.60, the contact area is less than that of case (a),
hence the corresponding charges after separation will be much diminished.

1106

An ionization chamber is made of a metal cylinder of radius a and
length L with a wire of radius & along the cylinder axis. The cylinder is
connected to negative high voltage —Vj and the wire is connected to ground
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by a resistor R, as shown in Fig. 1.61. The ionization chamber is filled with
argon at atmospheric pressure. Describe (quantitatively) as a function of
time the voltage AV across the resistor R for the case where an ionizing
particle traverses the tube parallel to the axis at a distance r = a/2 from
the central axis and creates a total of N = 10® ion-electron pairs.

Fig. 1.61

Given: a= 1l em, b= 0.1 mm, L = 50 cm, V, = 1000 V, R = 10%Q),

. . cm
mobility of argon ions puy = 1.3 - % .
mobility of electrons u_ =6 x 10° «z. %E
(Hint: In order to make reasonable approximation, you might have to cal-
culate the RC time constant of this system.)

The voltage (1000 volts) is insufficient to produce ion multiplication
near the wire (i.e., this is not a proportional counter).

Note that the detailed shape of the pulse rise is important.

(Princeton)

Solution:

Use cylindrical coordinates (r, ¢, z) with the z-axis along the cylindrical
axis. The electric field at a point (r,,z) satisfies E o le, according to
Gauss’ flux theorem. From

—/ E(r)dr = -V}
b
we get

E(r) = rln(%)er'

If Qo is the charge on the wire, Gauss’ theorem gives

Qo

2mepLLr

E(r)=

e, .
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The capacitance of the chamber is accordingly
C = Qo/Vo = 2meoL/In(a/b)
=27 x 8.85 x 10717 x 0.5/ In (ﬁf)
=6x10"12F,
Hence the time constant of the circuit is
RC=10°x6x10"2=6x10""s.

The mobility of a charged particle is defined as u = édd—:, or dt = ﬂ;.
Hence the time taken for the particle to drift from r; to rp is

At = /" dr__ _ In(a/b) (r2 = r2).
re I-‘O;T“_‘(/’;']ZS 2#% 2 !

For an electron to drift from r = a/2 to the wire, we have

In(3) [ray2_,2] . I(3) o
At~ —21|=) — R —
2/1_Vo [(2) b 2;‘_Vo 4

In 100 10-4

—_ —_ -8
T Ix6x10° x10-1x 1000 * 4~ 20x107"s

and for a positive ion to reach the cylinder wall, we have

In(%) a\? In¢ 3q°

1, = —b |g2 (= = b

Ay 2#+Vo[a (2)} Ve 4
_ In 100 . 3x 1074
2% 1.3 x 10-4 x 1000 4

It follows that At_ « RC « At;. When the electrons are drifting from
r = a/2 to the anode wire at r = b, the positive ions remain essentially sta-
tionary at r = a/2, and the discharge through resistor R is also negligible.
The output voltage AV of the anode wire at t < At_ (taking ¢ = 0 at the
instant when the ionizing particle enters the chamber}) can be derived from
energy conservation. When a charge ¢ in the chamber displaces by dr, the
work done by the field is ¢E - dr corresponding to a decrease of the energy
stored in the capacitance of d(CV?/2). Thus CVdV = —¢E . dr = —qEdr.
Since AV « Vy,V & V;, and we can write

=13x10"3s.

CVodV = —qEdr.
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Integrating, we have

CVAV = —¢ [ Edr= _q/ Y
af2 a

0
d
2 rIn(})
= - iln .2_'_')
~ inp "W )

Noting that

we have

or

and, as ¢ = —Ne,

av= ey LGN/, ¢

At t = At_,
Ne 2b a

_ _10's x 1.6 x 10-19 y In 50
6 x 10-12 In 100
=-23x10"3%vV.

ol !

This voltage is then discharged through the RC circuit. Therefore, the
variation of AV with time is as follows:

(1 _ %,)1/2t
" 796 x 10-8
t
T 6x10-7

AV =586 x 10~3In [1 ]v, for 0<t<9.6x107%s;

AV =-23 x 10'3exp( ) V, for t>96x10"%s.

This means that the voltage across the two ends of R decreases to —2.3 mV
in the time At_, and then increases to zero with the time constant RC. A
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final remark is that, as the ions drift only slowly and the induced charges on
the two electrodes of the chamber are discharged quickly through the RC
circuit, their influence on the wave form of AV can be completely ignored.

1107

An intense energetic electron beam can pass normally through a
grounded metal foil. The beam is switched on at ¢ = 0 at a current
I = 3 x 10° amp and a cross sectional area A = 1000 ¢cm?. After the
beam has run for 10-8 sec, calculate the electric field at the point P on the
output face on the foil and near the beam axis due to the space charge of
the beam.

(Wisconsin)
Solution:

At t = 1073s, the beam forms a charge cylinder on the right side of
the foil with a cross sectional area A = 1000 cm? as shown in Fig. 1.62.
The length h of the cylinder is ¢t = 3 x 10® x 1073 = 3 m, assuming the
electrons to have sufficiently high energy so that their speed is close to the
velocity of light. We may consider a total charge of

—Q=-It=-3x108x10"83=-3x10"2C

being uniformly distributed in this cylinder. As the charge on the left side
of the foil does not contribute to the electric field at point P (Shielding
effect), the action of the grounded metal foil can be replaced by an image
charge cylinder. This image cylinder and the real cylinder are symmetrical
with respect to the metal foil and their charges are opposite in sign (see
Fig. 1.62).

foil

+ @ i -@ P 2R
A
P—3m . im z—

Fig. 1.62 Fig. 1.63
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We first calculate the electric field at point P on the axis of a uniformly
charge disc of surface charge density o as shown in Fig. 1.63. The potential
is

1 /Ra-2wrdr_ 1 R sxdr?
47eg Jo \/22-}-1'2—4160 o V224t

R
—1‘?—2\/:7+r"’l = —a—[\/z?+R2—z],
wEQY 0 2¢0

and the field intensity is

pp =

B, = _O0p L( z 1)
P="r T T \V 1 R2 ’
Refer now to Fig. 1.62. The field at the point P produced by the right
charge cylinder is

E —i/h 9 4 (—-—’——-1
P= 260 0 h?l’Rz \/m

e | (o

SRy \V2rRE

-_ 9 l/=a7m"_

- 21re:0hR2 #+R Io h

2 2 _
= g |V F T R -]

Hence the total electric field at P is

__:Q_ _ /R 2
Ep = 1reghR2[R+h R +h]

-3x 102 01
= 32 4
7 x 8.85 x 10~ 12x?.x"1 [3+V Y

= —-1.42x 10° V/m.

The minus sign indicates that the field intensity points to the right.

1108

The Fig. 1.64 could represent part of a periodic structure of alternating
metallic electrodes and gaps found in an electrostatic accelerator. The
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voltage on any electrode is higher by Vj than that on the previous electrode.
The structure is two-dimensional in that the electrodes have infinite extent
in the z direction. The object of this problem is to find the electric field in
the region |y| < W.

(a) For the purpose of mathematical simplicity we will assume that
E along lines such as that between points a and b is constant and has
no y component. What does this imply about the electrostatic potential
between a and b7 How might one try to achieve such a boundary condition
in practice?

(b) As a guide to subsequent calculations, use physical reasoning to
make a sketch of the electric field lines (with directions) in the structure.

(¢) Find an expression for the electrostatic potential ¢(z,y) in the
region |y| < W as an infinite sum over individual solutions of Laplace’s
equation.

(d) Find the electric field E(z,y).
(MIT)

v ay Ve Vo a2 Ve2 Vo 03 Ve 3V0

2 B 2979 B (29 178 B T (2% 178

44

Fig. 1.64

Solution:

(a) Use the coordinates shown in Fig. 1.64. The electric field between
the points a; and b; is constant, and has no y component. This shows
that the electric field lines between a; and b; are parallel to the z-axis.
Mathematically the potential can be expressed as

V4nV,, =ze|®L, imtll],
¢(.‘B,ﬂ:W) = { [2271—1 22n ]
V—nVo, IE[—'z—L,TL],
Vor W

=2 _4y

L 4
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(riosh -, cclnh B
Vot %+ Ye, st
= p1(z) + pa(z) .

(n=0,%1,...)

Here py(z) represents the sawtooth wave shown in Fig. 1.65. Its Fourier
cosine series, of period L, is

2 — 2mrz [ 2mrxz
pa(z, W) = i Z cos — A pa(z, W) cos 7 dx
m=1

_ W% 1 2(2m + )az
Z= @m+12 ®" 1 -

To achieve these conditions in an electrostatic accelerator, the separation
of the electrodes in the y direction must be much greater than L.

?ix)

l 1
! |
T b—1—

s hos
x

Fig. 1.65

(b) The electric field lines in the accelerator is shown in Fig. 1.66.
(Here we only show the electrostatic lines of force between two neighboring
electrodes; the pattern repeats itself.)

l Ve2vp L l Ve3vg
v./
3\

I Vo2V | rV*i‘Vo

L

N

Fig. 1.66
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(c) The electric potential in the region |y| < W satisfies the following
equation and boundary condition:

{ (3";’! + 3%::)¢(z,y) =0,
¢(z, W) = p1(z) + p2(2) .

Defining ¥(z,y) = ¢(z,y)+V — %‘ + !15, it satisfies the following equation
and boundary condition

{ (£ + ) =0,
Y(z, W) = p2(2).
Since p3(z) in the boundary condition is an even periodic function with

period L (see Fig. 1.65), the solution must also be an even periodic function
of z. Thus we can write

400
¥(z,y) = vo(y) + Z cos (
m=1

imnz
L

)om(s

and substitute it in the equation for ¥(z,y). We immediately obtain

¥m(y) = am cosh 2711% + by, sinh _2"211/ .

Also, substituting t%(z,y) in the boundary condition and comparing the
coefficients, we get

Y(z,y) = Vo g ! cosh [ 425+ 4y cosh [2(21: ¥ l)n]
’ 72 L= (20 + 1)? cosh 2201 1) L '

Hence

Vo Vor 2V X 1
zy)=V-—=—+—]+—
o) L L " 7% £ (2n +1)? cosh[ 2]

osh [Mwy] cos {2(27'—;-1—%::] .

L
(d) Using E = —V¢, we obtain the field components

+00 Handt : e2(Indl
- _¥ 4V cuh[—‘—,_’—lwy]-m[-‘—,_i’—lﬁl
Ee= -7 +58 & ~onthycon 55 ew]

E = —4% . 100 Sinh[-‘—x‘j—” Inti :y]cos[—LLi—H 29ti) yg)
v—  xL nso (2n+l)ooth[3ﬁ'i£u-tW] )
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1. MAGNETIC FIELD OF CURRENTS (2001-2038)

2001

A cylindrical wire of permeability u carries a steady current I. If the
radius of the wire is R, find B and H inside and outside the wire.
(Wisconsin)

Solution:

Use cylindrical coordinates with the z-axis along the axis of the wire
and the positive direction along the current flow, as shown in Fig. 2.1. On
account of the uniformity of the current the current density is

N
1=

Fig. 2.1

Consider a point at distance r from the axis of the wire. Ampére’s circuital

law
fH-dl:I,
L

where L is a circle of radius r with centre on the z-axis, gives for r > R,

1
HE) = gapee
or

1
B(r) = -g:—reo

since by symmetry H(r) and B(r) are independent of §. For r < R,
2

. Ir
I(r) = nrlj = y7

147
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and the circuital law gives

Ir Ir
H(T) = m—z-eg N B(T) = E%e. .

2002

A long non-magnetic cylindrical conductor with inner radius a and
outer radius b carries a current I. The current density in the conductor is
uniform. Find the magnetic field set up by this current as a function of
radius

(a) inside the hollow space (r < a);
(b) within the conductor (a < r < b);
(¢) outside the conductor (r > b).
(Wisconsin)
Solution:

Use cylindrical coordinates as in Problem 2001. The current density
in the conductor is I

)= x(b?2 — a?)

The current passing through a cross-section enclosed by a circle of radius
r, wherea < r <b,is

. I(r? —a?
I(r)=7(r® - a®)j = —(ﬁ.
By symmetry, Ampére’s circuital law gives

(a) B=0, (r < a).

(b) B(r) = %’;%-%;‘_‘—:;eo, (a<r<d).

(¢) B(r) = £&ley, (r > b).

2xr

2003

The direction of the magnetic field of a long straight wire carrying a
current is:

(a) in the direction of the current
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(b) radially outward
(c) along lines circling the current
(CCT)
Solution:
The answer is (c).

2004

What is the magnetic field due to a long cable carrying 30,000 amperes
at a distance of 1 meter?

(a) 3 x 103 Tesla, (b) 6 x 10~3 Tesla, (c) 0.6 Tesla.
(ccT)
Solution:
The answer is (b).

2005

A current element idl is located at the origin; the current is in the
direction of the z-axis. What is the £ component of the field at a point
P(z,y,2)?

(a) 0, (b) —iydl/(z? + y? + 22)%/2, (c) izdl/(z? + ¥ + z%)3/2.

(cer)

Solution:

The answer is (b).

2006

Consider 3 straight, infinitely long, equally spaced wires (with zero
radius), each carrying a current [ in the same direction.

(a) Calculate the location of the two zeros in the magnetic field.
(b) Sketch the magnetic field line pattern.
(¢) If the middle wire is rigidly displaced a very small distance z (z €
d) upward while the other 2 wires are held fixed, describe qualitatively the
subsequent motion of the middle wire.
(Wisconsin)
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Solution:

(a) Assume the three wires are coplanar, then the points of zero mag-
netic field must also be located in the same plane. Let the distance of such
a point from the middle wire be z. Then the distance of this point from
the other two wires are d + z. Applying Ampére’s circuital law we obtain
for a point of zero magnetic field

pol  pol pol

2n(d—z)  2nz + 2r(d+z)’
Two solutions are possible, namely

1
=3—d,
z 73

corresponding to two points located between the middle wire and each of
the other 2 wires, both having distance 71511 from the middle wire.

(b) The magnetic field lines are as shown in Fig. 2.2(a).

®
oo

®

Fig. 2.2(a)

(c) When the middle wire is displaced a small distance z in the same
plane, the resultant force per unit length on the wire is

f pol? pol?

T 2n(d+z) 2n(d—1z)°

As z < d, this force is approximately

o Bl
f~ mpz.
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That is, the force is proportional but opposite to the displacement. Hence,
the motion is simple harmonic about the equilibrium position with a period

T=2x %’f%, where m is the mass per unit length of the middle wire.

This however is only one of the normal modes of oscillation of the
middle wire. The other normal mode is obtained when the wire is displaced
a small distance z out from and normal to the plane as shown in Fig. 2.2(b).
The resultant force on the wire is in the negative z direction, being

9 uol? z . _pgl"’z
2nVd2 + 22 /d? + 22 T rd?

This motion is also simple harmonic with the same period.

f=-

2007

As in Fig. 2.3, an infinitely long wire carries a current I =1 A. It is
bent so as to have a semi-circular detour around the origin, with radius 1
cm. Calculate the magnetic field at the origin.

(UC, Berkeley)

Id1
rY /&
o/~ I
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Solution:

The straight parts of the wire do not contribute to the magnetic field
at O since for them Idl x r = 0. We need only to consider the contribution
of the semi-circular part. The magnetic field at O produced by a current

element Idl is Idl
_ o ldlxx
dB = 4r 3

As Idl and r are mutually perpendicular for the semi-circular wire, dB is
always pointing into the page. The total magnetic field of the semi-circular

wire is then
B= / dB = I‘ol / IJoI

With I =1 A, r = 10~2 m, the magnetic induction at O is

B=314x10"%T,

pointing perpendicularly into the page.

2008

A semi-infinite solenoid of radius R and n turns per unit length carries

a current I. Find an expression for the radial component of the magnetic
field Br(z0) near the axis at the end of the solenoid where r <« Rand z = 0.
(MIT)

Solution:

We first find an expression for the magnetic induction at a point on
the axis of the solenoid. As shown in Fig. 2.4, the field at point zy on the
axis is given by

o 2rR2nld:
B(Zo) "0 '/(; [ n

an Jo IR+ (z—20)2P%"

Let 2 — zo = Rtan#. Then dz = Rsec? §df and we get

B(Z()) = Z—;

/": 27 R?nl - Rsec® 0do
o R3sec38

_ Mo 3 _
— 27rnI cos 8df = -2nnlsin 0
T 4z 41r ~0o
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As
Rtanfy = 2p,
we have , y .
sin? 8y = cot205 + 1 = (ZLI,)z +1 = Rzz_: 2’
or . :0
sinfp = \/——}-2_2;_—73. .
Hence

1
B(z) = 5;Aonl(l + —"°—-—) .

Next, we imagine a short cylinder of thickness dzp and radius r along
the z-axis as shown in Fig. 2.5. Applying Maxwell’s equation

fB~dS=0

[B:(20 + dz) — B.(20)] - 7r? = B,(20)27rdzo .

to its surface S we obtain

() 8 IR
Io P 4 z
—1 Z zo‘dzo

Fig. 2.4 Fig. 2.5

For r € R, we can take B,(z9) = B(zp). The above equation then gives

ﬂB_(-’fgl”z = B,(20) - 277,
dzo

or

rdB(z) _ ponlrR?

2 dzp  A(R?+22)3/2°

At the end of the solenoid, where zg = 0, the radial component of the
magnetic field is

Br(Zo) =

ponlr

B:(0) ==
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2009

A very long air-core solenoid of radius b has n turns per meter and
carries a current ¢ = igsinwt.

(a) Write an expression for the magnetic field B inside the solenoid as
a function of time.

(b) Write expressions for the electric field E inside and outside the
solenoid as functions of time. (Assume that B is zero outside the solenoid.)
Make a sketch showing the shape of the electric field lines and also make a
graph showing how the magnitude of E depends on the distance from the
axis of the solenoid at time ¢t = 2%,

( Wisconsin)

Solution:
(a) Inside the solenoid the field B is uniform everywhere and is in the
axial direction, i.e.,

B(t) = uoni(t)e, = ponigsin(wt)e, .

(b) Using § E - dl = — [ 92 . dS and the axial symmetry we can find
the electric field at points distance r from the axis inside and outside the

solenoid. For r < b, one has F - 2xr = _1”_2%;_ = —xr? . poniow coswt,
giving
E(@t) = —l;—oniowr coswt .
For r > b, one has E - 2rr = —nb? - ypnigw coswt, giving
2
E(t) = —gniow coswt.

In the vector form, we have

— B2 nigwr cos(wt)eq (r<d)

2 0 1
E(t) = .

— 5 nigw cos(wt)ey , (r>0)
At t = %",coswt = 1 and we have
E(&) _ —Enigwreg (r<b),

w —%m’oweg (r>1%).

The relation between |E| and r is shown in Fig. 2.6. Up to r = b the electric
field lines are a series of concentric circles as shown in Fig. 2.7.
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El

ar-!

Fig. 2.6 Fig. 2.7

2010

Assume that the earth’s magnetic field is caused by a small current
loop located at the center of the earth. Given that the field near the pole
is 0.8 gauss, that the radius of the earth is R = 6 x 10° m, and that
po = 47 x 10~7 H/m, use the Biot-Savart law to calculate the strength of
the mangnetic moment of the small current loop.

(Wisconsin)
Solution:

Assume that the axis of the current loop, of small radius a, coincides
with the axis of rotation of the earth, which is taken to be the 2-axis as
shown in Fig. 2.8. The contribution of a current element Idl to the magnetic
induction B at an axial point z is, according to the Biot-Savart law,

Ho Idl x r
dB = —
4r 3
dB is in the plane containing the z-axis and r and is perpendicular to
r. Summing up the contributions of all current elements of the loop, by
symmetry the resultant B will be along the z-axis, i.e.,

B =B,e;, or
dB, =dB-2.
r

At the pole, 2= R. As R » a,r =VRZ+ a? ~ R and

—#ola [ _Hla
B‘_41rR3fdl_41rR3 2a
= MIS
" 2rx R®’

where S = 7a? is the area of the current loop.
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Fig. 2.8

The magnetic moment of the loop is m = ISe,, thus
27 R3
Ho
Using the given data R = 6 x 105 m, B, = 0.8 Gs, we obtain

B,.

m = 8.64 x 1072 Am?.

2011

A capacitor (in vacuum) consists of two parallel circular metal plates
each of radius r separated by a small distance d. A current i charges the
capacitor. Use the Poynting vector to show that the rate at which the
electromagnetic field feeds energy into the capacitor is just the time rate of
change of the electrostatic field energy stored in the capacitor. Show that
the energy input is also given by iV, where V is the potential difference
between the plates. Assume that the electric field is uniform out to the
edges of the plates.

(Wisconsin)

—_—
/tz—vy
b

Fig. 2.9

o]

x
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Solution:

Use coordinates as shown in Fig. 2.9. When the positive plate carries
charge @, the electric field between the plates is

(—e.).

wrieg

As Q is changing, so is E, producing a magnetic field between the plates.

Applying D
H-dl= / — -dS
fra=[5

to a loop C between the plates, of area S parallel and equal to that of the
plates, by symmetry we obtain

H 27r= %?— =1,

or .

1

H= 5-1;(—89) .
Hence the Poynting vector of the electromagnetic field is
Q i iQ
N= = —(- —(—eg) = ————e,.
ExH wrzeo( e:) X 21rr( es) 21rzn'*eoer

Th energy flux enters the capacitor through the curved sides of the capac-
itor. The flow per unit time is then

iQd

P=N 2rrd= ——d.
wréey

The electrostatic energy stored in the capacitor is

3 )27rr2d— Qd

wriey T 2rrley

1 1
Wc = ‘2—€0E2 ~1rr2d: 560(

and the rate of increase is
dW,. d dQ iQ

dt  2wrle, 'QQd—t = rleg
Thus we have
p W
Todt

On the other hand, Q = CV = -‘-“ﬁﬁv, or 24 = V. Hence P = iV also.

coNr
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2012

A parallel-plate capacitor is made of circular plates as shown in
Fig. 2.10. The voltage across the plates (supplied by long resistanceless
lead wires) has the time dependence V = Vg coswt. Assume d € a < c/w,
so that fringing of the electric field and retardation may be ignored.

(a) Use Maxwell’s equations and symmetry arguments to determine
the electric and magnetic fields in region I as functions of time.

(b) What current flows in the lead wires and what is the current density
in the plates as a function of time?

(c) What is the magnetic field in region 117 Relate the discontinuity of
B accross a plate to the surface current in the plate.
(CUSPEA)

Fig. 2.10

Solution:

(a) Because d < a, the electric field in region I is approximately ED =
Egl)e,, where

EW = —% coswt

at time 1.
Apply Maxwell’s equation

dE
iB-dl—poeo/s—aT-dS

to a circle L of radius r centered at the line joining the centers of the two
plates. By symmetry, B() = Bg)e,,. Thus one has

21rrB£l) = pocorr? (V:;i_w sin wt) )
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or
eoVow .
Bg) = Mrsmwt.

2d

(b) Let o be the surface charge density of the upper plate which is the
interface between regions I and 1I. We have

0=—-gEY = ‘L‘}@ coswt .

Then the total charge on the plate is

2 walegVy
Q = ma‘c = ————coswt.

d

Note that ¢ is uniform because Esl) is uniform for any instant {. The time
variation of Q shows that an alternating current I passes through the lead
wires: .
d ma‘eqVow .
I = Q = —— 3% sinwt.

dat d
As the charge Q on the plate changes continuously with time, there will
be surface current flowing in the plate. As shown in Fig. 2.11, this current

flows towards the center of the plate along radial directions. The total
current flowing through the shaded loop is

1r(a2 — rz)eoVow
d

i= —%[‘n(a"’ -ri)o] = sinwt .

Hence, the linear current density (current per unit width) in the plate is

_ (a? = r?)eoVow
e = 2dr

ji(r) = sin(wt)e, .

i
2nr
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(¢} In Ampere’s circuital law

fB(").d]=,‘01,
L

the direction of flow of I and the sense of traversing L follow the right-
handed screw rule. At time ¢, I flows along the —z-direction and by axial
symmetry

11
B = B{Ve, .

Hence

2
an _ _pol _ potos®Vow
B¢ =-5—= _——2dr sinwt .
Thus
€ 02 - ’.2 Vw . .
Bgl) _ Bg) - Ho 0( 2dr ) 0 Sln(wt)er = Mot ,
or

n x (BAD - BM) = 4.

This is just the boundary condition for the magnetic field intensity

HW — g® =,

2013

A capacitor having circular disc plates of radius R and separation
d € R is filled with a material having a dielectric constant K,. A time
varying potential V = V; coswt is applied to the capacitor.

(a) As a function of time find the electric field (magnitude and di-
rection) and free surface charge density on the capacitor plates. (Ignore
magnetic and fringe effects.)

(b) Find the magnitude and direction of the magnetic field between
the plates as a function of distance from the axis of the disc.

(c) Calculate the flux of the Poynting vector from the open edges of
the capacitor.
(Wisconsin)
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Solution:

This problem is similar to Problem 2012. The answers for (a) and (b)
are

(a) E= ‘—‘/Ig cos(wt)e,, o= :!:k,eo% cos(wt) ,

(b) B= Mrain(wt)ea .
2d
(c) The Poynting vector at r = R is
— 1 _ k,eoon2R .
N= o (Ex B)|r=r = ¥ sin(wt) cos(wt)e, .

Thus N is radial in the cylindrical coordinates. Hence the flux of the Poynt-
ing vector from the open edges of the capacitor (i.e., the curved surface of
a cylinder of height d and radius R) is

rkeeow Vg R? sin 2wt
2d

¢ =2aRdN =

2014

A parallel plate capacitor has circular plates of radius R and separation
d € R. The potential difference V across the plates varies as V = Vg sinwt.
Assume that the electric field between the plates is uniform and neglect edge
effects and radiation.

(a) Find the direction and magnitude of the magnetic induction B at
point P which is at a distance r (r < R) from the axis of the capacitor.

(b) Suppose you wish to measure the magnetic field B at the point P
using a piece of wire and a sensitive high-impedance oscilloscope. Make a
sketch of your experimental arrangement and estimate the signal detected
by the oscilloscope.

(Wisconsin)

Solution:
(a) Referring to Problem 2012, the magnetic induction at point P is

€opo Vowr

B(r,t) = 2

cos(wt)eg .
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(b) Figure 2.12 shows the experimental arrangement. A small square
loop of area AS made of a wire, whose two ends are connected to the
oscilloscope, is placed at P such that the plane of the loop contains the
axis of the capacitor. A sinusoidal wave will appear on the oscilloscope,
whose amplitude and frequency are measured. These correspond to the
amplitude and frequency of the electromotive force ¢. Then from

el = | 92| = wiBlas

we can find the amplitude of the magnetic induction B.

y oscilloscope
")
toossosssvaass]
Fig. 2.12
2015

What is the drift velocity of electrons in a I mm Cu wire carrying
10 A? 10-5,1072,10!, 10° cm/sec.
(Columbia)
Solution:
It is 10~ %cm/sec.

2016
What is the average random speed of electrons in a conductor?
102,104,105, 10% cm/sec.
(Columbia)
Solution:
It is 10 cm/sec.

2017

Which is the correct boundary condition in magnetostatics at a bound-
ary between two different media?
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(a) The component of B normal to the surface has the same value.
(b) The component of H normal to the surface has the same value.

(c) The component of B parallel to the surface has the same value.
(CCT)

Solution:
The answer is (a).

2018

A system of conductors has a cross section given by the intersection of
two circles of radius b with centers separated by 2a as shown in Fig. 2.13.
The conducting portion is shown shaded, the unshaded lens-shaped region
being a vacuum. The conductor on the left carries a uniform current den-
sity J going into the page, and the conductor on the right carries a uniform
current density J coming out of the page. Assume that the magnetic per-
meability of the conductor is the same as that of the vacuum. Find the
magnetic field at all points z,y in the vacuum enclosed betwen the two
conductors.

(MIT)

Fig. 2.13

Solution:

As the magnetic permeability of the conductor is the same as that of
the vacuum, we can think of the lens-shaped region as being filled with
the same conductor without affecting either the magnetic property of the
conducting system or the distribution of the magnetic field. We can then
consider this region as being traversed by two currents of densities +J,
i.e., having the same magnitude but opposite directions. Thus we have two
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cylindrical conductors, each having a uniform current distribution, and the
magnetic induction in the region is the sum of their contributions. In their
own cylindrical coordinates Ampére’s circunital law yields

B, = —l‘—;Jrle‘m , (<)

B; = %Jrzew ; (r2 <b)
As

- e 1 e
ep, = (—sin¢py,cosp1) (e:) ,  €p, = (—sinpy,cos ;) (e:) )

we have
B, = %QJ(ylez —r1€y),
B, = E;J(—yze, + z3ey).

Using the transformation
{ Ty =21 — 2a
Y2=40
we have 4o
B; = 7J[—y;e, + (z1 — 2a)ey].

Hence the magnetic field induction in the lens-shaped region is
B=B,;+B; = %J[(y; —y2)e, +(xy —z2 — 2a)e,,] = —poaley .

This means that the field is uniform and is in the —e, direction.

2019

A cylindrical thin shell of electric charge has length ! and radius a,
where | > a. The surface charge density on the shell is 6. The shell rotates
about its axis with an angular velocity w which increases slowly with time
as w = ki, where k is a constant and ¢ > 0, as in Fig. 2.14.

Neglecting fringing effects, determine:
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(a) The magnetic field inside the cylinder.
(b) The electric field inside the cylinder.
(c) The total electric field energy and the total magnetic field energy

inside the cylinder.
(Wisconsin)

Fig. 2.14

Solution:

(a) Use cylindrical coordinates (p, ¢, z) with the z-axis along the axis of
the cylinder. The surface current density (surface current per unit width)
on the cylindrical shell is & = owae,. It can be expressed as a volume
current density (current per unit cross-sectional area) J = owad(p — a)e,.
By symmetry we have B = B,(p)e,. Then the equation V x B = puoJ
reduces to

dB,

~20: _ peowas(p - a),

9p
which gives

B(p) = poowae,, (p<a).
(b) Apply Maxwell’s equation

d
}iE-dl_—:E/SB-ds

to a circle of radius p in a plane perpendicular to the z-axis and with
the center at the axis. On this circle, E 1s tangential and has the same
magnitude, i.e., E = E(p)e,. Hence, noting that w = kt we have

oak
E(p) = -85 Le,. (p<a)

a 2 2 2126
(QUe=] LBV = -1-501/ (M_"k_” ompdp = TEUC k2a®l
2 27 Jo 2 16

rpoorlatkt?

B? 1 2 2
UB = fﬂ;dv = -27‘;(}100100) -ma*l = )
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2020
A long, solid dielectric cylinder of radius a is permanently polarized
so that the polarization is everywhere radially outward, with a magnitude
proportional to the distance from the axis of the cylinder, i.e., P = %Pore, .
(a) Find the charge density in the cylinder.
(b) If the cylinder is rotated with a constant angular velocity w about
its axis without change in P, what is the magnetic field on the axis of the
cylinder at points not too near its ends?

(SUNY, Buffalo)
Solution:

(a) Using cylindrical coordinates (r,8,z), we have P = P, = Pyr/2.
The bound charge density is

_ 10 Por _
p-—VP_—;—é;(rT) ——Pg.

(b) As w = we,, the volume current density at a point r = re, + ze,
in the cylinder is

J(x) = pv = pw x r = —Pywe, x (re, + ze,) = —Powrey .

On the surface of the cylinder there is also a surface charge distribution, of

density

P P
o:n-P:e,-—;)—E,:a:-%a-.

This produces a surface current density of

0 .2
a:av:-i—wa €y .

To find the magnetic field at a point on the axis of the cylinder not too near
its ends, as the cylinder is very long we can take this point as the origin
and regard the cylinder as infinitely long. Then the magnetic induction at
the origin is given by

o [ i) xr ,/a(r’)xr’ ,
B= 41r(/v_—r’3 av'+ [ FFEas),

where V and $ are respectively the volume and curved surface area of the
cylinder and ' = (r,8,z) is a source point. Note the minus sign arises
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because r’ directs from the field point to a source point, rather than the
other way around. Consider the volume integral

)y xr! _ [ —Powreg x (re, + ze;)
/;/ TdV' - g (r2 " 22)3/2 drdfdz

P / ridrdfdz / ridrdfdz o
SN N G 2P T, Ry )

As the cylinder can be considered infinitely long, by symmetry the second
integral vanishes. For the first integral we put z = rtan 3. We then have

jxr 2% a 4
/ ——dV' = Pw / df / rdr / cos fdf e, = 2m Powa’e, .
v r 0 o -%

Similary, the surface integral gives

/ al)xr s’ _/ i—;‘idazeg X (ae, + ze,)dS,
s s

(02 + 12)3/2
Py dfdz .
= —?wa“/s me, = —2xPywa‘e; .

Hence, the magnetic induction B vanishes at points of the cylindrical axis
not too near the ends.

2021

A cylinder of radius R and infinite length is made of permanently
polarized dielectric. The polarization vector P is everywhere proportional
to the radial vector r, P = ar, where a is a positve constant. The cylinder
rotates around its axis with an angular velocity w. This is a non-relativistic
problem —wR < c.

(a) Find the electric field E at a radius r both inside and outside the
cylinder.

(b) Find the magnetic field B at a radius r both inside and outside the
cylinder.

(c) What is the total electromagnetic energy stored per unit length of
the cylinder,

(i) before the cyliner started spinning?
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(ii) while it is spinning?
Where did the extra energy come from?
(UC, Berkeley)

Solution:

(a) Use cylindrical coordinats (r, 8, z) with the axis of the cylinder along
the z direction, the rotational angular velocity of the cylinder is w = we;.
The volume charge density inside the cylinder is

p=-V-P=-V- (ar)=—-2a.
The surface charge density on the cylinder is then
c=n-P=e, (ar)l,=r = e¢R.

The total charge per unit length is therefore ~2a - 7R*> + 27R - aR = 0.
Thus the net total charge of the cylinder is zero. From Gauss’ flux theorem
§ E - dS = Q/eo and the axial symmetry we find that

E:{—%eﬁ r<R,
0 r>R.

(b) The volume current density is j = pv = —2awrey, and the surface
current density is a@ = ov = awRZ%ey. If the cylinder is infinitely long,
by symmetry B = B(r)e,. The equation and boundary condition to be
satisfied by B are

VxB=yuj, nx(Bz:-B;)=pa.

Here B; and B3 are the magnetic inductions inside and outside the cylinder,
respectively. The equation gives

0By _ 0By, _
~ o = —2ppawr, = 0.

Thus B, is a constant. As B, — 0 for r — oo, the constant is zero. The
boundary conditon at r = R,

—[B2(R) — Bi(R)] = poawR?,

yields
Bi(R) = poawR?.
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Integrating the differential equation for B; from r to R, we obtain
By(r) = Bi(R) — poaw(R? - r?) = poawr?.
Hence the magnetic fields inside and outside the cylinder are

B_{uoawrzez , r<R,
“lo , r>R.

(c¢) (i) Before the cylinder starts spinning, only the electric energy
exists, the total being

W, = / 2RV .

So the energy stored per unit length of the cylinder is

dW /2" do / €0 g = TR
- - 460 '
(ii) When the cylinder is spinning, both electric and magnetic energies

exist. The electric energy is the same as for case (i), and the magnetic
energy stored per unit length of the cylinder is

d”m 2 b
/ 2u 20" / d()/ ’_(ﬂoGWT2)2rdr = M
0 T

dz 6
Therefore the total energy stored per unit length is

dW _ dW.  dW. _ wa®’R* 4 Homa 2L2R®

dz _ dz dz  Adeg 6
_ 7a®R? 1+2w2R2
- 460 362 ’

The extra energy, the magnetic energy, comes from the work done by ex-
ternal agency to initiate the rotation of the cylinder from rest.

2022

A long coaxial cable consists of a solid inner cylindrical conductor of
radius Ry and a thin outer cylindrical conducting shell of radius R;. At
one end the two conductors are connected together by a resistor and at
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the other end they are connected to a battery. Hence, there is a current ¢
in the conductors and a potential difference V between them. Neglect the
resistance of the cable itself.

(a) Find the magnetic field B and the electric field E in the region
R; > r > Ry, i.e., between the conductors.

(b) Find the magnetic energy and electric energy per unit length in
the region between the conductors.

(c) Assuming that the magnetic energy in the inner conductor is neg-
ligible, find the inductance per unit length L and the capacitance per unit
length C.

(Wisconsin)
Solution:

(a) Use cylindrical coordinates (r,#,2) where the z axis is along the

axis of the cable and its positive direction is the same as that of the current

in the inner conductor. From §. B - dl = poi and the axial symmetry we
have

From § . E - dS = cg.,“ and the axial symmetry we have

A
2‘"’501‘

€r,

where A is the charge per unit length of the inner conductor. The voltage
between the conductors is V = — f:; E - dr, giving

A= 2meoV/In R,

Accordingly,

(b) The magnetic energy density is wn, = 22 = ba(:5-)2. Hence the
magnetic energy per unit length is

dWm T i>2 _ poi® . R,
P _/wmdS- . 2 \2r -27rrdr._-—1—n .
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The electric energy density is w, = iﬂ.f—": = %(Eﬁi)z Hence the electric
1

energy per unit length is

2
dz

In % )
(c) From Wa = 1(4£)i2, the inductance per unit length is
dL  po, Rs
dz ~ 27 In R,
From ¥ = 1(4C)V'2, the capacitance per unit length is
dc _ 21!’60
Ay _ 1n Ra°
dz In )7y
2023

The conductors of a coaxial cable are connected to a battery and resis-
tor as shown in Fig. 2.15. Starting from first principles find, in the region
between r; and rg,

(a) the electric field in terms of V,r; and rq,

(b) the magnetic field in terms of V, R,r, and r,

(¢) the Poynting vector.

(d) Show by integrating the Poynting vector that the power flow be-

tween r, and r; is V2/R.
,
4
"

(Wisconsin)

<
—[s
-,

Fig. 2.15
Solution:
(a), (b) Referring to Problem 2022, we have
E:—V—e,., Bzﬂleo.

2nr

Iz
rln -
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AsI=V/R
_ MV
= R’
B V Vv V2
ExH=Ex — = e,
() N=Ex X o rin3 e X SarR>’ = 2ar’RIn P
dr=] N.ds= [ 1 2wrdr = v
T In<r<n r 27rRln R’
2024

Suppose the magnetic field on the axis of a right circular cylinder is
given by
B = By(1 +vz?e,.

Suppose the #-component of B is zero inside the cylinder.

(a) Calculate the radial component of the field B, (r, 2) for points near
the axis.

(b) What current density j(r,z) is required inside the cylinder if the
field described above is valid for all radii r7
(Wisconsin)

Solution:

(a) As in Fig. 2.16, consider a small cylinder of thickness dz and radius
r at and perpendncular to the z-axis and apply Maxwell’s equation §; B
dS = 0. As r is very small, we have

B,(r,z) = B,(0,z2).

Hence
[B(0,z + dz) — B,(0, 2)]7r? + B.(r,z)2xrdz =0,
or 5
—Mdz ar? = B,(r,z) - 2nrdz,
0z
giving
B.(r,z) = _r2BQ,z) =-= [B (14 v2z?)] = —vBorz.
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-

~ k-dz

Fig. 2.16
(b) Suppose the following are valid everywhere:

B.(r,2) = —vByrz,
B.(r,z) = Bo(1 + v2%).

For a conductor D can be neglected and Maxwell’s equation reduces to
i= -‘;I;V x B. Noting that By =0, %%-'- = %%L = 0, we have

(oo L[0B_0B.] 108,
AT " po | 62 dr |0~ 4 02

This is the current density required.

1
ey = ——vBogrey .
Ho

2025

A toroid having an iron core of square cross section (Fig. 2.17) and
permeability g is wound with N closely spaced turns of wire carrying a
current I. Find the magnitude of the magnetization M everywhere inside
the iron.

(Wisconsin)

/N turns

Fig. 2.17
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Solution:
According to Ampére’s circuital law

fn«a:zvz,
PRLE

where r is the distance from the axis of the toroid.
The magnetization M inside the iron is

Ho Ho Bo 2nr
2026

A C-magnet is shown in Fig. 2.18. All dimensions are in cm. The
relative permeability of the soft Fe yoke is 3000. If a current I = 1 amp is
to produce a field of about 100 gauss in the gap, how many turns of wire
are required?

(Wisconsin)

Fe 7’1
AN

y
b—©—{ N —© =

— 7 b7 —

Fig. 2.18

Solution:

Consider a cross section of the magnet parallel to the plane of the
paper and denote its periphery, which is (including the gap) a square of
sides [ = 20 cm, by L. As the normal component of B is continuous,
the magnetic intensity in the gap is B/ug, while that inside the magnet
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is B/uopr, where g, is the relative permeability of the iron. Ampere’s
circuital law

f H.-dI=NI

L

applied to L becomes
—B-d+ B (4 -d)y=N1I,
HBo Holty

where d = 2 cm is the width of the gap. Hence

B 1
N=— d+—4l—d]
I—‘OI[ I‘r( )

100 x 10~4 0.2x4-0.02
= Irx 107 x 1(°'°2+ 3000 )
= 161 turns

are required.
2027

An electromagnet is made by wrapping a current carrying coil N times
around a C-shaped piece of iron (g > po) as shown in Fig. 2.19. If the
cross sectional area of the iron is A, the current is i, the width of the gap
is d, and the length of each side of the “C” is /, find the B-field in the gap.

(Columbia)

z|

I &

/
b—1—

Fig. 2.19

Solution:
Putting s, = p/po in the result of Problem 2026, we find

- Nlpop
d(p — po) + 4lpo
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2028

Design a magnet (using a minimum mass of copper) to produce a field
of 10,000 gauss in a 0.1 meter gap having an area of lmx2m. Assume very
high permeability iron. Calculate the power required and the weight of the
necessary copper. (The resistivity of copper is 2 x 10~¢ ohm-cm; its density
is 8 g/cm® and its maximum current density is 1000 amp/cm?.) What is
the force of attraction between the poles of the magnet?

(Princeton)

Solution:

L is the periphery of a cross section of the magnet parallel to the plane
of the diagram as shown in Fig. 2.20. Ampére’s circuital law becomes

fﬂ-dl: £x+§-(L—£)=NI,
L Ho K

where z is the width of the gap. As g > g, the second term in the middle
may be neglected. Denoting the cross section of the copper wire by S, the
current crossing S is I = jS. Together we have

_ Be
© poiS’

The power dissipated in the wire, which is the power required, is

2N
P=1I’R= I2p———-((;—+b)~ = 2jp(a +b)£z,
Ho

where p is the resistivity of copper. Using the given data, we get

P=95x10"W.

ACd3s

L
—
—

=<1

DAAA

ITTIL

7 J ~ N turns

Fig. 2.20
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Let 6 be the density of copper, then the necessary weight of the copper
is
IN(a + b)S6 = 2(a + b)%z& =38 kg.
0

The cross section of the gap is A = a-b. Hence the force of attraction
between the plates is

2
F:éB—:8x105N.
2p0

2029

A cylindrical soft iron rod of length L and diameter d is bent into a
circular shape of radius R leaving a gap where the two ends of the rod
almost meet. The gap spacing s is constant over the face of the ends of the
rod. Assume s € d,d < R. N turns of wire are wrapped tightly around
the iron rod and a current I is passed through the wire. The relative
permeability of the iron is u,.. Neglecting fringing, what is the magnetic
field B in the gap?

(MIT)

Solution:

As s €« d € R, magnetic leakage in the gap may be neglected. The
magnetic field in the gap is then the same as that in the rod. From Ampére’s
circuital law

fH-dl:NI

we obtain
prpoN1

B ————— .
2R+ (e — 1)s

2030

The figure 2.21 shows the cross section of an infinitely long circular
cylinder of radius 3a with an infinitely long cylindrical hole of radius a
displaced so that its center is at a distance a from the center of the big
cylinder. The solid part of the cylinder carries a current I, distributed
uniformly over the cross section, and out from the plane of the paper.
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(a) Find the magnetic field at all points on the plane P containing the
axes of the cylinders.

(b) Determine the magnetic field throughout the hole; it is of a partic-
ularly simple character.

(UC, Berkeley)

Solution:

(a) According to the principle of superposition the field can be regarded
as the difference of two fields Hs and H;, where H; is the field produced
by a solid (without the hole) cylinder of radius 3a and H, is that produced
by a cylinder of radius a at the position of the hole. The current in each
of these two cylinders is uniformly distributed over the cross section. The
currents I; and I in the small and large cylinders have current densities
—j and +j respectively. Then as I = I, — I) = 9ma%j — ma’j = 8ma?j, we

|
have j = £ and

I =ma%j = é, I, = 9ra’j = 21.

Take the z-axis along the axis of the large cylinder with its positive direction
in the direction of I,, which we assume to be upwards from the plane of
the paper. Take the z-axis crossing the axis of the small cylinder as shown
in Fig. 2.21. Then the plane P is the zz plane, i.e., the plane y = 0.
Ampere’s law gives H; and Hy as follows (noting r = /z? +y2,r =
V(z — 8)% + y?, being the distances of the field point from the cylinder
and hole respectively):

Iy _ Iz
Ha = ~T6rat Hoy = Tora2
91y 9iz

- Hyy = ————<,
167(z2+92)' ¥ 167(z? + y2)

(r < 3a)

Hg, = (1‘ > 30)
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Iy _ I(z—a)
e = —{gra Hy = —loraz (r < a)
1 I(z —
Hy, = Y (z—a) (r1>a).

- Hy, =
167[(z — a)? + y?]’ v 167[(z —a)2 + 32’
On the plane P,Hs; = Hy; = 0. Hence H, = 0,Hy = Hay ~ Hy,. We

therefore have the following:
(1) Inside the hole (0 < z < 2a),

He = Ixr Iz-a) Ia I
Y™ 167a? 167a2 ~ 167a2 = 167a’

(2) Inside the solid part (2a <z < 3aor ~3a <z <0),

go= 1z _ I(z —a) _ I(z? - az —a®)
V7 16%a?  16x[(z - a)2+y?]  16ma?(z—a)

(3) Outside the cylinder (|z| > 3a),

_ 9]z I(z —a) _ (82 —9a)I
T 16x(22 +y?) 16x[(z — a)2+¢?] 16xz(z —a)’

H,

(b) The magnetic field at all points inside the hole (r; < a) is

-y Iy _
He = 16ra2 ' 16ma? 0,
H. = Iz Kz-a) I
V™ 167a? 167a? ~ 167a’

This field is uniform inside the hole and is along the positive y-direction.

2031

(a) A sphere of radius r is at a potential V and is immersed in a
conducting medium of conductivity o. Calculate the current flowing from
the sphere to infinity.

(b) Two spheres, with potentials +V and 0, have their centers at po-
sitions 2 = +d, where d 33 r. For points equidistant from the two spheres
(i.e., on the yz plane) and far away (3> d) calculate the current density J.

(c) For the same geometry as in (b), calculate the magnetic field on

the yz plane for distant points.
(UC, Berkeley)
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Solution:

(a) If the sphere carries charge @Q, the potential on its surface is

v=_9

T 4xegr’

1e., @ = 4megrV. When the sphere is immersed in a conducting medium
of conductivity o, the current that starts to flow out from the sphere is

I=fJ-dS=0fE~dS=a—Q—=41rarV,
s s €o

where S is the spherical surface and we have assumed the medium to be
Ohmic. If the potential V is maintained, the current I is steady.

(b) As d > r, we can regard the spheres as point charges. Suppose the
sphere with potential V carries a net charge +@ and that with potential
0, —Q. Take the line joining the two spherical centers as the z-axis and
the mid-point of this line as the origin. Then the potential of an arbitrary
point z on the line is

_Q (1 1
V(=)= 47rso(d—::_d+z)'

The potential difference between the two spherical surfaces is then

,_ @ (1 1
T 4meg\d—z d+=z

__Q 4d-r) _Q

T drey r(2d—r) "~ 2meor

d-r

—d+r

as d > r. Hence
Q = 2mweorV .

On the yz plane the points which are equidistant from the two spheres
will constitute a circle with center at the origin. By symmetry the magni-
tudes of the electric and magnetic fields at these points are the same, so we
need only calculate them for a point, say the intersection of the circle and
the z-axis (see Fig. 2.22). Let R be the radius of the circle, E; and E; be
the electric fields produced by +@Q and —Q respectively. The resultant of
these fields is along the —z direction:

2Q

= ey ) 0 = -

Qd o
2meo(RE + d2)3/2 °
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Fig. 2.22

The current density at this point is then

ocQd Vrd

= OB (R + B = T (RA§ S

As the choice of z-axis is arbitrary, the above results apply to all points of
the circle.

(c) Using a circle of radius R as the loop L, in Ampére’s circuital law
f B.dl = yo/ J-dS', dS'=r'dr'dfe,,
L S

we have

2 R
Vrd
27RB po/o /0 7+ 2T dr

1 1
= 21rpoVrd(W - E) .

For distant points, R > d and we obtain to good approximation

_ HeVr
" R

Note B is tangential to the circle R and is clockwise when viewed from the
side of positive z.

B

2032

Consider a thin spherical shell of dielectric which has a radius R and
rotates with an angular velocity w. A constant surface charge of density o
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is placed on the sphere, and this produces a uniform magnetic field which
is proportional to w. Suppose that the mass of the shell is negligible.

(a) Find the magnetic field inside and outside the rotating shell.

(b) A constant torque N is applied parallel to w. How long does it
take for the shell to stop?

(UC, Berkeley)

Solution:

Use coordinates with the 2-axis along the rotating axis and the origin
at the center of the sphere (Fig. 2.23). The surface current density on the
spherical shell in spherical coordinates is

a = Rowsinfe,
or, expressed as a volume current density,

J=aé(r—R)

Fig. 2.23

The magnetic dipole moment of the sphere is then

m= %/r'deV’= %e,//r-Rawsin06(r—R)

-27rsin@ - rdf - dr -sin @

=e, rR‘aw/ sin3 0d0 = %R‘awe, .
0
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Note that for any pair of symmetrical points on a ring as shown in Fig. 2.23
the total contribution to m is the z direction. Hence the extra sinf in the

integral above.
The magnetization of the sphere is

m
M= = .
?3'7}3—3 JMRB,

Since there is no free current inside and outside the sphere, we can apply the
method of the magnetic scalar potential. The inside and outside potentials
satisfy Laplace’s equation:

Vip = Vi = 0.

We require that ¢, o is finite and 3)oc — 0. By separating the variables
we obtain the solutions

b
o= z”:a,.rnp,, (cos8), 3= ? ;_—”%l-P,.(cosﬂ).

On the spherical surface the following conditions apply:

_ Op2 O, _
Y1 = ¢2lr=R , ar o |r=R = ~oRwcos 0.
These give
ar = oRw b= o R3%w
1= - 3' ’ 1 - 3 ]

all other coefficients being zero. The magnetic scalar potentials are then

1
¢1==0Rw-r, 502:%6}230-

L
3 s’

Hence the magnetic fields inside and outside the sphere are
H;, = —V(pl = —%URUG, ,
2
B: = yo(H; + M) = gpoaRue. , (r<R)

B: = poHz = ~Vz = Lo R° (3_(2'5_) - .;)

= gsﬁ%aw(%osﬂe, -e), (r>R).
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Before the application of the constant torque N, the total magnetic
energy of the system is

2 2
W= [ Zav= -B—dV+/ B
o 2H0 Via 2H0 Vour 2H0

1 (2 oer)z-— R3
2;1 gho 3"

2 2
+ L (poR., ) / (l+3:os 9)dv,
2"0 Vont r

where V,, and V,, refer respectively to the space inside and outside the
sphere. Noting

1+ 3cos?d /‘°° T ™ (1+3cos?0) 4r
-/‘.’...( =5 ) v - dr/o dﬂ‘/l; @ A sind IR

we have 4
Wm = —915;400 w?R®

Suppose the rotation stops after time ¢ due to the action of the constant
torque N. Conservation of energy requires

dw,,

T = Nw.

With N constant we get

2033

A thin spherical shell of radius R carries a uniform surface charge
density o. The shell is rotated at constant angular velocity w about a
diameter.

(a) Write down the boundary conditions which relate the magnetic
field just inside the shell to that just outside the shell.
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(b) The magnetic field which satisfies these conditions is uniform inside
the shell and of dipole form outside the shell. Determine the magnitude of
the inside magnetic field.

(CUSPEA)

Solution:

(a) Call the inside of the shell region 1, the outside region 2. Take the
rotating axis as the z-axis. The current density on the spherical shell is

a = g Rwsinfe, .
The boundary relations on the spherical surface are as follows:

In the tangential direction: B, = By,

H

r=R
. B B
In the normal direction: e, x (—3 - —1) =a,
Ko Ko/ lr=R

or
Bap — BwL=R = poowRsing.

(b) Referring to Problem 2032, we see that the magnetic fields inside
and outside the shell are

B; = %poawRe, , (r<R) (1)
_ Mo _pafdwr)r w
B = SR (—r5 93) , (r>R) (2)

where w = we,. Note that the magnetic field inside the sphere is a uniform
field. Also as the magnetic field produced by a magnetic dipole of moment
m can be expressed as %}[9%}2 — &1, Eq. (2) shows that the magnetic
field outside the shell is that of a dipole of moment

m= 4?"raR"u.)e,, .
From e, = cosfe, — sinfley, we can rewrite Egs. (1) and (2) as
2
B, = 3 Joow R(cos fe, — sin feg)

_ poowR?
B; = 3r3

(2cos fe, + sinfey)

Clearly, these expressions satisfy the boundary conditions stated in (a).
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2034

Consider a spherical volume of radius R within which it is desired to
have a uniform magnetic field B. What current distribution on the surface
of the sphere is required to generate this field?

(UC, Berkeley)

Solution:

By analogy with a uniform polarized sphere, we deduce that the mag-
netic field inside a uniform magnetized sphere is uniform. Let M be the
magnetization, then the surface current density is s = —nn X M. Take the
z-axis along M so that M = Me,. In spherical coordinates

e, = cosfe, —sinfey (n=e,),

so that
as = —e, x M(cosfe, —sinfey) = M sinfe, .

Then making use of the ma.gnetic scalar potential, we find the magnetic
field inside the sphere: B = 2£2M (refer to Problem 2033.) Hence

ag = é—q—sinae

2035

As in Fig. 2.24, a thin spherical shell of radius R has a fixed charge +¢
distributed uniformly over its surface.

(a) A small circular section (radius r € R) of charge is removed from
the surface. Find the electric fields just inside and just outside the sphere
at the hole.

The cut section is replaced and the sphere is set in motion rotating with
constant angular velocity w = wg about the z-axis.

(b) Calculate the line integral of the electric field along the z-axis from
~00 to +oo.

(¢) Calculate the line integral of the magnetic field along the same
path.

Now the sphere’s angular velocity increases linearly with time:

w=uwo+ kt.
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(d) Calculate the line integral of the electric field around the circular
path P (shown in Fig. 2.25) located at the center of the sphere. Assume
that the normal to the plane containing the path is along the +2z axis and
that its radius is rp € R.

(Chicago)

Fig. 2.24 Fig. 2.25

Solution:

(a) Before the small circular section of charge is removed, the electric
field inside the sphere is zero, while the field outside the sphere is E =
4—"';R1. Referring . to Problem 1021, the electric field produced by this
small circular section is ;= = W!.TR" Therefore, after the small section
is removed the electric fields just inside and just outside the sphere at the

hole are both 3 tps.
(b) By symmetry, [*° Edz = 0.
(c) Ampére’s law gives

oo
fB-dl:/ Bdz = pol.
-0

As the electric current is I = £22, we have

oo

{d) Consider a ring of width Rdf as shown in Fig. 2.25. The surface
current density on the ring is ;=i - wRsind. The contributions of a pair
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of symmetrical points on the ring to the magnetic field at the center of
the sphere will sum up to a resultant in the z-direction. Thus the total
contribution of the ring to the magnetic field is given by the Biot-Savart
law as

dB, = £ / 9 Rsin8- 2 sin0RAG - Rsin bdip

Ar Jyzo 47 R2 R
#oqw
= SR = sin®0dg.

Hence
_ Bogqw Hogqw
*T 8%R sin® 6df = 67R °

As r, € R, the magnetic induction can be taken to be uniform in the
circular loop P. The magnetic flux crossing P is then

2 2
o ap_ Morpwg _ pogrp(we + kt)
¢=mpB="p" = 6R '
Hence

(M) ok?‘%;q
fEa=-g=tg

2036
An isolated conducting sphere of radius R is charged to potential V
and rotated about a diameter at angular speed w.
(a) Find the magnetic induction B at the center of the sphere.

(b) What is the magnetic dipole moment of the rotating sphere?
(UC, Berkeley)

Solution:

(a) Using the answer to Problem 20335, the magnetic field at the spher-
ical center is
#owQ
6TR ©
where @ is the total charge of the sphere and e, is a unit vector along the
axis of rotation. From V = we get Q = 4weg RV . Hence

9 _
4xeo R’

B = §€oﬂowv .
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(b) Referring to Problem 2032, the magnetic dipole moment of the
sphere is

4
m= %R‘awe, R
where o is the surface charge density

sz_9__&V
T 47R?T R

Hence s
m = -wmeoR3wVe, .

3

2037

A charge Q is uniformly distributed over the surface of a sphere of
radius rg. The material inside and outside the sphere has the properties of
the vacuum.

(a) Calculate the electrostatic energy in all space.

(b) Calculate the force per unit area on the surface of the sphere due
to the presence of the charge. For Q = 1 coulomb and rp = 1 cm, give a
numerical answer.

(c) The sphere rotates around an axis through a diameter with constant

angular velocity w. Calculate the magnetic field at the center of the sphere.
(UC, Berkeley)

Solution:

(a) W= [ beoB?dV = % (—‘3—)2

41(60

00 2
/ —15 4xridr = Q .
ro T 8weoro
(b) The surface charge density is ¢ = 4—,?;3 and the electric field outside
the sphere is

= ——
2vr
dmegry

Using the answer to Problem 1021, the electric force per unit area on the

outer surface is
£ cE Q?
= — = ————e,.
2 r=rg 32‘“’2607'3 r
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With the given data, we have
f=36x10"% N/em®.

(¢) Using the answer to Problem 2035, we have
Hogw
67!'7’0
where e, is a unit vector along the axis of rotation.

B =

e;

2038

A long hollow right circular cylinder made of iron of permeability u
is placed with its axis perpendicular to an initially uniform magnetic flux
density B. Assume that By is small enough so that it does not saturate
the iron, and that the permeability u is a constant in the field range of our
interest.

(a) Sketch the magnetic field lines in the entire region before and after
the cylinder is placed in the field.

{b) Let the inner and outer radii of the cylinder be b and a respec-
tively. Derive an expression for B inside the cylinder. Note: In cylindrical
coordinates we have

v2 = .l_ﬁ(ri) + i.g.ﬂ_ + 22_
rdr\ Or r2 962 = 9z2°
(Columbia)
Solution:

(a) The magnetic field is uniform before the cylinder is introduced and

the field lines are as shown in Fig. 2.26. After the cylinder is placed in the

field, the magnetic field will be distorted and the field lines are as shown in
Fig. 2.27.

Fig. 2.26 Fig. 2.27
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{b) We introduce a magnetic scalar potential ¢ which satisfies H =
—V¢. As there is no free current we have V3¢ = 0. In cylindrical co-
ordinates (r,0, z), where the z-axis is along the axis of the cylinder, the
potential satisfies

18/, 6 1 8 9?
(Far(rae)+ g+ g fs =0 )
Because of axial symmetry we have %ﬁ =0. Let
#(r,0) = R(r)S(6).
The equation can be written as

1 ,.2‘p_R+rﬁ —-lﬁ—constant— 2
R\"d? *"ar )= "5ap T -

say, since varying r does not affect the expression involving S. This leads
to the general solution

¢ = E (em?™ + dmr~™)(gm cos m8 + hy, sin m@). (2)

m=1

By symmetry ¢(r,8) = ¢(r, —0), so that the sine functions are to be elim-
inated by putting A, = 0. Divide the space into three parts as shown in
Fig. 2.28 and write the general solutions for them as

e

;i = }:(c‘mr"‘ + dipsr"")cosml, (i=1,2,3)

m=1

8o

Fig. 2.28

At large distances from the cylinder, Zg—f’- = Hy, or ¢3 = —Hyz =
—%:r cos§. Comparing the coefficients of cos m@ we have

B
031=—”—:, Cam =dam=0 (m#1).
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¢3 = --(M - iii’-)cost?.
Ho r

We also require ¢; to be finite for »r — 0. Hence dy,, = 0 for all m and

Hence

[s 2]
o = Z Cimr " cosmi.

m=1

Next consider the boundary conditions at r = @ and b. We have

I‘otyﬁ:}‘%‘

or or r:a'
3 _ 02

Fo or - or r=b
dds _ 96
09~ 90 lr=a’
891 _ 0¢s
a0 - a0 r=b

These together give ¢y, = cam = day = 0 for m # 1 and the simultaneous

equations

Bo+”-°;'§“=ll(—021+£,,¥),
—Bo + E‘:,—ds“ = pofea + d—u’}) ,
#(sz - %’5") = polir,
c21 + %‘ =c1 -

Solving for ¢;; we have

A 47a?By
T 200 — o) — a?(p + po)?

giving
¢1 =117 cos @ .

The magnetic field intensity inside the cylinder is

H, = -vg = -2, 150,
= —c11(cos fe, — sin feg)
= —thye,
4pa®

= By.
(4 + Ho)? ~ 2(u — po)? *
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If 4> po, the magnetic field becomes
_ 4 Bo
n1-(2)?*

Obviously, the greater the value of i, the stronger is the magnetic shielding.

1

2. ELECTROMAGNETIC INDUCTION (2039-2063)

2039

A uniform cylindrical coil in vacuum has r; = 1 m, {; = 1 m and 100
turns, Coaxial and at the center of this coil is a smaller coil of r5 = 10 cm,
I = 10 cm and 10 turns. Calculate the mutual inductance of the two coils.

(Columbia)

Solution:

Suppose current I, passes through the outer coil, then the magnetic
induction produced by it is
ML

L

As ry € r,ls € I}, we may consider the magnetic field B; as uniform
across the inner coil. Thus the magnetic flux crossing the inner coil is

NiN. I, o
——I——ﬂ'r2 )

By = po

Y12 = N2 B1 Sy = po )

which gives the mutual inductance of the two coils as

Yu_ NN
I T

wri ~ 39.5 uH.

2040

A circular wire loop of radius R is rotating uniformly with angular
velocity w about a diameter PQ as shown in Fig. 2.29. At its center, and
lying along this diameter, is a small magnet of total magnetic moment M.
What is the induced emf between the point P (or @) and a point on the
loop mid-way between P and @7

(Columbia)
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} 4
w
£ v
Cc
Q
Fig. 2.29

Solution:

At a point distance r from the spherical center the magnetic field es-
tablished by the small magnet is

_ M [3(M -r)r

4 rd

M
—F], M=Me,.

Let C be the mid-point of arc I;Q. The velocity of a point on arc I;C is
v = wRsinfe,. The induced emf between the points P and C along arc

PAQ is given by

C
em:/ (vxB)-dl, with dl= Rdfes.
P

As e, = cosfe, —sinfey, e, X e, = €g,€, X €3 = —e, , we have
0
vxB= %(2 cos fleg + sin fe,)
and
M M
Epc = ”D w/ 2cosfsinbdd = p:wa .

2041

Two infinite parallel wires separated by a distance d carry equal cur-
rents I in opposite directions, with I increasing at the rate 4 -J; A square
loop of wire of length d on a side lies in the plane of the wires at a distance
d from one of the parallel wires, as illustrated in Fig. 2.30.
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(a) Find the emf induced in the square loop.

(b) Is the induced current clockwise or counterclockwise? Justify your
answer.
(Wisconsin)

| I
d
2 I
d
-t
d

Fig. 2.30

Solution:
(a) The magnetic field produced by an infinite straight wire carrying

current [ at a point distance r from the wire is given by Ampére’s circuital
law as
B = &-I-
27r’
its direction being perpendicular to the wire. Thus the magnetic flux cross-
ing the loop due to the wire farther away from the loop is

3d
¢1=/ Poldd _ﬂofdlng_
2

4 27T r

directing into the page. The other wire, which is nearer the loop, gives rise
to the magnetic flux

2d
_ pold ,  pold
#2 -/d pr. dr = S5 In2

pointing out from the page. Hence the total flux is

g _ Mold 4

pointing out from the page. The emf induced in the square loop is therefore

=90 _ _pod) (4)d]
E= —— =~ ln(3)dt‘



196 Problems & Solutions on Eleciromagnetism

{b) The magnetic field produced by the induced current tends to oppose
the change of the magnetic flux, so that this field will direct into the page.
Then by the right-hand rule the induced current is clockwise as seen from
the above.

2042

In Fig. 2.31 two conductors of infinite length carry a current I. They
are parallel and separated by a distance 2a. A circular conducting ring
of radius a in the plane of the parallel wires lies between the two straight
conductors and is insulated from them. Find the coefficient of mutual
inductance between the circular conductor and the two straight conductors.

(UC, Berkeley)

11X

Solution:

The magnetic field at a point between the two conductors at distance
r from one conductor is

_ ol 1
B(r) = 2 <r+2a—r)eo'

So the magnetic flux crossing the area of the ring is given by

¢=/B-dS:2/o B(r) - 2ydr
= [l (L JRYCE S
0 Vi

r 2a-—r

Let z = a — r and integrate:

¢=2/GM( ! + ! )\/GQ—zzdz
0

T \a—c¢ a+=z

4ol . a
= 2Ho aarcsm EI = 2uola.
T alo
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Hence the coefficient of mutual inductance is

M=%=2poa.

2043

As shown in Fig. 2.32, an infinite wire carries a current / in the +z
direction. A rectangular loop of wire of side ! is conneted to a voltmeter
and moves with velocity u radially away from the wire. Indicate which
terminal (a or b) of the voltmeter is positive. Calculate the reading on the
voltmeter in terms of the distances ry,r; and [.

(Wisconsin)

HK:
[ib -

Fig. 2.32

Solution:
The magnetic field at a point of radial distance r is

#ol
B=£-
2nr

and its direction is perpendicular to and pointing into the paper. The
induced emf in the rectangular loop (i.e. reading of the voltmeter) is

polul {1 1)
| %4 f(u x B) . dl e (7'1 7’2

if we integrate in the clockwise sense. Note that ux B is in the +2 direction.
As V > 0, terminal a is positive.
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2044
A long uniform but laminated cylindrical iron core of radius = 0.1 m
is uniformly wound with wire which excites a uniform flux density in it of
magnitude B(t) = 1 sin(400t) Wb/m?.
(a) What is the voltage per turn on the wire coil?

(b) What is the vector potential due to this core, A(r), at points where
r>0.1m?

(c) What is B(r,t) due to this core for points where r > 0.1 m?
(d) What is A(r,t) due to this core for r < 0.1 m?
( Wisconsin)
Solution:

(a) The voltage per turn on the wire coil must just balance the induced
emf, ie.,

d¢ _ ,dB
Ve—e=g=""g
= 400R? cos(400t) = 4 cos(400t) V.

(b) Consider a circular path C of radius » > 0.1 m with axis along the
axis of the iron core. By symmetry we see that the magnitude of A(r) is
the same everywhere on the circle and its direction is always tangential (in
the same direction as the current). Using V x A = B in Stokes’ theorem

we have
fA'dlz-/B-dS.
C S

As B vanishes outside a long solenoid and is uniform inside, the right-hand
side is
/ B -dS = B - 7R? = 0.01sin(400t) .
s

Stokes’ theorem then reduces to 2xrA(r,t) = 0.01sin(400t), giving

A(t,r) = ———sin(400t) Wb/m.

1
200xr

(¢) The magnetic field due to the core is zero for r > 0.1 m. (Strictly
speaking, there is a very small magnetlc field outside the solenoid tangential

to the circle in (b) of magnitude 427, I being the current in the core. This
is however usually negligible.)
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(d) For r < 0.1 m, Stokes’ theorem
2xrA(r,t) = xr’B = xr? . %sin(400t)

gives .
A(r,t) = 2—rsin(400t) Wb/m.

2045

An iron ring of radius 10 cm and of cross sectional area 12 cm? is
evenly wound with 1200 turns of insulated wire. There is an air gap in the
ring of length 1 mm. The permeability of the iron is 700 and is assumed
independent of the field; the phenomenon of hysteresis is ignored.

(a) Calculate the magnetic field in the gap when a current of 1 amp
passes through the coil.

(b) Calculate the self-inductance of the coil (with this core).
(UC, Berkeley)

Solution:
Using the results of Problem 2029 we have
_  #NI
(a) B= o= 0.795 T.
(b) L= # = LI4 H.
2046

Two single-turn circular loops are mounted as shown in Fig. 2.33. Find
the mutual inductance between the two coils assuming b € a.
(Wisconsin)

Solution:

As b € a, the magnetic field at the small loop created by the large
loop can be considered approximately as the magnetic field on the axis of
the large loop, namely
[10(121

B = 2a? + c2)57%°
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where I is the current in the large loop. Hence the magnetic flux crossing
the small loop is

2
Y. Lt S
Y12 = 2a? 1 T xb
and the mutual inductance is
_ Y12 Tpoa’b?

Mz == 2(a? + c2)3/2 "

1
@i

Fig. 2.33

2047

A closely wound search coil has an area of 4 cm?, 160 turns and a resis-
tance of 50 2. It is connected to a ballistic galvanometer whose resistance
i8 30 2. When the coil rotates quickly from a position parallel to a uniform
magnetic field to one perpendicular, the galvanometer indicates a charge of
4 x 10~% C. What is the flux density of the magnetic field?

(Wisconsin)
Solution:
Suppose the coil rotates from a position parallel to the uniform mag-

netic field to one perpendicular in time Atf. Since At is very short, we
have

_Ad .
C—E-—z(R+r).

As ¢ = iAt, the increase of the magnetic flux is

A¢p =g(R+r)= BAN,
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since the coil is now perpendicular to the field. Hence the magnetic flux
density is

g (R¥rlg _ (50 4 30) x (4 x 107%)
T AN T 4x10-1x160
=0.05 T = 50 Gs.

2048

Two coaxial circular turns of wire of radii a and b are separated by a
distance z and carry currents i, and i, respectively. Assume a % b.

(a) What is the mutual inductance?
(b) What is the force between the currents?
(Wisconsin)
Solution:
(3) As in Problem 2046, the mutual inductance is

2p2
Tpoa“d

Mg = —202
12 2(a? + z2)3/2

(b) Consider the small coil b as a magnetic dipole of moment my =
7b?%1,. The force on it is given by

4B,
oz

_ wpoalbisiy 3z
- 2 (az + 52)5/2 :

F=m

If the currents in the two coils are in the same direction, the force will be
an attraction. If the directions of the currents are opposite, the force will
be a repulsion.

2049

A d.c. electromagnet is to be constructed by winding a coil of N turns
tightly on an iron yoke shaped like a doughnut with a small slab sliced out
to form the gap as in Fig. 2.34. The radii for the doughnut are a and b and
the width of the gap is W. The permeability u for the iron can be assumed
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constant and large. A wire of radius r and resistivity p is to be used for
the coil. The completed magnet will be operated by placing the coil across
a d.c. power supply of voltage V. For simplicity, assume that b/a 3» 1 and
a/r » 1. Derive expressions for the following quantities:

(a) The steady state value for the magnetic field in the gap.
(b) The steady state value for the power consumed in the coil.

(c) The time constant governing the response of the current in the coil
to an abrupt change in V.
(UC, Berkeley)

€

Fig. 2.34

Solution:

(a) In the steady state, as V- B = 0 and the cross section of the iron
yoke'is the same everywhere, B must be a constant in the yoke. Applying
§ H-dl = NI to the doughnut, we have

E(?wb— W)+ EW = NI,
H Ho

giving

B= Nlpop . Nlpop
po(27b— W)+ uW  po2nb+ uW -’

As
|1 vV Ve?
I'=%= 8@ =38
the steady state value for the magnetic field in the gap is

B HopVr?
"~ 2ap(2mbuo + Wp)

(b) The steady state value for the power consumed in the coil is

_ V2r2

P=IV—2apN.
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(¢) The self-inductance of the coil is

NBna? N2uouma?

L=
I po21rb +uW’

so the time constant governing the response of the current in the coil to an
abrupt change in V is

L_N 2pouna®  [pN2xa _ Npopaxr?
R po2nb+pW/ =r2 = 2p(ue27h + uW) '~

2050

A very long solenoid of n turns per unit length carries a current which
increases uniformly with time, i = Kt.

(a) Calculate the magnetic field inside the solenoid at time ¢ (neglect
retardation).

(b) Calculate the electric field inside the solenoid.

(c) Consider a cylinder of length ! and radius equal to that of the
solenoid and coaxial with the solenoid. Find the rate at which energy
flows into the volume enclosed by this cylinder and show that it is equal to
f;(%lu’), where L is the self-inductance per unit length of the solenoid.

(UC, Berkeley)

Solution:

Use cylindrical coordinates (r,8,2) with the z-axis along the axis of
the solenoid.

(a) Applying Ampére’s circuital law § H-dl = i to a rectangle with the
long sides parallel to the z-axis, one inside and one outside the solenoid, we
obtain H = ni, or

B = uenkte, .

(b) Maxwell’s equation V x E = —B gives

[a ao ] = —ponK..

Noting that by symmetry E does not depend on & and integrating, we have

}loﬂ.]{f

E=- 2 € .
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(c) The Poynting vector is

212
N=ExH=_H"X

rte, .

So energy flows into the cylinder along the radial directions. The energy
flowing in per unit time is then

% = 2rrIN = puoVnlK?%,
where V is the volume of the cylinder. The self-inductance per unit length

of the solenoid is

2
L= nB;n' = ponwrt.
Hence i/ dW
- - 2 = 2 2 = —
% (21Lc ) poVn K*t i
2051

Consider a rectangular loop of wire, of width a and length b, rotating
with an angular velocity w about the axis PQ and lying in a uniform, time
dependent magnetic field B = Bgsinwt perpendicular to the plane of the
loop at ¢ = 0 (see Fig. 2.35). Find the emf induced in the loop, and show
that it alternates at twice the frequency f = 3%.

(Columbia)

I-——D
1 |

Solution:
The magnetic flux crossing the loop is

1
¢ = B .S = Bpabsin(wt) cos(wt) = §Buabsin(2wt) .
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So the induced emf is

€= —% = —Bpabw cos(At) .

. . 2 —_ —
Its alternating frequency is % = 2. 3= = 2f.

2052

A rectangular coil of dimensions a and b and resistance R moves with
constant velocity v into a magnetic field B as shown in Fig. 2.36. Derive an

expression for the vector force on the coil in terms of the given parameters.
(Wisconsin)

x x x|
®x x x|

Solution:
As it starts to cut across the magnetic field lines, an emf is induced in
the coil of magnitude

£=—/va-dl=—Bvb

and produces a current of

€ Bvb
I'=g=-7%

The minus sign indicates that the current flows counterclockwise. The force

on the coil is .
/ Idl x B v’ B

=IbB = — .
R

The direction of this force is opposite to v. That is, the force opposes the

motion which tends to increase the cutting of the magnetic field lines.

F=
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2053

A constant force F is applied to a sliding wire of mass m. The wire
starts from rest. The wire moves through a region of constant magnetic
field B. Assume that the sliding contacts are frictionless and that the
self-inductance of the loop can be ignored.

(a) Calculate the velocity of the wire as a function of time.

(b) Calculate the current through the resistor R as a function of time.
What is the direction of the current?

(Wisconsin)
Solution:

(a) As the wire moves through the uniform magnetic field an emf ¢ =
Bilv will be induced in it, where ! is the length of the wire in the field
and v is its speed. This causes a current to flow in the wire of magnitude
I = ¢/R, R being the resistance of the wire, because of which a magnetic
force |Idl x B| = IIB acts on the wire. This force opposes the motion of
the wire. Thus the equation of the motion of the wire is

dv B2
m;t— =F - —}2_” .

Solving it we have
RF B*?
v(t) = B + Cexp (— —’;Et) .
Asv=0att=0, weﬁndC-——-n Hence

FR B2
v(t) = W[l - exp ( - —rrﬁt)] .

(b) The current is

I(t) = Blv(t) = Bi [l — exp (— gmilit)] .

2054

A rectangle of perfectly conducting wire having sides a and b, mass
M, and self-inductance L, moves with an initial velocity vp in its plane,
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directed along its longest side, from a region of zero magnetic field into a

region with a field By which is uniform and perpendicular to the plane of

the rectangle. Describe the motion of the rectangle as a function of time.
(Columbia)

Solution:

Taking b > a, the rectangle will move along side b and the equation of
the motion is d
v

m;i—t' = —BoaI,

where I is the current induced in the conducting wire given by
dl

L— = .
dt Boav

The above two differential equations combine to give

v,
W +wyv = 0
. _ Bgpa . . . . .
with w = 7::7 Solving this equation, we obtain the velocity of the rect-
angle
v=Cisinwt + Cycoswt .

Asv=vatt=0weget Co =vp;andas I =0att =0, weget C; =0.
Hence

v = vgcoswt.

The displacement of the rectangle of wire (with s = 0 at t = 0) is

Yo .
§ = —sinwt.
w

2055

A rectangular loop of wire with dimensions [ and w is released at t = 0
from rest just above a region in which the magnetic field is By as shown
in Fig. 2.37. The loop has resistance R, self-inductance L, and mass m.
Consider the loop during the time that it has its upper edge in the zero
field region.

(a) Assume that the self-inductance can be ignored but not the resis-
tance, and find the current and velocity of the loop as functions of time.
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(b) Assume that the resistance can be ignored but not the self-
inductance, and find the current and velocity of the loop as functions of
time.

(MIT)

B=0 w
X XofX X X]x X X
X X xxxx!xl

X X X XX X XX
B:Bo

Fig. 2.37

Solution:

During the time stated above, we have

€ = Blv,

di
€—L:i—t-—-]R,
F:mg—BII:mZ—;].

(a) Using the results of Problem 2053, we have
ng B??
=B [ exp ( mR L
B2
L P B
=G|t -e (- TR ‘)] '

(b) R = 0. We have L4 = mlv and the equation of the motion is

dv
= BIl.
ma T
These give
d*v toly=
dt o
where w? = Ifn' The general solution is

v = ¢y coswt + coasinwt .
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Asv=0,I=0att=0, wefind c; = 0,co = . Hence
v= 9 sin wt,
W
I= %(1 — coswt),

Bl

with w = —

2056

As in Fig. 2.38 a long straight wire pointing in the y direction lies in
a uniform magnetic field Be,. The mass per unit length and resistance
per unit length of the wire are p and A respectively. The wire may be
considered to extend to the edges of the field, where the ends are connected
to one another by a massless perfect conductor which lies outside the field.
Fringing effects can be neglected. If the wire is allowed to fall under the
influence of gravity (g = —ge,), what is its terminal velocity as it falls
through the magnetic field?
(MIT)

Fig. 2.38

Solution:

As the wire cuts across the lines of induction an emf is induced and
produces current. Suppose the length of the wire is [ and the terminal

velocity is v = —ve,. The current so induced is given by
—/va-dl:iAI.
1
Thus
vBl vB
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flowing in the —y direction. The magnetic force acting on the wire is

2
F=/idle=iBle,=vl: Lo,

When the terminal velocity is reached this force is in equilibrium with the
gravitation. Hence the terminal velocity of the wire is given by

vBAU
=Pl
ie.,
_ PgA
V=BT
or A
-2,
2057

As in Fig. 2.39, what is the direction of the current in the resistor r
(from A to B or from B to A} when the following operations are performed?
In each case give a brief explanation of your reasoning?

(a) The switch S is closed.
(b) Coil 2 is moved closer to coil 1.

(¢) The resistance R is decreased.
(Wisconsin)

Fig. 2.39

Solution:

In all the three cases the magnetic field produced by coil 1 at coil 2 is
increased. Lenz’s law requires the magnetic field produced by the induced
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current in coil 2 to be such that as to prevent the increase of the magnetic
field crossing coil 2. Applying the right-hand rule we see that the direction
of the current in resistor r is from B to A.

2058

A piece of copper foil is bent into the shape as illustrated in Fig. 2.40.
Assume R=2cm, ! =10 cm, a = 2 cm, d = 0.4 cm. Estimate the lowest
resonant frequency of this structure and the inductance measured between
points A and B, when the inductance is measured at a frequency much
lower than the resonant frequency.

(UC, Berkeley)

Solution:

Consider the current in the copper foil. As d € R, we can consider
the currents in two sides of the cylinder to have same phase. That is to say,
the current enters from one side and leaves from the other with the same
magnitude. Accordingly, the maximum wavelength is 2 R. Along the axial
direction, the current densities are zero at both ends of the cylinder so that
the maximum half-wavelength is /, or the maximum wavelength is 2{. As
2{ » 27 R, the maximum wavelength is 2! = 20 cm, or the lowest resonant
frequency is
c _3x10'°
207 20

When the frequency is much lower than fo, we can consider the current
as uniformly distributed over the cylindrical surface and varying slowly with

fo= = 1.5 x 10° Hz.
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time. As aresult, we are essentially dealing with a static situation. Ignoring
edge effects, the magnetic induction inside the structure is

B:[Jgi=+

The magnetic flux crossing a cross section of the structure is
I
¢=BS = "" K" (xR? + ad),

giving an inductance

L—f (7rR2+ad)
-7 2
47rx10 x(wxg(lﬂ +002XO004).—1.68><10”8H.

2059

A magnetized uncharged spherical conductor of radius R has an inter-
nal magnetic field given by

B(l‘) AT_LK

where A is a constant, K is a constant unit vector through the center of
the sphere and r; is the distance of the point r to the K axis. (In a
Cartesian coordinate system as in Fig. 2.41, K is in the z-direction, the
sphere’s center is at the origin, and r3 = z2 4 y2.) The sphere is now spun
(non-relativistically) about its z-axis with angular frequency w.

(a) What electric field (in the “laboratory frame”) exists in the interior
of the spinning sphere?

{b) What is the electric charge distribution? (Do not calculate any
surface charge.)

(¢) What potential drop is measured by a stationary voltmeter
(Fig. 2.42), one of whose ends is at the pole of the spinning sphere and
whose other end brushes the sphere’s moving equator?

(CUSPEA)
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Fig. 2.41 Fig. 2.42

Solution:

(a) At the point P of radius vector r the magnetic field is B = Arie,.
The velocity of P is
VZwXr=we, Xr.

For a free charge ¢ to remain stationary inside the sphere, the total force
on it, f = q(E + v x B), must vanish. Thus the electric field intensity at
Pis
E(r) = -vx B = ~Awri(e, xr) x e,
= —Aw(z® + y*)(ze; + yey) .

(b) By V- E = £, we can get the volume charge density inside the
sphere,

2
pzev.E=_4ﬂ

’

where ¢ is the permittivity of the conductor.
(c) To find V we integrate from N to M along a great circle of radius

R (see Fig. 2.42):
N
V=- / E-dl.
M

In spherical coordinates dl = Rdfey, and for a point (z,y,2),r, = rsind,
ze; + ye, = ry (sinfe, + cosfey). Thus the electric field on the surface is

E = —AwR3sin® 6(sin fe, + cosfey),
giving

§ 3
V= AwR"/ sin® 0 cos df = A“;R X
4]
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2060

Consider a square loop of wire, of side length {, lying in the z, y plane
as shown in Fig. 2.43. Suppose a particle of charge ¢ is moving with a
constant velocity v, where v < ¢, in the z2-plane at a constant distance
2o from the zy-plane. (Assume the particle is moving in the positive z
direction.) Suppose the particle crosses the z-axis at ¢ = 0. Give the
induced emf in the loop as a function of time.

(Columbia)

Fig. 2.43

Solution:

At time ¢, the position of ¢ is (v¢,0, 20). The radius vector r from ¢ to
a field point (z,y,z) is (z — vt,y, 25). As v € ¢, the electromagnetic field
due to the uniformly moving charge is

B I SN B TP
E(r’t) e 47|'€0 1‘3 - 41[601'3[(2 vt)l+yJ+Zk])
_v _ Bogqv, .
B(r,t) = e XE= 4wr3( 2j +yk),

with
r=lz =) +y*+ (2~ )]

The induced emf in the loop is given by the integral

£ = — a_B..ds

s Bt
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where S is the area of the loop and dS = dzdyk. Thus

_ _ Bogv y
=T ./ “o / dy [(z — vt)2 + y2 + (z — 20)3]¥/?
#oqv

[\/(-—vtf’_ﬂmff
- _____1__*_]
VE =) + B+ (2~ z)

poqv / [ z—vt
[(z - vt)* + (z - 20)?P/?

- z—vl ]
[(z—vt)2+082+ (z — z0)2pP/?
1

- poqv
- { \/v’t5 + (z — zg) 5 V= vt)? + (2 — 20)*
1
- V-t + I§ + (2 — 29)? + VRt + 08+ (z - zo)’} '

2061

A very long insulating cylinder (dielectric constant ¢) of length L and
radius R(L >» R) has a charge Q uniformly distributed over its outside
surface. An external uniform electric field is applied perpendicular to the
cylinder’s axis: E = Ege, (see Fig. 2.44). Ignore edge effects.

(a) Calculate the electric potential everywhere (i.e. inside and outside
the cylinder).

Now the electric field Ey is removed and the cylinder is made to rotate with
angular velocity w.

(b) Find the magnetic field (magnitude and direction) inside the cylin-
der.

(c) A single-turn coil of radius 2R and resistance p is wrapped around
the cylinder as shown in Fig. 2.45, and the rotation of the cylinder is slowed
down linearly (w(t) = wo(l — t/to)) as a function of time. What is the
magnitude of the induced current in the coil? In what direction does the
current flow?
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(d) Instead of the coil of part (c), a one-turn coil is placed through the
cylinder as shown in Fig. 2.46, and the cylinder is slowed down as before.
How much current will now flow?

( Princeion)
Solution:

(a) By the superposition principle the electric potential can be treated
as the superposition of the potentials due to @ and E. The potential due
to Q is

r< R,

wl(r):{ —'%rlnn, r>R.

Here the potential is taken to be zero at the cylinder’s center.

—t—

C DE
L

x

Fig. 2.44

Let @5 be the potential due to the uniform field E. Then VZp, = 0
(r # R), or in cylindrical coordinates

2

ror\"or r2 062
We separate the variables and obtain the general solution

E[r"(ancosnd + by sinnf) + X (cacosnb +d,sinnf)], r<R
b2 = { Z(r"(en cosnf + fnsinnd) + L (gn cosnd + hpsinnd)], r>R.
n

From the boundary condition ¢, = —Egrcosf for r — oo we get ey =
—Ey, fi =0, en = fn = 0for n # 1. From the condition g2 = 0 for r — 0
we get ¢, = d, = 0 for all n. For r = R, we have boundary conditions

3(,02 — e 39’?2

= Y2
4 rz=R+’ 61- r=R- 6r lr=p+’

r=R-
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which give the simultaneous equations

§R" (an cos nf + by, sin né) = —REgcost
+§)R1-;(g,, cosnb + h, sinnd),
e§nR""(a,. cosf + by sinnf) = —eoFpcosf

—Eogﬁ,%:r(gn cosnf + hy, sinnd).

These have the solution

2E, (€ — €0)R2Ey
= —— = bhi=h =
a1 E+€°’ g1 £+ €o 01 1 0’
@n=bn=gn=h,=0 for n#£l.
Thus
—;%ﬁ";rcosﬂ, r<R
p2 =
—Egrcosf + ﬁ‘—:‘_’ggg—“, r>R.
Hence the total electric potential is
2E
0= o1 4y = —ircosd, r<R
—2—,?5113%—1’707‘0089+ f%:—‘:u—’,g“coso,- r>R.

(b) With E removed and the cylinder rotating about its axis with an-
gular velocity w, a .surface current of density 5;%7 ‘wR = %"[ is generated.
By Ampére’s circuital law we find

= HoQuw
axl °

for the interior of the cylinder.

(c) The magnetic flux passing through the single-turn coil shown in
Fig. 2.45 is

as there is no flux outside the cylinder. The induced emf is therefore

__49_ pQR’ ([ dw) _ poQRw,
T odt T 2L dt /]~ 2Lt
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and the induced current is

poQR3wo
2th0 )

By Lenz’s law the direction of i is that of rotation.

(d) There is no magnetic flux crossing the coil shown in Fig. 2.46, so
no current is induced in the coil.

. €
t=—=
P

2R . )
-
Fig. 2.45 Fig. 2.46

2062

Consider a closed circuit of wire formed into a coil of N turns with
radius a, resistance R, and self-inductance L. The coil rotates in a uniform
magnetic field B about a diameter perpendicular to the field.

(a) Find the current in the coil as a function of & for rotation at a
constant angular velocity w. Here 8(t) = wt is the angle between the plane
of the coil and B.

(b) Find the externally applied torque required to maintain this uni-
form rotation. (In both parts you should assume that all transient effects
have died away.)

(CUSPEA)
Solution:
(a) The emf induced in the coil is given by
d
€= —EE A B-dS.

Noting that, as the vector dS is normal to the plane of the coil, B - dS =
B cos(% — 0)dS, we have, with § = wt,

_d . o d g .
e=— /s Bsin(wt)dS = —a[wa N Bsin(wt)]

= —xa’wN B cos(wt)
= —Re [xa’wN B exp(iwt)) .
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The current in the circuit is given by

dI
Lz{‘FIR—C.

Let I = Igexp(iwt). The above gives

-na?wNB _ xa’wNB e-i(5+9)
iwL+R ~ JWILI+ R? ’

where ¢ = arctan(%§).

Io-_-

~—e B

Fig. 2.47

Thus we have

I(t) = ratwN B cos (wt 1)
Yy 73
ma’wNB
= m sin(wt—¢ ).
(b) The magnetic dipole moment of the coil is

m = Ira’Nn,

where n is a unit vector normal to the coil. At time ¢ the external torque
on the coil 7 = m x B has magnitude

_ (7ma’?NB)%w

r=|m x B| = Ira®?NBsin (I-0) =
| I 3 A

cos(wt) sin(wt — ).

2063

You are equipped with current sources and a machine shop for con-
structing simple linear electric components such as coils, inductors, capac-
itors, and resistors. You have instruments to measure mechanical forces
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but no electrical meters. Devise an experiment to measure the ampere
given the above equipment and your knowledge of the basic equations of
electricity and magnetism.

(Chicago)
Solution:

Make two identical circular coils and arrange them co-axially under a
pan of a balance to construct an Ampére’s balance, as shown schematically
in Fig. 2.48. The mutual inductance between the coils is My2(z). The coils
are connected to the same current source. With standard weights on the
pans the force Fi; between the two coils can be measured. The mutual
inductance part of the magnetic energy stored in the two coils is

Wiz = Mish I = Mya I,
as the coils are connected to the same source. Hence the interacting force

1S
6W12 - 12 6M12(z)

Fia = oz Oz

coil 1

g
Fig. 2.48

Using the value of the force measured with the Ampere’s balance and cal-
culating QAL(;}(Q, I can be determined.
Using the MKSA unit system the value of the current so determined

is in amperes.

3. ACTION OF ELECTROMAGNETIC FIELD ON CURRENT-
CARRYING CONDUCTORS AND CHARGED
PARTICLES (2064-2090)

2064
Two parallel wires carry currents i; and {2 going in the same direction.
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The wires:
(a) attract each other
(b) repel each other
(c) have no force on each other.
(CCT)
Solution:
The answer is (a).

2065

Two matually perpendicular long wires are separated a distance a and
carry currents I; and I,. Consider a symmetrically located segment (— % 5 2)
of I of length | < a as shown in Fig. 2.49.

(a) What are the net force and net torque on this segment?

(b) If the wires are free to rotate about the connecting line a, what
configuration will they assume? Does this correspond to a maximum or a
minimum in the energy stored in the magnetic field?

( Wisconsin)

Solution:
(a) The magnetic field at a point (0, a, 2) produced by I is
[1011 F4 a
B, = Tq .2 N = e 2l K
2rva? + 22 | Va? + 22 Va? +z

so that a small current element (z,z + dz) on Iy will experience a force

dF2l = Iga’ze, X B1 = Izdz “011

‘/-2——7\[’2—1(“")

_ yolllgzdz( 2.
~ 2n(a? + 22)

N~
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Thus the force acting on the small segment (—%,1) is

12
Fa =/ dF, =0
—1/2

as the integrand is an odd function of z, and the torque on it is
12 iz 2
polilz / 2°dz
= dF3 = — —_— X
i /_1/2 Fos X i 2 Jypa+s? (ex x )

. _bolily '123 2 e = —piol1lz 5
T oma?2 37 12 YT 24xa? v:

We can conclude from this that if the current I, is free to rotate about the
connecting line @ then it will finally settle in parallel with the current I,
such that the directions of both currents I; and I, are the same. Obviously,
this position corresponds to a minimum energy stored in the magnetic field.

2066

A uniform sheet of surface current of strength A (ampéres per meter
in the y direction) flows eastward (in z direction) on a horizontal plane
(z = 0), as shown in Fig. 2.50. What are the magnitude and direction of
the force on:

(a) A horizontal segment of a wire of length [/, above the sheet by a
distance R, carrying a current i (amperes) in a northward direction?

UP (2}
North {y)
A
0 Eost (x)
Fig. 2.50

(b) The same segment but oriented so as to carry a current in the
westward direction?

(c) A loop of wire of radius r, with center above the sheet by a distance
R(r < R), carrying a current i whose magnetic moment is eastward?

(d) The same loop but with its magnetic moment northward?
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{e) The same loop but with its magnetic moment upward?
State briefly the reason for each of your answers.

( Wisconsin)
Solution:

The sheet of surface current can be divided into narrow strips of width
dy and each strip regarded as a current dI = Ady. Consider a point P
at (0,0,R). According to Ampére’s circuital law two current strips dIy
and dl; located symmetrically on two sides of the point 0 will give rise to
magnetic inductions dB; and dB2 which combine to a resultant dB in the
—y direction (see Fig. 2.51):

2upAdy

B =@ + R

cosfey ,

where cos 8 = :7“—-.
y2+R2
z
dBy P
dB 'f—
daBy
0
dly Oby-ldy
Fig. 2.51

Let 2L be the width of the current sheet. The total magnetic field at the
point P is

/dB— ”OAR/ 7 +R2 ey = ”:'\arctan(%>e,,.

(a) The current element at P is idl = ile, so the force on it is

F=ile,xB=0.

(b) The current element idl = —ile, and the force on it is

[loilz\ L ﬂoIiA L
F = Tarctan (E)e, Xey = - arctan R e;.
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{¢) The loop of wire carrying current i has magnetic dipole moment

m = nr’ie,. The force exerted by the magnetic field B on the loop is

F=V(m- B)=V(mBe,-e;) =0

(d) m = wr?iey, and the force acting on it is

.0 L ArZiR?
F=V(m-B)= —po,\r"'tﬁ (arctan —R——)e, = %

(e) m = wr?ie, and the force acting on it is

F= V(mBez ‘ey) = 0.

2067

A circular wire of radius R carries a current i electromagnetic units.
A sphere of radius a (a € R) made of paramagnetic material with perme-
ability u is placed with its center at the center of the circuit (see Fig. 2.52).
Determine the magnetic dipole moment of the sphere resulting from the
magnetic field of the current. Determine the force per unit area on the
sphere.

(UC, Berkeley)

@\
78, z

Fig. 2.52

Solution:

Take the center of the circular wire as the origin and its axis as the
z-axis. The magnetic field at the origin generated by a current { in the wire
is

= =—e;.

2R
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As the radius of the small sphere a < R, we may think of the sphere as
being in a uniform magnetic field By and make use of the magnetic scalar
potential p. Let ; and ¢, be the potentials outside and inside the sphere
respectively. They satisfy the equations V2p, = V2, = 0 since the inside
and outside magnetizations are both uniform. We require

= orc )
~ = —— os
¥ Yo )

for r — oo and ¢y finite for + — 0. Furthermore, at r = R we have the
boundary conditions

i) 0
1= P2, #0£= ;:,2

Solving the Laplace’s equations by separation of variables and following the
procedure for solving Problem 1062 we are led to

rcosf.

p2= T

The magnetic induction inside the sphere is then

3u
p+2p0

B= —[lV(pz =

Let the maguetization of the small sphere be M. Then as B = g (H+M) =
p#H by definition we have

1 1 3(s — po) 3(1 — )i
M={—-—-)B= By = e,
(uo u) po(i+2m) °  2(u+2u0)R

The magnetic dipole moment of the sphere is then

4 oM = Up = po)ma’i

m=3 1+ 2410

'z .

The surface current density on the sphere is given by the boundary condi-
tion

an =nx (Hy—H;).
As

H1=§—l, Hz:%-—M nX(Bg—Bl)=0
2
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we have .
3(p ~ po)i
2(p + 2u0)R

Finally, the force per unit area on the sphere is

ay =Mxn= sinf e, .

——————3(“ = Ho)i siné - &(e‘, X e;)

2(p + 2p0)R 2R
_ 3po(ps — po)i?
4(p + 2p0)R

f‘:aMXBo:

sin @(cos feq + sin fe, ) .

2068

A current loop has magnetic moment m. The torque N in a magnetic
field B is given by:

() N=mxB,(b) N=m-B, (¢c) N=0.
(ceT)
Solution:

The answer is (a).

2069
A bar magnet in the earth’s field will
(a) move toward the North pole
(b) move toward the South pole
(c) experience a torque.
(CCT)
Solution:

The answer is (c).

2070

A copper penny is placed on edge in a vertical magnetic field B = 20
kGs. It is given a slight push to start it falling. Estimate how long it takes
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to fall. (Hint: The conductivity and density of Cu are 6 x 10°Qcm™! and
9 gem™3)
(Princeton)

Solution:

Because Cu is a good conductor, the potential energy of the copper
penny will be converted mainly into heat when it is falling in such a strong
magnetic field. We may assume that in the falling process the magnetic
torque is always in equilibrium with the gravitational torque. Let 8 be the
angle between the plane of the copper penny and the vertical axis. When
we are considering a ring of radii r and r + dr, the magnetic flux crossing
the area of the ring is ¢(8) = 7r?Bsin 6. The induced emf in the ring is

€= % = #r?B0 cosf

and the induced current is

diz &= xr?Bf cosd
"R R !
where R is the resistance of the ring. Let h be the thickness of the penny.

We then have
2%r

= ohdr’

Thus .
Br0 cos 8chdr

di= 2

The magnetic moment of the ring is

dm = 7ridi = xr3 B0 cos Ohdr
= = 5 ,
and the magnetic torque is
xr2 B2 cos? Ochdr
dry = |[dm x B| = 2

Let the radius of the penny be ry, then the magnetic torque on the whole
copper penny is

*o xB20 cos? 4024 cnal
m = [drm= [ TBdcort0oh oy, _ 8B cor'oh
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The gravitational torque on the other hand is
T4 = mgrosin@ = wraphgsinf.
From 7,, = 7,, we get

B?rgc  cos?
8¢p sinf

dt =
Suppose the penny starts falling at § = 6, then the falling time will
be
x/2 np2 2
T:/dt:/ Broa.c?sﬂtw
P 8gp  sinf

_ Blarg 1 1 + cos 00)]

= —cosly+ —In {—>2"0
Sgp[ cOso+2n(l—c0s9f,

Using the given data and taking ro = 0.01 m, 6y = 0.1 rad., we have the
estimate
T~68s.

We can conclude from this that the potential energy converts mainly into
heat since the time required for falling in a stong magnetic field is much
longer than that when no magnetic field is present.

2071
Suppose that inside a material the following equations are valid:

¢V x Aj=-H, (A constant)
d

rather than Ohm’s law j = 0E. (These are known as London’s equations.)
Consider an infinite slab of this material of thickness 2d(—d < z < d)
outside of which is a constant magnetic field parallel to the surface, H, =
H, =0,Hy = Hy for 2 < —d and Hy = Hy for 2 > d with E=D =0
everywhere, as shown in Fig. 2.53. Assume that no surface currents or
surface charges are present.

(a) Find H inside the slab.
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(b) Find j inside the slab.
(c) Find the force per unit area on the surface of the slab.

(Princeton)
y
/, /’
Hy Ha
z

i Pl

-d «d
Fig. 2.53

Solution:

We use Gaussian units for this problem. In superconducting electro-
dynamics there are two descriptive methods. Here we shall take the current
approach, rather than treating the material as a magnetic medium. The
relevant Maxwell’s equations are

VxH:i:—rj, V-H=0.

Since E = 0,j is a constant current and the magnetic field is stationary.
The first Maxwell’s equation gives

Vx(VxH):icEij,

ie.,
V(V-H)-V?H = ‘-‘;v xj.

Using V- H = 0 and London’s equations in the above we find for the
material 4
2 — _7'-' =0
VH-z&@H=0
From the symmetry we can assume that H = H(z) and has only y-
component, i.e., H = Hy(z)e,. The above then becomes

d?H, 4«
i Ay =0
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The general solution is H, = Ae~** + Be**. Using the given boundary
conditions we have

{ Hy(d) = Ae~*? + Be*d = H,,
Hy(-d) = Ae*? 4+ Be~¥ = [, |

giving
Hlekd - Hze—kd B Hzekd - H;e—kd

A= =
ok _ o—2kd ! ekd _ g—7kd

(a) Inside the slab only the y-component is present. It is

Hy(z) = Ae™** 4 BeF*
_ H2 sinh[k(z + d)] — H; sinh[k(z — d)]
sinh(2kd)

(b) From Maxwell’s equation j = =V x H and H = H,(z)e,; we have
1] = jzez with

¢ OH, ¢ k{Hjcosh[k(z +d)] — H, cosh[k(z - d)]}
ir 8z = 4« sinh(2kd)

Jr =

(c) The force on the slab is

:l/jxndv
[o4
e, O0H,
=2 (‘n)a HydzdS .

Hence the force per unit area on the surface is

BH, e,/
41' / Hy S tds = -2% [ HydH,

2072

A long thin wire carrying a current 7 lies parallel to and at a distance
d from a semi-infinite slab of iron, as shown in Fig. 2.54. Assuming the
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iron to have infinite permeability, determine the magnitude and direction
of the force per unit length on the wire..

(UC, Berkeley)

y
k=
I
=] X
" 0

I
d—-p—d -
Fig. 2.54

Solution:
Use the method of images. The image current is I’, located at z = —d

and opposite in direction to I with magnitude

I = ———“—”01.
K+ o

With u4 — oo, I’ = I. The magnetic field at the position z = d produced
by I’ is given by Ampére’s circuital law as B = f}ge,. Therefore the force
per unit length on the wire is

. [4012
F=idlx B=IBe, xe, = 41rde"

2073

An uncharged metal block has the form of a rectangular parallelepiped
with sides a,b,c. The block moves with velocity v in a magnetic field of
intensity H as shown in Fig. 2.55. What is the electric field intensity in the
block and what is the electric charge density in and on the block?

(Wisconsin)
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Solution:

In equilibrium no force acts on the electrons of the metal block, i.e.,
—eE —ev x B =0. Hence

E=—-vxB=—uvxH=—pwHey.

“ e l C 1 ha.'lge :lE“Elt) 18

Hence there is no charge inside the block. The surface charge density o is
given by the boundary condition

o==D, =t FE,.

As E is in the y-direction, ¢ occurs only for the surfaces formed by the
sides a, b and has the magnitude

g = :|:£oE = :EEo}lovH,

and the sign as shown in Fig. 2.55.

2074

In Fig. 2.56 an iron needle 1 cm long and 0.1 cm in diameter is placed
in a uniform magnetic field of Hy = 1000 Gs with its long axis along the
field direction. Give an approximate formula for H(r) valid for distances
r > 1 cm. Here r is measured from the center of the needle as origin.

(Chicago)
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Fig. 2.56

(Note: the saturation value of B in iron is approximately 2000 Gs.)

Solution:

For distances r 3» 1 em the iron needle can be treated as a magnetic
dipole with moment m. Take the z-axis along the axis of the needle. Write

Hext = Hoe,, m =me,.

In Gaussian units the magnetic field at position r is approximately

m-r m 3(m-r)r
H(l‘):Ho—V( -3 ):Ho—;s-{-—-*—.

As the magnetic field due to the iron needle is much weaker than
the external field Ho,m/r3 <« Hy. As the tangential component of H is
continuous at the boundary, the magnetic field within the iron needle may
be taken as approximately

Hin = Ho .

The magnetization of the needle is then
M = —(Bin — Hin) .
4r
With the volume of the needie equal to
V = (0.05)%7 em®,

Bin = 2 x 10 Gs, Hip, &~ Hg = 10% Gs, the magnetic moment of the needle
is

2
m=vM=(0—‘3-?;)—”-x(2-o.1)x104=11.9(;s-cm3.
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In polar coordinates the magnetic field at distances r 3 1 cm has compo-
nents

0 23.8
H, = Hocos 0+ 2m—=- = (1000+ 7) cosd Gs,
msin 11.9Y .
Hy = —Hpcost + 3= (—1000+ F)smﬂ Gs.
2075

A charged metal sphere of mass 5 kg, radius 10 cm is moving in vacuum
at 2400 m/sec. You would like to alter the direction of motion by acting
on the sphere either electrostatically or magnetically within a region 1 m
X 1 m x 100 m.

(a) If limited by the total stored energy (electric or magnetic) in the
volume of 100 m?, will you obtain a greater force by acting on the sphere
with a magnetic field B or an electric field E?

(b) For a maximum electric field {due to its charge) of 10 kV/cm at
the sphere’s surface find the transverse velocity of the sphere at the end of
the 100 m flight path as a function of the applied field (B or E)?

(Princeton)

Solution:

a) The electric energy density is w, = 2¢oE2, and the magnetic energy

; 2
density is w,, = g—o. To estimate order of magnitude, we may assume the
field intensity to be the same everywhere in the region under consideration.

. 2
For the same energy density, $c0E? = -.f—;;, we have £ = Wlo‘-o- =cand

This shows that the force exerted on the metal sphere by an electric field
is much greater than that by a magnetic field for the same stored energy.

(b) The maximum electric field on the metal sphere’s surfaces of Eq =
10 kV/cm limits the maximum charge Q,, carried by the sphere as well as
the magnitude of the applied field (E or B). If an external electric field E
is applied the surface charge density is (see Problem 1065)

o =09+ 3cgE cosl
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where the polar axis has been taken along the direction of E, and o is the
surface charge density due to the charge Q carried by the sphere, i.e.,

o) = —
4xr2’

r being the radius of the sphere. The electric field on the sphere’s surface
is given by E = Z and the maximum electric field, Ep, occurs at § = 0.
Hence o
By == +3E,
€0

and the total charge of the sphere is
Q = 41"‘20’0 = 41(601'2(Eo — 3E) , (E < %Eo) .

The time taken for the sphere to travel a distance [ is At = % The

transverse acceleration is 9m£ if we assume E; = E. Then the transverse

velocity at the end of At is

4 2p ‘
_ @At _ dmeor (Eo - 3E) - EI , (E < lE'o) .
m mug 3

v

If an external magnetic field is applied instead, the above needs to be mod-
ified only by substituting vy B for E, the result being

= 47!’801‘2(E0 - 3003)3’ , (B < &) )

m 3ug

vy

IfE> lEyor B> %‘;—, the charge of the metal sphere is zero and the
transverse velocity is also zero. From the above results we can also show
that the transverse velocity is maximum for £ = Ey/9 or B = Ey/9V,, as
the case may be. It follows that

o, o 8mear’EQl 8w x 9-% x 0.1? x 105%2 x 100
T T 9Tmue 27 x 5 x 2400

=6.86 x 107* m/s

and the maximum transverse displacement of the sphere is

b Al = vl _ 6.86 x 1074 x 100
AmEE = T 2400

which is negligible in comparison with the transverse size (1 m) of the space.

= 2.86 x 10—6 m,
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2076

Show that the force between two magnetic dipoles varies as the inverse
fourth power of the distance between their centers, whatever their relative
orientation in space is. Assume that the dipoles are small compared with
the separation between them.

(Columbia)

Solution:

Let the magnetic moments of the two dipoles be m; and mj. The
potential produced by m, at the location of m; is

_ 1 msz-r
‘Pm - 47 ra )
where r is directed from m; to my. Because the magnetic field is B =
~oVpm, the force on my, is

Fp = V(m, - B) = V[m, {—#oVem))
=i v ()]

- _gav[ml (s -r>)]

B

Ho g 3(m; -r)(m; -r) _m;-my
4w rs r3 )

As both terms in the expression for the gradient are proportional to '_%, F
will be proportional to ;11-

2077

A magnetic dipole m is moved from infinitely far away to a point on the
axis of a fixed perfectly conducting (zero resistance) circular loop of radius
b and self-inductance L. In its final position the dipole is oriented along
the loop axis and is at a distance 2z from the center of the loop. Initially,
when the dipole is very far away, the current in the loop is zero (Fig. 2.57).

(a) Calculate the current in the loop when the dipole is in its final
position.

(b) Calculate for the same positions the force between the dipole and
the loop.
(UC, Berkeley)



Magnetostatic Field and Quasi-Stationary Electromagnetic Field 237

Fig. 2.57

Solution:
(a) The induced emf of the loop is given by

e=—-L—=- B-dS.
Integrating over time we have
L) - 161 = [1B(H - B -ds.
Initially, when the dipole is far away,

I{iy=0, B{(i)=0.

Writing for the final position I = I(f),B = B(f), we have
LI = /B -dS.

Consider a point P in the plane of the loop. Use cylindrical coordinates
(p,8, z) such that P has radius vector pe,. Then the radius vector from m
to P is r = pe, — ze,. The magnetic induction at P due to m is

where m = me,. As dS = pdpdfe, we have

/ . dS = po//(3(m r)(r-e;) mre,) pdpdd

_ Ho 3m2z? m
= 4—2/ [(,o Ty 2y (p2+z2)3/2]”"”
T% + 22 = 267 + 28],




238 Problems & Solutions on Electromagnetism

and the induced current in the loop is
1=B2 (@424 - 207+ )]

By Lenz’s law the direction of flow is clockwise when looking from the
location of m positioned as shown in Fig. 2.57.

(b) For the loop, with the current I as above, the magnetic field at a
point on its axis is

ol b pmm b

r _ _pof e, = — -
B =-3 (b2 + z2)3/27F AL BB+ 2P

The energy of the magnetic dipole m in the field B’ is
W=m-B
and the force between the dipole and the loop is

W _ 3uim?biz

P =y 2y

2078

The force on a small electric current loop of magnetic moment u in a
magnetic field B(r) is given by

F=(pxV)xB.
On the other hand, the force on a magnetic charge dipole 4 is given by
F=(u V)B.

(a) Using vector analysis and expanding the expression for the force
on a current loop, discuss in terms of local sources of the magnetic field the
conditions under which the forces would be different.

(b) Propose an experiment using external electric or magnetic fields
that could in principle determine whether the magnetic moment of a nucleus
arises from electric current or from magnetic charge.

(UC, Berkeley)
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Solution:
(a) We expand the expression for the force on a current loop:

F=(uxV)xB=V(u-B)~uV-B).

The external magnetic field B(r) satisfies V - B = 0 so the above equation
can be written as

F=V(u -B)=(us:V)B+pux(VxB).

Compared with the expression for the force on a magnetic dipole, it has
an additional term u x (V x B). Thus the two forces are different unless
V x B = 0 in the loop case which would mean J = D = 0 in the region of
the loop.

(b) Take the z-axis along the direction of the magnetic moment of the
nucleus and apply a magnetic field B = B(2)e, in this direction. According
to F = (4 x V) x B, the magnetic force is zero. But according to F =
(ps - V)B, the force is not zero. So whether the magnetic moment arises
from magnetic charge or from electric current depends on whether or not
the nucleus suffers a magnetic force.

2079

A particle with charge ¢ is traveling with velocity v parallel to a wire
with a uniform linear charge distribution A per unit length. The wire also
carries a current I as shown in Fig. 2.58. What must the velocity be for the
particle to travel in a straight line parallel to the wire, a distance r away?

(Wisconsin)

Fig. 2.58



240 Problems & Solutions on Eleciromagnetism

Solution:

Consider a long cylinder of radius » with the axis along the wire. De-
note its curved surface for unit length by S and the periphery of its cross
section by C. Using Gauss’ flux theorem and Ampére’s circuital law

fE-dS:z\/eo, fB-dl:uoI,
s c

by the axial symmetry we find

A

E(r) = 2mweor

pol
B(r)= —
Crs (r) 27r ©e

in cylindrical coordinates (r,#, z) with origin 0 at the wire.
The total force acting on the particle which has velocity v = ve, is

F=F.+F,,=¢qE+qvxB

_gA quol
- 27reore' + 2rr

v(—e,).

For the particle to maintain the motion along the z diréction, this radial
force must vanish, i.e.,

gA gl

2negr 2mr =0,

giving

2080
The Lorentz force law for a particle of mass m and charge q is

F=q(E+v>:B).

(a) Show that if the particle moves in a time-independent electric field
E = —Vé¢(z,y, 2z) and any magnetic field, then the energy %mv2 +gqpisa
constant.
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(b) Suppose the particle moves along the z-axis in the electric field
E = Ae~%7e,, where A and r are both constants. Suppose the magnetic
field is zero along z axis and z(0) = z(0) = 0. Find z(¢).

(c) In (b) is 1mv? — gzAe*/T a constant (indicate briefly your rea-
soning)?

(UC, Berkeley)

Solution:
(a) As
F=m\"=q(E+vtB)
we have B
] v X
(mV —¢E) = ¢——.

1t follows that
v.(mv—gE)=v-(vx B)%:O.

Consider

d 1 2 - . d¢_ hy
E[Tm +q¢] =mv-vig=mv-Vgv V¢

=v-(mv+qVg)=v.(mv—-qgE)=0,
where we have made use of

db _04ds d¢dy  04d:

d T e

Hence 1

-2-m02 + g¢ = Const.
(b) The magnetic force F,, = ¢¥XB is perpendicular to v so that if
the particle moves in the z direction the magnetic force will not affect the
z-component of the motion. With E in the z direction the particle’s motion
will be confined in that direction. Newton’s second law gives

mi = qF = qAe™ Y™,

ie.,
mdv = gAe~"/"dt
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with
v(0)=0, muv= —qA're"'/’ + qAT,
or
dt
= PR S 74 4 Yuied
dz =qAr(l—e )m

With z(0) = 0, this gives

2 2
z(t) = qATi + gA_Te-‘/T —_ M;T_
m m
qAr [(t —7)+re”t7].
1 2 _ -t/ _ l qAT et
(c) ad qzAe =zm )

- ‘"‘%l(t e

As
d

l 2 _ ~t/T
F (2mv gz Ae #0

the expression is not a constant.

2081
A point particle of mass m and magnetic dipole moment M moves in
a circular orbit of radius R about a fixed magnetic dipole, moment My,
located at the center of the circle. The vectors My and M are antiparallel
to each other and perpendicular to the plane of the orbit.
(a) Compute the velocity v of the orbiting dipole.

(b) Is the orbit stable against small perturbations? Explain. (Consider
only the motion in the plane.)
(CUSPEA)
Solution:

(a) The magnetic field produced at a point of radius vector r from the
center of the circle by the dipole of moment My is

B—ﬂ 3(Mo-r)r_£/l_o
T 4n rs =B



Magnetostatic Field and Quasi-Stationary Eleciromagnetic Field 243
This exerts a force on the particle moving in the circular orbit of
F=Y(M-B)x.
Noting M - Mg = —MMy,Mg-r=M-r =0, we have

oM M,

F=- 47 R4

This force acts towards the center and gives rise to the circular motion of
the particle. Balancing the force with the centrifugal force,

mﬁ _ 3uoM M,

R~ 4xzRt °

gives the particle velocity as

v = f3ﬂoMMo
“V 4rmR3

(b) The energy of the particle is

2 2
£oLn(E) ke 1 (4!

dt 4nr3 dt
with MM L2
_ _ho 0
U(r) = 4 T et

where L is the conserved angular momentum and the first term is the
potential energy of M in the magnetic field B, —M . B, for a circular orbit
of radius r. We note that (4£),=r = 0 and (%’rqu—)mn < 0, so that U(R) is
a maximum and the orbit is not stable against small perturbations in r.

2082
A long solenoid of radius b and length [ is wound so that the axial

magnetic field is
{ Boel ) r< b7
B =
0, r>b.

A particle of charge ¢ is emitted with velocity v perpendicular to a central
rod of radius a (see Fig. 2.59). The electric force on the particle is given
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by qE = f(r)e,, where e, - e, = 0. We assume v is sufficiently large so
that the particle passes out of the solenoid and does so without hitting the
solenoid.

(a) Find the angular momentum of the particle about the axis of the
solenoid, for r > b.

(b) If the electric field inside the solenoid is zero before the particle
leaves the rod and after the particle has gone far way, it becomes

Ez{_mrtolre" r>a,
0, r<a,

calculate the electromagnetic field angular momentum and discuss the final
state of the solenoid if the solenoid can rotate freely about its axis. Neglect
end effects.

(Wisconsin)

v
{e
i
@ )1
7 1
Fig. 2.59

Solution:

(a) As v is very large, we can consider any deviation from a straight
line path to be quite small in the emitting process. Let v be the transverse
velocity of the particle. We have

md:—tlzqva.

Asv L B,dv; = LBgvdt = L Bydr and
b q q
U_]_(b) = /a ;Bod?‘ = -"—l‘Bo(b— a) .

At r = b the angular momentum of the particle about the axis of the
solenoid has magnitude

[r x mvy (b)|r=p = mbvy(b) = ¢Bob(b — a).
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and direction —e,. Thus the angular momentum is
Jp = —qBob(b—a)e, .

For r > b,B = 0 and Jp is considered. So J, is the angular momentum of
the particle about the axis for r > b.

(b) After the particle has gone far away from the solenoid, the mo-
mentum density of the electromagnetic field at a point within the solenoid
i
° ExH

g=" =¢EXxB,

and the angular momentum densxty is

Boq
2 I

which is uniform. As there is no field outside the solenoid and inside the
central rod the total angular momentum of the electromagnetic field is

j=rxg=corx(ExB)=

. Bo(b? — a?
Jem = 7(b? — a?)lj = 1B —2) 5 e,
Initially, E = 0,v; = 0 and the solenoid is at rest, so the total angular mo-
mentum of the system is zero. The final angular momentum of the solenoid
can be obtained from the conservation of the total angular momentum:

B
Js = —JEM bt J,, = q—-—g(b— a)2e, .

This signifies that the solenoid in the final state rotates with a constant
angular speed about its central axis, the sense of rotation being related to
the direction e, by the right-hand screw rule.

2083

Suppose a bending magnet with poles at £ = +x¢ has a field in the
median plane that depends only on z, B, = B,(z), where the origin is
chosen at the center of the magnet gap. What component must exist outside
the median plane? If a particle with charge e and momentum P is incident
down the z-axis in the median plane, derive integral expressions for the
bending angle @ and the displacement y as a function of 2z within the magnet.
Do not evaluate the integrals.

(Wisconsin)
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Solution:

Since there is no current between the magnet poles, V.x B = 0, or

0B, 0B, =0.

Oz oz

This implies that as B, depends on z, B; # 0, i.e. there is a z-component
outside the median plane.

The kinetic energy of a charged particle moving in a magnetic field is
conserved. Hence the magnitude of its velocity is a constant. Let ¢ be the
bending angle, then

vy =vsinf, v, =vcosf.
The equation of the motion of the particle in the y direction, since v, = 0,

is
dvy

m-z— = eB,v, N
or d
mv(-E(sin 8) = eBgvcosf.
This gives
46 = eB,_.dt= eB,‘ dz ,
m m vcosd
or

e
cos@df = ﬁB,dz.

Suppose at t = 0 the particle is at the origin and its velocity is along
the 42 direction. Then 6(2)|,=o = 0 and we have

] e z
cos 0df = —/ B.dZ',
Jymtsn=5 [

0 = sin~} [f-/zB dz'].
PJl, °

The displacement y is given by

t z !
dz
= dt’ = iné
v= [ i = [ oo

z z e 3 "y 3,0
=/ tan 8dz2’ =/ Pfo,,Bz(z )dz dz' .
o 0 [1 - (f? fo B,(z”)dz”)zlllz

or
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2084
An infinitely long wire lies along the z-axis (i.e., at z = 0,y = 0)
and carries a current ¢ in the +z direction. A beam of hydrogen atoms is
injected at the point £ = 0,y = b,z = 0 with a velocity v = vge;. The
hydrogen atoms were polarized such that their magnetic moments uy are
all pointing in the 4z direction, i.e., p = pye,.

(2) What are the force and torque on these hydrogen atoms due ta the
magnetic field of the wire?

(b) How would your answer change if the hydrogen atoms were polar-
ized in such a way that initially their magnetic moments point in the +z
direction, i.e. p = uye,.

(c) In which of the above two cases do the hydrogen atoms undergo
Larmor precession? Describe the direction of the precession and calculate
the precession frequency.

(Columbia)

Solution:

The hydrogen atoms are moving in the yz plane. In this plane the
magnetic field produced by the infinitely long wire at a point distance y
from the wire is

= ——e,.

2%y -

(a) With p = pge,, the energy of such a hydrogen atom in the field
Bis

= . B = _Hopui
W=pu-B= oy

Thus the magnetic force on the atom is

_ _ popui
F =YW= = 5npz o

and the torque on the atom is
L=pupxB=0.

(b) With i = pye,, the energy is W = - B = 0. So the force exerted
is F = 0 and the torque is

Hopui

L=puxBly=p = — 2
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(c) In case (b), because the atom is exerted by a torque, Larmor pre-
cession will take place. The angular momentum of the atom, M, and its
magnetic moment are related by

€
Pu =95~ M,
m

where ¢ is the Landé factor. The rate of change of the angular momentum
is equal to the torque acting on the atom,

dM
o

The magnitude of M does not change, but L will give rise to a precession
of M about B, called the Larmor precession, of frequency w given by

dM
“Ef = Mw,

or
L popni _ egpoi

T M T 2rbM T 4xbm

The precession is anti-clockwise if viewed from the side of positive z.

2085

A uniformly magnetized iron sphere of radius R is suspended from the
ceiling of a large evacuated metal chamber by an insulating thread. The
north pole of the magnet is up and south pole is down. The sphere is
charged to a potential of 3,000 volts relative to the walls of the chamber.

{a) Does this static system have angular momentum?

(b) Electrons are injected radially into the chamber along a polar axis
and partially neutralize the charge on the sphere. What happens to the
sphere?

(UC, Berkeley)

Solution:

Use coordinates as shown in Fig. 2.60.
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(a) This system has an angular momentum.

Fig. 2.60

(b) Let m be the magnetic moment of the sphere. The magnetic field
at a point r outside the sphere is

Bzﬂ_o[m-g_]_

4 r8

Suppose the sphere carries a charge Q. As the sphere is a conductor, the
electric field inside is zero and the electric field outside is

-9
- 47!’601'3
Therefore the electromagnetic momentum density in the space outside the
sphere, as m = me, = m(cosfe, — sinfey) in spherical coordinates, is
Quomsin ¢
=gExB= We,,,
and the angular momentum density is

. pomQsind
j=rxg=-Emae.

Because of symmetry the total angular momentum has only the z-
component, which is obtained by the integration of the z component

of j: \
4 pomQsin® 8 Hom@Q mV
J/// H ey —dododr = 000 = 20

where V is the voltage of the sphere. As the electrons are being injected
radially on the sphere, the charge Q decreases, causing the electromagnetic
angular momentum to decrease also. However, because of the conservation



250 Problems & Solutions on Electromagnelism

of total angular momentum, the sphere will rotate about the polar axis,
with the sense of rotation determined by the right-handed screw rule.
The rotating angular velocity is

_AI _ pomAQ _  2mAV
I =~ 6xRI ~—  3cI’

w =

where [ is the rotational inertia of the sphere about the polar axis, and
AQ, AV are the changes of its charge and potential respectively, which are
both negative.

2086

A cylinder of length L and radius R carries a uniform current [ parallel
to its axis, as in Fig. 2.61.

£
particle beam —= .

Fig. 2.61

{a) Find the direction and magnitude of the magnetic field everywhere
inside the cylinder. (Ignore end effects.)

(b) A beam of particles, each with momentum P parallel to the cylinder
axis and each with positive charge ¢, impinges on its end from the left. Show
that after passing through the cylinder the particle beam is focused to a
point. (Make a “thin lens” approximation by assuming that the cylinder is
much shorter than the focal length. Neglect the slowing down and scattering
of the beam particles by the material of the cylinder.) Compute the focal
length.

(CUSPEA)

Solution:

(a) Use cylindrical coordinates (r, p, z) with the z-axis along the cylin-
drical axis. The magnetic field at a point distance r from the axis is given
by Ampére’s circuital law to be

_ polr

B = xri%:
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(b) The magnetic force acting on a particle of the beam is
F =qv xB = —quBe,.

On account of this force the particle will receive a radial momentum towards
the axis after traversing the cylinder of

_ _ gvBL _ uoglL
P, —q/det— "R

If we neglect the slowing down of the beam particles through the cylinder
and use thin lens approximation, the axial momentum of a beam particle
is still P after it comes out of the cylinder. The combination of P and P,
will make the particle cross the cylindrical axis at a point M, as shown in
Fig. 2.62. From the diagram we find the relation

E_r

P d’

P

P

F\\ o
o d

Fig. 2.62

Thus the focal length is
d= Pr _ 2zR?P

T P, pgell

and is independent of r. Hence all the particles will be focused at the point
M.

2087

A dipole electromagnet has rectangular pole faces in horizontal planes
with length { and width w. The main component of the magnetic field B
is vertical. A parallel beam of particles, each with velocity v, mass m, and
charge ¢, enters the magnet with the velocity v parallel to the horizontal
plane but at an angle ¢ with the center line of the magnet. The vertical size
of the beam is comparable to the gap of the magnet. The particles leave
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the magnet at an angle —¢p with the center line of the magnet, having been
bent an angle of 2¢ (see Fig. 2.63 and Fig. 2.64). Show that the fringe field
of the magnet will have a vertically focusing effect on the beam. Calculate
the approximate focal length.

(Columbia)

Solution:

As the pole area of the dipole electromagnet is limited, the magnetic
field has fringe lines as shown in Fig. 2.63. If the y-component of the fringe
field is neglected, the fringe field will only have z- and z-components. From
V x B = 0, we have

9B, _ 0B,
0z =~ 0z

Side View
Top View

I A A
I
T L

Fig. 2.63 Fig. 2.64

Suppose the extent of the fringe field is b. At the entrance of the elec-
tromagnet B, increases from 0 to B in a distance b. To first approxi-
mation the above relation gives B;in = % . Whereas, at the exit B,
decreases from B to 0 and one has By g = —-lblz. The velocities of the
particles at the entrance and the exit are v = vcos pe,; + vsinpe, and
v = vcosype, — vsin pey respectively. Thus at both the entrance and the
exit the particles will be acted on by a force, which is along the z direction
and near the center line of the magnet, of

guBzsing
3

This force gives a vertical momentum to the particles. The time taken for
the particles to pass through the fringe width & is

b

vecosyp

F, = —

At =

Hence, the vertical momentum is approximately

P, = —-F,At = —qBztaneyp.
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As P, is negative for +z and positive for —2z, it will have a vertical focusing
effect on the particles. The momentum of the particles in the zy plane is
P = mv. Letting the focal length be f (from the extrance), we have

2P| _ Jef

P " f

giving
mu

f= 2¢Btang ’

The equation of the motion of a particle between the poles of the magnet
is

dv,
mmv- =qu.B

or

dy _ 4B

dt  m’
a8 vy = v COSp A v, vy = vsinp = vyp. If the deflecting angle ¢ is small, we
can take the time elapse in traversing the distance % to be

=3/v,

and have approximately
_ g8l
T 2my
Substituting it in the expression for focal length and taking tan ¢ = ¢, we

have

m2y?

=g

2088

A dipole magnet with rectangular pole faces, magnetic field By and
dimensions as shown in Fig. 2.65 and 2.66 has been constructed. We in-
troduce a coordinate system with z-axis parallel to the magnetic field and
y- and z-axes parallel to the edges of the pole faces. Choose the z = 0
plane so that it lies midway between the pole faces. Suppose that a par-
ticle of charge ¢ and momentum P parallel to the z-axis is projected into
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the magnet, entering the region between the pole faces at a height z above
the z = 0 mid-plane.

(a) What is the approximate angular deflection 8y in the yz plane after
passing through the magnet? (Assume P » ¢BL.)

(b) Show that the angular deflection in the zz plane after passing
through the magnet is given approximately by 0 = Osz/L, where 8, is the
deflection found in (a). (Hint: This deflection is caused by the fringe field
acting on the particle as it exits the magnet.)

(c) Is the effect found in (b) to focus or defocus off-axis particles?
(Columbia)

Side View Top View

x q PL’_“-—c 2 {y.,.q!:'_:_ & -
g U

Fig. 2.65 Fig. 2.66

‘_q.

—_— —— —f

Solution:
The magnetic force acting on the particle has components
Fz = —q(vyB: —v:By),
Fy= _Q(VJB:: - sz:)’
Fz=—q(v:By —vyB;).
Note that as indicated in Figs. 2.65 and 2.66, a left-handed coordinate
system is used here.

(a) As B = Boe; and is uniform between the pole faces, the equation
of the transverse motion of the particle is

dv
m-d—t” = —qu;By.

Since the speed v does not change in a magnetic field, we have v, =
—vsinf,v, = vcosf, where 6, is the deflecting angle in yz plane. As
vy & —vb),v; = v, and P = mv =constant, the above becomes

dhy _ qoBo

d¢ — P’
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or

B, quo
oy = L20g¢ =
1 P dt Pv, dz,
ie., B
cos 018y = 132dz
Integratin
grating o L 45,
/ cos 0,d6, =/ —dz
0 o P
we find
o sinfy = 9Bl
y - P i
As P » ¢BoL, we have approximately
0y ~ gBoL .

P

(b) To take account of the fringe effect, we can assume By ~ 0 and a
small B, in addition to the main field Bye,. The equation of the vertical
motion of the particle is

m% = —quyB;.

As vy = —vly,v; & —v;,v; & v,dz x vdl, the above equation becomes
df; _  qul
iy L

From (a) we have P~ !—in_, . Thus
= - __:__
dgg LB, B, dz y

and the angular deflection in zz plane is

[ 03 00
[/} =/ do =———/ B;dz.
T o 2 LBo o 3

At the exit of the magnet, B, &~ Bo. We choose the closed path ABCD
shown in Fig. 2.65 for the integral

fB-dl:O.
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Integrating segment by segment:

B 0o C
/ B,dz = / B,dz, / B,dz~0,
A 29 B

D A
/ B;dz=0, / Bgdr =zB,.
C D

Note that we have taken the points B, C at infinity and used the fact that
B, = 0 for the mid-plane. Hence

o0
/ B,dz = —zBy,

and

02
L — -—Ly—z .

(c) As 8, 2 0 for z 2 0, the particle will always deflect to the middle
of the magnet. Hence the effect found in (b) focuses the particles, the focal
length being
z L P?

6. 62 ¢?BIL°

2089
When a dilute suspension of diamagnetically anisotropic cylindrical
particles is placed on a uniform magnetic field H, it is observed that the
particles align with their long axes parallel to the field lines. The particles
are cylindrically symmetric and they have magnetic susceptibility tensor
components characterized by

Xz = Xy < X:<0.

Assume that the suspending fluid has a negligible magnetic susceptibility.
(a) The z-axis of the particle initially makes an angle of 6 with the
magnetic field. What is the magnetic energy of orientation?
(b) What is the torque on the particle in part (a)?

(c) The tendency toward alignment will be counteracted by Brownian
motion. When the particle rotates in the fluid it experiences a viscous
torque of magnitude (6 where

¢=10""" gem®sec™! .
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The moment of inertia of a particle is 7 = 10~15gecm?. If the particles are
initially aligned by the magnetic field, estimate the root-mean-square angle
Ab:ms by which the molecular axes will have deviated from the alignment
direction in a time t = 10sec after the magnetic field has been turned off.
The temperature of the suspension is T' = 300 K.

(Princeton)

Solution:

(a) In the Cartesian coordinates (z,y, z) attached to a particle, the
magnetic field can be expressed as

B = Bsinf cospe, + Bsinfsin pey + B cosfe, .
As |Xc|, Ixy| and |x;| are generally much smaller than 1, the magnetic field

inside the particle (a small cylinder) may be taken to be B also. The
magnetization is given by

B
M=x-H=yx —.
X X o

Let the volume of the small cylinder be V, then the energy of orientation
is

E=m~B=B-<x-EV)
Ho

Vv Xz B
= _(BmBy,Bz) Xy By
Ho Xz B,

|4

= -I-‘—O-(XIBZ + Xsz + Xszz)
%4

= E[x:(Bi + B?) + x.:B]]

= ”K[x,,B"’ sin?0 + z,B? cos? 0).
0
(b) The torque on the particle is

rT=—"-= —l-ti[x, -2sin 0 cos§ + x, - 2 cos §(— sin 0)) B2
0

B2y
bo

(xz — xz)sin20.
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(c) The rotation of the particle satisfies the equation

2
158 =~ 4 F),

where F(t) is the random force acting on the particle. Noting that
d*6?

32
T 26° + 206,
we have | 202 &
——— 42 = — —_—
I<2 e 0) (8dt+0F(t),
o 1 d%? 1,dé?
—_f — .2 = —— —
2[ 7 ( + OF(t).
Averaging over the particles, §F(t) = 0, and we have
1 4% 1 .62
il gudhdil _ 02 =
21 dt? C dt 16 = 0.

The principle of equipartition of energy gives
1= 1
2182 = =
21 6 2kT,

8o the above becomes

This has solution

where C is a constant to be determined. Note that, as 8 is not restricted
to the zone [0, 7], we must take the number of turns rotated by the particle
about the magnetic field into consideration.

To estimate Afms, let 82 = 0 at t = 0, then C = 0. Hence 8% = %t
at time {. Numerically

— 38 x 102
= 2x 13 ;‘0_(:, X390, 10=8.28x 1073,

or

Abpmg = VI = 0.091 rad. = 5.2 deg.
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2090

An electron is introduced in a region of uniform electric and magnetic
fields at right angles to each other (let us say E = Ee,,B = Be,).

(a) For what initial velocity will the electron move with constant ve-
locity (both the direction and the magnitude of velocity are constant)?

(b) Consider a beam of electrons of arbitrary velocity distribution si-
multaneously injected into a plane normal to the electric field. Is there a
time at which all the electrons are in this plane again?

(Columbia)
Solution:

(a) If the electron moves with constant velocity, the total force acting
on it must be zero, i.e.,

Fp = —-Fg = —eFe,.

As Fg = —ev x B = —eBv X e,, we have

(5o

(b} Suppose all electrons are in the YOZ plane at ¢ = 0. Consider an
electron with initial position (0, o, z0) and initial velocity (vos,voy, ves)-
The equations of its motion are then

m-d;—: = —e(E + Bvy), (1)
dv

m?tl = ev,B , (2)
dv,

Let v; = vg + ivy, then Egs. (1) and (2) combine to give

dv .
m—Jti = —eE + ieBvy

with solution
E

it
vy =cet —i—
+ B

where w = %. The intial conditions give

. E
cC=1vor +1 00y+‘5 .
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Hence
Ey .
vy = |vgy coswit — (voy + E) sinwi

, . E F
+ t|vgs sinwt + (voy + E) coswt — Bl

from which we obtain

FOAN
vz(t) = v, cos Wt — (voy + E) sinwt ,

. E
vy(t) = vop sinwt + (voy + E) coswt — % ,

V; (t) = V9: -
Integrating the above expressions we have

z(t) = vw&sinwt + %(voy + g) coswt — 5(00” + %) )

Voz

_ Vor 1 FE . E
y(t) = - coswt + :(voy + E) sinwt — §t + - + %,
2(t) = 2o + vo,t.

For z(t) = 0 we require that ¢ = 2% (n = 1,2,...). Hence all the electrons
will be in the YOZ plane again at times 22

4. MISCELLANEOUS APPLICATIONS (2091-2119)

2091

Figure 2.67 shows a simplified electron lens consisting of a circular loop
(of radius a) of wire carrying current I. For p < a the vector potential is
approximately given by

Ay — nlaZp
0 (@2 + 2232
(a) Write down the Lagrangian in cylindrical coordinates (p, 8, z) and
the Hamiltonian for a particle of charge ¢ moving in this field.
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(b) Show that the canonical momentum py vanishes for the orbit shown
and find an expression for 4.

In parts (c) and (d) it is useful to make a simplifying approximation
that the magnetic force is most important when the particle is in the vicinity
of the lens (impulse approximation). Since p is small we can assume that
P~ b and Z = u are nearly constant in the interaction region.

(c) Calculate the impulsive change in the radial momentum as the
particle passes through the lens. Then show that the loop acts like a thin
lens

| =

FE
i [

f= 8a [ muc\?
T 3x\mql)

(d) Show that the image rotates by an angle § = —4 5% in passing
through the lens.

S| =
o~

where

(Wisconsin)

I
object %\imugc Y

— 10—t

Fig. 2.67

Solution:

(a) The Lagrangian of a charge ¢ in an electromagnetic field is

1 v A
=T -V =-mv? - —
L 2mv q(cp : ),

where v is the velocity of the charge of mass m, ¢ is the scalar potential,
and A is the vector potential. As

v= ﬁep+Péeo + ze,,

Ira?p
= meo, p=0,
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we have
Ixa%qp®

c(a? + 23)373

Hence the components of the canonical momentum:

L:%(ﬁ2+p2é2+iz)+ f.

oL .

Pp - 'a; =mp,
oL 2z Ixagp®

PO et 69' =mp + c(az+22)3/2 ]
dL

P, = 3z =™

The Hamiltonian is then

1J] ., 1 Ixa2gp® 2,
T 2m [P" + ;f(P‘ T (e + z2)312) + P

(b) Using Hamilton’s canonical equation Py = —%%’-, we obtain Py = 0,
ie.,
Ixa’qp?
c(a? + 22)%3

Initially when the particle was far away from the lens it was traveling along
the axis of the circular loop (p = 0) with vy = 0. Since Py is a constant of
the motion, we have Py = 0, giving

Py = mpzé + = const.

___ Ixdq
" me(a? + 23)32°

(¢) Another Hamilton’s canonical equation P, = —%’}, with Py = 0,
gives
b I?x%at¢?)p
d mc3(a? + 22)3°’
or Px2ate?
dP, = LA ¥

—_—dz.
mc3(a2 + 23)32

Since p ~ b and z ~ u are nearly constant in the interaction region, the

change in the radial momentum is

Px2at¢?b > 1 3Ixb (Iqr 3
APy = - mc3y /_oo (a® + z’):’dz = "8mau\ ¢ /
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Consider the orbit shown in Fig. 2.67. We have ﬂ'} = f; at the object point
and - & = f: at the image point of the lens. Hence

bob 1 _ AP, _3xb/[Igx
Iy + L u(Po pi) = mu  8a (muc)
which can be written as
1,11
b L f

with

(d) The expression for d can be written as

2
df = — Ixa‘qdz .
me(a? + 22)3/%y
Hence passing through the lens the image will have rotated with respect to
the object by an angle

Al = dz -4

meu J_oo (a2 + 220373 mew 3xf"

_Ivm’q/°° 1 _ 2mq _ 2a

2092

In Fig. 2.68 a block of semiconductor (conductivity = o) has its bottom
face (z = 0) attached to a metal plate (its conductivity & — oo) which is
held at potential ¢ = 0. A wire carrying current J is attached to the center
of the top face (2 = ¢). The sides (z = 0,z = a,y = 0,y = b) are insulated
and the top is insulated except for the wire. Assume that the charge density
is p =0 and € = pu = 1 inside the block.

(a) Write down the equations satisfied by the potential inside the box
and the general solution for the potential.

(b) Write down the boundary conditions for all faces and express the
arbitrary constants in the solution from (a) in terms of the given quantities.
(Princeton)



264 Problems € Solutions on Electromagneiism

Fig. 2.68

Solution:
(a) Inside the box ¢(z,y, 2) satisfies Laplace’s equation

V2¢(z,y,z) =0.

Separate the variables by writing
#z,y,2) = X(2)Y (y)2Z(2).

Laplace’s equations then becomes
1d°X  1d%Y 1d°Z
XdZ v Tz = )
Each of the three terms on the left-hand side depends on one variable only

and must thus be equal to a constant:
1 d?X 9
Xdz =
18y g,
Y dy?
1d*Z 2
a7 =T

where y2 = a? + 2. The solutions of these equations are

X = Acosaz + Bsinax,
Y = Ccos By + Dsin By,
Z = Ee"* 4 Fe™ "%,
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where A, B,C, D, E, F are constants. Hence
#(z,y,2) = (Acosaz + Bsin az)(C cos By + Dsin By)

- [Eexp(Va? + 82z) + F exp(—v/a? + $32)].

(b) The boundary condition E; = 0 for the four vertical surfaces gives

o¢ _9¢ _
Oz r=0,a - By y=0,b =0. (1)
For the top face (2 = ¢), Ohm’s law gives
a¢ _J a b
ooz B =-50(s- 50 3). @
The bottom face (2 = 0) has zero potential, thus
$(z,y,0)=0. @)

The conditions (1) require

B=D=0,

mn nmw m,2 n.2
a=am=T| ﬁ=ﬁn=T17=7mn=7r\/(:) +(3) »

where m,n are positive integers. (Negative integers only repeat the solu-
tion). Equation (3) requires F = —FE. Thus for a given set of integers m,n
we have

Smn(z,Y,2) = Amn cos(amz) cos(fny) sinh(ymn2) .

Hence the general solution is

$(z,4,2)= ) bmalz,9,2)

mmn=1
[~

= Z Amn cos(am z) cos(fny) sinh(ymnz) .

mn=1

Substituting this in (2) we have

00
E Amn €08(0y, z) c08( B ¥)Ymn cos8h(Ymnc)
1

mn=

“Is(,—2 ,_"
T Y73/
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Multiplying both sides by cos(ymz) cos(Bny) and integrating over the top
surface we have

4J a b a b
n = blz—c,y—3
Am aboymp cosh(Ymnc) /0 da:/o (z ¥ 2)

- cos{amz) cos( B, y)dy
R R W%
" aboYmn cosh(¥mn¢) 2 2

Note that A,,, # 0 only for m and n both being positive even numbers.

2093

A magnetic dipole of moment m is placed in a magnetic lens whose
field components are given by

B: = a(z* - y?), By=—-20azy, B,=0,
where 2 is the axis of the lens and a is a constant. (This is called a sextupole
field.)

(a) What are the components of the force on the dipole?

(b) Could one or more such lenses be used to focus a beam of neutral
particles possessing a magnetic dipole moment? Give the reasons for your
answer.

(UC, Berkeley)

Solution:

(a) As m is a constant vector, the force exerted by the external mag-
netic field on m is
F = V(m - B).

Thus we have
F, = 2a(m.z — myy),

Fy = —2a(mzy + myz),
F, =0,

where we have written m = m.e; + mye, + m,e;.
(b) If m = me,, we have

F; = -2amy, Fy =-2amz.
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This force is opposite to the displacement of the dipole from the axis. Hence
we can use the sextupole lens to focus a beam of neutral particles with
magnetic moment. If m = me,, we have

Fy =2amz, Fy=-2amy.

Then the lens is diverging in z-direction but converging in y-direction.
Hence to focus the beam, we need a pair of sextupole lenses, with the
phase angles of the sextupole fields differing by =, i.e., the field of the
second sextupole is

B. = —a(z? -y*), B, =2azy.
The force exerted by the second sextupole is
F; = -2amz, F,=2amy,

so that a converging power is obtained in z-direction as well.

2094

A charged particle enters a uniform static magnetic field B moving
with a nonrelativistic velocity vy which is inclined at an angle o to the
direction of B.

(a) What is the rate of emission of radiation?

(b) What is the condition on vg that the radiation be dominantly of
one multipolarity?

(c) If a uniform static electric field E is added parallel to B, how large

must it be to double the previous rate of radiation?
(Wisconsin)

Solution:

(a) The radiation emitted per unit time by an accelerating nonrela-
tivistic particle of charge ¢ with velocity v < ¢ is approximately
= .212_,',2
=3a0 -

in Gaussian units. The equation of the motion of the particle in the mag-
netic field B is

P

movy = %(Vu X B) s
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giving
2
q
méc?

v2B?sin’

Ve =

where o is the angle between v and B. The rate of emission of radiation
is then 90t
P= q 2

= a erg/s.
3mics g/

B*vsin

(b) The radiation emitted by a charged particle moving in a magnetic
field B is known as cyclotron radiation and has the form of the radiation of
a Hertzian dipole. The particle executes Larmor precession perpendicular
to B with angular frequency wo = %. Actually there are also weaker
radiations of higher harmonic frequencies 2wy, 3wy, .... However, if vo € ¢
is satisfied, the dipole radiation is the main component and the others may
be neglected.

(¢) When a uniform static field E is added parallel to B, the equation
of the particle’s motion becomes

mo\'l = %(Vo X B)+ qE,

or q q
v=v) +v,=—(vpxB)+ —E,
mgc mg

v, and v, being components of the particle’s acceleration perpendicular
and parallel to the electric field respectively. To double the radiation power
in (a) v? is to be doubled. Writing the above equation as

2 2 ¢? 202 02 ¢ 2
=v) +vy, = WUOB siIn” o+ m—gE

1')2

since as E is parallel to B, E is perpendicular to vg x B, we see that to

obtain v2 = 203 we require

vo .
F=—Bsinaoa.
c

2095

A circular loop of wire, radius r, weighing m kilograms, carries a steady
current ] amperes. It is constrained to have its axis perpendicular to a large
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planar sheet of a perfect conductor. It is free to move vertically, and its
instantaneous height is z meters. It is moving at a speed v in the y direction
with v < c.

(a) What is the boundary condition on the magnetic field B at the
planar conducting sheet?

(b) Draw and describe algebraically a single image current that, com-
bined with the real current, exactly reproduces the magnetic field in the
region above the plane.

(c) Find the approximate equilibrium height z and frequency of small
vertical oscillations for a value of the current such that z < r.

(Princeton)

Solution:

(a) The normal component of B, which is continuous across a bound-
ary, is zero on the conducting surface: B,, = 0.

(b) As shown in Fig. 2.69, the image of the current is a current loop
symmetric with respect to the surface of the conducting plane, but with an
opposite direction of flow. The magnetic field above the planar conductor
is the superposition of the magnetic fields produced by the two currents
which satisfies the boundary condition B, = 0.

y
r O
777+777777{ﬂﬂ77'n777'r

X

i ad

I'= -1
Fig. 2.69
(c) Consider a current element Idl of the real current loop. As z < r,

we may consider the image current as an infinite straight line current. Then
the current element Idl will experience an upward force of magnitude

dl#o("l) _ pol?dl
2r(2z) |~ 4nz

dF = I|ldl x B| = I

The force on the entire current loop is

2 2
F_—_ﬂ)_l_.27rr—ﬂ.r

nz 2 z
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At the equilibrium height this force equals the downward gravity:

pol?r

oz M9
giving
= #0_127’ .
2myg
Suppose the loop is displaced a small distance & vertically from the equi-

librium height z, i.e., z — z + 6, § € z. The equation of the motion of the
loop in the vertical direction is

pol?r - pol?r [
2(z+6)_mg 2z \!7z)

Noting that mg = Eg'?’l, we get

—-mé = mg —

< pol’r

b+5—6=0.

This shows that the vertical motion is harmonic with angular frequency

wo = ol _ g [2m
° = Vomz2 T IV por’

2096

We assume the existence of magnetic charge related to the magnetic
field by the local reaction

V- B =puopm -

(a) Using the divergence theorem, obtain the magnetic field of a point
magnetic charge at the origin.

(b) In the absence of magnetic charge, the curl of the electric field is
given by Faraday’s law

0B
VXE-———O;'t—.
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Show that this law is incompatible with a magnetic charge density that is
a function of time.

(c) Assuming that magnetic charge is conserved, derive the local re-
lation between the magnetic charge current density J,, and the magnetic
density p,,.

(d) Modify Faraday’s law as given in part (b) to obtain a law consistent
with the presence of a magnetic charge density that is a function of position
and time. Demonstrate the consistency of the modified law.

(UC, Berkeley)
Solution:

(a) Consider a spherical surface S of radius r at the origin. As V-B =
fopm the divergence theorem gives

/V-BdV=fB~dS=4wrzB(r)=yoqm.
v s

Hence

_ Hodm
B(r) = 4xr2 "
®) d oB
EV'B=V"§-=—V'(VXE)=0,
since V - (V x E) = 0 identically. On the other hand,
8 — ., 9pm
giv BTy

Thus Faraday’s law is incompatible with a time-varying magnetic charge
density.

(c) The conservation of magnetic charge can be expressed as

9 p,,.dv=—f.1,,,-ds=—/v-.l,,.dv.
ot Jy S v

As V is arbitrary we must have

0pm
StV I =0.

This is the continuity equation for magnetic charge.
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(d) If we modify Faraday’s law to

VxE:—yoJm—%—tB—

and take divergence on both sides, we shall obtain

0 Opm\ _
—poV'Jm—aV'B—.—[lo<V'Jm+—§-) =0.

Hence

i} 0
aV'B=—#oV-Jm=#0'g-t"l,

consistent with the second equation of (b).

2097

(a) Suppose that isolated magnetic charges (magnetic monopoles) ex-
ist. Rewrite Maxwell’s equations including contributions from a magnetic
charge density p,, and a magnetic current density j,,. Assume that, except
for the sources, the fields are in vacuum.

(b) Alvarez and colleagues looked for magnetic monopoles in matter
by making pieces of matter go a number of successive times through a coil
of n turns. If the coil has a resistance R, and we assume that the magnetic
charges are moved slowly enough to make the effect of its inductance small,
calculate how much charge @ flows through the coil after N circuits of a
monopole ¢p,.

(c) Suppose that the coil is made superconducting so that its resistance
is zero, and only its inductance L limits the current induced in it. Assuming
that initially the current in the coil is zero, calculate how much current it
carries after N circuits of the monopole.

(CUSPEA)

Solution:

(a) Use the analysis of Problem 2096. When electric charge density p,
electric current density j, magnetic charge density p,,, and magnetic current
density j,, are all present in vacuum, Maxwell’s equations (in Gaussian
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units) are
V-E = 4mp, )
V- B = d4np,,
VXE = -1 - in,
VxB = %%?-}-5?, J

where c is the velocity of light in vacuum.

(b) As shown in Fig. 2.70, we take one of the turns as the closed loop
! in Stokes’ theorem and let the area surrounded by { be S. Then, using
Stokes’ theorem and the third equation above, we have

}(E-dl:/VxE.ds=_-l-3/n-ds—4-’5/jm.ds,
1 s cft Jg c Js

Letting I, be the magnetic current in the coil, we have

]m=/jm-ds.
S

Letting V be the potential across the coil and I the electric current flowing
through it, we have

fE-dl:V:IR.

1

The magnetic flux crossing the coil is ¢ = [, s B - dS, and the induced emf
in the coil is
18¢

cot’
Combining the above we have the circuit equation

IR=5—4lIm.
c
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If the inductance can be neglected, € = 0 and
4
IR=-Z1,.
c

From I = ‘-’a?, Im = 5"#, this reduces to

4Q _ _irdim
d ~ ¢ dt’
Integrating leads to
4%qm
Q RC

After g,, goes N times through the coil of n turns, the total charge flowing
through the coil is

_ 4xNngn,
=-—%c
() If the resistance is negligible, i.e., R = 0, while the inductance L is

not, we have ¢ = —L%. The circuit equation now gives

dl 4_1_ dqm

dt ¢ dt
Integrating we get

! 47 Nng,,
- LC
2098

In Fig. 2.71, the cylindrical cavity is symmetric about its long axis.
For the purposes of this problem, it can be approximated as a coaxial cable
(which has inductance and capacitance) shorted at one end and connected
to a parallel plate disk capacitor at the other.

(2) Derive an expression for the lowest resonant frequency of the cavity.
Neglect end and edge effects (h > r2,d < ).

(b) Find the direction and radial-dependence of the Poynting vector
N in the regions near points A and B.
(Princeton)



Magnetostatic Field and Quasi-Stationary Electromagnetic Field 275

]

®
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>
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Ql._—
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4

~

Fig. 2.71

Solution:

(a) To find the inductance and capacitance per unit length of the coax-
ial cable, we suppose that the inside and outside conductors respectively
carry currents I and —J and uniform linear charges A and —\. Use cylin-
drical coordinates (r,8,2) with the z-axis along the axis of the cable. Let
the direction of flow of the current in the inner conductor be along the +2-
direction. From Problem 2022 the inductance and capacitance per unit
length of the coaxial cable are

L=Mln2, C=21r€,?h.
T n ln;f

The capacitance of the parallel-plate condenser connected to the coaxial
cable is

2
7r€or1
Co=
°T T d
Hence the lowest resonant angular frequency of the cavity is
1 2dc?

“CELCTCo)  Medh+ilnz)

(b) At point A,r; < r < r3,E(r) ~ 2, B(r) ~ 2,50 N ~ }e,. At
point B, 0 < r < ry,E(rr) ~ —e,,B(r) ~ reg, so N ~ re;.

2099

An electromagnetic wave can propagate between two long parallel
metal plates with E and B perpendicular to each other and to the direc-
tion of propagation. Show that the characteristic impedance Z, = \/L/C



276 Problems € Solutions on Electromagnetism

is ‘/“i;l - &, where L and C are the inductance and capacitance per unit

length, s is the plate separation, and w is the plate width. Use the long
wavelength approximation.
(Wisconsin)

Solution:

In the long wavelength approximation, A > w,A > s, and we can
consider the electric and magnetic fields between the two metal plates as
approximately stationary. Use the coordinate system as shown in Fig. 2.72
with the z-axis along the direction of propagation. Since the electric and
magnetic fields are perpendicular to the z-axis and are zero in the metal
plates, the continuity of E, gives E, = 0, while the continuity of B,, gives
B, =0.

x

l . ‘y —’I
s sl_i—
y

Fig. 2.72

Suppose the two plates carry currents +:¢ and —i. The magnetic field
between the plates is given by the boundary condition n x H = I;, where
I; is the current per unit width of the conductor, to be

fot
B=-£
wev

The inductance per unit length of the plates is obtained by considering the
flux crossing a rectangle of unit length and width s parallel to the z-axis to

be B
L= _s = Ko .
i w
Let the surface charge density of the two metal plates be o and —o.
The electric field between the plates is

o
E= ~—e€r,
€0

and the potential difference between the plates is

V=Es=ﬁ.
€o
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Hence the capacitance per unit length is
ow [}

= -V-— - —-—
Therefore the characteristic impedance per unit length of the plates is

/L /#08 EoWw /#08
7z = = = ——
C w/ s o W

2100
Reluctance in a magnetic circuit is analogous to:
(a) resistance in a direct current circuit
(b) volume of water in a hydraulic circuit
(c) voltage in an alternating current circuit.
(ccr)
Solution:
The answer is (a).

2101
The permeability of a paramagnetic substance is:
(a) slightly less than that of vacuum
(b) slightly more than that of vacuum
(c) much more than that of vacuum
(CCT)
Solution:
The answer is (b).

2102
Magnetic field is increasing through a copper plate. The eddy currents:
(a) help the field increase
(b) slow down the increase

(¢) do nothing
(ccr)
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Solution:
The answer is (b).

2103

A golden ring is placed on edge between the poles of a large magnet.
The bottom of the ring is prevented from slipping by two fixed pins. It is
disturbed from the vertical by 0.1 rad and begins to fall over. The magnetic
field is 10* gauss, the major and minor radii of the ring are 1 cm and 1 mm
respectively (see Fig. 2.73), the conductivity of gold is 4 x 1017 s~! and the
density of gold is 19.3 g/cm?3.

(a) Does the potential energy released by the fall go mainly into kinetic
energy or into raising the temperature of the ring? Show your reasoning
(order of magnitude analysis only for this part).

(b) Neglecting the smaller effect calculate the time of the fall. (Hint:

3 cos?0ds
I % = 2.00)

sin @

i
[

Solution:
(a) Let the time of the fall be T. In the process of falling, potential

energy is converted into thermal energy W; and kinetic energy W; given
by an order of magnitude analysis to be roughly (in Gaussian units)

(MIT)

L\~ 1 mm

Fig. 2.73

2 2(pn2)2
2prn (2 R = BT
Wi ~ I?RT (CTR) RT =71
_ mB?(wri)? _mri oB?
T T (2% (p-2mr -wr3) T 4pe?’

L &.481

1, , 13 ofx\*_3x’mr}
Wi ~ 1w ~2’2"‘"(2T) = 71677
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where
ry,r2 = major and minor radii of the ring respectively,
¢ = magnetic flux crossing the ring &~ Bar?,
p = density of gold,
o = conductivity of gold,
R = resistance of the ring = 3—:’%,
m = mass of the ring = p2xr, - xr3,
¢ = velocity of light in vacuum,
w = angular velocity of fall ~ J.
Putting

= /ﬂ_‘/L_ -2
Ty = r 980—3.2x10 s

4pc® 4 x19.3 x 9 x 10%

Te= 57 = 4 x107 x 10°

=174x10"3s

we can write the above as

T? %2 (T 2
Wi~ mgry - i, Wi~ mgry - 12(?’)

The energy balance gives

mgr; = Wt + Wk )

Tz 3x2
2 -
T - (TB)T 16T =0.

or

Solving for T we have

T |T T,\2 3x2
_L|5 Ty, 3|
T 2[TB+ (TB +4]

3x? T2

As (;:)2 > T = L. Hence

W; ~ mgr W, mgr 32(T & mgr
1 gri , k gry - 16 T.' gri .

It follows that the potential energy released by the fall goes mainly into
raising the temperature of the ring.
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(b) We neglect the kinetic energy of the ring. That is, we assume
that the potential energy is changed entirely into thermal energy. Then
the gravitational torque and magnetic torque on the ring approximately
balance each other.

The magnetic flux crossing the ring is

#(8) = Brrising.
The induced emf is

l
£ = —

c

d¢

ks ler? cos b,
c

giving the induced electric current as

= Bmrlcosf- 4

cR

1=

| o

and the magnetic moment of the ring as

_inr? _ B(wr})? cos 9

c c*R

Thus the magnetic torque on the ring is

Brr? cos0)26
Tm = Im X Bl = (—-lczR_) .

The gravitational torque on the ring is 7, = mgr; sin§. Therefore

Tm = Tg,

or
Bwr? 24 .
(——ﬂ—‘c-.;;s—e)— = mgr; sinf,
giving
di = o B?r, cos? 6d0
" 4pgc?sind

Integrating we find

oo 9B /% cos?0dd _ aB%r X
" 4pgc? Jo, sin@ — dpgc?
T: 2 x 10-2)2

Coas gy B2XICTN 0

Tp 1.74 x 10-3
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2104

A particle with given charge, mass and angular momentum moves in
a circular orbit.

(a) Starting from the fundamental laws of electrodynamics, find the
static part of the magnetic field generated at distances large compared
with the size of the loop.

(b) What magnetic charge distribution would generate the same field?
(UC, Berkeley)

Solution:

(a) Let the charge, mass and angular momentum of the particle be
g,m, L respectively. Use cylindrical coordinates (R,8,2) with the z-axis
along the axis of the circular orbit and the origin at its center. As we are
interested in the steady component of the field, we can consider the charge
orbiting the circle as a steady current loop. The vector potential at a point
of radius vector R from the origin is

A(R) = / IE) gy

where r = |R — r'|. For large distances take the approximation r = R(1 —
B¥) and write J(x')dV’ = Idr’. Then

I R r
A(R) ~ #OR (1+ =t )dr',

~ #OI f(R. r')dr’,

integrating over the circular orbit. Write

(R-r')dr’ = %[(R F)dr’ — (R - dr')r']

+ -;—[(R )dr’ + (R - dr')y].

The symmetric part gives rise to an electric quadrupole field and will not
be considered. The antisymmetric part can be written as

%(r’ xdr') xR.
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Hence, considering only the magnetic dipole field we have

A(R):%[%fr’xdr’] x%,

where M = I7r?e, is the magnetic dipole moment of the loop. From
B =V x A we have

R R
B——VX(MXE)“——(M R"
pogL { 3cosé e, soglL
= Bam (—RT"" B 7{) = Bampp O cosbeR — 1),

where we have used
dq dq dat qv

I'= =dl dt P
and
_ar_ L
M = I=r? ) om -

(b) A magnetic dipole layer can generate the same field if we consider
distances far away from the source. Let the magnetic dipole moment be
Pm, then the scalar magnetic potential far away is

1 pmn R
‘Pm—'z; Ra ?
giving
Ho Pm'R Mo R
= H=- =——V——= —— . —
B = o peVpm = — Vg ix Pm v) ik

which is the same as the expression for B in (a) with p,, = M.

2105

A conducting loop of area A4 and total resistance R is suspended by
a torsion spring of constant k in a uniform magnetic field B = Bey. The
loop is in the yz plane at equilibrium and can rotate about the z-axis with
moment of inertia / as shown in Fig. 2.74(a). The loop is displaced by a
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small angle 0 from equilibrium and released. Assume the torsion spring is
non-conducting and neglect self-inductance of the loop.

(a) What is the equation of motion for the loop in terms of the given
parameters?
(b) Sketch the motion and label all relevant time scales for the case

when R is large.
(MIT)

Fig. 2.74(a)

Solution:

(a) when the angle between the plane of the loop and the magnetic
field is a, the magnetic flux passing through the loop is ¢ = BAsina. The
induced emf and current are given by

BAacosa

Thus the magnetic torque on the loop is

2 42 (2
fm = |mx B = - BA S,

R
Besides, the torsion spring also provides a twisting torque ka. Both torques
will resist the rotation of the loop. Thus one has

2 42 2
Ia+ B—’%ana:o.
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As o € 0 and 8 is itself small, we have cos? a =~ 1 and

2 42

B
Ia
o+ R

a+ka=0.

Let o = ¢€* and obtain the characteristic equation

BZ 2
IC’+—RA—C+k=0.

The solution is

B J(B) —alk g k7 BIAINZ
C= =-S5 =71~ (TR) -

21 =~79Ir 7’ 2IR

Defining

2 42 2 42
R R A
we have two solutions
Cr=-B+jv, Co=-B-jr.
The general solution of the equation of motion is therefore
a = e PHA  cosyt + Aysinyt].

Since aji=¢ = 8, &}t=¢ = 0, we find

A1=

Ba -8
Ty

Hence the rotational oscillation of the loop is described by
= ge~Pt B
aft) = fe cosyt + ;sm 7tf .

Note that for the motion to be oscillatory, we require that & > 321, which
was assumed to be the case.
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(b) If Ris large, § < 7 and we have
o(t) ~ e Pt cosyt .

The motion is harmonic with exponentially attenuating amplitude, as
shown in Fig. 2.74(b).

[+ 8

-]

[=]

¥ /14\% B \E_
N ¢

Fig. 2.74(b)

2106

Figure 2.75 shows two long parallel wires carrying equal and opposite
steady currents I and separated by a distance 2a.

(a) Find an expression for the magnetic field strength at a point in the
median plane (i.e. zz plane in Fig. 2.75) lying a distance z from the plane
containing the wires.

(b) Find the ratio of the field gradient dB,/dz to the field strength B.

(c) Show qualitatively that the above “two-wire field” may be produced
by cylindrical pole pieces of circular cross sections which coincide with
the appropriate equipotentials. Further, give arguments to show that the
analogous electric field and field gradient may be produced by equivalent
circular pipes with the current I being replaced by ¢, the charge per unit
length on the pipes.

(d) Consult the diagram 2.76 which gives specific dimensions and which
represents two long pipes of circular cross section carrying equal and op-
posite charges g (per cm). Given that the field is E = 8000 V/cm at the
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position z = @ = 0.5 cm, calculate the value of ¢ and the potential difference
between the two pipes.
(UC, Berkeley)

2a :— 1 z
\
\ \\
z Sy
I / -a
/ f 04~
0S
-X 08 —=
Fig. 2.75 Fig. 2.76

Solution:

(a) Suppose the long wires carrying currents +1 and —/ cross the y-
axis at +a and —a respectively. Consider an arbitrary point P and without
loss of generality we can take the yz plane to contain P. Let the distances
of P from the y- and z-axes be z and y respectively, and its distances from
the wires be r; and r; as shown in Fig. 2.77. Ampére’s circuital law gives
the magnetic inductions B; and B, at P due to +I and —1 respectively
with magnitudes

_ el _ pol
By = 2rr,’ B, = 2y,

where r; = [224+(a—y)?) and r; = [22+(a+y)?]%, and directions as shown
in Fig. 2.77. The total induction at P,B = B; + B,, then has components

Bz = 0,
By —B;sin@, + Bysinf,
LLE{(_ 2 z)__2;zoIayz

I r_f- % wrir: '

B, = —Bycosb8, — By cosb,
I - a
_’_‘0_(_" v +v) _

2 2
2x r{ rs




Magnetostatic Field and Quasi-Stationary Electromagnetic Field 287

Fig. 2.77

For a point in the zz plane and distance z from the y-axis, i.e., at
coordinates (0, 0, z), the above reduces to

ool _a
B= x (22 + a’)e' ' (1)

(b) Equation (1) gives

de _ 2[101 az
dz =~ & (22+4a?)?°

dB, 2z
dz /B, T 224a?

(¢) The magnetic lines of force are parallel to the yz plane and are
given by

Hence

dy _dz

B, B’
They have mirror symmetry with respect to the zz plane, as shown by the
dashed curves in Fig. 2.78. If we define the scalar magnetic potential ¢m
by H = —V¢,,, then the equipotentials are cylindrical surfaces everywhere
perpendicular to the lines of force. Their intercepts in the yz plane are
shown as solid curves in the figure. Hence if the two wires carrying currents



288 Problems & Solutions on Electromagnetiam

were replaced by a cylindrical permanent magnet piece with the two side
surfaces (+2z and —2) coinciding with the equipotential surfaces, the same
magnetic lines of force would be obtained, since for an iron magnet of
# — oo the magnetic lines of force are approximately perpendicular to the
surface of the magnetic poles.

Fig. 2.78
Carrying the idea of magnetic charges further, we have
V~H=—V2¢m =Pm,

where p,, is the magnetic charge density. Then applying the divergence
theorem we have
H-dS:/ V-HdV = g¢nm
s v
where g,, is the magnetic charge enclosed by §, showing that H is analogous
to D in electrostatics. Applying the integral to a uniform cylinder, we have

fH-dl:z\m,
c

where C is the circumference of a cross section of the cylinder and A,, is
the magnetic charge per unit length. Comparing with Ampére’s circuital
law, §, H - dl = I, we have the equivalence

I« A

Proceeding further the analogy between electric and magnetic fields we
suppose that a metal pipe of the same cross section is used, instead of the
cylindrical magnet piece, with charges A per length on the side surfaces
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Fz. Then an electrostatic field distribution is produced similar to the lines
of force of B above. With the substitution H — D, I — A, the relations in
(a) and (b) are still valid.

(d) By analogy, Eq. (1) gives
q a
E=-3 __2
* 4meq (2% + a?)

Witha = z=5x 10~3m, E, = 8 x 10° V/m, we have
g=890x10"7C.

The potential difference between the two cylindrical sides carrying opposite
charges ¢ per unit length is

ga [ dz q z
AV = = z
v 47eg /,l 224 a2  d7meg arctan a

with 2 =4x 1073 m, 2 =8 x 1073 m.

H

*=27x10%V

%

2107
In a measurement of e/m for electron using a Thomson type apparatus,
i.e., crossed electric and magnetic fields in a cathode-ray tube, it is noted
that if the accelerating potential difference is sufficiently large, the ratio e/m
becomes one-half as large as the accepted value. Take e/mo = 1.8 x 10!
C/kg.
(a) Draw a simple sketch of the apparatus used and give a brief expla-
nation of how it is supposed to function.

(b) Find the accelerating potential difference V' which causes e/m to
be one-half its accepted value. Take ¢ = 3 x 10® m/sec.
(SUNY, Buffalo)
Solution:

(a) A Thomson type apparatus is shown schematically in Fig. 2.79,
where V; is the accelerating voltage and V; is the deflecting voltage.

o A 1 BOItE -Uﬁo

2
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With the addition of a magnetic field B as shown, the electromagnetic field
has the action of a velocity-filter. With given values of V; and Va, we adjust
the magnitude of B so that the electrons strike the center O of the screen.
At this time the velocity of the electron is v = E/B (since eE = evB).
Afterward the magnetic field B is turned off and the displacement y; of the
electrons on the screen is measured. The ratio e/m is calculated as follows:

D+ % eE (L3 e dB?(L?
y2= yl—mvz(—+LD)——-r;-—(—-+LD )

giving
Y — . B—
dB(k + LD)
(b) When the accelerating voltage is very large, relativistic effects must
be considered. From energy conversation

eVi + moc® = me?,

we find
Vi = (1". - m)cz_
e e
As £ = %"—:;, the accelerating voltage is
2 16
_moc? _ 9x 10
== = g o X0V
2108

The betatron accelerates particles through the emf induced by an in-
creasing magnetic field within the particle’s orbit. Let B; be the average
field within the particle orbit of radius R, and let By be the field at the
orbit (see Fig. 2.80).

(a) What must be the relationship between B, and Bj if the particle
i8 to remain in the orbit at radius R independent of its energy?

(b) Does the above relationship hold at relativistic energies? Explain.
(MIT)
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By al B2

————
~-beam
ﬁ y
K [
b—r~— ®

x e

Fig. 2.80

Solution:

(a) Suppose the magnetlc field i Is oriented in the z direction, i.e., B; =
Bze,. From VX E = "Es where 2 W > 0, we see that the electric ﬁeld s
along the —e; direction and has axial symmetry. Then from

fm.dh_/fa.ds
C S

a
E=-— -dS .
27R at/Bl ds

we have

The average magnetic field is

= _[B;-dS
B, = oy aal
Hence RdB
=8
E= 2 dt -’

If the effect of radiation damping is negligible the equation of the motion
of the particle is
d(mv)
dt

In cylindrical coordinates, this is equivalent to two equations:

=gqE+qv x B,.

2

Lnﬁv_ = guB; in e, direction,
d(mv) qR dB, . N
T —qF = RS in ey direction.
The last equation can be integrated to give mv = —qRBl assuming v =

0,B; =0att=0. Thus B; = F—,Bl %‘2 Hence we require Bz = B, /2.
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(b) For the relativistic case, the equation of motion for the particle is

i(_ﬂ_)=qE+qva.

dt \ /T~ v2/c?

By a similar analysis, we again get the relationship B; = B /2.

2109

(a) Calculate the electric polarization vector P and also the surface
and volume bound charge densities in a long dielectric cylinder spinning at
an angular velocity w about its axis in a uniform magnetic field B which is
parallel to the axis.

(b) A doughnut-shaped solenoid winding has dimensions R = 1 meter,
diameter of the loop = 10 ¢m, and the number of windings = 1000. If a
current of 10 amperes runs through the wire, what is the magnitude and
the direction of the force on one loop?

(c) Find the radiation pressure on a mirror 1 meter away from a 70
watt bulb. Assume normal incidence.

(d) A plane electromagnetic wave is normally incident on a perfect
conductor (superconductor). Find the reflected E and B fields, the surface
charge and current densities in terms of the incoming fields.

(e) Two charges ¢ and —¢ are brought from infinity to a distance d
from a conducting plane and a distance r from each other. Find the work
done in the process by the external force which moved the charges. Give
both magnitude and sign.

(UC, Berkeley)

Solution:

(a) The constitutive equation for electric fields in a dielectric medium
moving with velocity v in a magnetic field B is

D=keoE+eo(k—1)vx B,

where k is its relative dielectric constant. For a point distance r from the
axis of rotation, v=w xrand vx B=(w -B)r— (r-B)w =wBrasr
is perpendicular to B. As there are no free charges, Gauss’ flux theorem
§D-dS =0 gives D = 0. Then from D = goE + P we get

P= —EoE = €9 (l —_ %)UBI‘.
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Hence the volume bound charge density is

p=-v-P= —%%(r}’,) = —2¢¢ (1 - %)wB

and the surface bound charge density is
' 1
U=Pr=€o l—z’- wBa,

as r = a for the cylinder’s surface.

(b) By symmetry and using Ampére’s circuital law, we obtain the
magnetic induction in a doughnut-shaped solenoid:

B_"‘ONI

= 2ar
where r is the distance from the center of the doughnut. Consider a small
section of length dl of the solenoid. This section contains %dl turns of the
winding, where R is the radius of the doughnut. Take as current element
a segment of this section which subtends an angle d@ at the axis of the
solenoid:
NIdi

Al = ———pdb,
2nR
where 0 is the angle made by the radius from the axis to the segment and
the line from the axis to center of the doughnut and p is the radius of a
loop of winding. The magnetic force on the current element is in the radial
direction and has magnitude

_ B _Nlp
dF = Al - 7= 4"RBd0dl
_ woN3I%p
8w2Rr dodl,

where B/2 is used, instead of B, because the magnetic field established by
the current element itself has to be taken out from the total field. Note that
dF is perpendicular to the surface of the solenoid and only its component
dF - cos @ along the line from the axis to the center of the doughnut is not
canceled out with another element at 27 — 0. As

r=R+pcost,
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we have the total force on the doughnut

F= /cosﬂdF
_ #0N212 2rR 1/21 pc033
872R Jo R+ pcost pc030

-t (- )
T 4x o ! R+ pcost dé

_poN2[2 2x p -1
=B 1- l+}—ac080) df

poNl{l_ll_( £y }

_4rx 1077 x10002x102[_ 1 ]
- 2 V1=0.057

=—0.079 N

Hence, the force on one loop is

F _ 0079

_—— = -, -8
N 1000 79%x107° N

and points to the center of the doughnut.

(c) The electromagnet.lc field momentum incident on the mirror per
unit time per unit area is m,-c-, where W is the wattage of the bulb and
d is the distance of the mirror from the bulb. Suppose the mirror reflects
totally. The change of momentum occurring on the mirror per unit time
per unit area is the pressure

W 2xT0
p_41rd2c—41rx12x3x103

=3.7x10"3 N/m®.

(d) Let Eo and By be incoming electromagnetic field vectors and let
E’ and B’ be the reflected fields. Applying the boundary relation n x
(Ez — E;) = 0 to the surface of the conductor we obtain E' + Eg = 0, or
E’' = —E,, since E¢ and E’ are both tangential to the boundary. For a
plane electromagnetic wave we have

B = :—)k' xE = %(—ko) X (—Eo) =By.
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For the conductor the surface charge density is ¢ = 0 and the surface
current density is

i=nx (H’-}-Ho) =2nx Hy = —2(](0 X H)/ko
= 2€oono/ko = 2€och .

{e) The work done by the external force can be considered in three
steps:

1. Point charge ¢ is brought from infinity to a distance d from the
conducting plane. When the distance between ¢ and the conducting plane
is z, the (attractive) force on g is given by the method of images to be

N
4xeg(22)2

In this step the external force does work

d q2
Wi ="/°°Fd’='1s«eod'

Note that the first minus sign applies because F' and dz are in opposite
directions.

2. Point charge —q is brought from infinity to a distance d from the
conducting plane, but far away from charge ¢. The work done in this
process by the external force is exactly the same as in step 1:

e
W2 =M=~ fored
3. The charge —gq is moved to a distance r from g keeping its distance
from the conducting plane constant at d. When the charge —¢ is at distance
z from ¢, the horizontal component of the (attractive) force on —¢ is given
by the method of images to be

¢ ¢’z

= —41’8022 + 4160(32 + 4d2)3/2 ’

In this step the work done by the external force is

r r q2 r qzz
= - = ———— -— d
Ws /co Fdz /oo 4xeoz7dz /oo dmeo(z? 1 4002 z
g g

T dmeor * 4meo(r? +4d?)1/2°
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Hence the total work done by the external force is

W=W +W+W;
TR (ORI U
dweo |r  2d  (r244d2)V/2)°
We can also solve the problem by considering the electrostatic energy of
the system. The potential at the position of ¢ is

_q 1 1 1
pl_‘iweo( r 2d+,/,.2+4g2)

and that at —q is

_q 1 1 1
¥2 = freo (r + 24 \/r5+437) '
again using the method of images. The electrostatic energy of the system
is given by W, = %quo. Taking the potential on the conducting surface to
be zero, we find the work done by the external force to be

2

q 1 1 1
W=w.=-3 (24 = ).

47f€o(7‘+2d \/r5+435)

2110

A Hall probe with dimensions as shown in Fig. 2.81 has conductivity o
and carries charge density p. The probe is placed in an unknown magnetic
field B oriented along the +y direction. An external potential V., is applied
to two ends producing an electric field in the 42 direction. Between which
pair of ends is the equilibrium Hall voltage Vihan observed? Derive an
expression for B in terms of Vyay, Vext, @, p and the dimensions of the probe.

(Wisconsin)
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Solution:

The Hall voltage is between the planes £ = 0 and = = h. For equilib-
rium we have

¢FHan = qBv.
As .
Enan = Vitan vz J - 0 Eext = o Velxt ,
h P P P
the above gives
Vian _ g7 Vet
R T T 1
or ” .
g = Yot Pl
Vext oh
2111

A uniform magnetic field is applied perpendicular to the flow of a
current in a conductor as shown in Fig. 2.82. The Lorentz force on the
charged carriers will deflect the carriers across the sample to develop a
potential, the Hall voltage, which is perpendicular to both the directions of
the current I, and magnetic field B,. Thus the total electric field can be
expressed as

E=%+RﬂxB,

where Ry is the Hall coefficient, o the conductivity, and j the current
density.

(a) For the case of a single type of carrier, show that Ry gives the sign
of the charge of the carrier and the carrier density.

(b) Describe an experimental method determining Ry for a sample at
room temperature. Draw a diagram based on Fig. 2.82 which shows all the
electrical connections (and contacts with the sample) which are required,
including circuits and measuring instruments to determine the true Hall
voltage (its magnitude and polarity).

(c) Prepare a table of all the parameters which must be measured with
the B-field on or off. State the units in which each parameter is measured.

(d) How do you compensate experimentally for rectifying effects which
may exist at the electrical contacts with the sample?
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() The sample (a semiconductor) is found to have a negative value for
Ry at room temperature. Describe the charged carriers.

(f) At liquid nitrogen temperature the Ry of this sample reverses to
become positive. How do you explain the results for room and low temper-
atures under the simplifying assumptions that: (1) all the charged carriers
of one type have the same drift velocity, and (2) we neglect the fact that
most semiconductors have two distinct overlapping bands?

(Chicago)

x

Solution:

(a) Let the charge of a carrier be ¢ and its drift velocity be v, then in
equilibrium
¢qE; +gvxB=0.

As j = ngv, n being the carrier density, we have

E_L:—leB.
an

But we also have

E; = Ryjx B,
hence |
Ry=-—.
gn

Thus Ry gives the sign of the charge and the charge density of the carriers.
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(b) An experimental arrangement for determining Ry is shown in
Fig. 2.82. The magnitude and polarity of the Hall voltage V can be mea-
sured using a voltmeter with high internal resistance. The Hall electric field
is given by E; = V/w. Accordingly

I, can be measured with an ammeter, B, can be determined using a sample
of known Hall coefficient.

(c) All the parameters to be measured are listed below:

Parameter : B, I, tV
Unit : T A mV

(d) Repeat the experiment for two different sets of I, and B,. We have

Ry = (Vi — Vo)t - (Vo — Vo)t
Im le Iy2832 ’

where 1} is the contact potential difference caused by rectifying effects and
can be determined from the above expressions to be

_ Valy, B, ~ Vil By,

Vo
° Ile,, - Itha

Once Vj, is determined, it can be compensated for.

(e) As Ry is negative the carriers of the sample have positive charge.
Hence the sample is a p type semiconductor,

(f) At liquid nitrogen temperature the concentration of the holes re-
lating to the main atoms is greatly reduced mainly because of the eigen
electrons and holes. The concentrations of the eigen electrons and holes are
equal, but because of the greater mobility of the electrons their Hall effect
exceeds that of the holes. As a result, the Ry of the sample reverses sign
to become positive.

2112
The Hall effect has to do with:

(a) the deflections of equipotential lines in a material carrying a current
in a magnetic field,
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(b) rotation of the plane of polarization of light going through a trans-
parent solid,

(c) the space charge in electron flow in a vacuum.
(ccr)
Solution:
The answer is (a).

2113

(a) Prove that in a stationary plasma of ohmic conductivity o and
permeability 4 = 1 the magnetic field B satisfies the equation

9B _ DV’B,
ot

where D = ¢?/4mo.
(b) If the plasma is in motion with velocity v, prove that the above
equation is replaced by

%—?:Vx(vaHDvZB.

(c) At t = 0 a stationary plasma contains a magnetic field

B = B(z)e,,
_ By, |z| <L
5@ =1, el > L,

where By is a constant, Determine the time evolution of the field assuming
that the plasma remains stationary.

(d) The average conductivity of the earth is roughly equal to that of
copper, ie., ¢ ~ 10'3s™!. Can the earth’s magnetic field be a primordial
field which has survived since the formation of the solar system, about
5 x 109 years?

(MIT)

Solution:

(a) If a plasma is stationary and its displacement current can be ne-
glected, the electromagnetic field inside the plasma satisfies the following
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Maxwell’s equations (on Gaussian units)

16B

‘D= Exo——-—
v 4mpy , V x Pyl
V-B=4¢, VXB:4—:-j!,

and if the plasma is chmic we have also

iy =oE.
Thus
VxB= 4—7r-aE
Vx(VxB)=V(V-B)-VB=-V?B = g;oVXE:—%'—%%,
or 5B
> = DV’B (1)
with D = Zﬁ The equation (1) is a diffusion equation.

(b) If the velocity of the plasma is not zero, we have
. 1
jy=dlE+ Zv xBi.
In the nonrelativistic approximation v < ¢, use of the above Maxwell’s

equation gives
VxB= 4:“(E+ 1va>

Taking curl of both sides gives

JB

b = DV?’B 4+ V x (v x B). (2)

(c) For a stationary plasma the magnetic field is determined by (1).
From the initial condition we see that (1) can be reduced to the one-dimen-
sional diffusion equation

3Bi(z,t) _ 8 Bi(z.1)
ot 0z2
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We separate the variables by letting B, (z,t) = X(z)T(t) and obtain

1dl _ 18X _
DT dt ~ X dz2 - ¢

with solutions \ '
T(t) = Ae™ bt X(z) =Ce'™v*.

Hence o
B.(z,t,w) = A(w)ev Dteivr

As w is arbitrary the general solution is
00 2 .
B.(z,t) =/ Aw)e~ Pteivz gy
-0
For t = 0, the above reduces to
o .
B.(z) = / Aw)e™* dw,
-00

and by Fourier transform we obtain

Aw) = 51; /_ Bt

Hence

B,(z,t) = /oo Bz(g)[il; /_: e—w’Dteiw(z—f)dw]d{"

where the definite integral inside the brackets can be evaluated,

had 2 . n 2
/ e~ Dt gw(z—€) g, — — e~ (#-€)°/4D¢ ,
oo V Dt

and B(§) is given by the initial condition

By, for [£|<L

B.(¢) = { 0, for |¢| > L.

Therefore, the time evolution of the field is given by

B (¥ e
B,(z,t)—m/—%e d€.

)
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(d) It is not possible that the earth’s magnetic field is a primordial field
which has survived the formation of the solar system, about 5 x 10° years
ago, as By would have fast disappeared by diffusion. A semi-quantitative
proof is given below.

As the conductivity of the earth is approximately o &~ 10! s~ the
diffusion coefficient of the earth’s magnetic field is

= 12— ~ 10% cm’/

»

and Dt ~ 1022 for ¢t = 5 x 10° years = 1.5 x 10!7s. The linear dimension of
the earth is L ~ 10% cm. Thus the exponent in (3) is approximately

-8 L2 o4

4Dt~ 4Dt
giving
e—(2—€)/4Dt o 4
and
¢ -o?
/ e 5 d~1L.
Hence
LB,
B,(z,t) = ~ 1071B,.
(2,0) Vanr Dt 0

This shows that the present earth’s magnetic field would be only 10-4B,
if it has arisen from the primordial field Bo. With the present earth’s mag-
netic field of ~ 1 Gs, the primordial field would have been By ~ 10* Gs.
This value is much higher than the magnetic fields in the plasmas of the
various celestial bodies.

2114

A model for an electron consists of a shell of charge distributed uni-
formly on the surface of a sphere of radius a. The electron moves with
velocity v < c (see Fig. 2.83).

(a) What are E and B at a point (r,8) outside the sphere?

(b) Find the value of a such that the total momentum carried by the
field is just equal to the mechanical momentum mv, v being the electron’s
speed.
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(c) Use the value of a to calculate the energy in the field of the moving
charge and compare it with the rest-mass energy and kinetic energy.
( Wisconsin)

Pfe .

v<<C
3
Fig. 2.83

Solution:

(a) In the rest frame X’ of the electron, the electromagnetic field at a
point, of radius vector r’ from it is, in Gaussian units,

er’

! r
E_FE’ B '=0.

In the laboratory frame X, by Lorentz transformation (with v < ¢) the
field is
E=E - xB =FE,
c

B=B' +YxE = xE.
[ c

The field point has coordinates (r,6) in X as shown in Fig. 2.83. As v < ¢,
we have r' ~ r and

/
er er
E=E=—~=
r’3 r3 !
v e vXr
B=—-—xE~-.
c c r’
with magnitudes
e evsinf
EF=— B =
r2’ er?

(b) The momentum density of the field is

N 1
Substituting in E and B yields
e2 rx(vxr) _ e?

= tnez ré = 4nc?rd (vr —vrcos?).
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Hence the momentum of the electromagnetic field of the electron is

P= ///gdv_e,/hd«p/ do/ drs ”(1'“‘ 9) 3 6ino

2e v 2¢?
= 32> T 3c%a’
Note that in the integrand above the component of g perpendicular to v
will cancel out on integration; only the component parallel to v needs to
be considered.
If the electromagnetic field momentum of the electron is equal to its
mechanical momentum, mv, i.e., %’,’;v = mv, then

2e? 2

— s =z “SA=1 “5X.
3z = 3 X 282x107°A =188 x 107" A

a =

(c) The energy of the field of the electron is

2 2 e?v?sin® 9
W= /// (E? + BY)dV = ///w[# - ]dV
€ i 9 . 1+;,—sm20
= 5/0 dga/o dB/a r smo[—'T—]dr

e? 2v? 3mc? 2021 3, 1
=G (1435) = B[ 35] = e e g

It follows that for v < ¢, imv? < W < me?.

2115

A beam of Na atoms (ground state 25);,), polarized in the +z direc-
tion, is sent in the z direction through a region in which there is a magnetic
field in the +y direction. Describe the form of the beam downstream from
the magnetic field region (both its spatial structure and polarization), as-
suming the field has a large gradient in the y-direction.

(Wisconsin)

Solution:

Na atoms polarized in the +z direction have the probabilities of one-
half in eigenstate S, = +% and one-half in eigenstate S, = —%. Under
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the action of a magnetic field B = Be, with 42 > 0, the Na atoms of
Sy = +% will deflect to the —y direction, while those of S, = —% will
deflect to the +y direction. Thus, going throngh the magnetic field, the Na
atoms will split into two beams with directions of polarization ~y and +y.
(Since AE = —m - B = —(~S)-B = 15, B, and §2 > 0, Na atoms of
Sy = % deflect to the —y direction and Na atoms of S, = —-2’1 deflect to the
+y direction.)

2116
In a frame S there is a uniform electromagnetic field

E=34e,, B =>5Ae,

(in Gaussian units). An ion of rest mass my and charge ¢ is released from
rest at (0,5,0). What time elapses before it returns to the y-axis?
(SUNY, Buffalo)

Solution:
The Lorentz force equation

m§=q<E+%ixB)

has component equations

moi = 3Aq + 341y, (1)
mojj = — 344z, (2)

Integrating (3) and noting z|¢=q = 0, Z|¢=¢ = 0, we have z = 0. Integrating
(2) and using z};=o = 0, §|s=0 = 0, we find

. 5Aq
=——z. 4
y 1’7’!()(:27 ( )

Use of (4) in (1) gives

. 5Aq\2 3moc2) _
z+ (moc) (z— 26Aq =0.
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With z};=0 = 0 we get

3moc
z= 22 Aq (1 — coswt),
where
5Aq
w=—\
mgC

Note that z =0 at t = 22X, Let n = 1, then

t_2_1r_21rmoc
T w  bAq

This is the time that elapses before the ion returns to the y-axis

2117

A magnetic field can suppress the flow of current in a diode. Consider
a uniform magnetic field B = (0,0, By) filling the gap between two infinite
conductors in the yz plane. The cathode is located at z = 0 and the anode
at z = d. A positive potential V; is applied to the anode.

Electrons leave the cathode with zero initial velocity and their charge
density causes the electric field to be non-uniform:

—(_9
£= (- %00).

(a) Under steady state conditions what quantities are constants of the
electron’s motion?

(b) Determine the strength of the magnetic field required to reflect the
electrons before they reach the anode.
(MIT)
Solution:

When gravity is neglected, the motion of an electron is described by
(assuming v € ¢)

mée = —e(~ 82 + v, By), (1)

%"" = U:Bo ' (2)
m g 3)

ll
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(a) Integrating (3) we have

v(t) =v,(t =0)=0,
z(t) = z(t = 0) = const.

Hence the coordinate and speed of the electron in the z direction are the
constants of the motion, in particular v; = 0.

(b) The work done by the electric field in moving an electron from
cathode to anode is

d
W=/ —e-(-—-a—‘é)dzzevo,
0 63

since the magnetic field does no work. When the electron reaches the anode,
the magnitude of its velocity vy = v;.i+ vy j can be obtained by equating
the kinetic energy of the electron to the work done by the electric field:

1

§mv}=eVo,
giving

vy = 2eVp

=\

If the electrons are not to reach the anode, we require that

26Vo
Uiz = 0, Vgy = m .
Writing (2) as
dvy dz
mﬁ- eBoE

and integrating both sides, noting v, = 0,z = 0, at ¢ = 0 we obtain

m\/ 2€Vo = qud,
m

_[2mV,
By = pr ok

giving

Therefore the induction of the magnetic field must be greater than "%‘1’1
for the electrons to reflect back before reaching the anode.
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2118

Specialized bacteria can be found living in quite unattractive places,
such as oil and sewage disposal plants. A bacterium that lives in an abso-
lutely dark and essentially homogeneous soup faces a serious navigational
problem if he must sometimes rise for oxygen and then descend for an
important part of his dinner. Which way is up?

One class of bacteria has solved the problem by incorporating an iron
oxide magnet inside its cell. Discuss the following questions quantitatively
making clear the nature of the necessarily rough approximations used.

(a) Why not sense the pressure gradient in the fluid instead of using a
magnet?

(b) Estimate the minimum magnetic moment that could be used to
line up the bacterium.

(c) Asssuming 10~4 cm for the length of the magnetic needle, estimate
its minimum diameter.

(d) Why is a needle better than a spherical magnet?
(Princeton)

Solution:

(a) The pressure gradient in a fluid (buoyancy) can cause a baterium
to rise or descend, depending on its specific weight relative to the fluid. On
the other hand, a magnet inside a bacterium can cause it to rise or fall,
depending on the relative orientation between the magnetic moment and
geomagnetic field. Because of the random thermal motion (Brownian move-
ment) this relative orientation is randomly changed so that a bacterium can
both rise for oxygen and descend for food. Actually such small magnets of
the bacteria string together to form large magnets of moment m. In the
inhomogeneous geomagnetic field the force causing such a magnet to rise

or fall is given by
F = m . a_B
z = 61 b}

where B is the earth’s magnetic induction. If we represent the height above
the earth’s surface by z, then Z[B| is negative as we go up. F, can be
pointing up or down depending on the orientation of m relative to %%.

(b) In Gaussian units the interaction energy between two magnetic
dipoles of moments m; and mj is

—m, - [% 3(m2 r) ]

where r is the radius vector from m,; to m;.
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For the magnets inside two adjacent bacteria which line up end to end,
m; = mg = m,m,;//m3,r = d = 10~* cm, and the interaction energy is

_2m?
= T B

The energy of the Brownian movement of bacteria is ~ kT, where k is
Boltzmann’s constant and T is the absolute temperature. This movement
tends to destroy the ordering arrangement of the bacteria. Hence for the
linear arrangement of the magnets of the bacteria to be possible we require

that 5

—_— >
& 2 M,

giving the minimum magnetic moment inside a bacterium as

lmminl Z, kTd3 .

(c) Let r, M and d be the radius of the cross-section, the magnetization
and the length of the magnetic needle respectively, then its magnetic dipole
moment is

m=xr’dM .

Combining with the result in (b), we get

S (Jde i
r = ‘K’M .

Take T to be the room temperature, T ~ 300 K. The saturation magne-
tization of a ferromagnet at this temperature is M ~ 1.7 x 10® Gs. The
above equation then gives

r~06x10"% cm.

(d) Needle-shaped magnets are better than spherical ones because they
can be more easily lined up.

2119

As a model to describe the electrodynamical properties of a pulsar we
consider a sphere of radius R which rotates like a rigid body with angular
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velocity w about a fixed axis. The charge and current distributions are
thus symmetric with respect to this axis {and with respect to the normal
midplane of the pulsar). The net charge of the sphere is zero. In the vacuum
outside the pulsar the magnetic field is that of a magnetic dipole m parallel
to the axis of rotation. The magnetic field in the inside is consistent with
the outside field, but otherwise arbitrary.

(a) The magnitudes of the electric and magnetic forces on charged
particles inside the pulsar are very large compared with all other forces.
Since the charged particles are assumed to share in the rotational motion
of the pulsar it follows that, to a good approximation, E = —v x B, where
v = w X r is the local velocity, everywhere inside the pulsar. Imposing this
condition at points just inside the surface of the pulsar, show that at such
points

pomw sin 8 cos §
2xR? ’
where @ is the polar angle with respect to the axis.

(b) On the basis of the above result, find the electrostatic potential
everywhere outside the sphere.

(¢) Show that the equation E = —(wxr)x B does not hold immediately
outside the pulsar.

E, =

(UC, Berkeley)
Solution:
(a) As shown in Fig. 2.84, at a point P just inside the surface of the
sphere (r = R), the magnetic field generated by the dipole m is

B = B,e, + Bye,

_ o [mcost msin 0
'Z?( Bt 8‘)'

So the electric field at the point P is

E=-vxB=—(wxr)XxBl|agr
_ bo mw sin3 @ 2mw cosf@sin
"w\"r T m )

with the #-component

pomw sin 8 cos 8

Ey = 2z R?



312 Problems & Solutions on Electromagnefism

Fig. 2.84

(b) Taking the potential on the equator as reference level the induced
potential at a point of latitude a = § — @ is

i-a
V= —/ EyRdo
5

_ /%-“ pormw sin Od(sin 8) _ pormuw sin® 4 ¥~

z 2rR 4TR 5
2
= #::;:(cosza -1)= BP;R (cos?a—1),

where Bp = 227 is the induction of the magnetic dipole at the north pole.

(c) The equation E = —v x B does not hold outside the sphere. The
reason is as follows. This equation follows from the transformation of the
electromagnetic field (with v < ¢),

E'=E+vxB,

where E and B are the fields at a point just inside the surface of the pulsar
as measured by an observer in the rest reference frame K fixed at a distant
star, E' is the electric field observed in the moving frame K’ fixed with
respect to the surface of the pulsar, and v = w X R is the velocity of K’
with respect to K. Since in K’ the surface layer of the pulsar is equivalent
to a stationary conductor, E’ = 0 (otherwise j’ = oE! #£ 0, i.e., the observer
in K’ would see a current). Thus we have E = —v x B = —(w X R) x B.
But at points just outside the surface of the pulsar the requirement E =0
i8 not needed. Also the charge density on the surface is generally not zero,
so that the boundary condition would not give E’ = 0 on points just outside
the surface; hence E # —v x B outside the sphere.
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1. BASIC CIRCUIT ANALYSIS (3001-3026)

3001

Suppose the input voltages V;, V2, and V3 in the circuit of Fig. 3.1 can
assume values of either 0 or 1 (0 means ground). There are thus 8 possible
combinations of input voltage. Compute Vo, for each of these possibilities,

(UC, Berkeley)

2R}
V| =t {/,
1 R out

Vg ——we—1
R
1

V3]
Ll £

B

Fig. 3.1

Solution:
The circuit in Fig. 3.1 can be redrawn as that in Fig. 3.2.

Vout

Fig. 3.2

Let the currents flowing in the component circuits be as shown. By
Kirchhoft’s laws we have

Va = [2(i3 - ig) + 2(i3 - iq)]R,
Vo —~Va= {2(i2 - il) + (iz - i4) + 2(i2 - is)]R,

315
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Vi—-Vo= [2i1 + (il - 54) + 2(i1 - iz)]R,
0 = 2(14 - 13) + (14 el 12) + (14 - 11) +214 .

After solving for 74 we obtain

Vo = 2igRt= 4 124 22
Vout for various values of V), V5, and V3 are shown in the table below.
v, Va Vs Vot v, Va Vs Vour
0 0 0 0 1 0 0 3
0 0 1 5 1 0 1 S
0 1 0 i 1 1 0 :
0 1 1 i 1 1 1 %
3002

The current-voltage characteristic of the output terminals A, B
(Fig. 3.3) is the same as that of a battery of emf £¢ and internal resistance
r. Find ¢y and r and the short-circuit current provided by the battery.

(Wisconsin)

2240
LERY '1:'_ p———————e A
$en
B
Fig. 3.3

Solution:
According to Thévenin’s theorem, the equivalent emf is the potential
across AB when the output current is zero, i.2., the open-circuit voltage:

50=VAB=§GIEXIS=3V-
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The equivalent internal resistance is the resistance when the battery is
shorted, i.e., the parallel combination of the resistances:

6 x24
r=

v —6+24=4.89.

Then the short-circuit current provided by the battery is

_&_3V _
I=20= s = 0625 A
3003

Any linear dc network (a load R is connected between the two arbitrary
points A and B of the network) is equivalent to a series circuit consisting
of a battery of emf V and a resistance r, as shown in Fig. 3.4.

(a) Calculate V and r of the circuit in Fig. 3.5.

Fig. 3.4 Fig. 3.5
2R R 2R R R R
A - A
2R R 2R$2R §2R 2R
n Vn-) Vn v
T I [ 71TVl Vo2 17, B
Fig. 3.6 Fig. 3.7

(b) Calculate V and r of the circuit in Fig. 3.6.

(c) Calculate V and r of the circuit in Fig. 3.7.
(Hint: Use mathematical induction)
(Chicago)
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Solution:
(a) We find by Thévenin’s theorem that

2R 1
=2R+2R T2
r—2RX2R—R
T 2R+4+2R T

14 Vo,

(b) Using the result of (a) for the circuit in Fig. 3.6, we obtain a simpler
circuit shown in Fig. 3.8. Thévenin’s theorem then gives

1/V, 1
V= 5(‘?") -+ —Vn—l

2
1 1
— §<Vn—l + §Vn) ’
_2Rx2R _

"T9RY2R

2R 2R

v V-
IT" Inl

Fig. 3.8

(c) By induction we have

1 1 1 1
V=5{%+§[V2+§<V3+“'+§(Vn—l+’2' n)) ]}

N s’
n-1

=27 +27W 4+ -+ 27V,
r=R.

3004

Four one-microfarad capacitors are connected in parallel, charged to
200 volts and discharged through a 5 mm length of fine copper wire. This
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wire has a resistance of 4 ohms per meter and a mass of about 0.045 gram
per meter. Would you expect the wire to melt? Why?
(Columbia)

Solution:

The relevant data are
total capacitance C =4 x 1 =4 uF,
energy stored in the capacitance

E= CV’:%x4x 107¢ x 2002 = 0.08J ,

N[ -

resistance of copper wire R=4 x5 x 10-3 =0.02 Q,

mass of copper wire m = 0.045 x 5 x 10~3 = 0.225 mg,

melting point of copper t = 1356°C,

specific heat of copper ¢ = 0.091 cal/g-°C.

If the copper wire is initially at room temperature (t = 25°C), the heat
needed to bring it to melting point is

Q = cmAt = 0.091 x 0.225 x 10~2 x (1356 — 25)
=0.027cal = 0.111J .

As Q > E the copper wire will not melt.

3005

As in Fig. 3.9, switch S is closed and a steady dc current I = V/R is
established in a simple LR series circuit. Now switch S is suddenly opened.
What happens to the energy 'li LI? which was stored in the circuit when
the current I was present?

(Wisconsin)

Fig. 3.9
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Solution:

When switch S is suddenly opened, the energy %le will be radiated
in the form of electromagnetic waves.

3006

(a) The capacitor in the circuit in Fig. 3.10 is made from two flat square
metal plates of length L on a side and separated by a distance d. What is
the capacitance?

(b) Show that if any electrical energy is stored in C, it is entirely
dissipated in R after the switch is closed.

I
:

(Wisconsin)

ARAA

c R

Fig. 3.10

Solution:

(a) The capacitor has capacitance C = &. As ¢ = g for air, C =

EoLz/d.

(b) Let Vy be the voltage across the plates of the capacitor initially.
The energy stored is then We = § CV{. After the switch is closed at ¢ = 0,
one has

Ve(t) = Voe_t/RC ,

dVe(t) - _V_O e—t/RC
dt R '
The energy dissipated in the resistance is

i(t) = -C

73

Wgr =/ i2(t)Rdt = e~ #/RCqy = 1 CV§ .
0 R 2

Hence
Wgr=Wec,

which implies that the energy stored in the capacitor is entirely dissipated
in the resistance R.
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3007
(a) Given the following infinite network (Fig. 3.11):

R R R R

$ R 4’?2 § R23R2

Fig. 3.1
Find the input resistance, i.e., the equivalent resistance between terminals
A and B.

(b) Figure 3.12 shows two resistors in parallel, with values R; and Ra.
The current Iy divides somehow between them. Show that the condition
Iy = I + I; together with the requirement of minimum power dissipation
leads to the same current values that we would calculate by ordinary circuit

formulae.
(SUNY, Buffalo)

I R

o | .
I Ry
Fig. 3.12

Solution:

(a) Let the total resistance of the infinite network be R. After removing
the resistances of the first section, the remaining circuit is still an infinite
network which is equivalent to the original one. Its equivalent circuit is
shown in Fig. 3.13 and has total resistance

RR,

R=R1+R+R2 .

This gives a quadratic equation in R

RE—RiR-RiR;=0.

pe i, VETIGR,

2

The positive root

gives the equivalent resistance.



322

Problems € Solutions on Electromagnetism
(b) As Iy = I + Iz, the power dissipation is
P=I!Ry + I?Ry = I}Ry + (I — I)*R,

$R, 3R

Fig. 3.13
To minimize, put % = 0, which gives 2I1 Ry — 2(Ig — I;)R; = 0, or
L__h _R

I, -1, Ry’
This is the formula one usually uses.

3008

The frequency response of a single low-pass filter (RC—circuit) can be
compensated ideally:

(a) exactly only by an infinite series of RC—filters

(b) exactly only by using LC-filters

(c) exactly by a single high-pass (RC) filter.

Solution:

(CCT)

The answer is (c).

3009

A square voltage pulse (Fig. 3.15) is applied to terminal A in the circuit
shown in Fig. 3.14. What signal appears at B?

(Wisconsin)

Ae——j——1—B
1 uF
P'K

Fig. 3.14
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Solution:

The time constant of this circuit is

T=RC=1x103x1x10"%=10"3s=1ms.

+SV

— 0V

1ms

Fig. 3.15
The voltages at A and B are

Va = 5u(t) — 5u(t — 1),
Ve = 5e Y u(t) — 5e~ 0= D/Ty(t — 1)
= Se~tu(t) — Se~ Dyt — 1),

where t is in ms. The time curve of Vg is shown in Fig. 3.16.

VgiV)
5 B
4
3
24---
o334
-%I l/ tims)
Fig. 3.16

3010
Calculate the energy in the 3 uF capacitor in Fig. 3.17.

313

(Wisconsin)

Solution:

The voltage across the two ends of the capacitors in series is

v = | i)

mTl‘E"T)‘4—2 =0.8V.
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14 N

6 uF

3 uF

vy Em‘mn]:
2v T
pa

Fig. 3.17

The voltage across the two ends of the 3 uF capacitor is ﬁg x 0.8 =
0.53 V. So the energy stored in the 3 uF capacitor is

E:%x:&x10“6x0.532=0.42x10‘6.].

3011

The diagram 3.18 shows a circuit of 2 capacitors and 2 ideal diodes
driven by a voltage generator. The generator produces a steady square
wave of amplitude V', symmetrical around zero potential, shown at point a
in the circuit. Sketch the waveforms and assign values to the voltage levels
at points b and ¢ in the circuit.

1

(Wisconsin)

dulmle
o
Fig. 3.18

Solution:

The resistance of an ideal diode is 0 in the positive direction and oo in
the negative direction. Figure 3.19 gives the equivalent circuits correspond-
ing to the positive and negative voltages at point a. We shall assume that
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the voltage generator is always working and the circuit has already entered

a steady state.
a € c
J : *v© l -
( a ) 'Cz -I:_ Vz
a G c

"l_r _Jl : PO _
{b) é “ c 2}+V2
.

Fig. 3.19

Suppose that during a negative pulse the voltage drops across C; and
C, are V; and V, respectively with the directions as shown in Fig. 3.19(b).
The points a, b and ¢ have potentials

Va=-V=-1-V;,
Ww=V=-V.

Now the potential at a jumps to +V. The voltage drop across Cj
remains at V, as it is unable to discharge (see Fig. 3.19(a)), while that
across C) is changed to +V. We have

Vo=V, Ww=0, Ve=-Vy
Then the potential at a jumps again to —V. We have
Vo=-V=V-V,
giving
Vo =2V, Wi=-V,

and
Vo=Ve=—=-Vo=-2V.

Combining the above we have

{ 0 when V, =V
W =

-2V  when V, = -V
Ve = =2V at all times.



326 Problems & Solstions on Eleciromegnetism

The waveforms at points a, b and ¢ are shown in Fig. 3.20.

v
Va
-V J
(Y
-2v
VC
-2V
Fig. 3.20
3012

In the circuit shown in Fig. 3.21, the capacitors are initially charged
to a voltage Vp. At t = 0 the switch is closed. Derive an expression for the
voltage at point A at a later time ¢.

(UC, Berkeley)

Solution:

Suppose at time ¢ the voltage drops across the two capacitors are Vj,
V, and the currents in the three branches are 1,, i3, i3 as shown in Fig. 3.21.
By Kirchhoft’s laws and the capacitor equation we have

HWR+iR-V, =0, (1)
WR-V, =0, ()
i) —t2+i3=10; (3)
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dV,

g =-C -E ’ (4)
. _ ~dW
BEVH (5)
Equations (2) and (5) give
dll
13 = RC—dT .
This and Egs. (3) and (4) give
dVQ dtl
i+ C—= o + RC—— i (6)

From Eqs. (1) and (4) one has

1 dv;
h=gW+Cr

Substituting it into (6), we obtain

@y 3 dvp 1
@ TRC @ T RC

Solving this equation we have

Vo = Ae~EURC | g8 RC

Va=0.

and hence

i=i4R= V2+RCd—V?-

1+2\/_ Ae-—*ﬁi/flc _ l—zﬁ Be-i;z{i'/nc .

Using the initial condition that at ¢t = 0
Vi(0) = Vo(0) = £V,

we obtain

Va=Vo= :ES "1::’)‘/_ - 2448/ RC 4 21 9vo 5 + 3\/_ —9Cz/nc

~ +(1.17e"038RC _ g 17¢-2 cztluc)v .
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3013

A network is composed of two loops and three branches. The first
branch contains a battery (of emf £ and internal resistance R;) and an
open switch S. The second branch contains a resistor of resistance Rz and
an uncharged capacitor of capacitance C. The third branch is only a resistor
of resistance R3 (see Fig. 3.22).

(a) The switch is closed at ¢ = 0. Calculate the charge ¢ on C as a
function of time ¢, for ¢t > 0.

(b) Repeat the above, but with an initial charge Qg on C.
(SUNY, Buffalo)
Solution:

Let the currents in the three branches be I, I;, and I, as shown in
Fig. 3.22 and the charge on C be q at a time ¢t > 0. We have by Kirchhoft’s
laws

e=IR+ LRs,
e=1R1+12R2+% )
I=hL+1I,.
S
1 . D
Ry i ! Ry
R
373 'Ly
I 1
Fig. 3.22
As %% = I, the above give
dg
= =-A B
di ¢+ B,
where
R.
A Ry + Ry ety

= , B = .
(R] Rs+ RyR3 + Rz Ry )C RiRa + RaRa+ RaRy
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Solving for ¢ we have
g=de™* + % ;

with d to be determined by the initial conditions.
(a) M ¢(0) = 0, thend = -2, and

B _ eR3 Ry + R,
N 2
1 A( ¢ ) Ry + Ry ( exp (R]Rz + R2Rs + R3RI)C

(b) If ¢(0) = Qo, then d = Qo — %, and

_ ER3 +(Q— ¢R3 )ex {_ Ri+ R, t}
Ri+ Rs °" R+ Ry P (RiRy; + RaR3 + RsRy)C |~

3014

In the circuit shown in Fig. 3.23, the resistance of L is negligible and
initially the switch is open and the current is zero. Find the quantity of
heat dissipated in the resistance R; when the switch is closed and remains
closed for a long time. Also, find the heat dissipated in R» when the switch,
after being closed for a long time, is opened and remains open for a long
time. (Notice the circuit diagram and the list of values for V, Ry, Ry, and
Lo

(UC, Berkeley)

Ry
V=100V
v + Rg:lOﬂ L RZ»
- Ry=100N
L=10H

Fig. 3.23
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Solution:

Consider a resistance R and an inductance L in series with a battery
of emf €. We have

dI
C—LB?—IR,
o Rdl dt
—IR- "R

Integrating we have
In[e - I(t)R] = _; +K,

where 7 = -% and K is a constant, Let I = J(0) at ¢t = 0 and I = I(o0) for
t — 00. Then c
K=nfe-1(0R], Io)=%,

and the solution can be written as
I(t) = I(c0) + [1(0) — I(c0)]e™+ .

Now consider the circuit in Fig. 3.23.
(1) When the switch is just closed, we have

12

— =091 A.
Ry + R> 0

Ip,(0) =
After it remains closed for a long time, we have
IRQ(OO) =0 s

since in the steady state the entire current will pass through L which has
negligible resistance.
As the time constant of the circuit is

L

T RiR:

1.ls,

we have

IR, (1) = IR, (0) + (I8, (0) — Tn,(c0))e™*/"
=0.91e70%" A |
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o0 1o )
Wk, = / 1%, () Radt = / 0.91%2¢=13% x 1004t
0 0
=455 .
(2) When the switch is just opened, we have

IL(O)— L— 10A.

The energy stored in the inductance L at this time will be totally dissipated
in the resistance Ry. Thus the heat dissipated in R; is

Wn,f—-%blﬁ(o):-;-x10x100=500J.

3015

The switch S in Fig. 3.24 has been opened for a long time. At time

t = 0, S is closed. Calculate the current Iy through the inductor as a
function of the time.

( Wisconsin)

200N

e
j

L 1
F10V 20003 165 IIL

Fig. 3.24

Solution:
Assume the inductor has negligible resistance. Then at ¢ = 0 and
t = oo,
IL(0)=0
1
Ip(o0) = 0 =0.05A .

The equivalent resistance as seen from the ends of L is

R = 200][200 = 100 @ ,
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glving the time constant as

L 10-% 7
T—-I_i_Tﬁ—O——lo S .

At time ¢, the current passing through L is
I1(t) = 11(00) 4 (IL(0) — Ir(oo))e™ ¥
=005(1—e 1"ty A .

3016
Refer to Fig. 3.25.

(a) The switch has been in position A for a long time. The emf’s are
dc. What are the currents (magnitude and direction) in €y, R;, Ry and L?

(b) The switch is suddenly moved to position B. Just after the switch-
ing, what are currents in €2, Ry, Rz and L?

(c) After a long time in position B, what are the currents in €3, R;,
Ry and L?
(Wisconsin)

s
A B o
> 5 "'I
AN SIS S
(13 1]
GFey < -
R =10°n
Fig. 3.25

Solution:

(a) After the switch has been in position A for a long time, L corre-
sponds to a shorting. Then one finds that

Ip, = 0,
€1 )
IR; = RT = 1—04' =05 mA, leftward;

I, = Ig, = 0.5 mA, upward;
I, =1, = 0.5 mA, downward .
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(b) When the switch is suddenly moved to position B, Iz holds con-
stant instantaneously, namely, Iy = 0.5 mA and flows downward. Let the
currents through R; and R, be Ig, and Ig, and their directions be right-
ward and upward respectively. Now we have

Ir, 405 x 1073 = Ip,,
{ Ip, Ry + Ip,Ry = (IR, + Ir,) x 108 = e, =10.
Solving these equations we have
In, =0.25 mA, rightward; Ip, = 0.75 mA, upward;
I;, = 0.25 mA, downward; I = 0.5 mA, downward.

(c) Using the results of (a) but replacinge =5 V by e = —10 V, we
have

Ij, = %Z— =1 mA, rightward; Ip, =0;
1
I; =1 mA, upward; I., =1 mA, downward.
3017

As shown in Fig. 3.26, the switch has been in position A for a long time.
At t = 0 it is suddenly moved to position B. Immediately after contact with
B:

(a) What is the current through the inductor L?

(b) What is the time rate of change of the current through R?

(c) What is the potential of point B (with respect to ground)?

(d) What is the time rate of change of the potential difference across
L?

(e) Between t =0 and t = 0.1 s, what total energy is dissipated in R?

(Wisconsin)
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Solution:

(a) Because the current through an inductor cannot be changed sud-
denly, we still have

iL(O)z%zlA.
(b) As —L %L = . R,
dip, s R 104__ 4
‘—di-'zo——lL(O)L—lx 1 =-10 A/S

(c) vB(0) = ~iL(0)R = —1 x 10% = —10* V.
(d) As vy, = vg = iL R,

dt}L

dvy| _ dig
at

, R?
= 7 R == —1L(0) T

=0 t=0

132
=-1x§¥=_108ws.

(e) As W = 1 Li%(t),
iL(t) = iL(O)e-E‘ =e 10" A ,

the total energy dissipated in Rfromt=0tot =0.1s1is

1. 1,
Wgr= §Lz§(0) - 5in(o.l)

= % x1x (1) - % x 1 x e 2X10'x01 _ g5 3

3018

The pulsed voltage source in the circuit shown in Fig. 3.27 has negligi-
ble impedance. It outputs a one-volt pulse whose duration is 10~¢ seconds.
The resistance in the circuit is changed from 10® ohms to 10* ohms and
to 10% ohms. You can assume the scope input is properly compensated so
that it does not load the circuit being inspected. Sketch the oscilloscope
waveforms when R = 10% ohms, 10* ohms, and 10° ohms.

(Wisconsin)
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€ =100 pf

—
pulse

<

R 3

Analysis

(g

>

to oscilloscope

pulse

1085

Fig. 3.27

Solution:

The output of the pulsed voltage source is u(t) — u{t — 1) V, where ¢

is in us. The step-response of the C
So the output of the CR circuit is

R circuit is u(t)e~*/RC with RC in ps.

vp = u(t)e~ Y/ RC _ y(t — 1)e~(*-D/RC y |

The oscilloscope waveforms are as sketched in Fig. 3.28 and Fig. 3.29.

Y (V)
1
0.14& 1 2
ojo.2 T tlus)
N4
037 hw, )
Fig. 3.28
Vo (V)
1
of=
0 —- t
-0l I Y 2 tips)
-1
Fig. 3.29
(R=10%Q, RC = 10"1ps,

vo = u(t)e 1% —u(t — 1)e”1%0-V y
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(2) R=10% Q, RC =1 ps,
vo = u(t)e ™t —u(t — De™* T V.
(3) R=10% Q, RC = 10 ps,

v = u(t)e O —u(t — 1)e” 01Dy |

In all the above t is in ps.

3019
Switch S is thrown to position A as shown in Fig. 3.30.

(a) Find the magnitude and direction (“up” or “down” along page) of
the currents in Ry, R, and Rjs, after the switch has been in position A for
several seconds.

Now the switch is thrown to position B (open position).

(b) What are the magnitude and direction of the currents in Ry, Ry,
and Rj3 just after the switch is thrown to position B?

(¢) What are the magnitude and direction of the currents in Ry, Rs,
and R3 one-half second after the switch is thrown from A to B?
One second after the switch 1s thrown from A to B, it is finally thrown from
B to C.

(d) What are the magnitude and direction of the currents in Ra, Rj,
R4, and Rg just after the switch i1s thrown from B to C?
(Wisconsin)

B
A\°* C
J_-l» \L]:SH Lp=5H
VI ¢ c S q
= ~ oSN Byl
",',’ :L "0 2, T
«© « | & &
Fig. 3.30

Solution:

Let the currents in Ry, Ry, R3 be i), i3, i3 respectively.
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{a) When the switch is thrown to position A, we have instantaneously

2 2
11(0) = i2(0) = = =04 A
zl( ) z2( ) R1+R2 3+2 0 )
13(0) =0,
2
i = —=059A.
1(00) Ry + R2”R3
After the switch is in A for some tifne, we have
. _ Rs . _
ia(00) = A i1(00) =012 A,
. _ Ry . _
i3(00) = ot s i1(co) = 047 A .

As seen from the ends of L; the resistance in the circuit is
R=Ry+ RluRZ =170 N

and the time constant is

5 1
=5

1.7 0.34

T=L1/R=

Using i(1) = i(co) + [i(0) — i(00)]e""/7, (see Problem 3014), we have

i1 (t) = 0.59 — 0.19¢7%3% A, the direction is upward,
is(t) = 0.12 + 0.28¢~°3% A, the direction is downward,
i3(t) = 0.47(1 — e~ %3%) A, the direction is downward.

(b) After the switch has been in A for several seconds, we can consider
e~93 ~ 0. From the rule that the current in an inductor cannot be
changed abruptly, at the instant the switch is thrown to B we have

i3(0) = 0.47 A, downward ,
and so

il (0) = 0)
i2(0) = 0.47 A, upward .
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(c) As the circuit is open,
11(0.5)=0.
For the inductor part, the time constant is

L 5

"R+ R Z¥05 2%

T

Using i(0) obtained in (b) and
11(00) = 12(00) = 13(“)) =90 ,
we have
ia(t) = 0.47¢7 %% A, upward;
iz(t) = 0.47¢7 %% A, downward .

Hence for t = 0.5s
i2(0.5) = 0.37 A, upward;

13(0.5) = 0.37 A, downward.

(d) We denote by 1+ the instants just after and before t = 1 5. We
have ig(1-) = 0.47¢7%% = 0.29 A, flowing downward. As the current in an
inductor cannot be changed suddenly, we have

is(1+) =0, ia(14+) = 0.29 A, downward .
For the rest of the circuit, we have

i(14) + ia(14) = 029 A,
2i2(l+) = 2i4(1+) .

Hence io(14) = i4(1+) = 0.145 A, upward.

3020

A source of current ipsinwt, with 75 a constant, is connected to the
circuit shown in Fig. 3.31. The frequency w is controllable. The inductances
L, and L, and capacitances Cy and C; are all lossless. A lossless voltmeter
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reading peak sine-wave voltage is connected between A and B. The product
LzCz > Llcl.

(a) Find an approximate value for the reading V on the voltmeter when
w is very small but not zero.

(b) The same, for w very large but not infinite.

(c) Sketch qualitatively the entire curve of voltmeter reading versus w,
identifying and explaining each distinctive feature.

(d) Find an expression for the voltmeter reading valid for the entire
range of w.
(Princeton)

L

bkl
lo_stnnt %B'I' § c2.|.

Fig. 3.31

Solution:

(a) The impedance of an inductor is jwL and the impedance of a capac-

itor is ;;—C For w very small, the currents passing through the capacitors

may be neglected and the equivalent circuit is as shown in Fig. 3.32.

. iA:
-l_o‘smwt A Iﬂ Ly

Fig. 3.32

We thus have
Vea =12 = jwl 1,

where I = ige/“!. As ac meters usually read the rms values, we have

Li()le .

Vineter = \/i

(b) For w very large, neglect the currents passing through the inductors
and the equivalent circuit is as shown in Fig. 3.33. We have

Jr

VBA:IZ=—wCI .
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and .
0

Vineter = ——— .
T VWG

T A
igsinuwt 8 It Cy

Fig. 3.33

(c) Let wy = VZT wy = 7117? As L,Cy > LCy, wy > ws. The
voltmeter readmg versus w is as shown in Fig. 3.34. The system is net
inductive when w is in the region (0, w;), and net capacitive when w is in the
region (w1, 00). Resonance occurs at the characteristic angular frequencies

w; and ws.

|
|
|
|
1
!
|
|
w

I S

~N

1

Fig. 3.34

(d) The total impedance L is the combination of two impedances L,
L, in parallel:

Z\Zy
z=_222
Z1+ 2
where . .
=J]in .
7= = 7 = Ly———].
Thwn -5 7 J(“’ wcz)
Thus .
J

7z = i .
w—LT - L«JC] + W-LQ—“!Q

Hence the voltmeter reading is
i
1 1
\/5 T —wC + “’___FL?‘U -
Note that this reduces to the results in (a) and (b) for w very small and
very large.

VBa =
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3021

For the circuit shown in Fig. 3.35, the coupling coefficient of mutual
inductance for the two coils L; and L, is unity.

(a) Find the instantaneous current i(t) the oscillator must deliver as a
function of its frequency.

(b) What is the average power supplied by the oscillator as a function
of frequency?

(c) What is the current when the oscillator frequency equals the reso-
nant frequency of the secondary circuit?

(d) What is the phase angle of the input current with respect to the
driving voltage as the oscillator frequency approaches the resonant fre-
quency of the secondary circuit?

(UC, Berkeley)
Solution:

(a) Let the currents of the primary and secondary circuits be I; and
I, respectively. We have

V=i1R+L1i1+Mf2,

. R
Ozhh+Mh+g.
Solving for I} ~ exp(jwt), we have
|4
Il =
R+ j(wL1 + %——“_’j:;)
Voe'j“’

2
\/R2+ (w22 + 2228)
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where

3 2
wkl; + #M
p = arctan ( 7 wiks )

is the phase angle of the input current with respect to the driving voltage.
Applying the given conditions Ly = Ly = M = L, say, we have
Voe‘j‘l’
2
\/ R + (r=%rz)
= arctan __ﬁ/_R_
= 1-w?LC

or, taking the real part,

I

i1{t) = ? cos{wt — @) ,

=R+ ()

V.2
p(t) = V()ii(t) = 70 cos{wt — p) coswt .

with

(b)

Averaging over one cycle we have

2
2Z

2
P=p= V7°cos(wt p)eoswl = = cosp

R s RVZ/2
Tz

- L
Rz+(m§w)

(c) When w = 71—0, Z = +00, and #(t) = 0.

(d)Whenw—rvl— tanp =00, and p = T

LC’

3022

In the electrical circuit shown in Fig. 3.36, w, Ry, Rz and L are fixed;
C and M (the mutual inductance between the identical inductors L) can
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be varied. Find values of M and C which maximize the power dissipated
in resistor R;. What is the maximum power?
You may assume, if needed, Ry > R, wL/R; > 10.

(Princeton)
Ry c I
ol 1o
Vpsinwt L 3EL iRz
Iy
Fig. 3.36

Solution:

Assuming that the primary and secondary currents are directed as in
Fig. 3.36, we have the circuit equations

. . .1 ) o
VWw=RL+1 [m +JwL] + jwMlIy,
0 = IRy + jwLlz + juMI; .

The above simultaneous equations have solution

_ JwMCVy :
Clw?(L? ~ M3) — R\Ra) — L +j [{'—} —~wLC(Ry + R,)]

I

As P = }|[,|> Ry, when (]| is maximized P, is maximized also. We have
wWy

Mal =
{[ﬁ(mz—nl Ro-L/C)—wM) +[de (%Z—wLC(R1+Rz))]2}§

As the numerator is fixed and the denominator is the square root of the
sum of two squared terms, when the two squared terms are minimum at
the same time |I5| will achieve its maximum. The minimum of the second
squared term is zero, for which we require

¢= w!L(Ri + Rp) '
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giving
on

= sz + R|R3+R;w’L’le *

Minimizing the above denominator, we require

{2

Hence, for

Ry

S Sl Sl L i S - 2
M + B O G Ry

P, is maximum, having the value
Vi

1
Py = -|LPRy = ———— .
2 3R (1+ 455

Supposing wL/R, > 10, we obtain

py=Y0RE
822L°R,

as the maximum power dissipated in Ry.

3023

In Fig. 3.37 the capacitor is originally charged to a potential difference
V. The transformer is ideal: no winding resistance, no losses, At t = 0 the
switch is closed. Assume that the inductive impedances of the windings are
very large compared with R, and R,. Calculate:

(a) The initial primary current.
(b) The initial secondary current.

Rp

V-lc Np “ N 3 Rs

L

Fig. 3.37
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{c) The time for the voltage V to fall to ¢! of its original value.

(d) The total energy which is finally dissipated in R,.
( Wisconsin)

Solution:

As the transformer is ideal,

N,,/N,:V,,/V,, Np/N:=Ia/lp .

(a) The equivalent resistance in the primary circuit due to the resis-
tance R, in the secondary circuit is

2
Rﬁ:(%—”—) R, .

Hence the time constant of the primary circuit is

T = (R, + R,)C,

and the voltage drop across C is

Ve =Ve V7.
The primary current is then
< dVC _ ~-tf/r 1 —_ |4 -t/r
c,,——Cdt— CVe - -Rp—i-Rf,e .

Initially, the primary current is

. 4 14
O

(b)

N, NNV
2‘(0)— zP(O)N‘ - N?Rp‘*‘N,?R. .
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(¢) For Vi to fall to Vo = e~1V, the time required is

oo o () 0]

(d) As
No o NNV oy
N,  NZRp+ NZR, '

i, =1

the energy dissipated in R, is

o0 N,N,V R
= [ 2Rdt= DoV / -2/7 gy
Whrs /0 R (N}’R,,+N3R.) R, A e

B NNV N N,,)’
= (N}R,,+N3R,) R"i[RP+ (7\/_. R|C
N2V?

2 R,C

1
T2 NIR,+NIR, T

3024

Show that for a given frequency the circuit in Fig. 3.38 can be made
to “fake” the circuit in Fig. 3.39 to any desired accuracy by an appropriate
choice of R and C. (“Fake” means that if V; = IZg in one circuit and
Vo = IZ_ in the other, then Z; can be chosen such that Z;/Zr = € with
@ arbitrarily small.) Calculate values of R and C that would fake a mutual

inductance M = ! mH at 200 Hz with 9 < 0.01.

(UC, Berkeley)

_4}____0
c

: 4
4 R b
4 <

Fig. 3.38
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M

Y

Fig. 3.39

Solution:
For the circuit in Fig. 3.38, we have

. . 1 R
fomi- (e o)
wC R+;~T}5

R2 . R?

=f —_— =
2R+ 75z /4Rz+m%r

For the circuit in Fig. 3.39, we have

Zarctan (1/2RC) .

Vo = juMIi = IMwZn/2 .

For the former to “fake” the latter, we require

{ 74—]{-;% = Mw, (1)
T —arctan (p0x) =90. 2

Equation (2) giveswRC = § tan6. With 8 = 0.01, wRC = 0.005. Equation
(1) then gives

/ 1 1
- 4 —_—— — 3 ~2
R=Muw +(RC)2_10 x 27 x 200 x 4+0‘052~519,

and hence

0.0056  0.005
wR 27 x 200 x 251

C= ~ 1.6 x10~3 F = 0.016 uF .

3025

A two-terminal “black box” is known to contain a lossless inductor L, a
lossless capacitor C, and a resistor R. When a 1.5 volt battery is connected
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to the box, a current of 1.5 milliamperes flows. When an ac voltage of 1.0
volt (rms) at a frequency of 60 Hz is connected, a current of 0.01 ampere
(rms) flows. As the ac frequency is increased while the applied voltage
is maintained constant, the current is found to go through a maximum
exceeding 100 amperes at f = 1000 Hz. What is the circuit inside the box,
and what are the values of R, L, and C?

(Princeton)

Solution:

When a dc voltage is connected to the box a finite current flows. Since
both C and L are lossless, this shows that R must be in parallel with C or
with both L, C. At resonance a large current of 100 A is observed for an
ac rms voltage of 1 V. This large resonance is not possible if L and C are
in parallel, whatever the connection of R. The only possible circuit is then
the one shown in Fig. 3.40 with L, C in series. Since a dc voltage of 1.5 V
gives rise to a current of 1.5 mA, we have

14 1.5
== = 10°Q.
Rk I 15x10-3 0" Q
The impedance for the circuit in Fig. 3.40 is
1 1
Z = (i =T i ,
R jwl-3e) jwL(1-2%)

giving

[

—

Fig. 3.40

The resonance occurs at wy = 20007 rad/s. At w = 1207 rad/s,
Vims = 1V gives Ime = 155 A, corresponding to

_Vrms__ __R
2= 7™ =1009 = 1,

rms
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at
wo _ 50
w 3
Hence
w 60 x 27
L~;§|Z|—m')—2)<100—0.95mﬂ,
C ! ! ! % 27 uF .

~ TwZ T wlZ] T 60 x 27 x 100

3026

In Fig. 3.41 a box contains linear resistances, copper wires and dry
cells connected in an unspecified way, with two wires as output terminals
A, B. If a resistance R = 10 € is connected to A, B, it is found to dissipate
2.5 watts. If a resistance R = 90 Q2 is connected to A, B, it is found to
dissipate 0.9 watt.

eA

- 8

Fig. 3.41
(a) What power will be dissipated in a 30 Q resistor connected to A,
B (Fig. 3.42a)?
(b) What power will be dissipated in a resistance Ry = 10  in series
with a 5 Volt dry cell when connected to A, B (Fig. 3.42b)?
(a} {b)

SVT
R=30N R1=|0ﬂ

Fig. 3.42

(c) Is your answer to (b) unique? Explain.
(UC, Berkeley)

Solution:

Using Thévinin’s theorem, we can treat the box as what is shown in
2
Fig. 343. When R=10Q, P = Y& = 2.5 W, giving Vg = 5 V. When
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R=90Q, P=0.9W, giving Vg = 9 V. Therefore we have

{ e i =5, giving { e=10V,
e'9oioﬂ.= ’ R, =10Q.
e A
o™
e B
Fig. 3.43
(a) When R = 30 2, we have
30
Vg = -0 =7.F =VZ/R=1. .
R 30+10x10 75V, P=Vi/R=1875 W
Rs Rs
IOIIV 5V lonv ' X";
€ 10V rRion € 0V rion

Fig. 3.44

(b) If the resistance R = 10 Q is in series with a dry cell of &/ = 5 V,
we will have

10 n_ 25V

Vi = 1o+10(€‘“)‘{7.5v,
0.625 W
P = 2 R= !
V/ {5.625W.

(¢) As two polarities are possible for the connection of the 5 Volt dry
cell, two different answers are obtained.

2. ELECTRIC AND MAGNETIC CIRCUITS (3027-3044)

3027

A solenoid having 100 uniformly spaced windings is 2 cm in diameter
and 10 cm in length. Find the inductance of the coil.

T -m
— —7—
(;:0_41rx10 ! )

(Wisconsin)
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Solution:

Neglecting edge effects, the magnetic field in the solenoid is uniform
everywhere. From Ampére’s circuital law §B - dl = pol, we find the
magnetic field induction inside the solenoid as B = ponl, where n = -’}'— is
the turn density of the solenoid. The total magnetic flux crossing the coil
is ¥ = NBA. The inductance of the coil is given by the definition

L= 2 _ N}IQNIA _ szoA
1T I - l '
With A = 7 x 10~* m?, we have

_ 100% x 47 x 107 x 7 x 10~4

L 0.1

=395x10"°H.

3028

A circuit contains a ring solenoid (torus) of 20 cm radius, 5 cm? cross-
section and 10* turns. It encloses iron of permeability 1000 and has a
resistance of 10 Q. Find the time for the current to decay to e~! of its
initial value if the circuit is abruptly shorted.

(UC, Berkeley)

Fig. 3.45

Solution:
The equivalent circuit is shown in Fig. 3.45, for which

dI
V=IR+ L?i? ,
with
Vlico = Vo = IR, Vlo=0.

Thus for t > 0
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where 7 = % Hence
I= Ioe—tlr = Y}%e—t/r .

The self-inductance of the torus is

L= N2A
= HHOSTR
4x2 -7 3 —4
=10 x4r x 1077 x 10° x 5 x 10 —50 1.
27 x 20 x 10-2
FOl‘I:IQe—l,t:T:%z%-:5s,
3029

A circular loop of wire is placed between the pole faces of an electro-
magnet with its plane parallel to the pole faces. The loop has radius a,
total resistance R, and self-inductance L. If the magnet is then turned on,
producing a B field uniform across the area of the loop, what is the total
electric charge ¢ that flows past any point on the loop?

(Wisconsin)

Solution:

When the magnetic flux crossing the circular loop changes an emf ¢
will be induced producing an induced current i. Besides, a self-inductance
emf L %;— is produced as well. Thus we have

} di
€+2R+Lz't'—0,

with i d
c_dg .
at’ T oA i

The circuit equations can be written as

) =0, i0)=0.

—d¢+ Rdg+ Ldi =0 .
Integrating over ¢ from 0 to oo then gives

~-A¢+Rg=0
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as A7 = 0. Hence
_A¢ Brma?
"=RT7R
This shows that L has no effect on the value of ¢. It only leads to a slower
decay of 1.

3030

A solenoid has an air core of length 0.5 m, cross section 1 cm?, and
1000 turns. Neglecting end effects, what is the self-inductance? A sec-
ondary winding wrapped around the center of the solenoid has 100 turns.
What is the mutual inductance? A constant current of 1 A flows in the
secondary winding and the solenoid is connected to a load of 10° ohms.
The constant current is suddenly stopped. How much charge flows through

the resistance?
(Wisconsin)

Solution:

Let the current in the winding of the solenoid be i. The magnetic
induction inside the solenoid is then B = poni with direction along the
axis, n being the number of turns per unit length of the winding.

The total magnetic flux linkage is

Y =N¢=NBS =N2uSi/l .
Hence the self-inductance is

L= % = N2uoS/1

2 -7 -4
. 1000% x 4« l></;0 x 10 —9513x 10~ H .

¢

The total magnetic flux linkage in the secondary winding produced by the
currrent ¢ is ¢’ = N'¢, giving the mutual inductance as

_ ' NN'p,S

=2513x107%H .
1 !

M

Because of the magnetic flux linkage ¢ = M1, I being the current in
the secondary, an emf will be induced in the solenoid when the constant
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current [ in the secondary is suddenly stopped. Kirchhoff’s law gives for
the induced current ¢ in the solenoid

dy’ i di
s SRl

or
—dy' = Ridt + Ldi = Rdq + Ldi .

Integrating over t from t = (*to t = oo gives —A¢' = Rg, since i(0) =
i{oo) = 0. Thus the total charge passing through the resistance is

—Ay _ MI _2513x10° x 1

= — & 05 =276x 107" C.

3031

As in Fig. 3.46, G is a ballistic galvanometer (i.e., one whose deflection

8 is proportional to the charge @ which quickly flows through it). The coil

L as shown is initially in a magnetic field Bp = 0. Switch S is then closed,

current / = 1 amp flows, and G deflects §; = 0.5 radian and returns to rest.

Then the coil is quickly moved into a magnetic field Bz, and G is observed
to deflect 63 = 1 radian. What is the field B2 (in any specified units)?

(UC, Berkeley)

Fig. 3.46

Solution:

The direction of Bj is illustrated in Fig. 3.47.
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Fig. 347

Let the self-inductance of the coil L be L, then

or

with

i2(0) =

L diy di,
€1 = Tt"i'let)
dg_, _ e _ M din Ly dis
d -~ 'T R R Ry dt°

0, i2(00)= 1 A, 11(0):11(00):0

Integrating the circuit equation we obtain

U1

=/0 ——d12+/

d11 = —tz(oo)

When the coil is moved into the magnetic field B,, its induced emf is

with

Thus

giving

As g x 0, we have

(42
dt ’

Eg = —

1/)1(00) = "'NBQS f 1/)1(0) =0
dz _ ;o8 _Zldh
dat — 7 R, Ry dt '’

_ NBjma®
9 = ——Rl
0 _ @1 _ Miy(0)
02 q2 NBg‘n'a.2 ?
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or
_ 09 Miy(00) _ Ix1x1

By = =
1T "9 Nma® ~ 05x100x 7 x 10-4

=634T.

3032

Two perfectly conducting disks of radius a are separated by a distance
h (h < a). A solid cylinder of radius 8, length h and volume resistivity p
fills the center portion of the gap between the disks (see Fig. 3.48). The
disks have been connected to a battery for an infinite time.

-
1

Fig. 3.48

(a) Calculate the electric field everywhere in the gap as a function of
time after the battery has been disconnected from the capacitor. Neglect
edge effects and inductance.

(b) Calculate B everywhere within the gap as a function of time and
distance » from the axis of the disks.

(c) Calculate the Poynting vector in the space between the plates.
Explain qualitatively its direction at » = a and at r = b.

(d) Show, by a detailed calculation for the special case a = b, that
the conservation of energy theorem {Poynting’s theorem) is satisfied in the
volume bounded by the plates and r = a.

(UC, Berkeley)
Solution:

(a) Let the upper plate carry charge +@Q and the lower plate carry
charge —Q at time ¢. Due to the continuity of the tangential component of
electric intensity across an interface, we have

E=

3 e;at 2 < h.
A
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Forr < b, j = oE, where 0 = 2, giving

I = jwb? = oExb? .

Thus Q 4Q
—— 2 = —_——
7 maleg mb dt ’
or
Q = QOe-t,f )

where 7 = %ﬁfﬂ Hence
E = Ege~ e, = -"i:)-e"/"e, .

(b) Applying Ampére’s circuital law § B - dl = pp! to a coaxial circle
of radius r < b on a cross section of the solid cylinder:

fB<dl‘=;lo//j~dS,

one has
B . 27r = pojar?
or . "
_ poir__ HoTVo _yqr b
B=—p—es = e e, (r<b)

where ey is a unit vector tangential to the circle. For b < r < a, the circuital
law

fB <dr = jabipg

gives
_ b Vo _yy,
= 2rph ¢ e

(c) For 0 < r < b and between the conducting plates, the Poynting vec-
torsS=ExH= —E:DB = %ﬁe"/’ - ;:’ e"/'(e, Xeg) = —{—p(%ﬁ)ze—ml?eﬁ
For b < r < @, we have

— E -t/ 62V0 —-tfr _ 1 Vob 2 —2tfr
S= h ¢ 2rphe er = 2rp\ h € er -
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The directions of S at r = a and r = b are both given by —e,, i.e.,
the electromagnetic energy flows radially inwards into the solid cylinder
between the plates (in the ideal case). This energy provides for the loss of
energy due to Joule heating in the solid cylinder where a current flows. This
can be seen as follows. For b < r < a the inward energy flow per unit time

is ﬁ _‘2'1;2)2.2-”},6-2‘/’ = p—’”;(vob)ze‘z'/’, independent of r. But for r < b,

: o (V)2 =2tfr - x 2,-2t :
the power in-flow is 5(52)* - 2arhe Im = Z(Vor)?e /7, decreasing as
r decreases.

(d) For a = b the power flowing into the cylinder is

P = // S dA = — —(Vpa)2e 27
r=a ph

The loss of power due to Joule heating in the cylinder is

2
P, =I'R= [wa2-l-‘ie_'/r] Lhri
ph ma

_ 2 -2tfr
= ph(Voa) e .

Thus Py + P, = 0, and the conservation law of energy is satisfied.

3033

In the diagram 3.49, the two coils are wound on iron cores in the same
direction. Indicate whether the current flow in resistor r is to the right, or
to the left, and give a reason for your answer in each of the following cases:

(a) Switch S is opened.
(b) Resistor R is decreased.
(c) An iron bar is placed alongside the two coils.
(d) Coil A is pulled away from coil B.
(Wisconsin)
Solution:

The direction of the current in coil A with the switch S closed is shown
in Fig. 3.49. According to the right-handed screw rule, the magnetic field
produced points to the left. If the current is steady, there is no current in r.
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Fig. 3.49

(a) When the switch S is opened, the magnetic field pointing to the
left decreases. Lenz’s law requires that a magnetic field pointing to the left
is induced in coil B. Hence the induced current in the resistance r flows
from right to left.

(b) If R is decreased, the current flowing through coil A is increased.
Then the magnetic flux, which points to the left, piercing B will also in-
crease. Lenz’s law requires the induced current in the resistance r to flow
from left to right.

(c) An iron bar placed alongside the coils will increase the original
field. So the current in r is from left to right.

(d) When coil A is pulled away from coil B, the magnetic flux piercing
B will decrease, so that the induced current in r will flow from right to left.

3034

A solenoid is designed to generate a magnetic field over a large volume.
Its dimensions are as follows: length = 2 meters, radius = 0.1 meter, number
of turns = 1000. (Edge effects should be neglected.)

(a) Calculate the self-inductance of the solenoid in Henrys.

(b) What is the magnetic field (in Webers/m?) produced on the axis
of the solenoid by a current of 2000 Amperes?

(c) What is the stored energy when the solenoid is operated with this
current?

(d) The total resistance of the solenoid is 0.1 ohm. Derive the equation
describing the transient current as a function of time immediately after con-
necting the solenoid to a 20 Volt power supply. What is the time constant
of the circuit?

(Princeton)
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Solution:

(a) Suppose the solenoid carries a current /. The magnetic induction
inside it is
B = ponl = poNIJI,

and the magnetic flux linkage is

()NI 7”‘2 - ngNzﬂ'f'z

b=NBS=NEC 1

Hence the self-inductance is

Lo ¥ poN?mrt _ 4w x 1077 x 10007 x 7 x .17
i i 2
=197x 1072 H.
(b)
4 “Tx 1 9
B__:ltofVI: 7% 10 x2 000 X 2000 _ ) ooz
(<)
97 x 102 x 20002
W,, = Lz 191X X 20007 _ 394103

2 2

(d) The circuit equation is

L di
e=1iR+ LJ ,

giving
i= 3(1 —e Ty = i(oo)(1 — 77,

where 7 = % 0.197 s is the time constant of the circuit. As

e=20V, R=01Q, L=197x10"%H,

we have
i(t) =200(1 —e ™) A .
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3035

The electrical circuit shown in Fig. 3.50 consists of two large parallel
plates. Plate B is grounded except for a small section (the detector). A
sinugoidal voltage of frequency w is applied to plate A.

(a) For what value of w is Vp (the amplitude of Vyy¢) a maximum?

(b) With w fixed, plate A is moved left and right. Make a sketch of Vj
as a function of position. Indicate the points at which the edge of plate A
passes the detector.
(c) Suppose A is held at a fixed potential. How is the resulting elec-
trostatic field related to the function sketched in part (b)? Explain.
(Wisconsin)

L i 1
= Vout

Fig. 3.50

8¢

C=10

1030

L=102H

R

Solution:
(a) Resonance will take place when
. 1
T VIC  V10-Tx 10-3
At this time the equivalent impedance for the parallel circuit is maximum.
Hence Vj will also be maximum.

= 10° rad/s .

Y
{ ] ) \
i — x
Xy 0 Xz
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(b) Vo as a function of position is shown in Fig. 3.51, where z is the
horizontal distance of the middle of A from the middle of the detector, and
z; and z2 correspond to the right edge and the left edge respectively of A
passing by the middle of the detector.

(c) The variation of the electrostatic field with z is similar to that of
the function sketched in part (b). The field intensity decreases near the
edges of the plate A.

Since the magnitiude of V; reflects the amount of charge carried by
plate A and the detector through Q = CVj, the electrostatic field intensity
is large where V; is large. The plate B is larger than A so that the movement
of the latter can be ignored.

3036

In the circuit shown in Fig. 3.52, the capacitor has circular plates of
radius ry separated by a distance d. Between the plates there is a vacuum.
At t = 0, when there is a charge Qg on the capacitor, the switch is closed.

_LJJ—

R

AAAAA

L

—— X

Fig. 3.52

(a) For t > 0, the electric field between the plates is approximately
E(t) = Epe~*/"i. Find Ep and 7 (if you cannot find them, take them as
given constants and go on to part (b)).

(b) Mention some approximations and idealizations made when deriv-
ing the form of E given in (a).

(c) Find the magnetic field between the plates for t > 0. You may use
idealizations and approximations similar to those in (b).

(d) What is the electromagnetic energy density in the vacuum region
between the plates?

(e) Consider a small cylindrical portion of the vacuum region between.
the plates (see Fig. 3.53). Suppose it has radius ry, length ! and is centered.
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Using (a), (c), and the Poynting vector compute the total energy which
flows through the surface of the small cylinder during the time 0 < ¢ < oo.
(UC, Berkeley)

o
‘Q_D A
<« |—>
Fig. 3.53

Solution:
(a) Since g— =iR = —%?R, we have Q = Qoe~*/" with r = RC. As
g : Z, we have E = ;{}‘—“e"‘/". Comparing this with E = Ege~%7, we
n

R€()1l'1‘2
> r=RC=——.
wrieg d

(b) To find E for case (a), we have assumed that the charge Q is
uniformly distributed over the plates at any time and the edge effects may
be neglected. These approximations are good if d € ro.

(c) By symmetry and Maxwell’s integral equation

s Bt

where
D =¢gE ’
we find
_ _EQTEe B [LQEQTE
T T - 2r !
taking approximations similar to those stated in (b).
(d)

_fop, g 1 po Hotor?
U= 2E +2po _260E 1+ 472 |-
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(e). The Poynting vector of the electromagnetic field is

2
N:ExH:Ee,X(—%‘%E)eazeorE e, .

Thus during the time ¢ = 0 to oo the energy flowing through the cylinder’s
surface is

® ® €omy =2t/1
W = N2rrildt = ——27rlEe dt
0 0

27
_eorinl . rHQ?
- 2 - 2607"‘3 ’
3037

A resonant circuit consists of a parallel-plate capacitor C and an in-
ductor of N turns wound on a toroid. All linear dimensions of the capacitor
and inductor are reduced by a factor 10, while the number of turns on the
toroid remains constant.

(a) By what factor is the capacitance changed?
(b) By what factor is the inductance changed?
(¢) By what factor is the resonant frequency of the resonant circuit
changed?
(Wisconsin)
Solution:

(a) The capacitance is C « 3, then Cr = Ci.

(b) The inductance is L o« N2§/1, hence L¢ = {5 Li.
(c) The resonant frequency is w « 711‘—0, hence wr = 10w;.

3038

You have n storage cells, each with internal resistance R; and output
voltage V. The cells are grouped in sets of k series-connected cells each.
The n/k sets are connected in parallel to a load-resistance R. Find the k
which maximizes the power in R. How much is the power?

(Wisconsin)
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Solution:

For each set the voltage is £V and internal resistance is kR;. After the
n/k sets are connected in parallel, the total voltage is still kV/, but the total

. . 3 " . .
internal resistance becomes ;’i% = "—"R—l. The power in R will be maximum

. . . . 2
when the load-resistance R matches the internal resistance, i.e., R = %ﬂ.

Hence k = % for maximum power, which has the value
EVN?_ kV? av?
Prax = —) R='—=°n—’.
2R 4R 4R;
3039

When a capacitor is being discharged:

(a) the energy originally stored in the capacitor can be completely
transferred to another capacitor;

(b) the original charge decreases exponentially with time;
(c) an inductor must be used.
(CCT)
Solution:
The answer is (b).

3040
If L = inductance and R = resistance, what units does % have?
(a) sec (b) sec™! (c) amperes
(CCT)
Solution:
The answer is (a).

3041
Two inductances L; and L, are placed in parallel far apart. The
inductance of both is
@ Li+Ly (0) &% ©Uhi+L)B
(ccT)
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Solution:
The answer is (b).

3042

An alternating current generator with a resistance of 10 ohms and no
reactance is coupled to a load of 1000 ohms by an ideal transformer. To
deliver maximum power to the load, what turn ratio should the transformer
have?

(a) 10 (b) 100 (c) 1000
(ccr)
Solution:
The answer is (a).

3043

An electrical circuit made up of a capacitor and an inductor in series
can act as an oscillator because:

(a) there is always resistance in the wires;
(b) voltage and current are out of phase with each other;
(c) voltage and current are in phase with each other.
(ccr)
Solution:
The answer is (b).

3044

The force in the z-direction between two coils carrying currents i; and
i3 in terms of the mutual inductance M is given by

(a) i1 %2M  (b) iriz%L  (c) iria S
(CCT)
Solution:
The answer is (b).
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3. ANALOG CIRCUITS (3045-3057)

3045
In order to obtain the Zener effect, the Zener diode has to be:
(a) reverse biased (b) forward biased (c) connected to ac.
(CCT)
Solution:
The answer is (a).

3046

A transistor amplifier in a “grounded base” configuration has the fol-
lowing characteristics:

(a) low input impedance
(b) high current gain
(c) low output impedance.
(CCT)
Solution:
For a transistor amplifier in a grounded base configuration we have
input impedance r; = Rellﬁ“p‘, which is small,

current gain A,‘ = T-;Lﬂ . hc—}:_'r: . B—‘_’I_‘RT <1,

output impedance rg = R,,

where R., R. and Ry are the resistances of the ejector, collector and load
respectively. Hence answer (a) is correct.

3047
It is possible to measure the impedance of a coaxial cable
(a) with an ohmmeter across the cable
(b) making use of the reflection properties of terminations

(c) by measuring the attenuation of signals through the cable.
(ccr)
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Solution:

When the impedances of the terminals of the cable match, no reflection
occurs. This method may be used to measure the impedance of a coaxial
cable. Hence answer (b) is correct.

3048
The transmission of high frequencies in a coaxial cable is determined
by:
(a) the impedance
(b) 7}7, with L and C the distributed inductance and capacitance
(c) dielectric losses and skin-effect.
(ccT)
Solution:

The answer is (b).

3049
The high frequency limit of a transistor is determined by
(a) the increase of noise figure with frequency
(b) type of circuit (grounded base/emitter/collector)

(c) mechanical dimensions of active zones and drift velocity of charge
carriers.

(CCT)
Solution:

The answer is (c).

3050
A Si transistor with 8 = 100 is used in the amplifier circuit shown in
Fig. 3.54. Fill in the information requested. You may assume that for the
frequencies involved ;% is negligible and that the emf source providing Vi,
has a negligible internal impedance.
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+10V
’Skﬂ 32kN Voutur
K g =100
Tc F——*Vout-2
Vin 1 Skr}:— 400N
c T 4kl
T
Fig. 3.54
Ig = Ic =
IE = VC =
Vg = Ve =
Sign of 10 V supply =
Rin =
Small signal gain at output 1 =
Small signal gain at output 2 =
Roye1 = Routa =
(Wisconsin)
Solution:
The values are calculated below:
Vg = 5 x10=5V
BT 5%s R
VE=5-06=44V,
Ve
Ip=—=1mA,
E Re m
Ic = ﬂ IEzO.QQmA,
1+ 8
I = —E_ ~0.01 mA
B = l+ ﬁ ~ V. ’

Ve=10-1Ic-32kQ=10-099x32~68V,
Rin = 5Kk||5k|| [ree + (1 + B) - 400) ~ 2.4 kQ,

2
where 7, = 300 + (1 + ,6)7E =~ 3 kQ,
c
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small signal gain at output 1 = — R (ficﬁ) 100~ —7.4,
small signal gain at output 2 = (1+4) - 400 =~ 0.93,

rse + (1 + B) - 400

Routy. = 3.2 k2,

. +5||5
Rou = 400||(1‘?1~%) ~ 48 Q.

3051

Calculate Ar = Vo/Vi, the amplification of the circuit with feedback
shown in Fig. 3.55. Ag = V,/V, the amplification without feedback, is
large and negative. The input resistance to Ag is much greater than R,
and R, and the output resistance is much less than Ry and R,. Discuss
the dependence of A on Ag.

(Wisconsin)

i
. <L R
)
V V| 4 [|%
. 3
Fig. 3.55

Solution:

As Ap is large and the input resistance is much greater than R; and R,
while the output resistance is much less than Ry and R2, we can consider
the circuit with feedback as an ideal amplifier.

Taking i; = —ia, then

- Rl
Vi=V=-g(h-V),

E_K__&(I_K)
Vo Vo— Rz Vo )

or
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Putting
AF=V0/V,', Ao:Vo/V,
the above becomes

1 R R
Ar R2+(1+R2)A

giving
1

By (14 B) L

As Ap is large, Ap = —%1. It follows that Ap is independent of Ay

but is determined by R;/R.. Hence the amplification is stable.

Ap =

3052

The amplifier in the circnit shown in Fig. 3.56 is an operational ampli-
fier with a large gain (say gain = 50,000). The input signal Vi, is sinusoidal
with an angular frequency w in the middle of the amplifier’s bandwidth.
Find an expression for the phase angle ¢ between the input and output volt-
ages as measured with respect to ground. Assume that the values of R; and
R3 are within an order of magnitude of each other. Note the non-inverting
input to the amplifier is grounded.

(Wisconsin)

R
Ry c
r—m—‘ __?
Vo Vout
il 1
Fig. 3.56

Solution:
The amplifier may be considered as an ideal operational amplifier with

“virtually grounded” inverting input. Then
Vin -0 - 0— Vout
Rite R
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or

Vout__ R2
Vo = Rty

The phase difference between the input and output voltages is

—-1 1
—_— wC —
¢ = m — arctan ( R ) 7 + arctan (wC’Rl) .

1

3053

A very high-gain differential input amplifier is connected in the nega-
tive feedback op-amp configuration shown in the digram 3.57.

The output impedance may be considered negligibly small. The open-
loop gain A may be considered “infinitely large” in this application, but
the amplifier saturates abruptly when V,,; reaches £10 volts.

(a) Write the ideal operational expression relating Vo, (t) to Vip(t).
(b) What is the input impedance at terminals (J;, J32)?

{c) A two-volt step input is applied for Vi, as shown in the first graph.
Copy the second graph on your answer sheet and sketch in the output

response.
(Wisconsin)

C¢=00015F

I —— tis)

0246810124

_8#

-4 rVom(O)zo

4 Attt

Mo 2i6810121% ts)
8--

Fig. 3.57
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Solution:

(a) The circuit is that of an opposite-phase integrator made up of an
ideal amplifier. We have

v
Vous = / Yot 4 6(0),  (Vowl <10 V)

If Vo(0) = 0 at the initial time, then

Vi
Vou[ C] / ;ndt

(b) If the input voltage at terminals (Jy, Jz) is sinusondal with fre-

quency w, the input impedance across the terminals is R + —=— chl

{(c) If a two-volt step input is applied for Vi, and Vout = 0 at the initial
time, we have
L Vin
out = — indt = — -t.
Vour RCy /0 Vin RCy

As the amplifier saturates abruptly at Vo, = 210 V, the saturated time is

t= IYP“—‘RC, = 10 1000 x 0.0015 =755 .
Vin 2
Hence
0 t<0,
Vour = { —3t 0<t<75s,
—-10 t>75s.
Vout (¢}

t{s)

02 ¢ 6810121

Fig. 3.58

The output response is shown in Fig. 3.58.
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3054
Consider the operational amplifier circuit shown in Fig. 3.59.
(a) Is this an example of positive or negative feedback?

(b) Show that the circuit functions as an operational integrator. (State
any assumptions necessary.)

(c) Indicate a circuit using the same components which will perform
operational differentiation.
(Wisconsin)

Fig. 3.59
Solution:
(a) Negative feedback.
(b) From Fig. 3.59, we find
) av,
fi=ctim
Ri= —Vin,

giving
l 1
Vout = —E-é‘/u ‘/mdt + Vo .

Thus the circuit is an operational integrator.
The above calculation is based on the following assumptions:

(1) the open-loop input impedance is infinite,

(2) the open-loop voltage gain is infinite.

(c¢) The corresponding operational differentiating circuit is shown in
Fig. 3.60.

R
i
V. c —
»Lm Vout
ha

Fig. 3.60
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3055

The circuit shown in Fig. 3.61 is a relaxation oscillator built from an
ideal (infinite open-loop gain, infinite input impedance) differential ampli-
fier. The amplifier saturates at an output of 10 V.

(a) Calculate the frequency of oscillation for the component values
given.

(b) Sketch the waveforms at the inverting input (A), the non-inverting
input (B) and the output (C).

(Wisconsin)

R=10 k1l

Solution:

(a) This is a relaxation oscillator having positive feedback shunted
by Ri and R, and discharged through an RC circuit. When stabiliity
is reached, the output is a rectangular wave with amplitude equal to the
saturated voltage. Let Vo = +10 V. The potential at point B is Vg =
m‘ﬁ' x Ve = 2 V. The capacitor C is charged through R, and V, will
increase from —2 V to +2 V. When V), is higher than Vj, V will decrease to
=10 V and C will dlscha.rge through R. When V), is lower than the potential
at B, which is now F-Jh— x (—10) = -2V, V¢ will again increase to +10 V.
So following each cha.rgmg the circuit relaxes back to the starting point,
i.e., relaxation oscillation occurs. The charging of the capacitor follows

_ _ _ _ Vo
V = Vo[l - exp(~t/RC)], or t—RC'“(vo_v)'

The charging time T from V] to V, is
oW1
Vo -V
The chargmg tnme isgivenby Vo = 10V, V; = -2V, 1, =2V, ie,

T, = RCIn 1042 1o = 8.1 ms; the discharging time is given by Vo=-10V,

W=2V,Vp= -2V1e Tg—RCln‘:g;,—Slms

T=RCh
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Hence the oscillation frequency is -71—;?2- =61.6 Haz.
(b) The waveforms of V4, Vi, and V¢ are shown in Fig. 3.62.

ey 1t i
+1ov'_T - N

~ov [t

3056

An analog computer circuit, as shown in Fig. 3.63, is made using high
gain operational amplifiers. What differential equation does the analog
computer solve? If the analog computation is started by simultaneously
opening switches S} and Sy, what are the initial conditions appropriate for
the solution to the differential equation?

(Wisconsin)
Solution:

Let the output voltage be V5. As the operational amplifiers can be
considered ideal, we have the following equations:

. _ dv,
at point 1: = —C-d—t (1)

vy
R
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2 2o _ce
at point 2: R C 7 ()
. Vo v2 vy
at point 3: —%— t3E =R (3)
. vy 5 d%vg
(1) and (2) give "= RC TR (4)
. 200 C dvo _ v
Then (4) and (5) give
dzvo 1 dvo

a3 TRe=0

taking RC = 1. This is the differential equation that can be solved by the
analog computer.

Fig. 3.63

Initially when S; and S; are just opened we have

w(0)=-3V,

‘Ul(O) = 1)2(0) = 0,
d‘Uo _

N

so the initial conditions are

{ Vg = —3
dvo _
dt =0.

=0
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3057
Design an analog computer circuit using operational amplifiers that
will produce in the steady state a voltage V(t) that is a solution to the

equation
d*v dv

1 .
F-{-IOE—gV—ﬁS]nwt .
( Wisconsin)
Solution:
The equation can be written as
d*v
a2

dv 1 )
oz = —IOI + =v+ 6sin wi .

3

The block diagram of the design is shown in Fig. 3.64 and the circuit dia-
gram in Fig. 3.65.

1 - addometer
2,3 - integrator
4,5 - ratiometer

Fig. 3.64

S5 Ey S2 E;

R
3 —{ :—'l
3R —" ‘ l—j
sinwt Ag el ¢ ,
R v
1 .
Ro,
C =

f +
Rpl
R 1

Fig. 3.65
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Note when gwitches S1 and S- are closed at the initial time, the voltage
of the source is V, = sin wt.

4. DIGITAL CIRCUITS (3058-306S)

3058

What is the direct application in standard NIM electronics of the De
Morgan relation AN B = AU B?

(a) Transformation of an “OR” unit into an “AND” unit

{b) Inversion of signals

(c) Realization of an “EXCLUSIVE OR”.
(ccT)

Solution:
The answer is (c). The truth table of this problem is given below:

A-B=A+B

A B output

1 1 0
1 0 1
0 1 1
0 0 1
3059

A digital system can be completely fabricated using:
(a) AND and OR gates only
(b) all NOR gates or all NAND gates
(c) neither of the above.
(ccr)
Solution:

The answer is (b). A NOR or a NAND gate can be used as a NON
gate. Using the De Morgan law, we can translate an OR into an AND,
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and an AND into an OR. Therefore, NOR gates or NAND gates alone are
sufficient to fabricate a complete digital system.

3060
In Fig. 3.66 the 4 basic logic gate symbols are shown.
(a) Match them to the negative logic equivalents on the right.
(b) Write the truth table for each.

(c) Name the logic function.
(Wisconsin)

—

~

w

P90

&~

009§

Fig. 3.66

Solution:

(a) Refer to Fig. 3.66 and denote the output by Q. The outputs of the

gates are given below:

gate output

1 Q=A4-B

2 Q=A-B=A+
3 Q=A+B

4 Q=A+B=4-B
5 Q=A-B=A+B
6 Q=A+B

7 Q=A+B=A-B
8 Q=A-B

It is seen that the equivalences are: 1 and 7, 2 and 6, 3 and 5, 4 and 8.
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(b) The truth table for each pair of gates is given below:

land 7 2and 6
A B Q A B Q
0 Q (¢} 1] 0 1
0 1 0 0 1 1
1 0 0 1 0 1
1 1 1 1 1 (¢}

Jand 5 4and 8
AlBlQ Al B|Q
0 0 0 0 0 1
0 1 1 0 1 0
1 0 1 1 0 0
1 1 1 1 1 Q

(c) The logic function for each gate is given below:

1. Q=A-B, “AND”;
2. Q=A+B, “NOR”;
3. Q=A+B, “OR"

4. Q=4 B “NAND”;
5. Q=A+B, “AND”;
6. Q=4A+B, “NOR”
7. Q=A-B, “AND”;
8. Q=A4-B, “NAND”.

3061

Inside of the programming counter in a microprocessor there is:
(a) the address of the instruction
(b) the address of the data

(c) the sentence’s number of the program.
( Wisconsin)
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Solution:

The answer is (a).

3062
A Schmitt trigger has a dead time
(a) smaller than the pulse width
(b) about equal to the pulse width
(c) larger than the pulse width.

(cecr)
Solution:

The answer is (b).

3063
Refer to Fig. 3.67.
(a) Is Q, saturated? Justify your answer.
(b) What is the base-emitter voltage of Q7
(c) When this monostable circuit is triggered how long will Q; be off?

(d) How can this circuit be triggered? Show the triggering circuit and
the waveform.
(Wisconsin)

-20V
5K o 100K 5K
o 50K a2
25K
- +6V "J*

Fig. 3.67

Solution:

(a) In the circuit for Qy, # = %: = lg°KK = 20. Since in a practical
circuit 3 is always much larger than 20, Q) is saturated.
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(b) As Q3 is saturated, V.(Q;) = —0.3 V. Hence

. 6+03 _
Va(@Qi) =6 25+50><25_3.9v.

Thus the base-emitter voltage of @, is 3.9 V.
(c) The monostable pulse width is

At = RCIn2 =100 x 10 x 100 x 1072 x 0.7
=Tx107¢s=7pus,

during which Q3 is off.

(d) The triggering circuit is shown in Fig. 3.68 and the waveforms are
shown in Fig. 3.69.

-20v

Ver

Vo2

Fig. 3.69
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3064

In Fig. 3.70 the circuit is a “typical” TTL totom pole output circuit.
You should assume that all the solid state devices are silicon unless you
specifically state otherwise. Give the voltages requested within 0.1 volt for
the two cases below.

Case 1: V) = 4.0.volts, give Vg, V¢, and VE.

Case 2: V) = 0.2'volts, give Vg, V¢, Vp, and V.
{ Wisconsin)

+5V

iR 0ap ="K

Fig. 3.70

Solution:

As all the solid state devices are silicon, the saturation voltages are
Voe =07V, Vee =03 V.

Case 1: V4 = 4.0 V, so T} is saturated. Then T3 is also saturated, so that
WB=07V,Vg=03V,and Vo =V +03=10V,
Case 2: As VA = 0.2 V, T} is in a cutoff state, so Vg = 0 and T3 is also in

a cutoff state. For Ty, § = % = L0 = 14 so that T is saturated. Thus

Ve=5V, VWp=56-07=43V, Ve=Vp-0T7=36V.

3065
A register in a microprocessor is used to

(a) store a group of related binary digits
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(b) provide random access data memory
(c) store a single bit of binary information.
(ccT)
Solution:
The answer is (a).

5. NUCLEAR ELECTRONICS (3066-3082)

3066

A coaxial transmission line has an impedance of 50  which changes
suddenly to 100 Q. What is the sign of the pulse that returns from an
initial positive pulse?

(a) none (b) positive (c) negative.

(CCT)

Solution:

The answer is (b).

3067

A positive pulse is sent into a transmission line which is short-circuited
at the other end. The pulse reflected back:

(a) does not exist(= 0)
(b) is positive
(c) is negative.
(ccrT)
Solution:
The answer is (c).

3068

What is the mechanism of discharge propagation in a self-quenched
Geiger counter?

(a) Emission of secondary electrons from the cathode by UV-quanta.
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(b) lonization of the gas near the anode by UV-quanta.
(¢) Production of metastable states and subsequent deexcitation.
(ccT)
Solution:

The answer is (c).

3069

For low noise charge-sensitive amplifier, FET-imput stages are pre-
ferred over bipolar transistors because:

(a) they have negligible parallel noise
(b) they are faster
(¢) they have negligible series noise.
(ccr)
Solution:

The answer is (a).

3070

Using comparable technology, which ADC-type has the lowest value
for the conversion time divided by the range, t./A, with {. = conversion
time and A = 2" with n = number of bits?

{a) flash ADC
(b) successive approximation converter
(c) Wilkinson converter.
(CCT)
Solution:

The answer is (a).

3071
A “derandomizer” is a circuit which consists of;

(a) trigger circuit



Circuit Analysis 387

(b) FIFO memories
(¢) phase locked loop.
(cer)
Solution:
The answer is (c).

3072

A discriminator with a tunnel diode can be built with a threshold as
low as:

(a) 1mV (b) 10 mV (c) 100 mV.
(CCT)
Solution:
The answer is (c).

3073

Pulses with subnanosecond rise time and a few hundred volts amplitude
can be produced using:

(a) avalance transistor
(b) thyratrons
(c) mechanical switches.
(ccr)
Solution:
The answer is (a).

3074
The square-box in Fig. 3.71 represents an unknown linear lumped-
constant passive network. The source of emf at the left is assumed to have
zero internal impedance.
It is known that if the input emf e;(t) is a step function, i.e.,

0 t<o0,
e‘(t)z{A t>0
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then the open-circuit (no-load) output voltage eo(t) is of the form

0, tS 0’
eo(t) = { Al —exp(~t/T)], t>0,

where the constant 7 has the value 7 = 1.2 x 10™% s.
Find the open-circuit (no load) output voltage eo(t) when the input is
given by
e;(t) = 4 cos(wt) volts ,

where w corresponds to the frequency 1500 cycles/sec.

(UC, Berkeley)

Fig. 3.71

Solution:

We first use the Laplace transform to find the transmission function
H(s) of the network in the frequency domain. The Laplace transform of the
equation e;(t) = A - U(t) is Ei(s) = A/S. Similarly, the Laplace transform

of the output eq(t) is
1 |1 1
5o = 345 - 55777

Hence the transmission function is

H(s) = Eo(s) - 5];

Ei(s) s+1
The Laplace transform of the new input e;(t) = 4 cos (wt) is
4s
E(s)= 55
giving the output as
Eo(s) = Ei(s) - Hi(s) = —— x %
0 — 4 i - w? + 52 s+ %

2[ 1 _1 1 1 1 1
=_[ . T 42 x +—2—x ]»
R A
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where wr = 27 x 1500 x 1.2 x 10~* &~ 1. The reverse transformation of
Eo(s) gives the open-circuit output voltage

l .
_t 7 cos(wt) 4+ wsin(wt
Vo(t)=—[ﬁe' (2) 12( )
7 w2 +(3) w2+ (3)
~ —e~Y7 4 cos(wt) + sin(wt) .

3075

To describe the propagation of a signal down a coaxial cable, we can
think of the cable as a series of inductors, resistors and capacitors, as in
Fig. 3.72(a). Thus, the cable is assigned an inductance, capacitance and
resistance per unit length called L, C and R respectively. Radiation can
be neglected.

(a) Show that the current in the cable, I(z,t), obeys

01 i oL
(b) Derive analogous equations for the voltage V(z,t) and charge per
unit length p(z,1).

(c) What is the energy density (energy per unit length) on the cable?
What is the energy flux? What is the rate of energy dissipation per unit
length?

(d) Suppose that a semi-infinite length (z > 0) of this cable is coupled
at z = 0 to an oscillator with frequency w > 0 so that

V(0,t) = Re(Voe™t) .

After the transients have decayed find the current I(z,t). In the limit
R/Lw < 1 find the attenuation length and propagation speed of the signal.

(MIT)
dl)}m)w}ﬂu {.(.id) L?X RdX I(x+dx,t)
Cdx J‘

._w“,_.,,,_l_ _.._-I. Vix,t) Vixedx,t)
i I ¢ [}

{a) [b)

Fig. 3.72
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Solution:
(a) From Fig. 3.72b, we have

V(z,1) = V(z + dz,t) + RI{t, z)dz + Ldz 2{2)
I(z,t) = 28D 0z 4 [(z 4+ da,t),

or
{ % - JR+ LY,

ol - cay

Eliminating V' we have

01 o [0V o /8v
W‘“C&'(W)‘"Cﬁ(a_z)

= +Ca (1R+ Lal)

ot at
al %I
= RCE + LCa? .

(b) Similarly, eliminating I we have

v al o (81
a2 = Ry - L‘a:(a)
ov o (ol
=RCH L5 (a—z)
ov v
= RC— T + LC— 5z

As
pdr =Cdz -V, V=p/C,

the above then gives

0% ap 8%
aT = RC +LC— T

(c) The energy and rate of energy dissipation per unit length are re-
spectively

W= %LI"’-}- %cvz, P=1IR.
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The energy flux is
S=1IVe,.

(d) As the wave is sinusoidal, let
V = Voexpli(kz — wt)] .
Substitution in the differential equation for V gives
k* = LCw? + iRCw .

Since k is complex, putting k = K +i) and equating the real and imaginary
parts separately we have

K%~ ) = LCuw?,
2KA = RCw .

Solving these we obtain

K2 = _;_(\/chzw-t + R2C%02 4+ LCw’) s

A= %(\/LzCzw“ + R2C%w? - Lsz) .

As V. is sinusoidal, so is /. Hence the equation -—% =C % gives

1= 22V = Ipe™ expi(Kz —wt + po)}
where
I = _&‘fo__ = arctan (5)
= TR ¥o = A

Actually I(z,t) = Rel = Ipe=** cos(Kz —wt+pg). In the limit R/Lw < 1
RC
2 _ 2 2 _
K* = LCw*, /\—4L .

So the attenuation length is

S | b
o]



392 Problems £ Solutions on Electromagnetism

and the propagation speed is

b= o1
K ViC
3076

A pulse generator of negligible internal impedance sends a pulse for
whichV=0att<0andt>5pus,and V =1 volt for 0 <t < 5 us into a
lossless coaxial cable of characteristic impedance 20 ohms. The cable has
a length equivalent to a delay of 1 us and the end opposite the generator
is open-circuited. Calculate (taking into account reflections at both ends
of the cable) the form of the voltage-pulse at the open-circuited end of the
cable for the time interval t = 0 tot = 12 pus. How much energy is supplied
by the generator to the cable?

(Columbia)

Solution:

The reflection coeflicient p is given by p = %ﬁ—g—g, where Z; = 20 Q.
At the generator end, Z; = 0 and

_ =20 ]
=y =7
At the open-circuit end, Z; = oo and
_00—20 _ 41
ARSI

Let the voltages at time ¢ at the generator and open-circuit ends be v; and
Vi respectively. Then

V¢ = Vin + PipyUe-2
= Uiy — Yt-2,
Vi= v+ ppve—1 = 20,

where

v, =0 for t<0 and t>5us
=1V for t=1-5us.
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Hence we have

t(us)lO1234567891011121314

Vi) o 2 2 0 0 2 0 -2 ¢ 2 0 -2 0 2 O

t -circuit
gcn:‘:: or opcnm%ucun
4
- 2
t=1Us 1 X
y
27us 2B
1 X
R v
3 Hs ":
b X
v
L s .
v
SUs 1 .
& y
Hs Lt
1 X
. v
7 us
x
-1
v
8 s x
_.; output V vs ¢
v v
S s
Hs . 2
v 0 t{us)
|°-|,l3 % . -2

(a} {b)

Fig. 3.73
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The corresponding waveforms along the line are given in Fig. 3.73(a)
for times just before each second and the output voltage as a function of
time is given in Fig. 3.73(b).

3077

The emitter follower shown in Fig. 3.74 is used to drive fast negative
pulses down a 50 Q coaxial cable. If the emitter is biased at +3 volts, V.
is observed to saturate at —0.15 volt pulse amplitude. Why?

(Wisconsin)

v
- B 500 Yout
A 18
tkn 50.n
= :
Fig. 3.74

Solution:

As the characteristic impedance of the transmission line, 50 2, is
matched by the impedance at the output end, the impedance of point B
with respect to earth is Rg = 50 Q.

When a negative pulse is input, the transistor is turned off and the
capacitor will be discharged through point A. The maximum discharge
current is

3

=E(—)6=3mA.

I

Because of impedance matching, there is no reflection at the far end of the
transmission line. Hence

IB=1A=31’I]A,

and Voute = —3 mA x 50 2 = —0.15 V at saturation.
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3078

A coaxial transmission line has a characteristic impedance of 100 ohms.
A wave travels with a velocity of 2.5 x 10% m/s on the transmission line.

(a) What is the capacitance per meter and the inductance per meter?

(b) A voltage pulse of 15 V magnitude and 10~3 s duration is propa-
gating on the cable. What is the current in the pulse?

(c) What is the energy carried in the pulse?

(d) If the pulse encounters another pulse of the opposite voltage mag-
nitude but going in the opposite direction, what happens to the energy at
the moment the two pulses cross so that the voltage everywhere is zero?

(Wisconsin)

Solution:

Asv = 7;?, Z. = \/L/C, we have

= e— == ~11 -
¢= vZ, 2.5x 103 x 100 4x 10 F/m = 40 pF/m ,
Z, _ 100
b= = g5xies - A mi/m

(b) The magnitude of the current in the pulse is

v 15

—_—=—=015A.
Z. 100 0.15

Io-"—'

(c) The energy carried in the pulse is distributed over the coaxial trans-
mission line in the form of electric and magnetic fields. The line length is
I=vt=25x10°x10"=25m,

8o the field energies are

W, = %(CI) V= %(4 x 1071 x 2.5) x 152 =1.125 x 10~ J,

Wi = %(u)ﬂ = % x4x 1077 x2.5x0.152 = 1.125 x 1072 J

giving
W=W.+W,=2217].
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(d) When the two pulses encounter each other, their voltages cancel
out and the currents add up, giving V' =0, I' = 2] = 0.3 A. Where there
is no encounter, V = 15 V, I = 0.15 A. Where the pulses encounter electric
energy is converted into magnetic energy. The more encounters occur, the
more conversion of energy will take place.

3079

A lossless coaxial electrical cable transmission line is fed a step function
voltage V =0 fort < 0, V = 1 volt for ¢t > 0. The far end of the line is an
open circuit and a signal takes 10 us to traverse the line.

(a) Calculate the voltage vs time for t = 0 to 100 us at the open circuit
end.

(b) Repeat for an input pulse V = 1 volt for 0 < ¢t <40 pus, V =0
otherwise.
(Columbia)

Solution:
Suppose the input end is matched, then the coefficient of reflection is

K = { 0 at input end,
T L1 at open circuit end.

At the open circuit end,

V(t) = Vi(t — 10) + KVi(t — 10)
= 2Vi(t - 10) .
(a) As
Vit-10)=0 for £<10 s,
=1Vfor t>10pus,
V(t) is as shown in Fig. 3.75(a).
(b) As

Vit -10)=0 for ¢t <10 pus,
=1V for 10<t<50 ps,
=0 for t > 50 us,

V(t) is as shown in Fig. 3.75(b).
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Vi) vit)
2r ——— 2
1 )
1 ¥ I N f(
" tlusl 0530 0 50 S
{a) {b)
Fig. 3.75
3080

In Fig. 3.76(a) the transistor at A is normally ON so that the potential
at A is normally very close to 0 V. Descibe and explain what you would see
on an oscilloscope at points A and B if the transistor is turned OFF within
a time < 1 ns. (Assume that the 5 volt supply has a low ac impedance to
ground.)

(Wisconsin)

Solution:

The arrangements in Figs. 3.76(a) and (b)are equivalent so that at the
input end Z, = 80 2, V, = 4 V. The reflection coeflicients at the two ends
are

Z,—Z, _ 80—240 _

Kg = = =-0.5,

B= 7 Z, 804240 - °

AON = o+ 20 0+240
oo — 240
KaoFF = 7940 =

Take ¢t = 0 at the instant the transistor is turned off. When the transistor
is ON, the voltage at B due to the source is

240

X s

3V.

Because of reflection at A,

Ww({07)=3~-3=0.
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We also have VA (0~ ) = 0. The waveform at ¢ < 0 is as shown in Fig. 3.76(c).

+5V
mon Z‘Q.ﬂ
h 8 )_L—_I
¥____1 80N
aon [3)
- vo /2 4000
v
$ o<t<ius
8 A x
6 Y 4us<t<Bus
It
B =3 ry x
(d)
v y
_Sus<r<izys
sl
3
| ympmpmp—— A x x
v
ol Rus<i<ibus
3
B 4 " x
(e}
/.
6
. P__]—Lr
euknany ke R ¥ 7 R
{g) {h}
Fig. 3.76

When ¢t > 0, the transistor is turned off and the circuit is open at
point A. At that instant Kaopr = 1, Vg(Ot) = 3 V. This is equivalent
to a jump pulse of 3 V being input through point B at ¢ = 0. Thereafter
the voltage waveforms are as given in Figs. (d)—(f), where a single-pass
transmission is taken to be 4 us, the dotted lines denote reflected waves
and the solid lines denote the sum of forward and reflected waves. Hence
the voltage waveforms at points A and B as seen on an oscilloscope are as
shown in Figs. (g) and (h).
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3081

(a) In order to make a “charge sensitive amplifier”, one can connect a
capacitance across an ideal inverting amplifier as indicated by Fig. 3.77(a).

The triangular symbol represents an ideal inverting amplifier with the
characteristics: input impedance >» 1, output impedance < 1, gain » 1,
and output voltage Vou: = —(gain G) x (input voltage Vi,). Compute the
output voltage as a function of the input charge.

(b) It is common practice when interconnecting electronic equipment
for handling short-pulsed electrical signals to use coaxial cable terminated
in its characteristic impedance. For what reason might one terminate the
input end, the output end or both ends of such a coaxial cable?

(c) The following circuit (Fig. 3.77(b)) is used to generate a short,

high-voltage pulse. How does it work? What is the shape, amplitude and
duration of the output pulse?

(Princeton)
50.0 10 ft 8 10MA
e T 2000V
T w’ o e
‘ 2 I
' 2°‘d-l’_} 500250y,
+ a——— V
= A
SOﬂi
(a) (b)
Fig. 3.77
Solution:
(a) As
Vo = -GV;, CVi-Ww)=Q,
we have
1+4G C c'’
since G > 1.

(b) Let Zy and Z; be the characteristic and load impedances respec-
tively. The reflection coefficient is
_Z1—=2
P %+ 2
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Thus reflection normally takes place at the end of the delay line unless
p = 0,ie., Zg = Z;, and the line is said to be matched. In order that
the signal is not disturbed by the reflection, the ends of the line must be
matched.

(c) When a positive pulse is applied to the input end V;,, the thyratron
conducts and the potential at point A will be the same as at point B so that
a potential drop of 2000 V is produced, generating a negative high-voltage
pulse at the output end Vp. The width of the pulse is determined by the
upper delay line in the open circuit to be

2 x 10 x 30.48
Taxiow 0

The amplitude of the output pulse is given by the voltage drop across the
matching resistance of the lower delay line to be

2000 x 50
50 + 50

tly =21 =

=1000 V.

3082

The pions that are produced when protons strike the target at Fer-
milab are not all moving parallel to the initial proton beam. A focusing
device, called a “horn”, (actually two of them are used as a pair) is used
to deflect the pions so as to cause them to move more closely towards the
proton beam direction. This device (Fig. 3.78(a)) consists of an inner cylin-
drical conductor along which a current flows in one direction and an outer
cylindrical conductor along which the current returns. Between these two
surfaces there is produced a toroidal magnetic field that deflects the mesons
that pass through this region.

(a) At first, calculate the approximate inductance of this horn using the
dimensions shown in the figure. The current of charged pions and protons
is negligible compared with the current in the conductors.

(b) The current is provided by a capacitor bank (C = 2400 «F), that
is discharged (at an appropriate time before the pulse of protons strikes
the target) into a transmission line that connects the two horns. The total
inductance of both horns and the transmission line is 3.8 x 10~ henries
as in Fig. 3.78(b). In the circuit the charged voltage of the capacitor is
Vo = 14 kV and the resistance is R = 8.5 x 10~3 ohm. How many seconds

after the switch is thrown does it take for the current to reach its maximum
value?
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(b)

Fig. 3.78

(c) What is the maximum current in amps?

(d) At this time, what is the value of the magnetic field at a distance
of 15 c¢m from the axis?
(e) By what angle would a 100 GeV /c meson be deflected if it traversed
2 meters of one horn’s magnetic field at very nearly this radius of 15 cm?
(UC, Berkeley)

Solution:

(a) The magnetic induction at a point between the cylinders distance
r from the axis is in the ey direction and has magnitude

pol
B=—
27r’
I being the current in the inner conductor. The magnetic flux crossing a
longitudinal cross section of a unit length of the horn is

0.4

0.4
=2 Bdrz‘il/ lar=83x10"7-1.
0.05 T Joos T

Hence the inductance is approximately
L=?~8.3x10“7H.

(b) Let the current of the RCL loop be i(t). We have
uc+ur+up =20

with P
I:C]—-‘u£ uR=RC

duc dI duc
) TR u
dt

d L=l =LC—15,
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ie.,

2
Led¥e 4 potie

di? —dt—+uc=0y

and the initial condition
uc(0)=Vp .

To solve the equation for uc, let uc = uge™*“*. Substituting, we have

w=—tatwy,
where wg = /Wi — a? with
w 1
0= ==
LC’
o= R
=37
Thus
ue = uoe—atiiw‘t
or

I = Cup(—o + iwg)e~otFiwet

With the data given, we have

_ R _ 3 -1
a_2L—l‘118x10 s,

1
= —— =1.047 x 10% s},
“o=Ic ®

so that wo > a and wq = wo. Hence the current in the loop is

I(t) = Re[FiCuwoVpe™ ' etivet]
= —CwoVpe™** sin(wot)
= —3.52 x 1081118 5in(1.047 x 10%¢) .

For maximum I(t),
dI(t)
T
ie.,
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giving
t=

Rim=

Therefore the current is maximum at ¢ = 8.94 x 10~ s.

(c)

Imax = 3.52 x 10%¢~1118x8.94x107 iy (1 047 & 105 x 8.94 x 10~9)
=1.29x 10° A

(d) At r = 15 cm, we have

_ bol 47w x 10-7 x 1.29 x 10°
T 27 x0.15

(e) Asp= 7"1-'-:“?,- = 100 GeV/c, we have

= 1.72 wbm™?

move

V=

for the meson so that we can take its speed to be

=10" eV > moc? =14 x 108 eV

vRC.
The deflecting force is
F=eBv=16x10""x041x3x 108 =20x 10" N,
so the deflected transverse distance is

at? = l..F. - ’
2m

=1
)
1 20x10-ll
2%
2.

4
100 x 109 x 1.6 x 10— 19/02 C_ = 0.0025 m

5m

The angle of deflection is

9 = arctan (%) = 0.0013 rad .

403
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6. MISCELLANEOUS PROBLEMS (3083-3090)

3083
Consider the circuit shown in Fig. 3.79(a).
(a) When Vi, = Re{Voe'“!}, find an expression for the complex V.

(b) Under what condition is the ratio Vou/Vi, independent of w? (It
may be useful to recall Thévenin’s thereom.)

(c) If Vin consists of a single “rectangular” pulse as shown in
Fig. 3.79(b), sketch Vo (as a function of t) when the condition mentioned
in (b) is satisfied.

jo

1
]-Cz ] Vout t

| |

(a) (b)

Fig. 3.79

(d) For a “rectangular” pulse Vi, in (¢), qualitatively sketch Vo,¢(2)
when the condition mentioned in (b) is not satisfied.

(CUSPEA)

Solution:

(a) According to Thévenin’s theorem, we can use two equivalent cir-
cuits to replace the capacitive and resistance networks as shown in
Figs. 3.80(a) and (b). Connecting their output ends together we obtain
the total equivalent circuit shown in Fig. 3.80(c) or Fig. 3.80(d).

For the circuit Fig. 3.80(d), using Kirchhoff’s law we have

1[ RiRy + 1 ]_[ Ry _ Ci ]V
Ri+ Ry jw(Ci+C)] [(Ri+Ry Ci+Ca] ™’

giving
_ Jw[Ra(Cy + C2) — Ci(R1 + R)))

I= - Vig .
Ri+ Ry + jw(Ci + C2)RaRy "

The output voltage is

o1, G
M T Gw(C1+C)  Ci+Cy

Vin
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hence we have the ratio
Vouu _  C R3(C1 + C2) — Ci(R1 + Ry)

= + T )
Vin C1+ Cy (Cl + Co)[R1 + Ry + jwRi Ry(Cy + Cz)]

giving Voue in terms of V.

‘ ARy
+ T c+c + R Ri+R;
¥in L r Va2 _’.. —EIFV y
. = Cz => -] Viﬂ ) $R" 2 T
. 1 Ry
—o

RR;
e | PR
1T R,
v,
c N ¥ W*%z in
1+C2 Vm+ ﬁ%+—v°u'

Fa Y
s+

(c)
Fig. 3.80

(b) In the equivalent circuit Fig. 3.80(d), if the two sources of voltage
are the same, there will be no current flowing, i.e. I = 0, giving
R, G
Ri+R, C1+Cy’

or R]C] = RzCz. Then
Vo _ G _ R
Vin Ci+C: Ri+Ry’
This ratio is independent of w. Hence R;Cy; = R;C, is the necessary
condition for Vo, /Vin to be independent of w.
(¢) When R,C| = RyC; is satisfied, Vour = 554 Vin for all frequen-
cies. This is shown in Fig. 3.81.

Vout

| t

Fig. 3.81
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.- . . . . C
(d) When the condition mentioned in (b) is not satisfied, a3l —

m—’_}_ﬂn—’ = (c—?_;%:i%%. First consider the case R,C; > R2C3. The at-
tenuation in the capacitive voltage divider is less than in the resistive volt-
age divider. Hence when the rectangular pulse passes through the circuit,
the former takes priority immediately; thereafter the output relaxes to that
given by the latter. The variation of V. with t is shown in Fig. 3.82(a).
For the case R;C; < R3C5, a similar analysis gives the curve shown in
Fig. 3.82(b).

Vout Yout
l/ t t
{a) (b)
Fig. 3.82
3084

An electric circuit consists of two resistors (resistances R; and Rj),
a single condenser (capacitor C) and a variable voltage source V joined
together as shown in Fig. 3.83.

(a) When V(t) = V; coswt, what is the amplitude of the voltage drop
across ;7

(b) When V(t) is a very sharp pulse at ¢ = 0, we approximate V(t) =
Ab(t). What is the time history of the potential drop across Ry?
(CUSPEA)

Fig. 3.83
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Solution:
(a) Let the complex voltage be

‘7 = Voe"'""‘ .
Kirchhoff’s equations for loops 1 and 2 are respectively

~ . ) B
V=11R1+’,—wz;(11+12), (1)

.
0=12R2+5-C-(11+12) . (2)
Eq. (2) gives
i\ i -
(RZ* m)’z =xch-
Its substitution in (1) gives

i = (Rz — %) &
1= T .
RiRy — Z=(Ri + Ry)

The voltage drop through resistance R, is

~ Ri(Ra — ) ~
Vi=hRy = et vV,
YT T RiR, - Z=(R1 + R3)

so the real voltage drop through R; is

= 1 + (wRyC)?
i = \/(wR] RC) + (R + R2)? Ry Vo cos(wt + ) ,

where

wCR} } .

= t
p = arctan [R,R, 20?C? + (R1 + Ra)

(b) When V() = Aé(t), we use the relation

1 et fwt
G(t) = 27 e'“‘dw

-0Q
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and write the voltage drop through R; as

o0 Ri(Rp — 4= .
i = —A—/ i '2 “’C) e “dw
27 Joo R1Rz — Z=(R1 + R2)

__A * (wu-l%g) fwi
'27/.00 @ow) &

where w; = i%}i”tﬁf. The integrand has a singular point at w = wy. Using

the residue theorem we find the solution Vi o exp(iwit) = exp(-g%%:t).
Hence Vj is zero for ¢ < 0 and

Ry + R,y
Vi e exp ( CRiR, t)
for t > 0.
3085

A semi-infinite electrical network is formed from condensers C' and
inductances L, as shown in Fig. 3.84. The network starts from the left at
the terminals A and B; it continues infinitely to the right. An alternating
voltage Vp coswt is applied across the terminals A and B and this causes a
current to flow through the network. Compute the power P, averaged over a
cycle, that is fed thereby into the circuit. The answer will be quantitatively
different in the regimes w > wgp, w < wg, where wp is a certain critical
frequency formed out of C and L.

(CUSPEA)

Bo

Fig. 3.84

Solution:

As the applied voltage is sinusoidal, the complex voltage and current
are respectively

~

V = Vo', [ = Ie™t .
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The average power in a period is

Re (V1) = %Re(-v—v) =% e(-l-) ,

P= Z 2 Z

1
2

where the star * denotes the complex conjugate and Z is the impedance
of the circuit, Z = -‘[5 Let Z, = ﬁ, Zy = iwL, and assume any mutual
inductance to be negligible. If L i1s the total impedance of the network,
consider the equivalent circuit shown in Fig. 3.85 whose total impedance is
still Z. Thus

22y

Z=Z1+ Z+Z2’

=721+

1 1
-tz
or

22 -2 -2,2,=0.

|
2

Fig. 3.85

As Z > (), this equation has only one solution

7= %+ VB Fa0Z,

2

With W‘ﬁ = wyg the solution becomes

1 , w?
Z—m(l'ﬁ' l—u-)-g->

For w < wy, ,/1 - %:- is a real number so that Re(%) =0,ie, P=0.
[}

For w > wo, Re(%) = ﬁ\/ﬁ—land

= V& [w?
P=-9 /2 _1.
4wLVw§
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3086

In the circuit shown in Fig. 3.86, Ly, L2, and M are the self-inductances
and mutual inductance of the windings of a transformer, R; and R; are the
winding resistances, S is a switch and R is a resistive load in the secondary
circuit. The input voltage is V = Vysinwt.

(a) Calculate the amplitude of the current in the primary winding when
the switch S is open.

{(b) Calculate the amplitude of the steady-state current through R
when S is closed.

(c) For an ideal transformer Ry = R; = 0, and M, Ly, Ly are simply
related to Ny, Ny, the numbers of turns in the primary and secondary
windings of the transformer. Putting these relations into (b), show that
the results of (b) reduces to that expected from the turns ratio N3/N; of
the transformer.

(CUSPEA)

Fig. 3.86

Solution:
(a) When S is opened, we have
Vo

L=0, hLh=—F———s.
2 ' R} + w2L§

(b) With S closed we have the circuit equations

a1y aly

V-—I]R1+Lla +M6t
_ oL, . . oI,
0-—12(R2+R)+L2 Bt +M8t .

As V = Vysinwt, let

V= Voe-iwt , h= 1106—““ , Ih= Izoc—w‘ .
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The circuit equations become

V=5hLH(R —iwl))—-iwMI,,
0=-iwMlL + 12[(R2 + R) - ing] .

Defining
A= Ry —iwly —iwM
T —iwM (Rg+R) —iwly
= Ri(Rz + R) + w}(M? — L1 L;) — iw[Ly(R2 + R) + La2Ry] ,
we have
I = l R1 - ile |4
2T A —iwM 0
_ wMV
==
and
I wMV,

= VLRt Ro) + WlaRiP + W (M2 ~ LiLg) + RFa(Ra + R)P

(c) If the transformer is ideal, Ry = Ry = 0, M%2 = L,L,, and we have

WMV, _ MV,
T WLR ™ LiR’

Then as M ~ N3N;, L ~ N2, we obtain

L=-22

N R

This is just what is expected, namely the ideal transformer changes voltage
Vo into %ﬂ- Vo.

3087
Consider the circuit shown in Fig. 3.87.

(a) Find the impedance to a voltage V of frequency w applied to the
terminals.
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(b) If one varies the frequency but not the amplitude of V, what is
the maximum current that can flow? The minimum current? At what
frequency will the minimum current be observed.

(UC, Berkeley)

L R C
o——avyer—rrn—|
Ci']' 3L
Oo—
Fig. 3.87

Solution:

(a) The impedance is given by

L oc; - Jwh

Z(w)=jwL + R+ - ;
( ) ]wC jwlC; +JOJL1

) 1 JwlLy
= R+]wL+ij+ 1= oL, G,

. 1 WLI
= L-—4+—).
R+](w wC+l—w2L101)

(b) The complex current is

|4 vV

" Z R+jWwL- e+ 1—:511107) ‘

So its amplitude is

o+ L oo+ e I

Iy )

where V} is the amplitude of the input voltage. Inspection shows that

Vo
ax = 5 I min = U .
(]O)m R ( 0) 0
When Ij is minimum, i.e., Iy = 0,
1 (dLl

wL—E-i-l—szlCl =



Circuit Analysis 413

The solutions of this equation are w = 0, w = 0o, and w = 71'1371 Dis-

carding the first two solutions, we have w = 71176,' for the observation of
the minimum current.

3088

In Fig. 3.88 a single-wire transmission (telegraph) line carries a current
of angular frequency w. The earth, assumed to be a perfect conductor,
serves as the return wire. If the wire has resistance per unit length r, self-
inductance per unit length [, and capacitance to ground per unit length C,
find the voltage and current as functions of the length of the line.

(UC, Berkeley)

i (4,0 )e—dx —= i {.x0dx)

iy | 1( dx)
u(t,i)' 4|Lulf,x* Ix

Ix x> dx
! {

! (
1idx rdx 4

|
Cdx D
A
'
x+dx

Fig. 3.88

I
t
!
x

Solution:

Take the origin at the starting point of the wire and its direction as
the z direction and suppose the voltage amplitude at the starting point is
Vo. Consider a segment z to & + dz. By Kirchhoff’s law we have

u(t,z) = u(t,z + dz) + lde —— gitt ( z) + ri(t,z)dz ,
i(t,z) = i(t,z + dz) + Cdz ?_ugT,z)' ,
ie. ) ]
_au—lg—l-—}-rl, :@zcau

9z 0Ot oz Bt



414 Problems & Solutions on Electromagnetism

Assuming solution of the form e~/=K#) then
a7~ =i, aa—z~jl< :
and the above equations become
i(r—jwl)+jKu=0,
i(jK) — jwCu=0.
The condition that this system of equations has non-zero solutions is

r— jwl iK

ik Ciwc|= —jwC(r—jul) + K*=0,

giving
K = Jw?lC + jwCr .
Let K = a + jf3, then

o’ - g% = WO,
2af8 = wC'r ,

and we have

u= Voe—ﬁzej(az—wt)

i= wC _ wCVo e_pzej(a,_wt+¢) ,

KT /a? + 52

where we have made use of the fact that u = Vy whenz =t =0, and ¢ is
given by

B
t = —.
an a
The expressions can be simplified if
r<wl,

for we then have

by
x=wm(1+,1) szE+jgﬁ.

wl
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Accordingly,

l

i=‘—dl—(gua=\/§voexp[—jw(\/lﬁz—t)] exp(—%\/_g—z) .

u = Vo exp[jw(VICz — t)] exp (‘T' ¢ z) ,

3089

Consider two parallel perfect conductors of arbitrary but constant cross
section (Fig. 3.89). A current flows down one conductor and returns via
the other. Show that the product of the inductance per unit length, L, and
the capacitance per unit length, C, is (in CGS units)

— ke
LC‘C_z’

where u and ¢ are the permeability and dielectric constant of the medium
surrounding the conductors and c is the velocity of light in vacuum.
(Columbia)

_@

[—

Fig. 3.89

Solution:

The conductors form a transmission line, which is equivalent to the
circuit shown in Fig. 3.90.
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Lo Lo Lo

TITECETL
[ W1 I°

n-1

Fig. 3.90

Consider the n-th segment of the circuit. The following equations
apply:

~L 4l _Qn _ Qs
0 dt ~ Co Co '’
dQn_
o+ Sty
dQn
In+ dt = in4+1

from which we obtain

2, 1d 1 1
—Lo—= dtz 'C'Em(Qn - Qn—l) = C—g(]n+l - I") - _C—O(I” - I""l) ?
or d21
dt; =2I, —In41— In-t .

Let I, = Agcos(Kna — wt), where K = ‘i@, then the above gives
LoCow? +2 = —2cos(Ka) ,
or

zlﬁa
2

In the low frequency limit of a — 0, sin(Ka/2) ~ -— and we have

LoCow? = 4sin

LoCow? = K%a? .

As —;— = £ -—-91—‘1 £:. In this equation Lo/a and Cy/a denote the in-
ducta.nce a,nd capacxtance per unit length, respectively, of the transmission
line. Replacing these by L and C, we obtain

LC = pe/c® .
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3090

Two circuits each contains a circular solenoid of length I, radius p
(p € 1), with N total turns. The solenoids are on the same axis, at distance
d apart (d » l). The resistance of each circuit is R. Inductive efffects other
than those associated with the solenoids are negligible.

(a) Calculate the self and mutual inductances of the circuits. Specify
the appropriate units.

(b) Use L and M for the values found in (a). Calculate the magnitude
and phase of the current which flows in the second circuit if an alternating
emf of amplitude V, angular frequency w is applied to the first. Assume w
is not too large.

(c) What is the order of magnitude to which w can be increased before
your calculation in (b) becomes invalid?
(UC, Berkeley)

Solution:
(a) As I > p, the magnetic induction inside the solenoid has

B=w—

and is along the axis of the solenoid. The magnetic flux linkage for the

solenoid is

2 2
¥=NBS=N .,,oﬂll,,rpz _ lloNlhrp |

so the self-inductance is

L= ¥ _ mweN?p?
=7= 7 .

As d >> [, the magnetic field produced by one solenoid at the location
of the other can be approximated by that of a magnetic dipole. As the two
solenoids are coaxial, this field may be expressed as By = 42 - %’5‘- with
m = NImp?, i.e.,

HoNIp?
Bas =
M 243

Hence
moNIp® 5 poN?pPmp*l

Yy =NByS=N o wp* = o ,
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giving the mutual inductance as

Yy  mpugN2pt
M=—=—+——
1 248
The units of L and M are H = A-s/V.

(b) Let the emf in the first circuit be € = V coswt = Re (Ve/“*). Then
we have for the two circuits

d dIy it
L 70 +M T + L R=VeY,
dl, dI
LE-+M71'[+IQR—0.
As I, I, ~ e/t we have 7% — jw and the above equations become
jwLly + jwMI; + LR = V¥t | (1)
jwLlly + jwuML + I, R=0. (2)

(1) £ (2) give

jwL(lh + L) + jwM(l) + I) + R(I) + I3) = Vel*' |
jwL(l, = Iy) = jwM (I} — ) 4 R(I; — I3) = Vei** |

Hence
Vedwt Veiwt
h+ly= ———7s, L-Ilp = ——————
R G AT V) gy 1= =TT M+ R
whence
1 | vV jwt
I, = -|- — = e
2[jw(L+ M)+ R jw(l-M)+R
_ —jwMVelwt
~ [jw(L + M) + R] [jw(L — M)+ R]
~jwMVevt

T R? - w?(L? - M?)+2jwLR’
Writing Re I3 = I cos(wt + ¢q), we have
_ wMV
T VIRT= w12 = M?)]® + 4w’ L?R?’
2wLR
RE—W2(LT— M2y~

I

pg = T — arctan
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Using the given data and noting that L > M, we get

wMV por N2 ptuVi2
RT+ 2202 200[RPI% + 2 i mANAph] *

Igo ~

2WLR
R? —w2L?
2uemwRN2p?l
R — w2 p3n2Napt

o &= T — arctan

= 7 — arctan

(¢) The calculation in (b) is valid only under quasistationary condi-
tions. This requires

d<<,\=2ﬁ,
W

2nd
wL —
c

or






PART 4

ELECTROMAGNETIC WAVES






1. PLANE ELECTROMAGNETIC WAVES (4001-4009)

4001
The electric field of an electromagnetic wave in vacuum is given by

E: =0,

E, = 30cos (2« x 103 — %"z) ,

E, =0,
where E is in volts/meter, ¢ in seconds, and z in meters.
Determine
(a) the frequency f,
(b) the wavelength A,
(c) the direction of propagation of the wave,

(d) the direction of the magnetic field.
(Wisconsin)

Solution:
k=-23—7rm", w=2rx10%s"".
- Y _108
(a)f__27r_10 Hz.
(b)z\:-‘z%=3m.

{c) The wave is propagating along the positive z direction.

(d) As E, B, and k form a right-hand set, B is parallel to k x E. As
k and E are respectively in the z and y directions the magnetic field is in
the z direction.

4002
The velocity of light ¢, and € and yg are related by

@e=\[2i me= /B o=/

423

(CCT)
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Solution:
The answer is (c).

4003

Consider electromagnetic waves in free space of the form
E(mi y’ z) t) = EO(tv y)eik:_iw‘ H

B(z,y,2,t) = Bo(z',y)e""“"‘”' ,

where Eg and By are in the zy plane.

(a) Find the relation between k and w, as well as the relation between
Eg(z,y) and Bo(z,y). Show that Eg(z,y) and Bo(z,y) satisfy the equa-
tions for electrostatics and magnetostatics in free space.

(b) What are the boundary conditions for E and B on the surface of
a perfect conductor?

(c) Consider a wave of the above type propagating along the trans-
mission line shown in Fig. 4.1. Assume the central cylinder and the outer
sheath are perfect conductors. Sketch the electromagnetic field pattern
for a particular cross section. Indicate the signs of the charges and the
directions of the currents in the conductors.

(d) Derive expressions for E and B in terms of the charge per unit
length A and the current i in the central conductor.
(SUNY, Buffalo)
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Solution:
(a)
€ e e, ez e,
VxE=s % 561 58; = % :%: ik e:(k:—wt)
E’ E}!'I EI EO:: EOy 0
= | — ik Egye; + ik Egze, + 8E°V — % e, ei(ks—wt)
Y y Oz 8y

= [ike, x Eo + V x Eq] efk#=«t) |

A similar expression is obtained for V x B. Hence Maxwell’s equations

oB 1 6B
VXE——W, VXB—;-a—t‘

can be written respectively as
ike, x Eo(z,y) = iwBo(z,y) - V x Eq,

ike, x Bo(z,y) = —i% Eo(z,y) — V x Bo.

Noting that ¥V x Eq and V x By have only 2-components while e, x Eq and
e; X Bg are in the zy plane, we require

VXEO—_-O, VXBO=0, (1)

so that g
e; X Eo(x,y) = F BO(x)y) ) (2)

W
€: X BO(“") y) = —m EO(zvy)' (3)

Taking the vector product of e, and (2), we obtain
w
Eo = —Fe, X Bo .

Its substitution in (3) gives
w

B2 L

or
k=

ol€
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Equations (2) and (3) relate Eq and By and show that Eg, By, and e,
are mutually perpendicular forming a right-hand set. Furthermore, their
amplitudes are related by

w
|Eo(2,y)l = 7 [Bo(2,9)| = ¢|Bo(z,y)| .
Maxwell’s equations V-E =0,V -B = 0 give
V.Ey=0, V-By=0. 4)

Equations (1) and (4) show that Eo(z,y) and Bo(z,y) satisfy the equations
for electrostatics and magnetostatics in free space.

(b) The boundary conditions for the surface of a perfect conductor are
nxE=0, n-D=90,
nxH=I, n-B=0,

where n is the outward normal unit vector at the conductor surface and
I; is the linear current density (current per unit width) on the conductor
surface.

(c) For a particular cross section at z = zo and at a particular instant
t = o, the electric field is Eo(z, y) exp[i(kzo —wtg)]. Since Ey(z, y) satisfies
the electrostatic equations the electric field is the same as that between
oppositely charged coaxial cylindrical surfaces. Thus the lines of Eq(z,y)
are radial. The magnetic induction satisfies (2), i.e.

1
Bo(z,y) = Ser X Eo(z,v),

so that magnetic lines of force will form concentric circles around the cylin-
drical axis. Suppose at {20,1p) the central cylinder carries positive charge
and the outer sheath carries negative charge then E and B have directions
as shown in Fig. 4.1. The linear current density on the surface of the central
conductor is given by I; = n x H. As n is radially outwards, the current in
the central cylinder is along the +2 direction while that in the outer sheath
is along the —z direction.

Using Maxwell’s integral equations (Gauss’ flux theorem and Ampére’s
circuital law) we have

o

A
B = e B-27rreo’

= e
2megr
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which give the charge per unit length A and current I carried by the central
conductor. The relation between E and B gives I = cA.

4004

Consider a possible solution to Maxwell’s equations given by
A(z,t) = Age'®E*=wt)  4(x,t)=0

where A is the vector potential and ¢ is the scalar potential. Further
suppose Ay, K and w are constants in space-time. Give, and interpret, the
constraints on Ap, K and w imposed by each of the Maxwell’s equations
given below.

(a) V-B=0; (b) Vx E+-l-aalt3 0;
() V-E=0; (d) V x B-l%tE-=o

(Columbia)

Solution:

The Maxwell’s equations given in this problem are in Gaussian units,
which will also be used below. As A = Agexpli(K,z + Kyy + K.z — wt)),
we have & = i(Kyz — K,y), & = i(K.z — K.2), & = i(Kzy — Kyz), or
Vx = iKx. Hence the electromagnetic field can be represented by

B=V x A =iK x Age'Kx-uwt)

1 BA _ 1 BA _ K% i(K-x—wt)
_V¢———62-_—;E-—I—C-Aoe .
(a) Since V-B = —K (K x A)e!(¥'*~%!) = ( identically, no constraint
is imposed by V- B = 0.
b)AsVXE+!18 = iKxE-#“B=-“KxA+%KxA=0,
¢ 9t c 3 €
no constraint is imposed by the equation.

(c)AsV-E=%V.A=%K.A=0,werequire K- A =0.
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(d)AsVxB-19€ = Kx(KxA)+% A=—(K -A)K+K?A-
@A = (K2- B‘)A = 0 we require K? = 7 or K = +%. Therefore the
constraints imposed by Maxwell’s equations are

K=wfe, and K-A=0,

The second constraint means that K is perpendicular to A. Hence K
is perpendicular to E. As K is also perpendicular to B, this constraint

shows that the solution is a transverse wave. The first constraint gives

}g-} = X =1, showing that the wave is a plane electromagnetic wave. The

+ signs correspond to +x directions of propagation.

4005

Consider a plane wave with vector potential A,(x) = a,e(K*-wt)
where a, is a constant four-vector. Further suppose that K = Ke, and
choose a (non-orthogonal) set of basis vectors for a,:

eM# =(0,1,0,0),
e@* =(0,0,1,0),

l fw 1
Ly - X = — KH
€ K(C,O,O, K) 7 K",

1 w
(B)p — _ _z
€ K (K, 0,0, c) ,

where e# = (€9, ). Write
a“ - ale(l)"‘ + 025(2)” + aLe(L)I" + aBe(B)I‘ .

What constraints, if any, does one get on a;, as, ar, ag from

(a) V-B =0,

1 0B
(b) V x E+_6t =0,
(c)VxB—l(Zf—O,
() V-E=07?

(e) Which of the parameters ay, a2, ar, ap are gauge dependent?
(f) Give the average energy density in terms of a,, ay, ay, ag after
imposing (a)—(d).
(Columbia)
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Solution:

We are given the four-vectors
K* = (w/e, 0,0, K), Ay =(p, Az, Ay, A2) .

With K = Ke,, K- x = Kz. For plane waves we also have K = %. Then
for 4 = 1, we have

p= [GL'I‘{“LC' +apg (.{Ié)]ei(l(z—wt) = (GL + GB) ei(K:—wt) )

Similarly for 4 = 2, 3, 4, we have

A = [are; + aze, + (az — ap)e,)efK* w1 |

Hence

B=VxA=iKe,x A= iI{(_azel + aley)ei(Kz-wt)’

E=-Vp-— % %’[ = —iK(ap + ap)e, e F*~“) L KA

= iK(aje; + aze, — 2a3e,)e‘(K"“") .

(a) As V-B = V - (V x A) = 0 identically, it imposes no constraint.

(b) AsVXE+18 =-VxVp-18(UxA)+12(VxA)=0
identically, it does not lead to any constraint.

(c) As
V x B =iKe, x B = K%(aje, + azey)e!¥*-v9
l a_E = —iKE = K2(alez + azey — QaBeZ)ei(Kz—wt),
c Ot
1 0E
VxB--—=
X c Ot 0
demands that ag = 0.
(d) As
V.E= aEz = QI{ZaBei(Kz—wf) ,
Jz

V - E = 0 also requires ag = 0.
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(e) Since a; and ay are not involved in the gauge equation V-A =0
for the Coulomb gauge and V- A + % %’,ﬂ = 0 for the Lorentz gauge, a;, a3
are gauge-independent.

(f) The average energy density is

U= e +18R) = K (@24 ap)
167 g§r V1T T2

4006

A plane wave of angular frequency w and wave number |K| propagates

in a neutral, homogeneous, anisotropic, non-conducting medium with y =
1.

(a) Show that H is orthogonal to E, D and K, and also that D and
H are transverse but E is not.

(b) Let D, = E?:x eri Ey, where €4 is a real symmetric tensor. Choose
the principal axes of €4 as a coordinate system (D; = e Ex; k = 1,2,3).
Define K = K S, where the components of the unit vector S along the

principal axes are S, S3, and S3. If V = w/K and V; = ¢/,/E;, show that
the components of E satisfy

3 V2
S,‘ E S{E&-*'(W—l)Ej:O.
=1 J

Write down the equation for the phase velocity V in terms of S and V.
Show that this equation has two finite roots for V2, corresponding to two
distinct modes of propagation in the direction S.
( Wisconsin)
Solution:
Use the Gaussian system of units.

(a) Maxwell’s equations for the given medium are

168B
VXE=-C%
1 8D
VxB=_-5r
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V.-B=0,
V-D=0.
The plane wave can be represented by ~ e (K x-wt) g5 that Vx = iKx,
V.-=iK., 387 = —iw and the above equations reduce to
KxE=2H,
c
KxH:—%D,

K-B=K:-D=0,

as u = 1. From these we have
D-H=-§(Kxn).nso, K-H:EK-KxEEO.

Hence K, D, and H are mutually perpendicular, i.e., D and H are trans-
verse to K. However, as K x (K x E) = 2K x H,

K.E=l,(3KxH+1<2E>
K\e

- % [_ (%)2D+1{2E] £0

unless K% = (£)?, E need not be transverse to K.
(b) From the above we have

2

w
K(K-E)—K’E:—c—zD.

K = K(S1, S2, S3),
D = (a1 Ey, €2E3, €3E3),
E = (E], E21 E3))

The j-th component of the equation is

2
SiK®Y SiBi - K*Ej + = B = 0.
i
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Putting w?/K? = V2 and ¢?/¢; = V7, it becomes

3 V2
SjZSgE;-i- (T/—Q— I)Ej =90.
i=1 J

For j = 1,2,3, we have

V2
(52 + o7 - )El + 5153E, + 5153E3 =0,
i

S152FE1 + (522 - V_Z - 1)E2+ 5153E3 =0,
2 o

Z

The sufficient and necessary condition for a non-zero solution is that the

determinant

S3S1E1 + 5352 E, + (Sg + - I)Ea =0.

Si+ b1 5152 5153
S25] 522 + %;— -1 S353 =0.
3
S35 5352 S2+¥s-1
3
This gives

V4 v2 v2
2 2 2 _ 1.
v [v vavg TG D (- D gaps

y? 52 82 S
+(S2-1)- v2v2+(v2+ =2 vi)]:o,

which can be solved to find two finite roots for V2 if V2 #£ 0.

From V? = w?/K? we can find two values of K? corresponding to
the two roots of V2. This shows that there are two distinct modes of
propagation.

4007

Four identical coherent monochromatic wave sources A, B, C, D, as
shown in Fig. 4.2 produce waves of the same wavelength A. Two receivers
R, and R; are at great (but equal) distances from B.
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(a) Which receiver picks up the greater signal?

(b) Which receiver, if any, picks up the greater signal if source B is
turned off?

(c) if source D is turned off?

(d) Which receiver can tell which source, B or D, has been turned off?
(Wisconsin)

>
o
N>

Fig. 4.2

Solution:

(a) Let r be the distance of R; and Ry from B. We are given r > A,
Suppose the amplitude of the electric vector of the electromagnetic waves
emitted by each source is Ep. The total amplitudes of the electric field at
the receivers are

Ri:  Ey= Egexp [i1< (r - %)] + Ege’ " + Egexp [iK (r + %)]
,\2
; 2 —
zK\/r + 1 ],
iKr . A . A2
Rs: Eaq = Ege!* "+ Egexp [iK r+-2— +2Egexp |iK r2+—4—

As KX = 2282 — 9p exp[:l:i%] =" = 1, Withr> X, \/r2 + "4—’ .

Thus
A2 .
Eyexp [il(\/rz + T} ~ Egekr

Em ~0 f Ego % 2EoeiKr .

+ Eg exp

and we have
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The intensity of a signal I o« |E|?, so the intensities received by R; and R;
are respectively
In=0, I ~4E% .
Hence Ry picks up greater signal.
(b) If source B is turned off, then

E]g ~ —EOC'K" ) E20 =~ EoeiK' .

Thus I = I, ~ E%;, that is, the two receivers pick up signals of the same
intensity.

(c) If source D is turned off, one has
Ejom —Eoe'®",  Ey m 3Eoe'®",

and
I, ~ E%, Iy~ 9E2.
Hence Ry picks up greater signal.
(d) From the above, we can see that I, remains the same whether the
sources B and D are on or off. Hence R; cannot determine the on—off state
of B and D. On the other hand, the intensity of I5 differs for the three cases

above so the strength of the signal received by Ry can determine the on—off
state of the sources B and D.

4008

(a) Write down Maxwell’s equations assuming that no dielectrics or
magnetic materials are present. State your system of units. In all of the
following you must justify your answer.

(b) If the signs of all the source charges are reversed, what happens to
the electric and magnetic fields E and B?
(c) If the system is space inverted, i.e., x — x' = —x, what happens
to the charge density and current density, p and j, and to E and B?
(d) If the system is time reversed, i.e., t — ¢’ = —t, what happens to
7 J, E and B?
(SUNY, Buffalo)
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Solution:
Use the MKSA system of units.

(a) In the absence of dielectric or magnetic materials Maxwell’s equa-
tions are
{V-E:-}o, VxE:—a?,

V-B=0, VxB=pj+53E.
. (b) Under charge conjugation e — —e, we have V —» V' = V, & —

W= %, p— p' = —p,j— 3 = —j. Under this transformation Maxwell’s
equations remain the same:

2 — _ 8B
V"E'—&, V’XE’——W,
VB =0, V' xB = o + 5
A comparison of the first equations in (a) and (b), we see that, as p’ = —p,

E'(r,t) = -E(r, t).
Substituting this in the fourth equation in (a), we see that

JE

1
U I = ’—_. ] — —
VixB' =V xB = —ugj 2 .

Hence
B'(r, t) = —B(r, t).

(¢) Under space inversion

Then
plr,t) = p'(r,t)=p, j—oj=pu=—-pu=-j,
u being the velocity of the charges in an elementary volume.
As Maxwell’s equations remain the same under this transformation we

have
E'(r, t) = -E(r, t), B'(r,t) = B(r, t).
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(d) Under time reversal,

lij 0 i} . p
g._..a?__-a—t, V-V =V, e—e =e.
Then p’ = p, j' = —pu = —j, and we have from the covariance of Maxwell’s

equations that

E'(r, t) = E(r, t), B'(r,t) = —-B(r, t).

4009

Let A, ¢, J,, and p, be the temporal Fourier transforms of the vector
potential, scalar potential, current density and charge density respectively.

Show that
K fe=x'|

$u(r) = Ee—/pw(l")wdar'

K|r—r|
A(r) = fﬁ LS — S & (K_ ":')

How is the law of charge-current conservation expressed in terms of p,
and j,7 In the far zone (r — o00) find the expressions for the magnetic
and electric fields B, (r) and E, (r). Find these fields for a current density
Ju(r) =rxf(r).

(Wisconsin)
Solution:

If we express the current density J(r, t) as the Fourier integral

I, t) = /_ ® Su(r)emtdo

the retarded vector potential can be rewritten:

Ar, {) = &/ I, ¢ - =)

v — 'l

=i [ e [ aeen |- ) a

= &/ -lwtd /J (rl)etKIr—rI dar;
4r J_ [r = x| ’

d3l
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where the volume integral is over all space. Thus the Fourier transform of
the vector potential is

_po [ Ju()exp[iKle—rf] 5,
Au(r) = G/ e &'

Similarly the Fourier transform of the scalar potential ¢(r, t) is

1 iKir =] .,
¢w(l‘)=;f;r;; Pw(r')wdaf-

The continuity equation that expresses charge-current conservation, %"3 +
V .J =0, is written in terms of Fourier integrals as

o > . o3 .
5i [ p@etant v [ s meitis =0,
-00 -0
or
o I3
/ [—iwpy,(r) + V - I (r)]e **dw = 0.
-0

Hence

V.1, —iwp, = 0.
In the far zone » — oo, we make the approximation

el
]r——r’[zr—s—r—.
r

Then

et Klr—r'| eiKr r.r r-r
3 S (1-:1{7—.-.) (H_rf'*"')

iKr Ly
~J,E (1 —iKr—").
r r

Consider
v (zle) =Juz +2'V -3, .

As
/V’ (2'3,)dr = fa:’Jw -dS'=0
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for a finite current distribution,

]de3 = —/r'V'dear'
= —iw / (). (1)
Also
3u(e-¥) = 300l ¥) = (- Ju)+ (e ¥) + ¢ J)¥]
= 207 X J) X £+ S0 ¥) + (-],

The second term on the right-hand side would give rise to an electric
quadrupole field. It is neglected as we are interested only in the lowest
multipole field. Hence

iKr X
Au(r) —— E}f(— iwp. = — - iKm, x ;c'K') , )

r—oo 4

where {
Pu = /r'pw(r')dsr', m, = E/r' x 3, ("3

are the electric and magnetic dipole moments of the sources. To find E,(r)
in the far zone, we use Maxwell’s equation

oE 1 0E
VXB:#ofo—-i-f‘oJ:cj*ét—

ot
assuming the source to be finite. In terms of Fourier transforms, the above
becomes

Vv x /Bw(r)e""‘"dw = clz %/Ew(r)e"“‘dw ,
or .
/V x By (r)e”“'dw = —/%Eu(r)e'i”'dw ,
giving
E,(r) = i:—ZV x B, .

Similarly, from B = V x A we have

Bw(r) =V x Aw(l‘) .
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For a current density J,(r) = rf(r), we have
m, = %/r’ xr'f(r)d' =0.
Also,
po= o) = 2 [aue)er = 2 [ereer,

using (1) and assuming the current distribution to be finite.
Hence, using (2),

iKr
Au(r) = p—?:;/r'f(r')dar'.

Then

: $Kr
B,(r)=Vx A,(r)~ 2‘—(%:7—1‘- X /r'f(r’)dar’ ,

ic?
Ew(l‘) = —w—V X Bw(!')
iKr
w —icBoKT o [i' x / r f(r')dsr'] ,

47r

where f = £, terms of higher orders in } having been neglected.

2. REFLECTION AND REFRACTION OF
ELECTROMAGNETIC WAVES ON INTERFACE
BETWEEN TWO MEDIA (4010—4024)

4010
(a) Write down Maxwell’s equations in a non-conducting medium with
constant permeability and susceptibility (p = j = 0). Show that E and
B each satisfies the wave equation, and find an expression for the wave
velocity. Write down the plane wave solutions for E and B and show how
E and B are related.

(b) Discuss the reflection and refraction of electromagnetic waves at a
plane interface between the dielectrics and derive the relationships between
the angles of incidence, reflection and refraction.

(SUNY, Buffalo)
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Solution:

(a) Maxwell’s equations in a source-free, homogeneous non-conducting
medium are

VXH:—g?, (2)
vV-D=0, 3)
V-B=0, 4)

where D = ¢E, B = uH, ¢, ¢t being constants. As
Vx(VxE)=V(V-E)-V!E=-VE

and Eq. (2) can be written as

B d’E
V x (3{) = ;16—(%—2" s

Eq. (1) gives
’E
2 —
V E - He W =0.
Similarly, one finds
a’B
VB —pe ——= =0.
e o
Thus each of the field vectors E and B satisfies the wave equation. A
. 2
comparison with the standard wave equation V2E — ;},— %—‘? = 0 shows that
the wave velocity is

1
vE=E —.
VER
Solutions corresponding to plane electromagnetic waves of angular fre-
quency w are

E(r,t) = Egef(kr—wt) |
B(r, t) = Boe'lkr=vt)

where the wave vector k and the amplitudes Eq and B¢ form an orthogonal
right-hand set. Furthermore v = %, and E, B are related by

B:J;Ts%XE.
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(b) The boundary condition that the tangential component of E,
n x E = E;, n being a unit normal to the interface, is continuous across the
interface requires that in general there will be a reflected and a refracted
wave in addition to the incident wave at the interface. Furthermore ex-
periments show that if the incident electromagnetic wave is a plane wave,
E(r, t) = Eoe'®r=«!) the reflected and refracted waves are also plane
waves, which are represented respectively by

E = Eoei(k'-x—w't),
E" = Ellek"x-w"t)
The boundary condition at the interface then gives
n x [Eoei(k~r—wt) + Ez)ei(k'-r—w't)] =nx Egei(k"-r—w"t) .
This means that all the exponents in the equation must be the same, i.e.,
4 "

w=w =w", k-r=k"-r=k"-r.

Thus frequency is not changed by reflection and refraction.

z n k"

Fig. 4.3

Choose the origin on the interface so that the position vector r of the
point where the incident wave strikes the interface is perpendicular to k.
We then have

k-r=k'-r=k"-r=n-r=0. (5)

This means that k, k’, k” and n are coplanar. Hence reflection and re-
fraction occur in the vertical plane containing the incident wave, called the



442 Problems & Solutions on Eleciromagnetism

plane of incidence. Now chaose a coordinate system with the origin at an
arbitrary point O on the interface, the z-axis parallel to the incidence plane,
i.e. the plane of k and n, the z-axis parallel to the normal n, and let 8,
9’ and 0" respectively be the angles of incidence, reflection and refraction,
measured from the normal, as shown in Fig. 4.3. Then

r= (z’y)o)?

k = wy/u1€1 (sind, 0, cos ).
k' = wy/pie (sind', 0, — cosd’).
k" = wy/pze; (sin6”, 0, cos6”).

Equation (5) gives for arbitrary z and w

VBi1€1 sinf = /i€ siné’ = \/jaze; sin@” .
Hence
6=¢6,

i.e., the angle of incidence is equal to that of reflection. This is called the
law of reflection. We also have

sinf  /M2€2 _ny _
sind” | Jmer ny
where n o /ept is called the index of refraction of a medium and no; is

the index of refraction of medium 2 relative to medium 1. This relation is
known as the law of refraction.

4011

A plane electromagnetic wave of intensity I falls upon a glass plate
with index of refraction n. The wave vector is at right angles to the surface
(normal incidence).

(a) Show that the coefficient of reflection (of the intensity) at normal
incidence is given by R = %:—;3—; for a single interface.

(b) Neglecting any interference effects calculate the radiation pressure
acting on the plate in terms of I and n.

(Chicago)
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Solution:

The directions of the wave vectors of the incident, reflected and re-
fracted waves are shown in Fig. 4.4. For normal incidence, § = ¢ = ¢" = 0.
Let the incident, reflected and refracted electromagnetic waves be repre-
sented respectively by

E= Eoei(k-x—wt) ,

E = Eaei(k'x-—wt) , E' = E(I)Iei(ku.x_wg) )

As the permeability of glass is very nearly equal to that of vacuum, i.e., p =
Ho, the index of refraction of glass is n = \/e/eo, € being its permittivity.

z

n
{€, By) Lﬂ x

(€ 4“‘0) -
0 4 h

Fig. 4.4

(a) A plane electromagnetic wave can be decomposed into two polar-
ized components with mutually perpendicular planes of polarization. In the
interface we take an arbitrary direction as the z direction, and the direction
perpendicular to it as the y direction, and decompose the incident wave into
two polarized components with E parallel to these two directions. We also
decompose the reflected and refracted waves in a similar manner. As E, H
and k form a right-hand set, we have for the two polarizations:

z-polarization y-polarization
Ex, Hy Ey, —Hz
E;:) _H!,l E;’ H;"
E;, H/ Ej, -H]

The boundary condition that F, and H; are continuous across the
interface gives for the z-polarization

E:+E. = EY, (1)
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" gn
Hy - H, = H!'. ()

For a plane wave we have \/ji |H| = /€ |E|. With 4 = po and /‘t_o =n,
(2) becomes
E. - E,=nE]. (3)

{—n
E. = (l+n)Ez'

Since for normal incidence, the plane of incidence is arbitrary, the same
result holds for y-polarization. Hence for normal incidence, we have

E' = (1 — n) E
I4+n
The intensity of a wave is given by the magnitude of the Poynting
vector N over one period. We have

(1) and (3) give

N=R£ExReH=i—(ExH+E'xH'+ExH"+E‘xH).

As the first two terms in the last expression contain the time factor et
they vanish on taking average over one period. Hence the intensity is

1 1
I=(N):§Re|ExH“]=§EH‘=%\/§E§,

E; being the amplitude of the E field.
Therefore the coefficient of reflection is

R= .Eiz = I-n ’ .
E? I+n
(b) The average momentum density of a wave is given by G = %)- =

;’;. So the average momentum impinging normally on a unit area per unit
time is Gv. The radiation pressure exerted on the glass plate is therefore

P=Gc—(-G'c)-G"v

G G'v
= Gc(l + rehm -CT;)
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(1) + (3) gives

B __2
Eo—l-}-n,

x I _ [EEP® 4n
I " Ve E2 (14n)2°
, 2
With 11- = (}—ﬁ) also, we have
I 1-n\?  4n?
P_;[l+<1+n) _(l+n)2}

=2_I_(l—n>.
c\1l+n

4012

(a) On the basis of Maxwell’s equations, and taking into account the
appropriate boundary conditions for an air-dielectric interface, show that

the reflecting power of glass of index of refraction n for electromagnetic
n-1)?
nt+1)4”

(b) Also show that there is no reflected wave if the incident light is
polarized as shown in Fig. 4.5 (i.e., with the electric vector in the plane of
incidence) and if tan®, = n, where 8, is the angle of incidence. You can

regard it as well-known that Fresnel’s law holds.

waves at normal incidence is K =

(UC, Berkeley)

-——

{

Ey E2

2] .
air
diefectric

Fig. 4.5
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Solution:
(a) Same as for (a) of Problem 4011.
{b) For waves with the electric vector in the plane of incidence, the
following Fresnel’s formula applies,
Ey _ tan(f3 - 01)
E, - tan(03+01) )
When 03 + 0, = 5, E3 = 0, i.e., the reflected wave vanishes. Snell’s law
gives
sinf) = nsinfs = ncosb,
or

tanf, =n.

Hence no reflection occurs if the incidence angle is 8; = arctan n.

4013

Calculate the reflection coefficient for an electromagnetic wave which
is incident normally on an interface between vacuum and an insulator. (Let
the permeability of the insulator be 1 and the dielectric constant be . Have
the wave incident from the vacuum side.)

(Wisconsin)
Solution:

Referring to Problem 4011, the reflection coefficient is

r= ()"

4014

A plane polarized electromagnetic wave travelling in a dielectric
medium of refractive index n is reflected at normal incidence from the
surface of a conductor. Find the phase change undergone by its electric
vector if the refractive index of the conductor is ny = n(1 + ip).

(SUNY, Buffalo)
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Solution:

For normal incidence the plane of incidence is arbitrary. So we can
take the electric vector as in the plane of the diagram in Fig. 4.6.

z
ka

E3

conductor, no

dielectric, n
E
Ey z

Fig. 4.6

The incident wave is represented by
E, = Eloei(klz—wt) ,
Bl = Bloei(klz—ut) ,

n w
Bio = = Ey, ky = —n;
c c
the reflected wave by

E2 = Ezoe—i(kgl+w() ,
B2 — Bzoe—i(k21+w1) ,

nEy
By = ) kx =

n;

ol€

and the transmitted wave by
ES - anei(kgz—ut) ,

B; = Baoei(kaz—wt) ,

anso w
B:m=—-c , k3=;n2.

The boundary condition at the interface is that E; and H; are continuous.
Thus

Eyg — Eyo = E3, (1)
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Bio+ Bao=L By~ B
10+ 20—EBso~ 30 (2

assuming the media to be non-ferromagnetic so that u =~ u; = pg. Equation
(2) can be written as

Ejo+ Eg = %2‘ Ezp. (3)
(1) and (3) give

ng—n inp P i
= —=——¢"YEy,

Eypw=——FEg=—-—F
20 ng +n 10 2n +inp 10 Pt +4

with
2
tanp = —.

The phase shift of the electric vector of the reflected wave with respect to
that of the incident wave is therefore

¢ =arctan | - ] .
P

4015

In a region of empty space, the magnetic field (in Gaussian units) is

described by
B = Bge®*é, sinw,

where w = ky — wit.

(a) Calculate E.

(b) Find the speed of propagation v of this field.

(c) Is it possible to generaie such a field? if so, how?

(SUNY, Buffalo)

Solution:

Express B as Im (Bg e°* ¢'*)é,.

(a) Using Maxwell’s equation

OE

VXB:l——
c Ot
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and the definition k = % for empty space, we obtain

ic i Oz 4 e
_ ¥ _1la 3
E_wVXB—k 3 3y 0],
0 0 B,

where ;,% = 0 as B does not depend on z.
Hence )
E; =1Im (%Boe“’ikei‘”) = —~Boe**sinw,

Ey =1Im (— iBDae“’e"“’) = -EwEBoe“" cosw,
E,=0.

(b) If the wave form remains unchanged during propagation, we have
dw=kdy-wdt=0,

or %{- = % = ¢. Hence the wave propagates along the y direction with a
speed v =c.

(c) Such an electromagnetic wave can be generated by means of total
reflection. Consider the plane interface between a dielectric of refractive
index n(> 1) and empty space. Let this be the yz plane and take the +z
direction as away from the dielectric. A plane wave polarized with B in
the z direction travels in the dielectric and strikes the interface at incidence
angle 6. The incident and refracted waves may be represented by

B, = Bpexp[i(zk cos§ + yksin§ — wt)],

B!! = By expli(zk" cos 8" + yk" sin 6" — wt)] ,

where k = & =% n, k"' = ¢
At the interface, z = 0 and y is arbitrary. The boundary condition
that H, is continuous requires that

ksin@ = k" sing"

or . :
sinf = —sind” < —.
n n
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Asn > 1,if 8 > arcsin (1) total reflection occurs.
Under total reflection,

sin@®”’ = nsind,

cosf’ = +ivVn?sin?0 - 1.

Then
BY = B exp (:F EZ- Vn2sin?8 — l:c) exp [i(%nsinOy—wt)] .

As z increases with increasing penetration into the empty space, — sign is
to be used. This field has exactly the given form.

4016

A harmonic plane wave of frequency v is incident normally on an in-
terface between two dielectric media of indices of refraction n; and ny. A
fraction p of the energy is reflected and forms a standing wave when com-
bined with the incoming wave. Recall that on reflection the electric field
changes phase by 7 for ny > n,.

(a) Find an expression for the total electric field as a function of the
distance d from the interface. Determine the positions of the maxima and
minima of (E?).

(b) From the behavior of the electric field, determine the phase change
on reflection of the magnetic field. Find B(z,t) and {B?).

(c) When O. Wiener did such an experiment using a photographic plate

in 1890, a band of minimum darkening of the plate was found for d = 0.
Was the darkening caused by the electric or the magnetic field?

(Columbia)

Solution:

(a) With the coordinates shown in Fig. 4.7 and writing z for d, the
electric field of the incident wave is Eqcos(kz — wt). Because the electric
field changes phase by = on reflection from the interface, the amplitude Ej
of the reflected wave is opposite in direction to Ey. A fraction p of the
energy is reflected. As energy is proportional to EZ, we have

El} = pE?.
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Thus the electric field of the reflected wave is
E' = —\/pEgcos(—kz — wi).
Hence the total electric field in the first medium is
E = Eqcos(kz — wt) — \/pEg cos(kz + wt},
giving
E? = E? cos®(kz — wt) + pE? cos?(kz + wt) — \/p E3[cos(2kz) + cos(2wt)] .

Taking average over a period T = %” we have

T 2
(E?) = % /o E%dt = (—I—J’zﬁlfﬂ — /P E? cos(2kz).

me_ where m is an integer 0,1,2,..., (E?) will be

When kz = m7w,or z = T
minimum with the value

(E®)min = U=ve) _2\/’7)2 E}.

When kz = &'2"1-)1, or z = 8mtl) wherem =0,1,2,..., (E?) is maxi-

4un,y
mum with the value

<E2)max = (~1_+2__\/p-)3 Eg-

(b) As E, B, and k form an orthogonal right-hand set, we see from
Fig. 4.7 that the amplitude By of the magnetic field of the reflected wave
is in the same direction as that of the incident wave By, hence no phase
change occurs. The amplitudes of the magnetic fields are

Bo:ﬂlEo, B('):nlE{):\/[;nlEo:\/[_)Bo.
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The total magnetic field in the first medium is
B(z,t) = Bg cos(kz — wt) + \/pBo cos(kz + wt),
giving

B? = n?E2 cos(kz — wt) + pnlE? cos?(kz 4 wt)
+ /P n2E} [(cos(2kz) + cos(2wt)] ,

with the average value

(1 +p)niES

(8 = =2

+ /pn? cos(2kz).

Hence (B?) will be maximum for kz = mm and minimum for kz = 204l 7,
(c) The above shows that (B?) is maximum for z = 0 and (E?) is

minimum for z = 0. Hence the darkening of the photographic plate, which

is minimum at 2z = 0, is caused by the electric field.

4017

Beams of electromagnetic radiation, e.g. radar beams, light beams,
eventually spread because of diffraction. Recall that a beam which propa-
gates through a circular aperture of diamater D spreads with a diffraction
angle 83 = 1'3—2 A,. In many dielectric media the index of refraction in-
creases in large electric fields and can be well represented by n = ng+ny E2.

Show that in such a nonlinear medium the diffraction of the beam can
be counterbalanced by total internal reflection of the radiation to form a
self-trapped beam. Calculate the threshold power for the existence of a
self-trapped beam.

(Princeton)

Solution:

Consider a cylindrical surface of diameter D in the dielectric medium.
Suppose that the electric field inside the cylinder is E and that outside is
zero. As the index of refraction of the medium is n = ng + ny E2, the index
outside is ng.
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Consider a beam of radiation propagating along the axis of the cylinder.
A ray making an angle & with the axis will be totally reflected at the

cylindrical surface if
T
nsin (——- ) >ny,

ng
cosf’

The diffraction spread 84 = 1.22),,/D will be counterbalanced by the total
internal reflection if n = ng + ny E? > 2o s . Hence we require an electric
intensity greater than a critical value

E.= \/EE[(cosﬂd)‘1 - 1].
N9

Assume the radiation to be plane electromagnetic waves we have

N

ie.,

n

v

os0

VEeE = JiH.

Waves with the critical electric intensity have average Poynting vector

1. 1 [e ,
(N) = SEH _2\/;E'c.

Hence the threshold radiation power is

xD? gD? € ng 1
= —_— — -1].
(P)=(N) 4 8 u ng (cos 04 )

n ng £ ~
= ~ —_ ~ Mo
cos 0d €90 ! K Ho

(P) = o

wcsoD ng 1 - cosfy
With 03 = 1.22),,/D <« 1, we have

As

ny cos?fy

1(0509 "o mcEg no

= 22),)2
ng d 16 ns (1 )

(P)=
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Since ngA, = A is the wavelength in vacuum, we obtain

(P) _ wCEQ

2
= Toms (120",

4018

Consider the propagation of a plane electromagnetic wave through a
medium whose index of refraction depends on the state of circular polar-
ization.

a) Write down expressions for the right and left circularly polarized
4
plane waves,

(b) Assume that the index of refraction in the medium is of the form
ny=ndt ﬂv

where n and g are real and the plus and minus signs refer to right and left
circularly polarized plane waves respectively. Show that a linearly polarized
plane wave incident on such a medium has its plane of polarization rotated
as it travels through the medium. Find the angle through which the plane
of polarizations is rotated as a function of the distance z into the medium.

(c) Consider a tenuous electronic plasma of uniform density no with a
strong static uniform magnetic induction By and transverse waves propa-
gating parallel to the direction of By. Assume that the amplitude of the
electronic motion is small, that collisions are negligible, and that the am-
plitude of the B field of the waves is small compared with By. Find the
indices of refraction for circularly polarized waves, and show that for high
frequencies the indices can be written in the form assumed in part (b).
Specify what you mean by high frequencies.

(SUNY, Buffalo)

Solution:
Take the z-axis along the direction of propagation of the wave.

(a) The electric vector of right circularly polarized light can be repre-
sented by the real part of

Er(z,t) = (Eoez + Eoe‘ii'ev) e iwitikys
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and that of the left circularly polarized light by the real part of
Ev(z,t) = (Eoes + Epe‘fey) e—iwttik-2

where o g
ky = —n k. =—n_.
+ c + 3 c

(b) A linearly polarized light can be decomposed into right and left
circularly polarized waves:

E(z,t) = Er(z,t) + EL(2,1)
= (Epe; + Eoe—iiey)e—imﬁnz + (Eoes + Eoea‘-;-ev)e—iwt-{-ik_z )

At the point of incidence z = 0, E(0,¢) = 2Eye~*“*e,, which represents a
wave with E polarized in the e, direction. At a distance z into the medium,
we have

E(Z, t) = Eo[(ei(k+—k_): + l)e, + (ei(k.,,—k_)z—s'-} +ei§)ey] e—iwt-{-a'k..: ,
and thus

E, _ cos[(ky ~k-)z— £ _ _sinl(ky ~k-)q [(k+ - k-)z]
E. ™ 1+4cos[(k, —k_)z] = 1+ cos[(ky —k_)z) 2 )

Hence on traversing a distance z in the medium the plane of the electric
vector has rotated by an angle

As ny > n_ (assuming B > 0), ¢ > 0. That is, the rotation of the plane of

polarization is anti-clockwise looking against the direction of propagation.

(c) The Lorentz force on an electron in the electromagnetic field of a

plane electromagnetic wave is —e(E + v x B), where v is the velocity of the
electron. As /gg |E| = \/jio |H|, or |B| = |E|/c, we have

lvxB| v

Bl e

Hence the magnetic force exerted by the wave on the electron may be

neglected. The equation of the motion of an electron in By and the elec-

tromagnetic field of the wave, neglecting collisions, is

<1.

my = —eE —ev x By,
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where E is the sum of Eg and Ej, in (a). Consider an electron at an
arbitrary point z. Then the solution of the equation of motion has the
form

r =rge vt

Substitution gives

—mw?r = —¢E ~ e¢(—iw)r x Bg.
The electron, oscillating in the field of the wave, acts as an oscillating dipole,
the dipole moment per unit volume being P = —nger. The above equation
then gives

mw?P = —noe?E — iweP x By,

or, using P = x&oE,
mw?xeoE + nge’E = —iwexeoE X By .

Defining

nge? nge
wpg =

meg ’ EoBo !

wh =

and with Bg = Bge;, the above becomes

w W
—E+E=-ix—Exe,,
x —7E+ ix;-Exe

Wp
or )
w LW
(l-i-x(—;—,;)E,-{-zx;;Ey:O, 1
(4J2 R w
(1+x;—g)E’y-—1xEE,—0. (2)

(1)£ix(2) gives

w? . xXw )
(1 + X EE) (Ex + 1Ey) + ;;(E,; + 1Ey) =0.

Note that E; —iE, = 0 and E; +{E, = 0 represent the right and left circu-
larly polarized waves respectively. Hence for the right circularly polarized
component, whose polarizability is denoted by x4, E; +iEy # 0 so that

(-U2 (M)
l+X+E +X+w—3=0’
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457
or

1

wl w
i
P B

Similarly for the left polarization we have

X+ ==

1
X-=="73 ks

w3
WP wp

The permittivity of a medium is given by € = (1 + x)eg so that the

refractive index is
[€

Hence for the two polarizations we have the refractive indices

1 w wd
nt = l_w’iiz - ryome T o)’
:‘?; wB wix wg B
where

For frequencies sufficiently high so that w > wp, w > wjp, we obtain
approximately

. w w? 1
withna 1 - ,B=

4019
Linearly polarized light of the form E;(z,t) = Eoe!(*2=“") is incident
normally onto a material which has index of refraction ng for right-hand
circularly polarized light and ny, for left-hand circularly polarized light.
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Using Maxwell’s equations calculate the intensity and polarization of the
reflected light.

(Wisconsin)

Solution:
Using Maxwell’s equations §E - dr = — 92 .dS and § H - dr =
I (%—? + J) - dS, we find that at the boundary of two dielectric media the
tangential components of E and H are each continuous. Then as E, H

and the direction of propagation of a plane electromagnetic wave form an
orthogonal right-hand set, we have for normal incidence

E+E"=E’, H—H"-’—'H’,

where the prime and double prime indicate the reflected and refracted com-
ponents respectively. Also the following relation holds for plane waves,

H= \/EEz MEMEBE'%HME—OE.
i €0 H Ho
Hence the H equation can be written as
E—-FE'=nF,

taking the first medium as air (n = 1).
Eliminating E’, we get

B = l1—-n
14+n

For normal incidence, the plane of incidence is arbitrary and this relation
holds irrespective of the polarization state. Hence

l—nL
14 np

EL By = lomR

EII= =
L 1+ ng

Er.

The incident light can be decomposed into left-hand and right-hand circu-
larly polarized components:

- (5)-2(2) -0 ()2 ().
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where (i) represents the left-hand circularly polarized light and (_l_’)
the right-hand one. Hence the reflected amplitude is

n_l l-np (1 1 _1-ng 1
E —2E°l+n i +2E°1+m, -t

l-ng
— lE ( 1+nn+l+:z. )
=<k
2N - )
14+ng 14n

This shows that the reflected light is elliptically polarized and the ratio of
intensities is

M _lffl=nr 1-m 2+<l—ng 1-n\?
I T 4i\l+ngp  14ng l4ng  14ng

2 2 2 2
12 l1-ng P 1 nL) =_I_ 1—ng + 1—mnyg .
4 1+ngr 14 ng, 2|\14+ng 14+ng

4020

A dextrose solution is optically active and is characterized by a po-
larization vector (electric dipole moment per unit volume): P = vV x E,
where 7 is a real constant which depends on the dextrose concentration.
The solution is non-conducting (jiree = 0) and non-magnetic (magnetization
vector M = 0). Consider a plane electromagnetic wave of (real) angular
frequency w propagating in such a solution. For definiteness, assume that
the wave propagates in the +2 direction. (Also assume that L' < 1 s0
that square roots can be approximated by vV1+ A~ 1+ % A)

(a) Find the two possible indices of refraction for such a wave. For
each possible index, find the corresponding electric field.

(b) Suppose linearly polarized light is incident on the dextrose solution.
After traveling a distance L through the solution, the light is still linearly
polarized but the direction of polarization has been rotated by an angle ¢
(Faraday rotation). Find ¢ in terms of L, 7, and w.

(Columbia)
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Solution:
(a) D, E, P, B, H, M are related by

D=¢E+P, B = po(H+M).
With P = vV x E, M = 0, we have
D=¢gE+vVXE, B =puoH.
For a source-free medium, two of Maxwell’s equations are
VxH=D, V-E=0.

The first equation gives

VxB =;zof)= 215133+7ro>< E,
while the second gives
Vx(VxE)=-VE.
Then from Maxwell's equation
VxE=-B,

we have
Vx(VxE)=-VxB,

or 1
25 _ .. .
-V E——gE—‘)‘#oVXE

For a plane electromagnetic wave
E = E¢e'**~“) = Ere, + Eyey,

the actions of the operators V and 2 result in (see Problem 4004)

V — ike,, — — —fw.

ot

(1)
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Equation (1) then becomes
w?
k’E = FQ_E + ivpow?ke, x E,
which has component equations

2 W ; 2
k - E: +iypowkEy; =0,

. w?
ivpow?kEy — (k2 - :2—) E, =0.

These simultaneous equations have nonzero solutions if and only if

2 _ w? . 2 2
k? — 4 iypo®k | (k’ - ‘"—2> + 7 ugw'k? =0,
iypow?k —(k? - %) ¢

ie.,
2
2_ Y _ 2
k“ - c—z—:t'ﬂlow k.

The top and bottom signs give

2 w? .
(k:k - F)(Ex + lEy) =0.
Hence the wave is equivalent to two circularly polarized waves. For the
right-hand circular polarization, E, + iE, # 0 and we have
2
w

Ky = —5 +1pow’ky

For the left-hand circular polarization, E; — iE, # 0 and we have

w?

k2 = = Yow?k_ .

Solving the equation for k4

2 2 w?
ki Fynowks — 0—2—=0,
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1 / 4‘.;2'
ke =3 [iwowz £\ 7wt + — |

As k4 has to be positive we choose the positive sign in front of the square
root. Hence

we have

w A LI
et ()] e

2 2
To convert to Gaussian units, we have to replace q:e., = ﬁ“{: by 1. Thus

1£22< is to be replaced by 21;&, which is assumed to be < 1. Therefore
kym @ 28090 and ny = Sky on | 2889

(b) If the traversing light is linearly polarized, the different refractive
indices of the circularly polarized components mean that the components
will rotate by different angles. Recombining them, the plane of polariza-
tion is seen to rotate as the medium is traversed. The angle rotated after
traversing a distance L is (cf. Problem 4018)

1 1 1
$= (b1 +62) = Slks —k)L = Syuow’l.

4021

Some isotropic dielectrics become birefringent (doubly refracting) when
they are placed in a static external magnetic field. Such magnetically-biased
materials are said to be gyrotropic and are characterized by a permittivity
€ and a constant “gyration vector” g. In general, g is proportional to
the static magnetic field which is applied to the dielectric. Consider a
monochromatic plane wave

E(x,t)| _ [Eo KR x—wi)
B(X, t) Bo

traveling through a gyrotropic material. w is the given angular frequency

of the wave, and 1 is the given direction of propagation. Ep, By, and K

are constants to be determined. For a non-conducting (¢ = 0) and non-

permeable (# = 1) gyrotropic material, the electric displacement D and the
electric field E are related by

D =¢E+i(E x g),
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where the permittivity € is a positive real number and where the “gyration
vector” g is a constant real vector. Consider plane waves which propagate
in the direction of g, with g pointing along the z-axis:

g=ge, and n=e,;.

(a) Starting from Maxwell’s equations, find the possible values for the
index of refraction N = Kc¢/w. Express your answers in terms of the
constants € and g.

(b) For each possible value of N, find the corresponding polarization
Eo.
(Columbia)

Solution:

In Gaussian units Maxwell’s equations for a source-free medium are
vV-D=0, V-B=0,

1 9B
VXE= oo

where we have used £ =1 and B = H.
As the wave vector is K = Ke, and the electromagnetic wave is rep-

resented by E = Ege'(K2-w!)_ the above equations become (see Problem
4004)

oD

VXB-‘: —6?.

| —

K-D=0, K-B=0,
KxE=“B, KxB=-2D.
c c
Thus

2
Kx(KxE)=K(K-E)—K2E=“—C’KxB=_‘;’—2-D,

or 2
K?E-%D-K(K-E)zo.

Making use of D = ¢E + i(E x g), we have

c2

2 2
(k-5 )B-KK-B) - 5@ xg) =0,
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or, with N = £e,
2
[ .
(N? —¢)E — JK(K-E)—z(Ex g)=0.

AsK=Ke,, g=yge, N = Kw_c the component equations are

(N? —¢)E, ~igE, =0, 1)
igE, + (N* —€)E, =0, (2)
eE, =0. (3)

Eq. (3) shows that E, = 0. Hence the wave is transverse. For non-zero
solutions of (1) and (2), we require

NZ—¢ —ig _
det( zg NZ—E)_O’
giving
(N2 - 6)2 = 92)
ie.,
N=\etg.

Thus the index of refraction has two values,
Ni=vetyg, Na=e-y.
Substituting in (1) we obtain
for Nv: g(E. —1iE,) =0,

for Np: g(E: +1iE,) =0.

Since g # 0, N; is the refractive index of the right circularly polarized
components and Ns is that of the left circularly polarized component. Eqg
for the two components are respectively

Eor = iEyy, Ey, =0,

Eor = —iEOy ) Ey, =0.



Electromagnetic Waves 465

4022

A plane electromagnetic wave of angular frequency w is incident nor-
mally on a slab of non-absorbing material. The surface lies in the zy plane.
The material is anisotropic with

.2 2 2
Exe = NgE0 Eyy = Ny€o, €53 = NzE0,
Exy =€y, =€;2 =10, ng Fny.

(a) If the incident plane wave is linearly polarized with its electric field
at 45° to the z and y axes, what will be the state of polarization of the
reflected wave for an infinitely thick slab?

(b) For a slab of thickness d, derive an equation for the relative ampli-
tude and phase of the transmitted electric field vectors for polarization in
the = and y directions.

(UC, Berkeley)

Solution:

Consider a plane electromagnetic wave incident from an anisotropic
medium 1 into another anisotropic medium 2, and choose coordinate axes
so that the incidence takes place in the zz plane, the interface being the
z0y plane, as shown in Fig. 4.8. The incident, reflected, and transmitted
waves are represented as follows:

incident wave: /(K r-wt)

> 1 1
reflected wave: e!(K'r=w't)

. . ll. - "
transmitted wave: ¢* (K" t—«"?)

The boundary condition on the interface that the tangential components of
E and H are continuous requires that

K. =K., =K,
K,=K!=K"
w=w =uw".
From these follow the laws of reflection and refraction:
K(0)sind = K'(¢')sin ¢’
K(8)sin8 = K"(6")sing" .
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Fig. 4.8

(a) As the medium 1 given is air or vacuum, we have K = K’ = £,
For normal incidence
6=0=0"=0,

so that
K=Kn, K'=-Kn, K'=K'n. (n=¢,)
From Maxwell’s equation V x H = D, we have (Problem 4004)
K" x H' = —wD"”. (1)

As K" is parallel to e;, D” and H” are in the ry plane. Take the axes
along the principal axes of the dielectric, then

D! =eE!, (t==2,9,2)
and
E" = Ele, + Eje,, D= El=0.
If the incident wave is linearly polarized with its electric field at 45° to the
z and y axes, we have
E =E;e; + Eye,,

with E2+ E2? = E*>, E, = E, = %

Let the reflected wave be E’ = Ele, + E e,. The continuity of the
tangential component of the electric field across the interface gives

E;+ E, = E, 2)
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Ey+E,=E,. ®

Equation (1) also holds for the incident and reflected wave. As medium 1
is isotropic with permittivity £y, we have

W
nxH-= —EO%E = —Cof{‘(Erez + Eyey))

W
nx H = EO%E’ = coz(Ele, + Eje,),

as well as

Y pr= (e,,-,E e +€,,,,E ‘ey).

nx H' = - K" (u

The continuity of the tangential component of H across the interface, n x
(H+H’) = n x H", then gives

&g [
(B, - B) = ZZEY,

El -— EII

K( ) K"

Using e.; = n2eo, €yy = nleo, €:; = nleo and K" = %= %n= 0K,
these equations become

E, - B, = "2 g (4)
z :‘71 z)

y) "’szf "
Ey_Ey=;Ey' (5)

Combining equations (2) to (5), we have

E;=(_.__"‘“"3>E,, Bl = 2 g

n, + n2 n2+n,

2
(o _ (B2 Ty E" = 2n, E
E"_(nz+n§)E”’ Y T

AsE% 4 El = E? we have




468 Problems € Solutions on Electromagnetism

2

n,—n

n; +ng
2

n,—n

b=(——=)E,
n; + ny

showing that the reflected wave is elliptically polarized with E parallel to
the zy plane.

where

(b) For a slab of thickness d, the transmitted wave E” above becomes
the wave incident on the plane z = d. Denote the three waves at the
boundary by subscript 1, as in Fig. 4.9. We then have for the incident wave

Ki=Kn, Ki=nK, E|=FE_.e.+Eye,

2n,
Ey = ——E
1z "g + n, x
2n,
By, = ——
ly nZ4n, Y’
w
nx H, = ~Re (ezc Erzer + eyy Eryey);
1
for the refracted wave
K| =-Kin,

/ ! !
E) = Ej,e: + Eyyey,
W
' ’ y R
nx Hl = E (€I$Elxef + Enylyey),

for the transmitted wave
K{ = Kn,
'1’ = ;’ze, + E’l’yey s
" _ w " "
nxHy = —¢ope (Eizez + Efyey).
The boundary conditions for the interface z = d give

Erect®id 4 Bl o0 = B, (®)

Elyexk1d+ E{ye—tl(ld - E{Iye'Kd, (7)
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r4
Ky
a K le
I
Fig. 4.9
w { i w :
EEII(Elxe'Kld _ E;,e lK]d) = eoEE;’ze'Kdl
w iK.d ¢ —iKydy _ _ Y o iKd
Fleyy(Elye' 1% — lye e )—EOEEIye .
The last two equations can be rewritten as
. _: n, .
E]ce'K‘d— E{,e iK,d — ﬁ i,::e'Kd (8)
T
. g n, .
Elyeind - E{ye iK,d - _n_2 ilyetl\’d. (9)
y

The simultaneous equations (6), (7), (8), (9) give the amplitude and phase
of the three electromagnetic waves at the second interface. In fact, the
reflected wave K| again becomes the incident wave on the plane z = 0
and reflection and transmission will again occur, and so on. Thus multi-
reflection will occur between the upper and lower surfaces of the slab, with
some energy transmitted out of the slab at each reflection.

4023

Consider an electromagnetic wave of angular frequency w in a medium
containing free electrons of density n..

(a) Find the current density induced by E (neglect interaction between
electrons).

(b) From Maxwell’s equations write the differential equations for the
spatial dependence of a wave of frequency w in such a medium.
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(¢) Find from these equations the necessary and sufficient condition
that the electromagnetic waves propagate in this medium indefinitely.
(Columbia)

Solution:

(a) The equation of motion of an electron in the field of an electromag-
netic wave is

melfi—‘: = —eE,

where we have neglected the action of the magnetic field, which is of mag-
nitude vE/c, as v < c. For a wave of angular frequency w, -g—, — —iw and
the above gives

v=-—i E.
mew
Thus the current density is
. nee’E
Jj= —neev=1 .
mew
(b) Maxwell’s equations are
V-D=p, (1)
B
VXxE-= T (2)
vV-B=90, 3)
. OE
V x B = poj + Hoto - - (4)

Equations (2) and (4) give

d 8 1 OE
_ YR = _Z - i —
Vx(VxE)=V(V-E)-VE=-2(VxB) at(""”cz at)’

as ¢ = (pogo) 4.
We can take the medium to be charge free apart from the free electrons.
Thus (1) gives V-E = £ = 0. We can also write

) o 9% ponce? 9°E

Fogi = T o T T mew? o
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Hence | 2\ 8%
2 Wp —
VE — > (l - ;;) ¥ 0
with
W = nee?
P = MeEo

Similarly, we obtain

The wave equations can be written in the form
2 2
V2Eq + = (1 - “’—‘;)Eo =0
¢ w

by putting E(r,t) = Eo(r) exp(—iwt), giving the spatial dependence.
(c) The solution of the last equation is of the form Eg(r) ~ exp(iK -r),
giving
K% =w? —wk.
The necessary and sufficient condition that the electromagnetic waves prop-
agate in this medium indefinitely is that K is real, i.e. w? > w}, or

somewz

ne <
(] 82

4024

An electromagnetic wave with electric field given by
Ey = Ee!%*~v), E,=FE, =0,

propagates in a uniform medium consisting of n free electrons per unit
volume. All other charges in the medium are fixed and do not affect the
wave.

(a) Write down Maxwell’s equations for the fields in the medium.
(b) Show that they can be satisfied by the wave provided w? > ";‘:—
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(c) Find the magnetic field and the wavelength of the electromagnetic
wave for a given (allowable) w. Neglect the magnetic force on the electrons.
(Wisconsin)
Solution:
(a) (b) Refer to Problem 4023 for the solution.
(c) Using Maxwell’s equation

0B
VxE-= _W’
as
VxE=iKe, x Eje;, = —iKE;e,,
66—13 = —iwB,
we have
B = — i EoeKe-e,

Note that we have used Vx = —iKx from Problem 4004.

3. PROPAGATION OF ELECTROMAGNETIC WAVES
IN A MEDIUM (4025-4045)

4025

What is the attenuation distance for a plane wave propagating in a
good conductor? Express your answer in terms of the conductivity o, per-
meability g, and frequency w.

(Coulumbia)

Solution:

For a ohmic conducting medium of permittivity ¢, permeability 4 and
conductivity o, the general wave equation to be used is

V2E — /u-:l"i) - /wE =0.

For plane electromagnetic waves of angular frequency w, E(r,t) =
Eo(r) e~*“*, the above becomes

V2E, +/t6w2(l + i)Eo =0.
wWEe
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Comparing this with the wave equation for a dielectric, we see that for the
conductor we have to replace

£ sl-{-ior
— —
M H we/’

if we wish to use the results for a dielectric.

Consider the plane wave as incident on the conductor along the inward
normal, whose direction is taken to be the z-axis. Then in the conductor
the electromagnetic wave can be represented as

E = Eoei(k:-wt) .

The wave vector has magnitude

4
w ir\?
k= o= Wy ue (1 + w—e)
Let k = § 4+ ia. We have
B% - o? = wie, af = %w;w.

For a good conductor, i.e. for Z > 1, we have the solution

[wea
a_,B_.:t T

In the conductor we then have

E= Eoe—azei(ﬂz—wt) .

By the definition of the wave vector, # has to take the positive sign. As the
wave cannot amplify in the conductor, o has also to take the positive sign.
The attenuation length § is the distance the wave travels for its amplitude
to reduce to e~! of its initial value. Thus

5=l= —2—
o Vw;w
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4026

Given a plane polarized electric wave

E=Eoexp{iw[t-%(x.r)]},

derive from Maxwell’s equations the relations between E, K and the H
field. Obtain an expression for the index of refraction n in terms of w, ¢,
#, o (the conductivity).

(Wisconsin)

Solution:

Maxwell’s equations for a charge-free ohmic conducting medium are

VxE=-28, (1
VxH=J+%2, 2)
V.D=0, 3)
V.-B=0, 4)

with
D=¢E, B=uH, J=0E.

For the given type of wave we have 3%- — iw, V — —i22K (cf. Problem
4004). Equations (3) and (4) then give

E-K=B-K=0,

and (1) gives
il'cﬂ K x E = iwpH,
or n
=—KxE.
jec
Taking curl of both sides of (1) and using (2) and (3) we have

JE 0’E
2 o ——— ——
\Y E—;wat + pe 5

25 _ (e — P2 OE _
V‘E (pe 'w>8t’ =0,

or
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which is the equation for a wave propagating with phase velocity v given
by

Hence the index of refraction of the medium is

he [_ﬂe_(l-‘i)r
v BoEa we

Writing n = , /2£=(8 — ia), we have

B -a’=1, aff = —.

Solving for & and 3, we find

1/2 2 \1/2 |
_ [ e o? . / o
n= Sy \/(l+€27) +1—1 (l+€Tw.§) —1].

4027

A plane polarized electromagnetic wave F = E,,oe‘(K"“") is incident
normally on a semi-infinite material with permeability u, dielectric con-
stants ¢, and conductivity o.

(a) From Maxwell’s equations derive an expression for the electric field
in the material when o is large and real as for a metal at low frequencies.

(b) Do the same for a dilute plasma where the conductivity is limited by
the inertia rather than the scattering of the electrons and the conductivity
is

(c) From these solutions comment on the optical properties of metals
in the ultraviolet.

(Wisconsin)
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Solution:

Assume the medium to be ohmic and charge-free, then j = oE, p=0

and Maxwell’s equations are

6B 171 5 N
VXE—_E’ VXH_W-*-J’

V-D=V-B=0.

Assume also that the medium is linear, isotropic and homogeneous so that

D =¢E, B=uH.
For a sinusoidal electromagnetic wave
E(r,t) = E(r)e~*", B(r,t) = B(r)e !
in the conducting medium Maxwell’s equations become

V x E(r) = iwpuH(r),
V x H(r) = —iweE(r) + oE(r),
V- E(r)=V -B(r)=0.

Using these we obtain
V x (VxE)=V(V-E)-V’E=-V’E
= iwpuV x H = (wlep + iwpo)E,

ie.
V2E + (wkep + iwpo)E = 0.

Putting
N4
K//2 - w2p€u’ ell =+ 1;’

we can write Eq. (1) as
V2E(r) + K"?E(r) = 0.
This is Helmholtz’ equation with the plane wave solution

E(r) = Eoe'X"r

(1)
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where the propagation vector K has a complex magnitude

" ir\]? .
K'=wlp e+‘—d- = f + ia, say.
B and o are given by the simultaneous equations

{ ﬂz_az =w2pe,
Pa = %w/w,

which have solution

B = w\rie

1/2
Low e 2
2 Ut e2u? ’

1/2
oy | L —14 14 2 /
*= H 2 £%?

The given incident wave is £ = Eyoe‘(K““"), so that K = Ke,,
Eo = Eyoey, Ho = Hzpe,. Let the reflected and transmitted waves be

E = Eaei(K'-r—wl) , H = H:)ei(K'-r—wt)’

I3 ” 3 "
E" = Eges(K ~r—wt)’ H' = ngs(K r—wi) .

As E, B, K form a right-hand set and the incident wave is polarized with
E in the y direction, the vectors are as shown in Fig. 4.10. To satisfy the
boundary condition that the tangential component of E is continuous at all
points of the interface, we require that the exponents involved should be
the same, which in general gives rise to the laws of reflection and refraction,
and that the amplitudes should satisfy the following:

{ Eyo+ Eyy = B}y, (2)
Hzo~ Hpo = HZ, . 3)



478 Problems € Solutions on Electromagnetism

e
E; O—Bp
. uo e

X
€0, #0 Eb
By K
X' Bg
Eo
Fig. 4.10

As the waves are plane electromagnetic waves we have

_ ’60 r ’50 ]
Hz‘o - ;‘; EyOn Hz(] - E y0 s

"
"o K 1"

=—FK
z0 wi y0 )

and (3) can be written as

€0 KII
}’l‘; (Eyo - E,’,o) = Ul‘— ;Io~ (4)
Equations (2) and (4) give
2Ey
vo = ——Z;—K—, (5)
1 + o W

(a) If ¢ is large and real as for a metal at low frequencies, we have

2
251, 1+ 4122,
W €22 Ew

and thus
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or
I " — wl‘a l
2 (1+1)
Hence
Ely= 2By ~ 2By ———25"‘;“’ (1+4d)!
EQU E!U
(l + 2eowy ) +1 2eqwp ) 0
= 2B, [ 2 e-i%
[0

since, a8 u = pg, £¢ ~ €, ,/7&9;"—” ~ Vo > 1. Equation (5) then gives

Eopw
o0

- 1 —wt—2
Ej,~2 Eyoe az gi(fs~wt—F )ey

for the electric field in the conducting medium.

ne?

(b) For a dilute plasma y = o, € ~ £, With o =i e,

(1) becomes
V2E + poeo(w? —wi)E =0,

where w? = -":—3% is the (angular) plasma frequency of the medium. Thus

1
K" = —ci(w2 -wd).

If wp <w, K” is real and (5) becomes

v _ 2B 2E,o
O T KT T T (1—wh/w?)i?

giving
> Hn
E| = Eje'¥ i—whe,

If w} > w?, K" is imaginary and

BN = 2Ey
T 1Y iws/w? - )I/?’

E;/ - E;ioe—ll(“lze—iut )
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(c) The typical electron number density of metals is n ~ 10??/cm3.
The corresponding plasma frequency is

oo (e P _ (107 x 10° x (1.6 x 1071%)2 /*
P=\me/ T \91x10-3x 885 x 10-12

~ 0.56 x 1016 571,

For ultraviolet light, the angular frequency isw > 1016 s~1, So the condition
wp < w is satisfied and ultraviolet light can generally propagate in metals.

4028

A plane electromagnetic wave of frequency w and wave number K
propagates in the +2z direction. For z < 0, the medium is air with € = g¢
and conductivity ¢ = 0. For z > 0, the medium is a lossy dielectric with
€ > €0 and o > 0. Assume that y = yo in both media.

(a) Find the dispersion relation (i.e., the relationship between w and
K) in the lossy medium.

(b) Find the limiting values of K for a very good conductor and a very
poor conductor.

(¢) Find the e~! penetration depth 6 for plane wave power in the lossy
medium.

(d) Find the power transmission coefficient T' for transmission from
z < 0 to 2 > 0, assuming 0 < £w in the lossy medium.

(e) Most microwave ovens operate at 2.45 GHz. At this frequency,
beef may be described approximately by /ey = 49 and ¢ = 2 mho m~!.
Evaluate T and é for these quantities, using approximations where needed.
Does your answer for 6 indicate an advantage of microwave heating over
infrared heating (broiling)?

(MIT)

Solution:

(a) In a lossy medium, the wave number K’ is complex, K’ = (8 +
ia)e;. From Problem 4025, we see that K’ is related to w by K2 =
wz;x(s + z%) Thus

B* — a® = wlnee,
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1
af = §W/tod.

Solving the simultaneous equations we have

1/2
B = w /o€ l 1+ l+a'—2 /
- ,0 2 Ezwz ¥

1/2
a = w/ltgE L —144/1+ o’
- Mot 13 €2w? )

As refractive index is defined as n = Swﬁ = £ (B + ia), these equations give

the dispersion relation for the medium.
(b) For a very good conductor, Z > 1, and we have

. [whoo
ﬁ_a'v‘/———z .

For a very poor conductor, Z < 1, and we have

o

g
-
2V ¢

B = w/ie, a

(c) The transmitted wave can be represented as E3 = Egpe™** efBz-wt),

Thus the e~! penetration depth is

-1/2
Lo L 1Yy ip 2 ,
a  w /e |2 e2w? '

6=

2
For a very good conductor: é = .
Wiigo

For a very poor conductor: § ~ 2 \ /i
g ¥ Ko
(d) The solution of Problem 4011 gives

En 2
Em— 1+n''’

where n' is the index of refraction of the lossy medium. Here n’ is complex

n' = 5(ﬂ+ia).
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For 0 € cw,
n = 1 w €+i_‘7 Ho
" w/Jioko Ho 2V e
_ € l+i [ 4
- €o 2 ew
i
=n ‘+5z;)’
where
€
n=,/—
2]

The average energy incident on or leaving unit area of the interface in unit
time is the magnitude of the average Poynting vector S (Problem 4011):

. = _ 1]
For incident wave: 5| = £ [E1ol?.
2 Ko

. = 1 [e
For transmitted wave: S; = 71 [— |E0l?.
Ho

The power transmision coefficient is therefore
Eg

_gg &
T - == _—
S V €a | E1o

4n
(14 n)? + n20%/4c202’

2 _4n
T 1+ w2

(e) To cook beef in the microwave oven given, we have
-9
367

If beef can be treated as a poor conductor, the penetration depth and the
power transmission coefficient are respectively

_2 [e_2x7 8.85x10-’2~185cm
T oV 2 126 x 107 © '
_ 4n - 4x7
T (14 n)2+n202/de% 82472 x22/4x T2

(n = £ = 7)
€o

Ew =49 x

x 27 x 2.45 x 10° mho/m =~ 7 mho/m > o.

T

~ 0.43.
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The wavelength of infrared rays is approximately 103 cm, so its fre-
quency is ~ 3 x 10'3 Hz. For beef in an infrared oven, cw = 7"‘4‘;’;‘1‘};’ ~
10° mho/m > o, so it is still a poor conductor. Thus the penetration
depth and power transmission coeflicient of infrared rays in beef will be
similar to those for the microwaves. Hence for cooking beef, the effects of
the two types of wave are about the same as far as energy penetration and
absorption are concerned. No advantage of microwave heating over infrared

heating is indicated.

4029

(a) X-rays which strike a metal surface at an angle of incidence to the
normal greater than a critical angle 8, are totally reflected. Assuming that
a metal contains n free electrons per unit volume, calculate 84 as a function
of the angular frequency w of the X-rays.

(b) If w and 0 are such that total reflection does not occur, calculate
what fraction of the incident wave is reflected. You may assume, for sim-
plicity, that the polarization vector of the X-rays is perpendicular to the
plane of incidence.

(Princeton)

Solution:
(a) The equation of the motion of an electron in the field of the X-rays
is

mx = —eE = —eEge ™!,

Its solution has the form x = xpe %!, Substitution gives

mw?x = eE.

Each electron acts as a Hertzian dipole, so the polarization vector of the
metal is

P = —nex = xgE,
giving the polarizability as

ne

T meow?
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"62

ppd then the index of refraction of the metal is

Let w3 =

w% 1/2
n=\/1+x=(l—ﬁ-) ,
and the critical angle is

2\ 1/2
#o = arcsin (l - w—P) .

(b) As the X-rays are assumed to be polarized with E perpendicular to
the plane of incidence, E is tangential to the metal surface. Letting a prime
and a double-prime indicate the reflected and refracted rays respectively,

we have
E+ Ell — E”,

Hcos® — H' cos® = H" cos 6" .

(1)
(2)

Note that E, H and the direction of propagation form a right-hand set. As

=49, VEE = /uH, B pg,

(2) can be written as

[€ cosd” ncos§”
E — El/ = e E” — i .
€q cosf cos @ E

(1) and (3) together give

cosf — ncos@”
cos@ + ncosf”

EI
E
As § = ¢’ and the intensity is § \/;ng, the reflection coefficient is

R= E' 2__ cos — ncos@"\?
“\NE/] T \cos@+ncosd )

(3)
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4030

Consider a space which is partially filled with a material which has
continuous but coordinate-dependent susceptibility x and conductivity o
given by (Xoo, A, 0o, are positive constants):

(2) { , -0 < 2<0,

)=

X Xoo{l — e72%), 0<z<o0;
(2) {0, -00< 2<0,
zZ)=

7 Ooo(l —e~2%), 0<z<o00.

The space is infinite in the z, y directions. Also 4 = 1 in all space. An
s-polarized plane wave (i.e., E is perpendicular to the plane of incidence)
traveling from minus to plus infinity is incident on the surface at z = (0 with
an angle of incidence @ (angle between the normal and ko), (koc = w):

E; (r,t) = Aexpli(zkosin @ + zko cos @ — wi)]e, .
The reflected wave is given by
E;‘(r, t) = Rexpli(zkosin @ — zkg cosf — wt)le,
and the transmitted wave by
E] (r,t) = E(z) expli(zk’siny — wt)]e, .

A and R are the incident and reflected amplitudes. E(z) is a function which
you are to determine. v is the angle between the normal and &’.

(a) Find expressions for the incident, reflected and transmitted mag-
netic fields in terms of the above parameters.

(b) Match the boundary conditions at z = 0 for the components of the
fields. (Hint: Remember Snell’s law!)

(c) Use Maxwell’s equations and the relationships
47i
D(r,t) = e(r)E(r, t), e(r) = 1+ 4nx(r) + e a(r)

to find the wave equation for E}‘(r,t).
(SUNY, Buffalo)
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Solution:

(a) The incident and reflected wave vectors are respectively
k' = (kosind, 0, kocos8),  k® = (kosind, 0, —kocos ).

For sinusoidal plane electromagnetic waves, we have (Problem 4004) V —

ik, % — —iw. Maxwell’s equation Vx E = -1 %—?— then gives

ikxE= -—-:; (—iw)B,
or .
B=—-kxE.
w
Thus
B'= ‘—i-kl X E = (—e;cos8 + e,sin8)E,(r, 1)
= (—eycosf + e, sin @) Aexpli(zkosin § + 2kg cos§ — wi)],
BR = (eg cos@ + e, sin @) Rexp [i(:z:lco sin@ — zkgcosf — wt)] .

The magnetic field of the transmitted wave is

BT = Sy xET
w

= ;C; [e, E(z)(ik'siny) — e, 3§£z)] expli(K'z siny — wt)}.

(b) E; and H; are continuous across the boundary, i.e., for z =0
1 R _pT
Ey(r’t) + Ey (rat) - Ey (l‘, t) ’

[B'(r,t) + BR(r,t)] - e, = BT(r,1) - e, .

B, is also continuous across the boundary:
[B(r,t) + BR(x,t)] -e, = BT(r,t) -e, .
Also, Snell’s law applies with 2z = 0:

kosin@ = k’'siny.
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Combining the above we obtain

A+ R= E(O) ,
ko(R— A)cost = ;(6E(z)) .
a z2=0
(¢) Combining Maxwell’s equations
1dB 13D 4=
VxE-= _2.67’ VXH—-E—(?T'f'-;-J,

where

D=¢r)E, B=pyH=H, J=0E,
we have

w?
Vx(VxE)=—- —(v H) =2 (e+i4—:3)n.

As

Vx(VxE)=V(V-E)-VE=-V’E,
for a charge-free medium, the above becomes
2
V’E + = ( +2L)E 0.
c

This is the wave equation for a charge-free conducting medium. Apply this
to the transmitted wave. As

VzET - 32 62 82 kl
“\ozztoge Toz E(z) expli(zk’siny — wi)]ey
E(z)

[ E(2)k" siny + & 32 ] expli(zk’ siny — wt)]e, ,

e=1+4nx

by the definition of electric susceptibility,

X = Xoo(l — €*¥), 0= 00(l —e™ M),

we have the equation for E(z):

82:; G e [1 +4n (Xoo + 3'3) (1- e'*‘)] E(z) - ¥”sin’y E(z) =
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4031

A plane polarized electromagnetic wave is incident on a perfect con-
ductor at an angle 6. The electric field is given by

E = EyRe exp [i(k - r — wt)].

E is in the plane of incidence as shown in Fig. 4.11. Starting with the
boundary conditions imposed on an electromagnetic field by a conductor,
derive the following properties of the reflected wave: direction of propaga-
tion, amplitude, polarization and phase.

(MIT)

Fig. 4.11

Solution:

In a perfect conductor, E” = B” = 0. Since the normal component of
B is continuous across the interface, the magnetic vector B’ of the reflected
wave has only tangential component, as shown in Fig. 4.11. As for a plane
electromagnetic wave, E, B and k form an orthogonal right-hand set, E'
and k' must then be in a plane containing k and perpendicular to the
boundary (the plane of incidence). Also, because of the continuity of the
tangential component of E across the interface, the electric vector E of the
reflected wave must have the direction shown in Fig. 4.11 and we thus have

Esinf — E'sind’ =0.

In addition, for the boundary conditions to be satisfied, the exponents in
the expressions for E and E' must be equal at the boundary. This requires
that

k-r=k'-r,

or
kcosf = k'cost',

taking r in the interface and in the plane incidence.
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Ask=Fk =%, cosf = cosd’, or 6 = ¢, from which follows E = E'.
Therefore, the direction of propagation of the reflected wave, given by the
vector k’, makes the same angle with the surface of the conductor as that
of the incident wave, given by k; both are in the plane of incidence. The
magnitude E’ of the electric field of the reflected wave is the same as that
of the incident wave, and the reflected wave remains linearly polarized.
However, as E; = —E}, a phase change of 7 occurs on reflection.

4032

(a) Consider a long straight cylindrical wire of electrical conductivity
o and radius a carrying a uniform axial current of density J. Calculate the
magnitude and direction of the Poynting vector at the surface of the wire.

(b) Consider a thick conducting slab (conductivity o) exposed to a
plane EM wave with peak amplitudes Eg, By. Calculate the Poynting
vector within the slab, averaged in time over a wave period. Consider o
large, i.e. o> weyp.

(¢) In part (b), if o is infinite, what is the value of the average Poynting
vector everywhere in space?
(Wisconsin)

Solution:

(a) Use cylindrical coordinates (r, 8, z) with the z-axis along the axis
of the wire and let the current flow along the +z direction. Assume the
conductor to be ohmic, i.e., J = ¢E. Then E = % = i—e, inside the wire.
Due to the continuity of the tangential component of E across the interface,
we also have E = i—e, just outside the surface of the wire. Using Ampére’s
circuital law § B - dl = pol we find the magnetic field near the surface of

the wire as
pol pod ma? puoda
ey = ey =

B=_— = .
27a Ima ¢ 2 o
Hence the Poynting vector at the surface of the wire is
1 2
S:-——ExB:-—e,x‘—]—aegz—J ae,-.
o .4 2 20

(b) For simplicity suppose that the normal to the surface of the slab is
parallel to the direction of wave propagation, i.e., along the +2z direction.
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Then the wave vector in the conductor is
K=8+ia=(f+ia)e;.

As o is large, we have (Problem 4027)

woo

a=f= 7

taking s & pp (nonferromagnetic).
The electric field inside the conductor is

E(r,t) = Eo(r)e~ ¥ ef(P2-w1)

and the magnetic field is

H:—I—KxE=L(ﬁ+ia)e,xE
Who Wi

=~ 1/—E—e"*e, x B,
Who

so the Poynting vector is

S=ExH=,[—¢%E,,
wig

as E-K = E.e; =0 for a plane wave.
Averaging over one period, we obtain (Problem 4042)

(c) As ¢ — 00, @ — 0o and /ge2** — 0. That is, S inside the
conducting slab becomes zero. In this case, the wave will be totally re-
flected at the surface of the slab. Moreover, outside the slab the incident
and reflected waves will combine to form stationary waves. Hence S = 0

everywhere.
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4033

A slowly varying magnetic field, B = Bgcoswt, in the y direction
induces eddy currents in a slab of material occupying the half plane z > 0.
The slab has permeability # and conductivity o. Starting from the Maxwell
equations, determine the attenuation of the eddy currents with depth into
the slab and the phase relation between the currents and the inducing field.

(UC, Berkeley)

Solution:

From Maxwell’s equations for a conductor of constants u, ¢, o

oB
V-E=0, VXE—-‘6—t,
vV:-B=0, VxB:paE+E-g-tE-.
We find oB OB
- V2B = - - _ -
Vx(VxB)=-V’B Bo S5 = S

With the given geometry and magnetic field, we expect
B’ = Bgexp[i(kz — wt)]ey
in the conducting material and the above equation to reduce to

ﬂ_ _a_B._ 59'22-0
92 MO THEGE T

and further to
—k? +ipow + pew? = 0.

Hence

i\ 3
k=w ;ts(l+-1£> =a+if.
Ew

Since the given frequency is low we can take ew € 0. Accordingly we

have
«+if = \fipow = ,/%(1 +1i),

/ww
arxfx I—2—

or
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Therefore in the conducting material we have
B = Bée-ﬂzei(a:—wt)ey .

Thus the magnetic field will attenuate with increasing depth with attenu-
ation coefficient 3. The last Maxwell’s equation above gives

V x B’ = poE' — ipewE' ~ poE’
as 0 >» ew. Thus

E’zLVxB'=—ia—B—‘,’e
o uo 8z °

_ik s X . X
—‘;B;e, = :)—0_8'7 e"'TB;e,
! v
— iB‘l)e-»ﬂzei(az—wt—%)ez .

\ uo

Hence the induced current density is

J=gE' = a—wBée'p’e‘(a““’“%)ez.
V »

Thus there is a phase difference of § between the current and the inducing
magnetic field.

4034
Given a hollow copper box of dimensions shown in Fig. 4.12.
(a) How many electromagnetic modes of wavelength A are there in the
range (4/V5) < A < (8/V13) em?
(b) Find the wavelengths.
(c) Identify the modes by sketches of the E field.

(d) Approximately how many modes are there in the range (0.01) <
A €(0.011) cm?
(UC, Berkeley)
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z
g=2cm
b b=3em
h=1cm
a
h
y
x
Fig. 4.12

Solution:

(a) For this cavity resonator the wavelength of the stationary wave
mode (m, n, p) is given by

/\m,n,p‘:
LR OLEN:

a

2
T, ™
VaE+5 4+

4 8 13 2 ? 2.5
FOI'VES/\S m,ﬁﬁ%‘*‘%""]) Sz.
As the integers m, n, p must be either 0 or positive with mn+np+pm #£ 0,
we have

m=1 n=3; m=2,n=1; forp=0;

m=1, n=0 m=0,n=1; forp=1.

However, each set of m, n, p corresponds to a TE and a TM mode. Hence
in the wavelength range 45 <AL 8‘3 cm there are eight resonant modes:
2 for each (1, 3, 0), (2,1,0), (1,0,1) and (0, 1, 1).

(b) The wavelengths of the four double modes are respectively 7“5, 7";—0,
7“;, 7% cm. However there are only two different resonant wavelengths.

(c) The E field in the cavity has components
E; = A cos(ksz)sin(kyy)sin(k,z),

Ey = Aasin(k.z) cos(kyy)sin(k,z),
E, = Assin(kyx)sin(kyy) cos(k,z),
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) ky='—'

b ’ 3 ¢ ’ kSAl+kyA2+k;A3=0.

The four electric modes have E fields as follows:

mode (1, 3,0): E; =0, E, =0, E, = Azsin (Iz) sin(7y);

2

mode (2,1,0): E;. =0, E, =0, E, = Azsin(xz)sin (%y) ;

2

mode (1, 0, 1): E; =0, E, = A;sin (lz) sin(xz), E; =0;

mode (0, 1, 1): E; = A;sin (%y) sin(xz), E, =0, E; =0.

(d) If

we have

2

VE+T+P

00l cm < <0.011 ecm,

2 2
181.87 < '%‘—+ %+p’ < 200% .

This corresponds to an ellipsoid shell in the mnp-space where each unit cell

with positive m, n, p represents two electromagnetic modes, one TE and
. 2 2

one TM, with frequency less than or equal to 2(%-+ %~ +p?)~ 4, of volume

AV =V, -\
= %w(? x 200 x 3 x 200 x 200 — 2 x 181.8 x 3 x 181.8 x 181.8)
= %n x 2 x 3 x (200% - 181.8%) ~ 5 x 107.

Hence in the given range of wavelengths there are 2- 1 - AV = 1.25 x 107
modes, where the factor % is for the requirement that m, n, p should all be
non-negative.
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4035

Estimate the number of distinct standing light which can exist between
frequencies 1.0 x 10!% Hz and 1.2 x 10'® Hz in a cavity of volume 1 cm3.
(UC, Berkeley)

Solution:

Consider a cubical cavity resonator of sides of length a. The resonant
frequency f is given by

2
4f = g (m® 40?4 p7),

where m, n, p are positive integers.
Each set of positive integers m, n, p with

4q2f?
2 2,.2 2 _
m+n°4+p°<r°= "
corresponds to a frequency < f(r), where v = \/-%

For wavelengths short compared with a, we can consider an m, n, p-
space where each unit cell represents a set of m, n, p. Then the number of
modes N with frequencies < f(r) is equal to the volume of % of a sphere
of radius r in this space:

1 4 5  4xf3V
—8'3" T T3
where V = a® is the volume of the cavity.

However, each set of m, n, p actually corresponds to two modes of the
same frequency, one electric and one magnetic. Thus
8w f3V

33
Under the condition of short wavelengths, this formula can be applied to a
cavity of any shape.

For this problem, we have V = 1 cm® and shall assume the dielectric
of the cavity to be air. Then

N =

N = 8x f3 _
33
Hence the number of modes between the two given frequencies is

_ 87
T 3 x (3 x1010)3
=2.26 x 10'4.

AN [(1.2 x 10'%)3 — (1.0 x 10'%)?3]
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4036

Consider a rectangular waveguide, infinitely long in the z-directions,
with a width (y-direction) 2 cm and a height (z-direction) 1 em. The walls
are perfect conductor, as in Fig. 4.13.

(a) What are the boundary conditions on the components of B and E
at the walls?

(b) Write the wave equation which describes the E and B fields of the
lowest mode. (Hint: The lowest mode has the electric field in the z-direction
only.)

(¢) For the lowest mode that can propagate, find the phase velocity
and the group velocity.

(d) The possible modes of propagation separate naturally into two
classes. What are these two classes and how do they differ physically?

(Princeton)

y
ch‘//
-

NACEEE
cm

Id
7

Te -

Fig. 4.13

Solution:

(a) The boundary conditions are that the tangential component of
E and the normal component of B are zero on the surface of a perfect
conductor. In this case

B, =0, E,=FE;, =0, fory=0,2cm;
B,=0, E;=Ey=0,forz=0,1cm.

It follows from V - E = 0 that %2 = 0 for y = 0, 2 cm and 2Zx = 0 for
2=0, 1 cm also.
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(b) For sinusoidal waves of angular frequency w, the wave equation
reduces to Helmholtz’s equation

V2E + B?’E =0
with )
, W
k* = =
and Maxwell’s equation
0B
E=—-——F—
V x 5
reduces to .
B= —iV xE.
w

For the lowest mode, E; = E, = 0, E = E,. Thus it is a TE wave,
given by the wave equation V2E, + k%E, = 0. The magnetic vector is then
given by
—i 0E, i 8K,
w Oy VT w oz’

(c) For the lowest mode, the wave can be represented by

B, =

w oy’ B, =0.

E, = Y(y) Z(z)ei(k';-—wt) .
Helmholtz’s equation can then be separated into

ay &2z,
d—y-2-+k1Y=0, 'd—22—+k2Z=0,

with k? + k2 = k2 — k2. The solutions are

Y = A cos(k1y) + Aasin(kyy),
Z = Bj cos(kq2) + Basin(kq2) .

The boundary conditions that
E;,=0fory=0, 2,

OE,
0z

=0forz=0,1
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give Ay = B2 =0, ky = 3w, k2 = nm, m, n being 0 or positive integers.

Hence
l/2 ‘“2 m 2 } "2 ”2
02 2 !

E, = Csin (%‘-wy) cos(nwz)e'F's=wt)

Let the phase velocity in the waveguide be v. Then k' = %, or

{5 ()]

n can be allowed to have zero value without E, vanishing identically. Hence
the lowest mode is TE;o, whose phase velocity is

3

w
V=E ———=——2>2¢C.

x2
4

v_dw_ dk’ _1_c2k,_c2 w2 w2
$ 7 dk' T \dw T w T w2V oe? 4 v’

TN
W

The group velocity is

(d) Electromagnetic waves propagating in a waveguide can be clas-
sified into two groups. One with the electric field purely transverse but
the magnetic field having a longitudinal component (TE or M mode), the
other with the magnetic field purely transverse but the electric field hav-
ing a longitudinal component (TM or E mode). For the type of guiding
system under consideration, it is not possible to propagate waves that are
transverse in both electric and magnetic fields (TEM mode).

4037

As in Fig. 4.14 an electromagnetic wave is propagating in the TE mode
in the rectangular waveguide. The walls of the waveguide are conducting
and the inside is vacuum.
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(a) What is the cutoff frequency in this mode?

(b) If the inside is filled with a material with dielectric constant ¢, how

does the cutoff frequency change?
(Columbia)

oo [y —ud

Fig. 4.14

Solution:

In TE modes E; = 0, H, # 0, using the coordinate system shown in
Fig. 4.14. The transverse, i.e. ¢ and y, component waves in the waveguide
are standing waves, while the z component is a traveling wave. Let m and
n denote the numbers of half-waves in the r and y directions respectively.
The wave numbers of the standing waves are then

k, = ? , ky = Eaz’

while the wave number of the traveling wave is
k2 =k* — (k2 +kD),
where k% = pew?.
(a) If the inside of the waveguide is vacuum, we have

k= [loe‘owz ,

2 2
k2 = pogow? ~ [(Ebz) + (1%) ] .

If k2 < 0, k, is purely imaginary and the traveling wave ~ ¢'*** becomes
exponentially attenuating, i.e., no propagation. Hence the cutoff frequency
is given by

or

ik,
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(b) If the inside of the waveguide is filled with a dielectric, we can still
use the results for vacuum with the substitution g — €, go — p. Since
4 ~ po generally, the cutoff frequency is now given by

B m 2+ n 2
wm"_‘/s;to b a)

4038

(a) Give the wave equation and the boundary conditions satisfied by an
electromagnetic wave propagating in the z direction in a waveguide with
sides a and b. Assume that the waveguide is perfectly conducting with
€ = p = 1 inside.

(b) Determine the lowest angular frequency w at which a transverse
electric (TE) wave polarized in the z (vertical) direction can propagate in
this waveguide.

(Wisconsin)
Solution:
(a) Refer to Problem 4036.

(b} From Problem 4037 we see that the TE;q mode has the lowest
frequency for a > b and that its cutoff angular frequency is wyo = <.

4039

(a) Write out Maxwell’s equations for a non-conducting medium with
permeability p and dielectric constant €, and derive a wave equation for
the propagation of electromagnetic waves in this medium. Give the plane
wave solutions for E and B.

(b) Determine the electric and magnetic fields for the lowest TE mode
of a square waveguide (side {) filled with the foregoing medium. State the
boundary conditions which you use.

(c) For what range of the frequencies w is the mode in (b) the only TE
mode which can be excited? What happens to the other modes?

( Wisconsin)
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Solution:
(a) Refer to Problem 4010.

(b) Use the coordinate system shown in Fig. 4.15. The boundary con-
ditions are given by the continuity of the tangential component of E across
an interface and V-E =0 as

OF
E,=E, =0, a;:=0f01'.1:=0,1,
E.=FE, =0, a—E—!L=0f01'y=0,l.
dy
Yy
{
x
0 !
Fig. 4.15

The electromagnetic wave propagating inside the waveguide is a traveling
wave along the z-direction, and can be represented as

E(m) y) z’ t) = E(Ii y)ei(k'z—w‘)

The wave equation then reduces to

(3—2+"’—2 E(z,y) + (K — K)E(z, ) = 0
azz ayz )y F1 z)y - ¥

where k? = pew?.
Let u(z,y) be a component (z, or y) of E(z,y). Taking u(z,y) = X(2)Y (y),
we have

d*X

2 _
WJrk,X_O,
a2y
d—y2+kyY=0,

with
kD + by + kD =k
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Hence
u(z,y) = [C) cos(k.z) + D, sin(k;2)}[C3 cos(kyy) + Da(sin kyy)].
The boundary conditions require that
E; = A cos(k;z)sin(kyy)eitks2 =21

E, = Agsin(k.z) cos(kyy)e'(ks*~wt) |
E, = Azsin(k.z) sin(kvy)e"(k.:-—m) ’

kzz-n—;-‘{, ky_—.n—;r-, m,n=0,1,2,....

i
We thus have k, = [pew2 —(m?+ 112)%;-] *. For propagation we require k,
to be real. Hence the lowest TE modes are those for which m,n =0, 1 or
1, 0, i.e., the TEy; or TE o mode.
For the TE;o mode the electric field is

E, =0, E, =0, E, = A;zsin (’_’If) eikaa—wt)
The magnetic field is obtained using H = —J—C“ ¥V x E to be

H, =0,
H, = __ck; A, sin (ﬁ{) ei(k,z-—wt)’
wit l

H, = -2XZ Ay cos T2 ) eikaz-wt)
wpl l

Similar results can be obtained for the TEg; mode.

(¢) The cutoff (angular) frequency of the TE;o or TEp; mode is

S ORI

and the cutoff frequency of the TE;; mode is

e () -
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Hence if the TEq and TEg; modes are to be the only propagating waves
in the waveguide then we require that

_T_ <w< _\/2"_ )
Vel — N/TA]
For the other modes, k, will become imaginary, k, = ik}, and the prop-

agating factor will become e~*¥.%. Such waves will attenuate rapidly and
cannot be propagated in the waveguide.

4040

A waveguide is constructed so that the cross section of the guide forms

a triangle with sides of length a, @, and v/2a (see Fig. 4.16). The walls

are perfect conductors and € = €5, g = pg inside the guide. Determine the

allowed modes for TE, TM and TEM electromagnetic waves propagating in

the guide. For allowed modes find E(z,y, z,t), B(z,y, z,t) and the cutoff
frequencies. If some modes are not allowed, explain why not.

(Princelon)

s
e

Fig. 4.16

Solution:

We first consider a square waveguide whose cross section has sides of
length a. The electric vector of the electromagnetic wave propagating along
+2z direction is given by

E, = A cos(krz) sin(kqy)e’(F35=v1) |
Ey = Ajsin(k; z) cos(kyy)eits*—w9)
E, = Assin(kyz)sin(ksy)e’ =9,
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with
2
k?+k§+k§=k2=yo€ow2:i,

CZ
k1AL 4 kg Ag — tk3Az =0 ,

mn
ky=—,
a
nw
ky = —.
a

The boundary conditions being satisfied are
E,=E,=0fory=0and E, = E, =0forz=a.

For the waveguide with triangular cross section, we have to choose from
the above those that satisfy additional boundary conditions on the y = =
plane: E;, = 0, E;cos § + Eysin = 0 for y = z. The former condition
gives A = 0, while the latter gives A} = A, and tan(k1z) = — tan(kz2),
or A = —A; and tan(kiz) = tan(kqz), i.e., either ky = —kq, A; = Az, or
ky = k3, A; = —A,. Thus for the waveguide under consideration we have

E; = —Acos(kiz)sin(kyy)e’ks?=wt) |
Ey = Asin(k z) cos(kyy)eitksz—wt)

E, =0,
with
nw w? n2x?
b= eVt
The associated magnetic field can be found using Vx E = —%, orkxE =
wB as

B, = —k—sEy = —%A sin(kyz) cos(k; y)e'(ks*~wt) |
w

By = L—Er = —%A cos(kz) Sin(kly)e‘(ksz—wt) ,

1 k
B, = ;(k,Ey —kyEy) = —jA[sin(klx)cos(kly)

+ cos(kyz) sin(k; y)]e"(kaz—wt)

= %A sin[k; (z + y)]ei(k'z—w‘) .
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Thus the allowed modes are TE,, _, or TE, ,, but not TM. The cutoff

frequencies are
nme
wp = V2

a

4041
As in Fig. 4.17, two coaxial cylindrical conductors with r; and rp form

a waveguide. The region between the conductors is vacuum for z < 0 and
is filled with a dielectric medium with dielectric constant £ # 1 for z > 0.

(a) Describe the TEM mode for 2 < 0 and z > 0.
(b) If an electromagnetic wave in such a mode is incident from the left
on the interface, calculate the transmitted and reflected waves.

(c) What fraction of the incident energy is transmitted? What fraction
is reflected?
(Columbia)

Solution:

Interpret € as the relative dielectric constant (permittivity = eg¢) and
use SI units.

(a) Consider first the region z > 0. Assume g = yo. For sinusoidal

waves % — —iw, and the wave equation becomes

w2 [E
(o) {w -0

where ¢ is the relative dielectric constant of the medium, i.e. permittivity
= gg9. Because of cylindrical symmetry, special solutions of the above
equation are

E'(r,t) = E'(z,y)e’*'* 9 |
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B'(r,t) = B'(z, y)ei(k"'”') ,

with 5
9 _ W
k'-—é‘c—z.
Let o2
2 _ w2
Vi=Vitaa

V? being the transverse part of the Laplace operator V2. Decompose the
electromagnetic field into transverse and longitudinal components:

E' =E{+ E,e,, B’ = B + B;e;.

For TEM waves B, = E, = 0. Then Maxwell’s equation for a charge-free
medium V - E’ = 0 reduces to

Also from Maxwell’s equation V x E/ = —88—]3' = iwB’ we have
V, X E; =0.

These equations allow us to introduce a scalar function ¢ such that
E,=-V¢, Vi =0.
Furthermore, symmetry requires that ¢ is a function of r only and the last

equation reduces to
L @‘1) =0
rdr\ or) 7’

¢=Chr+C

whose solution is

C, C’ being constants.
Then the electric field is
Ei(r,t) = g LR OPS

and the associated magnetic field is given by Vx E' = —%‘% with V — i}/,
& — —iw as

B:(r, )= %93 b 4 E; = Cr_{g ei(k':-wt)e‘ )
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Therefore, in the z > 0 region which is filled with a medium of relative
dielectric constant ¢, the TEM waves can be represented as

E'(z,t) = ge"("""‘”)e,. ,
B/(z,t) = -—-Cf ei(k’z—wt)e‘ .
Similarly, for the z < 0 region, ¢ = 1 and the TEM waves are given by

E(:c,t) — éei(kz—wt)er ,

B(z,f) = 2 b=y,

where A and C are constants, and k = ¢

(b) Consider a TEM wave incident normally on the interface 2 = 0 from
the vacuum side. Assuming that the transmitted and reflected waves both
remain in the TEM mode, the incident and transmitted waves are given by
E, B and E’, B’ respectively. Let the reflected wave be represented as

E"(r, t) = ge—i(kzﬁut)er ,

B"(r,t) = —;D: e ikatut)g,

Note that the negative sign for B” is introduced so that E”, B” and k" =
—k form a right-hand set.
The boundary conditions that E; and H; are continuous across the
interface give
(Br + By — Ep)i=0 =0,

(Bs + By — By)ls=0 =0

and hence oA 1- e
- Ve
= — D=——Y_A
C=1 + €' 1+e
(c) The coeflicients of reflection and transmission are therefore respec-
tively
R= |EHHIItI _ IEIIBI/-I _ D 2— 1_\/5)2
T |EH*| T |EB*| T \A/) T \l+E/"’
_ lElHltl !E’B"l ( ) _ ‘/‘
T=TEnT = B51 - \4) VT Trvar
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As the incident, reflected and transmitted waves are all in the same
direction, R and T respectively give the fractions of the incident energy
that are reflected and transmitted. Note that R + T = 1 as required by
energy conservation.

4042

A waveguide is made of two perfectly conducting coaxial cylinders
with the radiation propagating in the space between them. Show that it
is possible to have a mode in which both the electric and magnetic fields
are perpendicular to the axis of the cylinders. Is there a cutoff frequency
for this mode? Calculate the velocity of propagation of this mode and the
time-averaged power flow along the line.

(Columbia)

Solution:

Take a coordinate system with the z-axis along the axis of the cylinder
and for simplicity take the region between the cylinders as free space. As
was shown in the solution of Problem 4041, it is possible to obtain solu-
tions of the wave equation which have E, = B, = 0 without the other
components being identically zero. Hence it is possible to have TEM waves
propagating in the space between the cylinders. Furthermore, the TEM
waves can be represented as

E = ﬁel‘(kz—wt)er , B = iei(kz-wt)e‘ ,

r rc

where A is a constant and k is a real number equal to %. Thus there is no
cutoff frequency for the TEM waves and the phase velocity of the waves is
c.

The Poynting vector averaged over one period is
1
(N) = (ReE x Re H) = Z((E-}-E‘) x (H+H"))
1
= Z((ExH)+(E‘ x H*) + (E x H*) + (E* x H))

1 .| .
_EEXH —2;10EXB ,
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where we have used the fact that E x H and E* x H* vanish on averaging
over one cycle. Thus

[ A2

— —e;.
Ho r2

(N) = 3

The average power flow is then

[. b (N)2rrdr = \/_f‘_ﬂo- 7A%In (%) ,

where a and b (b > a) are the radii of the two cylinders.

4043

A transmission line consists of two parallel conductors of arbitrary but
constant cross-sections. Current flows down one conductor and returns by
way of the other. The conductors are immersed in an .insulating medium
of dielectric constant € and permeability y, as shown in Fig. 4.18.

(a) Derive wave equations for the E and B fields in the medium for
waves propagating in the z direction.

(b) Obtain the speed of propagation of the waves.

(¢) Under what conditions can one define a voltage between the two
conductors? (Note: to define a voltage all the points on a given plane
2z = constant on one conductor must be on an equipotential. Those on the
other conductor may be on another equipotential.)

2 o

Y u,e

zet_’x

Fig. 4.18

(Princeton)

Solution:
(a) From Maxwell’s equations for a source-free medium,

98 VXH=@-

VXE=—'5{') 8tl
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V.-D=0, V-B=0,

we obtain s OB
Vx(VxE):—anB=——yeW.
As
Vx(VxE)=V(V-E)-V2E=-VIE,
we have OE
VZE_#EW =0.

The same wave equation applies to B. For a transmission line the
waves can be taken to be purely transverse (TEM). We can write

E(r,t) = Eo(z,y)e’**~+.

The wave equation then becomes
62 32
('gz—z + a—yi)Eo + (pew2 - kz)Eo =0.

(b) The phase velocity v of the waves is obtained from the wave equa-
tion:
1
0z = ke

or
1

V= ——.
VER
(c) The required condition is A > I, | being the dimension of the
transverse cross-section of the conductors.

4044

The spectral lines from an atom in a magnetic field-are split. In the
direction of the field the higher frequency light is:

(a) unpolarized, (b) linearly polarized, (c) circularly polarized.
(CCT)
Solution:

The answer is (c).
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4045

To go through the ionosphere an electromagnetic wave should have a
frequency of at least

10, 10%, 107, 10° Hz.

(Columbia)

Solution:
To go through the ionosphere, the angular frquency w of a wave should
be greater than the plasma frequency w, = \/ZV-;Z': The maximum electron
density of a typical layer is N ~ 10'® m=3. For an electron, <~ = 3 x

3 3 £gm
10% m3s~2. Hence

wpx V3 x 1016~ 1.7 x 105571,

Thus the answer is 107 Hz.

4. ELECTROMAGNETIC RADIATION AND RADIATING
SYSTEMS (4046-4067)

4046

A measuring device is disturbed by the following influences. How would
you separately protect the device from each one?

(a) High frequency electric fields.
(b) Low frequency electric fields.
(c) High frequecy magnetic fields.
(d) Low frequency magnetic fields.
(e) D.C. magnetic fields.
(Wisconsin)
Solution:

(a), (c) High frequency electric and magnetic fields usually come to-
gether in the form of electromagnetic radiation. To protect a measuring
device from it, the former is enclosed in a grounded shell made of a good
conductor.
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(b) The same protection as in (a) can be used. The thickness of the
conductor should be at least a few times the depth of penetration.

(d), (e) Enclose the device in a shell made of y-metal (a Ni~Fe alloy
containing Mo, Cu, Si) or, even better, of a superconductor.

4047

{a) What is the rate of energy radiation per unit area from each side
of a thin uniform alternating current sheet?

(b) Show what effective radiation resistance in ohms is acting on a
square area of this current sheet.

(c) Find the force per unit area on each side of the current sheet (due
to the radiation) for a surface current density of 1000 amperes per unit
length.

(Wisconsin)
Solution:

(a) Take the y-axis along the current and the z-axis perpendicular to
the current sheet as shown in Fig. 4.19. Let the current per unit width be
a = ae~*'e,. Consider a unit square area with sides parallel to the z and
y axes. At large distances from the current sheet, the current in the area
may be considered as a Hertzian dipole of dipole moment p given by

o —jwi
p=ae ey

Fig. 4.19

Hence the power radiated, averaged over one period, from unit area of the
sheet is

1 WpPE afl?

T 4meg 33 T 12mepcd
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As the thickness § is very small, the radiation is emitted mainly from the
top and bottom surfaces of the area so that the power radiated per unit
area from each side of the thin sheet is

where R is the resistance. Hence the effective radiation resistance per unit

area
_ 2P w?

R-—()z_2=61reoc3'

(¢) Electromagnetic radiation of energy density U carries a momentum
%. Hence the loss of momentum per unit time per unit area of one surface
of the sheet is 2%. Momentum conservation requires a pressure exerting on
the sheet of the same amount:

F= ﬂ - L“’z_._

2c  24meyct
Taking the frequency of the alternating current as f = 50 Hz and with
a=1000 A, £y = 8.85 x 10~!2 F/m, we have

F~183x 107N,

4048

Radio station WGBH-FM radiates a power of 100 kW at about 90 MHz
from its antenna on Great Blue Hill, approximately 20 km from M.LT.
Obtain a rough estimate of the strength of its electric field at M.I.T. in
volts per centimeter.

(MIT)
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Solution:

The intensity of electromagnetic radiation is given by (N), N being
the magnitude of the Poynting vector. For plane electromagnetic waves,
this becomes

1
I= §eoEgc.
The total power radiated is then P = 47R?I = 2weocR?EZ where R is

the distance from the antenna. Hence the amplitude of the electric field at
M.IT.is

E, P ' = ( 10% V/m
7 \27eocRZ) ~ \ 27 x 8.85 x 10-12 x 3 x 10® x (2 x 10%)2
=12x10"%V/m.

4049
An oscillating electric dipole P(t) develops radiation fields
o 2 r
t) = — - t— -
B(r.t) anrc X B2 P( c) ’
E(r,t) = —ce, x B(r,t).

(a) A charge g at the origin is driven by a linearly polarized electromag-
netic wave of angular frequency w and electric field amplitude E,. Obtain
in vector form the radiated eletromagnetic fields.

(b) Sketch the directions of E and B at a field position r. Describe the
state of polarization of the radiated fields.

(c) Find the angular dependence of the radiation intensity in terms of
the spherical angles # and ¢, where the z-axis is the direction of propagation
of the incident wave and the z axis is the direction of polarization of the
incident wave.

(UC, Berkeley)

Solution:

(a) For an oscillating charge of low speed we can neglect the influence
of the magnetic field of the incident radiation. Then the equation of the
motion of the charge ¢, of mass m, in the field of the incident wave is

mi = qEpe™"" .



Electromagnetic Waves 515

The charge will oscillate with the same frequency: z = zoe~™*. Hence the
displacement of the charge is

This gives rise to an electric dipole of moment

2
P(t)=qx = —an: et

2
= q_E&e‘.(k'—Wt)
- )
= m
th=t—L

&, (t _ :) _ 9%P(t)

ot? c ot?

where k = ¥, we have

Hod® kr—wi
B(l‘,t) = —-m e'( row )e, X Eo,

tod? i(kr—wt)
E(T,t) = m [ e, X (e,. X Eo)
- Hoq® eilkr—wt) [(Eo - e,)e, — Eo)
4rmr 0% ol
(b) The directions of E and B are as shown in Fig. 4.20, i.e., E is in

the plane of P and r, and B is perpendicular to it. Thus the radiation
emitted is linearly polarized.

Fig. 4.20
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(c) As e; = (cosPcosh, cosdsinf, —sin @) in spherical coordinates,
e, X e; = cosf cos ey — sin ey .

The average Poynting vector is
(N) = —Re(E‘ x H) = —RJe[-—c(e,. x B*) x B].
Ase,-B =0, e, x Eg = Eg(e, x e,), the average radiation intensity is

C /toq
I=(N)= ™ B|?’ = m(cos Ocos® ¢ +sin? ).

4050

A massive atom with an atomic polarizability a(w) is subjected to an
electromagnetic field (the atom being located at the origin)

E = Eoei(kz’—-wt)ez

Find the asymptotic electric and magnetic fields radiated by the atom and
calculate the energy radiated per unit solid angle. State any approximations
used in this calculation, and state when (and why) they will break down as
w is increased.

(Wisconsin)
Solution:
The atom acts as a Hertzian dipole at the origin with dipole moment

P = oFE = aEje e, .

At a large distance r the asymptotic (radiation) electric and magnetic fields
radiated by the atom are

anw2 :
B(r,t) = sin fe ''e
( ! ) 47!’50(!37‘ ¢
aEow? it
E(r,t) = ~Imegciy Bim fe"'ey
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The energy radiated per unit solid angle is (Problem 4049)
d N 2 2, .4
w _W__c [B)? = @B in20.
aQ  r~%  2uer—? 3272¢4c3

The approximation used is r 3> A > [, where ! is the linear dimension of

the atom and A = 27¢/w. As w is increased, A will decrease and eventually
become smaller than I, thus invalidating the approximation.

4051
A radially pulsating charged sphere
(a) emits electromagnetic radiation
(b) creates a static magnetic field
(c) can set a nearby electrified particle into motion.
(ccr)
Solution:

The answer is (a).

4052
A charge radiates whenever
(a) it is moving in whatever manner
(b) it is being accelerated
(c¢) it is bound in an atom.

(cecm)
Solution:

The answer is (b).

4053

Radiation emitted by an antenna has angular distribution characteris-
tic of dipole radiation when

(a) the wavelength is long compared with the antenna
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(b) the wavelength is short compared with the antenna
(c) the antenna has the appropriate shape.
(cecrn
Solution:

The answer is (a).

4054

The frequency of a television transmitter is 100 kHz, 1 MHz, 10 MHz,
100 MHz.

(Columbia)
Solution:
The answer is 100 MHz.

4055
A small circuit loop of wire of radius a carries a current i = iy coswi
(see Fig. 4.21). The loop is located in the zy plane.

(r,0,¢)

Fig. 4.21

(a) Calculate the first non-zero multipole moment of the system.

(b) Give the form of the vector potential for this system for r — oo,
calculate the asymptotic electric and magnetic fields, and determine the
angular distribution of the outgoing radiation.
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(c) Describe the main features of the radiation pattern.

(d) Calculate the average power radiated.
( Wisconsin)

Solution:

(a) The first non-zero multipole moment of the small circuit loop is its
magnetic dipole moment

m = ma’ig cos(wt)e, = ma’ip Re (e7*“)e, .
(b) Use spherical coordinates with the origin at the center of the loop.
The vector potential at a point r = (r, 8, ¢) for r — oo is
ik i oeikr

A(l‘,t) = Te,- XxXm.

where k = . As e, = (cos 8, —sind, 0) we have

. powiga’sin §
1_———_—

i(kr~wt)
[ [
4er $

A(r,t) = -

whence the radiation field vectors are

2: 2.3
. wiga®sin® ., _
B=VxA=ike, x A= B 0T TR cilkr-utg, |
4c?r
2; 2.
oW 3pa sinf ; -
Echxer=l___Tcr___ei(kr Ul)ev.

The average Poynting vector at r is (Problem 4042)

(N) = %Re(E‘ x H) = ;= Re{(B x &) x B)

_ powtatid

— - IBle. = 2
T 2u0 IB%e 32c3r2

sin” fe, .

The average power radiated per unit solid angle is then

dP  (N) powiaid . ,
d_‘)- = -r—_? = —3—267—3"1 0.

(c) The radiated energy is distributed according to sin?4. In the plane
6 = 90° the radiation is most strong, and there is no radiation along the
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axis of the loop (f = 0° or 180°), as illustrated in Fig. 4.22 where the
length of a vector at @ is proportional to the radiation per unit solid angle
per unit time in that direction. The actual angular distribution is given by
the surface obtained by rotating the curve about the z-axis.

b4

1

Fig. 4.22

(d) The average radiated power is

_ [dP ,  pow'a®i} T a3, wpowiatil
P= Edﬂ—w—zﬂjo sin OdB—T

4056

As in Fig. 4.23, a current-fed antenna is operated in the A/4 mode
(a = A/4). Find the pattern (angular distribution) of the radiated power.
(Chicago)

coaxial cable
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Solution:

As ! ~ ) the antenna cannot be treated as a dipole. In the A/4 mode,
a= % and the current is in the form of a stationary wave with nodes at
the ends of the antenna, i.e.,

I(2,t') = Iy cos (% E)e"""’l.
The vector potential at a point r is given by
_ s [IdV' po / I,t-%)
A(r,t)_47r/ = dn - dZ'e, .
At a large distance r,
radrg — 2 cosé,

where rg is the distance from the centre of the antenna. Then

e-iw(i-—f) — ei(kr—wl) ~ ei(kro—wt)e—ikzlcosﬂ ,

where k = £, and

' -1 ’
-l-z-l—(l—z—cos(?) z-l—(l+z—cos0)zl,
r ro ro ro ro o

neglecting terms of order f’; Hence

i(kro—wt) ra 1 .
A(r,t) =~ _ljgiqe____/ cos (% -Z—)e"’” cosbefy’

4ix ) —a
Using
e%* .
/e“ cos(bz)dz = Py [a cos(bz) + bsin(bz)],
we have
_ o Igei(kro—wt) (75) .
A(r,t) = yp - () = (kcosb)? 2cos(kacosd).
Aska=2%=1%,
Aot = o T ¢ con(g cond)

2r o W sin® 8
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In spherical coordinates we have

e, = (cosf, —sin#b, 0),

80 that
A = Ae; = Acosfle, — Asinfey = Arer + Agey
1 0A, 1
VxA= - [ (roAs) — ]eq, N e (roAg)ev,,

2

neglecting the second term which varies as ry“ as we are interested only in

the radiation field which varies as r;'. Thus

B=B, =ik cos(F cos9) Jpe'(kro-wt) '

27r sin @ ro

The intensity averaged over one cycle is then (Problem 4049)

(N) = |B|2 poc  CO8 (—2 cosf) —12‘
872 &inZd s

Hence the radiated power per unit solid angle is

_n)
dQ rgz !

which has an angular distribution given by

cos?(% cos )

sin2 @

4057

(a) What is the average power radiated by an electric current element
of magnitude I{, where the length { of the element is very short compared
with the wavelength of the radiation and I is varying as cos(wt)?

(b) In Fig. 4.24 if we now identify the zy plane with the surface of the

earth (regarded as a perfect conductor at )), what is the average power
radiated?
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(c) What is the optimal height for maximum radiated power, and the
corresponding gain in power radiated due to the ground plane?
(Princeton)

Solution:

(a) The system can be considered as a Hertzian dipole of moment
P = poe~™* such that p = —iwp = Ipe~**']. The average radiated power
is
@I = Wi
4meg 3cd Pl = 127epcd

Fig. 4.24

(b) If the earth is regarded as a perfect conductor, the induced charges
on the surface of the earth are such that their effect can be replaced by
that of an image dipole p’ as shown in Fig. 4.24 provided w is not too
large, where p’ = p. The electromagnetic field at a large distance r is a
coherent superposition of the fields of these two dipoles i.e.,

Eiota) = E+ E' , Biota = B+ B’.
The average Poynting vector at r, a distant point M, is (Problem 4042)

- 1 1 )
Stotal = _< Eiota X Btotal) =5 Rﬁ(Etoml x Btotal);
o 240

or
§total =§+§+ ’é%"Re[E. x B’ + E™ x B])
0

where S, S’ are the Poynting vectors at the distant point M due to p and
p’ respectively. The radiation field vectors at r due to a dipole p at the
origin are

_(kxp)xk
- 4regr

so wk X p

E :‘7 r ’

) B=
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where k has magnitude £ and the direction of r, and

p= poe—iwt' = poe—iw(t—ﬁ) - poei(kr—wt) .

As |r| > h, we can make the approximation |r{| = [r3| & |r| and write

1 wlsingd . _
B=—tr @ '_,-_Poe'(k" “Wey
0
po w?sind e un
B e 7 T e
1 w?sind .. _
E = —Z;é_ 'c—z . poe;(krg wt)eo’
0
B = o w? sind

f(krz—w!)
o€ ey .
47 ¢ r p e

Using these we have

- wiptsin? 8

total — 3—2«”—25;&—,-2 {2 + 2cos[k(rl - 1'2)]}3,- .

Under the same approximation, ro—ry =~ 2h cos 6. To calculate the radiated
power P we integrate over the half space above the ground:

- / T S
0

2, .4 ¥
_ bW : 3
= Sreod J, sin® 8[1 + cos(2kh cos 8)])d8

2 4 1
- Sfro:;c“ [% + /0 sin® @ cos(2kh cos 0)d0] .

Putting 8 = 2kh, r = cosf in the second term we get

z 1
/2 sin® 8 cos(2kh cos )dl = / (1 — z%) cos(Bz)dx
0 0

= %(S—i;—g—cosﬁ).

Hence the average power radiated by the system is

= Wt 2 ¢ [esin(Ze) 2hw
P=22 z e ) _cos [ 2%
8megc® {3 + 2h%w? [ 2hw cos( c )]
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(¢) The optimal height h for maximum radiated power is given by

%,’;— =0, or by
4 (2-ws)] o
giving
-35‘2ﬂ +3cosB+BsinB=0,
or
tanf = Ei—ﬂﬂ; (1)

This equation can be solved numerically to find §, and hence the optimal
height h = £5. At optimal height we have

o 38
S/ v

so that the maximum radiated power is

__ 3-p
N/ S T

— 132W?
Prax = g

l 2 - %
pr—" [5 +(F+36%+9) ]
with g given by Eq. (1).
For megahertz waves, A ~ Ql%?: = 300 m. So we can usually assume
h <€\ orf= 2w = 3%h & | Forsuch waves, (1) is identically satisfied
and the average power radiated is

121242

P= .
67!'50(,‘3

4058

A thin linear antenna of length d is excited in such a way that the si-
nusoidal current makes a full wavelength of oscillation as shown in Fig. 4.25
(frequency w = 2wc/d).
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J=In5(x)6(y)sin (m)'z‘elw!‘

Fig. 4.25

(a) Calculate exactly the power radiated per unit solid angle and plot
the angular distribution as a function of 0.

(b) Compare your result of (a) with those obtained from a multipole
expansion.
(MIT)
Solution:

The retarded vector potential A(r,t) is given by

A= 47r/1("'_‘_—ldv' 47r/’_(£'_‘__ld1

r r
bY ¥ k2’ .
=4 Ho | piwte / sgl(l_z_)e_.k,dz,,
T —i/2 r
where r’' = /r?2 — 2rz' cos 0 + 2’2, k—ngf:&:-

eld, which varies as },

+. Accordingly, we use the

=

As we are only interested in the radiation
we shall ignore terms of orders higher than 1
approximations

= \/(r—z’cos0)2+z’2sin20z r—2'cosf,

{
2| -

'i\l._.
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and write

iwt Af2 . ,
A= olo—ce,/ sin(kz')e~ik(r—2 cosd) g,
4n -A/2

Ipellwt—kr) Al2 -y
= L‘ELe,/ sin(k2')e’** <0,
4 r -A/2

(a) Integration yields (cf. Problem 4056)

#o I sin(w cos 6)

i(wi—kr)
Irkr  sin’8 Cs -

A=1

Defining k = ke, and with e, = (cosd, —sin 4, 0) in spherical coordinates,
we have

B=VxA=—ikxA=_H0losin(reost) yup,
2 r  sind

From Maxwell’s equation V x H = D, or

V x B = —ik x B = iugeqwE

=i-E,
c

we find

E=—cl—ch=che,..

k
Hence the average Poynting vector is (Problem 4042)

_ 1 . _ € 2
(S) = o R.(E* x B) = o |B|%e,

_ ﬂf_{gz_ sin( cos ) 2e
~ 872 2 sin @ "

and the power radiated per unit solid angle is

P _(S) 1§ o [sin(x cos §) 2
dQ ~ r-2 7 8a2\ ¢, sin 0 )



528 Problems & Solutions on Eleciromagnetism

In the formula the factor \/po/€o is the characteristic impedance of elec-
tromagnetic waves in vacuum. The curve of %% versus @ is sketched in

Fig. 4.26.

[ Lid
an
L % T 8
0 ¥
Fig. 4.26

(b) If we had used multipole expansion, we would have

A

A= &éei(wt—kr)e ‘/2
4T r -

‘Lo ot ko' 2
sin(k2") [1 + ikz' cos 6 + (ik2’ cos 6) + ---]dz'

I 2!

3
~ i}l_o{(lei(wt—k'),\ cosfe,,
4 r

neglecting terms of order (f\—l)z and higher in the expansion of exp(ikz’ cos 6).
Then I
B=—ik x A = E20eiwi-kr) cogge,,
2 r
giving \
4P _Bo g2 290 [Ho o
dQ_Sclocos 9_8 Pl .
The % vs. 0 curve is shown in Fig. 4.27.

a8
an

o
G
Bl
@©

Fig. 4.27
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Comparing the two figures we see that the multipole expansion method
gives good approximation only in the neighborhood of 7.

4059
Consider the situation shown in Fig. 4.28 where a perfectly conducting

thin wire connects two small metallic balls. Suppose the charge density is
given by

p(x,t) = [6(z — a) — 6(z + a))6(z)6(y)Q cos(wol) .

The current flows between the metallic balls through the thin wire. a, Q
and wg are constants.

(a) Calculate %, the average power emitted per unit solid angle in the
dipole approximation.

(b) When is the dipole approximation valid?

(c) Calculate % exactly.
(Columbia)

N

-l—»a

A

x -Q

Fig. 4.28

Solution:

(a) The moment of the dipole is p = 2Qa cos(wpt)e;, or the real part
of 2Qae~%“ste,. The average power per unit solid angle at R, as shown in
Fig. 4.29, is

dP  (S) _ e sin?0 = Q%a*wisin? g
d! R-2 7 32w2g4¢3 T 8n2gc3
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-..I

o
1
N

et

-Q

Fig. 4.29

(b) The dipole approximation is valid if R > A > a.

(c) A current flows through the wire connecting the two small metallic
balls of density

ity =e.g; [ pds = —iwoQa(2)i)e e, bl <a,
and produces a vector potential
Ho fi(x,1) .,
t) = — | ———=
A(x,t) yp / " av’,
v

where t' =t — L, r = x — x/, and V is the region occupied by the current
distribution. Thus

A(x,t) = dr'dy'd?' e,

i r

—Ho / iwoQ8(z')8(y')e e !~ &)

v
—fwgt a _ikor
. powo Qe e
= -1
47 r

—-a

where kg = “2. Let R = |x|, then r? = R? — 2Rz’ cosf + 2'%, as shown in
Fig. 4.29. Hence

—i ikoVRT 5277 —2RsTcos f
_i/loone iwgt  pa  ikoVR¥+2'2-2Rz'cosd

t) =
Alx1) 4r —a VR? 4+ 22 —2R2' cos 8

dz'e; .
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This is the exact solution. To find the integral analytically, we assume R >
a and use the approximation ! =~ %, VR? + 2’2 — 2Rz’ cosd ~ R — 2’ cos§.
Then

— i(koR—wol) a R '
A(xl) = ipowoQe / emikos'cond gt

47R —-a
_ iQe'(koeR-wot) gin(kya cosd)
2reqcR cosf O

In spherical coordinates, e; = cosfegn — sinfey. We can then write A =
ARrer + Agey with AR, Ay independent of the angle .
The magnetic field is given by

179 i}
B—VXA—E ﬁ(RAg)—ﬁAR]ew.

As we are only interested in the radiation field which varies as 71;, we can
neglect the second differential on the right-hand side. Hence

. 19(RAg) _ _ker‘("°R"“‘) _sin(ka cos 8) sin 4

B

*“R OR 2regcR cosf ’
so that - , ;

_ € mp2.. . wiQ° sin®(kacosf)sin®f

5= 2/‘0|B| °R = 8regcR2 cos2 9 R,
and finally

dP _ § _ wjQ? sin®0sin®(kacosh)
dQ ~ R-2 7 8wxZgge cos? ’

If the condition A > a is also satisfied, then sin(ka cos0) ~ kacosd and the
above expression reduces to that for the dipole approximation.

4060

Two equal point charges +¢ oscillate along the z-axis with their posi-
tions given by

2y = zosin(wt), z2=—zpsin(wt), z;=y =0, (i=1,2).
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The radiation field is observed at a position r with respect to the origin
(Fig. 4.30). Assume that |r] 3> A >> z, where X is the wavelength of the
emitted radiation.

(a) Find the electric field E and magnetic field B.

(b) Compute the power radiated per unit solid angle in the direction
of r.

(c) What is the total radiated power? How does the dependence on w
compare to that for dipole radiation?
(MIT)
Solution:

(a) As |r| > A > zp, multipole expansion may be used to calculate
the electromagnetic field. For the radiation field we need to consider only
components which vary as } The electric dipole moment of the system is

P = (gz1 + gqz2)e; = 0.

Hence the dipole field is zero.

Fig. 4.30

The vector potential of the electric quadrupole radiation field is given

by
A(r,t) = S Y i /(k ') pdV’,

47 2r
where
v=t-" k=22
c' cr’
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Hence the magnetic induction is

B=VxA=itkx A= —zf;-—o %k—a "('""“")/r x r'(r-r')pdV’
#0 w? eflkr—wt) / G
—i i 932 err(r r)qn .
As
r=re,, r' = +zp(e, cosf — eysinf)

in spherical coordinates, we have

3
B= tf:; 2:‘;02 :(kr—wt)grzzgqsin 0 cos e,

Then using Maxwell’s equations V x H = D or
E=cBxe,,

we find

ipo wizdq

4n

Actually E and B are given by the real parts of the above expressions.
(b) The average Poynting vector is

E= sin 0 cos fe'(kr—wg, .

(N) = -1— - Re(E x B*)

= 3'2‘%% sin? @ cos? fe, ,
r

so the average power radiated per unit solid angle is

dP _ (N) _ o wzq?

2 2
-2 =52 3 Gcos®l.

(c) The total radiated power is

P=

_ [dP po w® zo‘l 3
deQ 3972 / 27 sin® 0 cos? 6d9

_ Ho wiz5q®
T 60xr 3
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The total radiated power varies as w® for electric quadrupole radiation, and
as w* for electric dipole radiation.

4061

Two point charges of charge e are located at the ends of a line of
length 21 that rotates with a constant angular velocity w/2 about an axis
perpendicular to the line and through its center as shown in Fig. 4.31.

(a) Find (1) the electric dipole moment, (2) the magnetic dipole mo-
ment, (3) the electric quadrupole moment.

(b) What type of radiation is emitted by this system? What is the
frequency?

(c) Suppose the radiation is observed far from the charges at an angle

@ relative to the axis of rotation. What is the polarization for # = 0°, 90°,
0<8<90°?

(Princeton)
y
4
e
{
wt
0 L X
]
e
v
Fig. 4.31

Solution:

(a) (1) The electric dipole moment is
P=er]j+ery=0.
(2) The magnetic dipole moment is

m = ISe, = 2?6 (nl?)e, = lewlze, ,

2

which is constant.
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(3) The position vectors of the two point charges are

ri = —ry =lcos (%ﬁ)e, + Isin (221)9y .

The electric quadrupole moment tensor has components given by
Qi = /(3:: 2 — v'26i;)pdV’ = 2(32 ix; — 1% 6ii)n

where 2 = |r||? = |rh|? = 12
Thus the non-zero components are
Q” = 812[1 + 3 cos(wt')] N
Q12 = Qa1 = el sin(wt’),
Q22 = el?[1 — 3 cos(wt’)].
(b) Because P = (0 and m is a constant vector, they will not produce

radiation. Thus the emitted radiation is that of an electric quadrupole with
frequency w.

(c) At a point r(r, 8, ) far away from the charges the magnetic induc-
tion of the radiation field is given by

where k = “e,, Q has components Q; = %Z:Q,-,-zj. Writing Q;; as the
j
real parts of

Qu1 = el’(1 + 3¢~y
Qiz = Qn = 3elfie™",
Q2 = el?(1 - 3e"‘“’") ,

a8 e, = r(sinf cos p, sin 8 sin p, cos ), we have

Q: = el’sin O(cosp + 35"'(“‘"-0’)) ,
Q: = el’sinO(sinp + 3ie"'(“’""'f’)) ,

with t' =t — L, or —wt’ = kr — wi. Note in calculating B, we omit terms



536 Problems € Solutions on Eleciromagnetism

in Q; which are constant in the retarded time t' as they do not contribute
to emission of radiation.

(1) For 8 = 0°, @, = Q; = 0 giving B = 0 so there is no radiation
emitted at § = 0°.

(2) For 6 = 90°,
Q1 ~ BelZe~iW'-9)
Q2 ~ 3eltie” Wt ~9)
e, = (cosgp, singp, 0),
so that the radiation field is given by the real parts of the following:

3
. W .
B= ——ag—;s—rgi(Qz cos p — @ sinple,
3
_ HPow el ~i(wt'~2p)
T 8r v © S
and Sl
lg w™e . ] .
E=cB xe, = éﬁ—éc——e"(“" ~2)(—sin pe, + cos pey ).

As EZ + E? = constant, the radiation is circularly polarized.
(3) For 0° < 8 < 90°,

er X Q =—e;Qscos0 + e,Q1cosl + e, (Q2cosp — Q) sinyp)sinb, so that
the radiation field is the real parts of the following:

po wi3el?

B, = Fy—" sin 0 cos fe~ (W' =¥)
3el? X
B, = —i'g%o;wr; sin 0 cos fe (W' = #) ,
3
_ Howel sin? e iwt'~2¢)

=

Br rc?
As all the three components of E and B are time-dependent, the radiation
is not polarized.

4062

(a) Name the lowest electric multipole in the radiation field emitted
by the following time-varying charge distributions.
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(1) A uniform charged spherical shell whose radius varies as
R= Ro + R; cos(wt) .

(2) Two identically charged particles moving about a common center
with constant speed on the opposite sides of a circle.

(b) A loop with one positive and two negative charges as shown in
Fig. 4.32 rotates with angular velocity w about an axis through the cen-
ter and perpendicular to the loop. What is the frequency of its electric
quadrupole radiation?

(MIT)

Solution:

(a) (1) For a uniformly charged spherical shell, on account of the spher-
ical symmetry,
P=D=0.

Hence all the electric multipole moments are zero.

(2) Take coordinates as shown in Fig. 4.33 and let the line joining the
charged particles be rotating about the z-axis with angular speed w. The
radius vectors of the two particles are then

r; = Rcos(wt)e; + Rsin(wt)ey,
ry = —[Rcos(wt)e; + Rsin(wt)ey],

where R = |r}]| = |v}].
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q
/ ty
wt o -x

iy

Fig. 4.33

The electric dipole moment of the system is
P =g(ry +r3) =0.

The components of the electric quadrupole moment are given by
Qu = [(@sha} = r6)pdV" = ¥ (B} = 8 )an
n
where r'2 = R? = 27 + 2} + z/2. Thus

Q11 = 2¢R*[2 cos?(wt) — sin*(wt)],
Qa2 = 2¢R?(2sin?(wt) — cos?(wt)],
Qas = —2qR?,

Q12 = Q21 = 3gR?sin(2wt),
Qi3=Q31 =Qu=Qs=0.

Hence the lowest electric multipole is a quadrupole.

(b) Take fixed coordinates as shown in Fig. 4.32. Then the position
vectors of the three point charges are as follows:

q1 = ¢ r} = Rcos(wt)e; + Rsin(wt)ey,

2 R 2
gz = —¢: r’2 = Rcos (wi + %)e, 4 Rsin (wt + l)ey ,
4_1r

gs=—¢: r5= Rcos (wt+ 3)e;+Rsin (wt+ §31)e,,
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To determine the frequency of the quadrupole radiation, we only have to
find a component of the quadrupole moment of the charge system, for
example

Q12 = 3R? [q; cos{wt) sin(wt) + g2 cos (wt + 2%) sin (wt + _23_1)

47\ . 4
+ g3 cos (wt + ?) sin (wt + T) ]

2
= 31; 1 [sin(?wt) — sin (Zwt + 4?") — sin (2wt + 8—;)] .

Thus the frequency of the quadrupole radiation is 2w.

4063
An electric dipole oscillates with a frequency w and amplitude Pg. It
is placed at a distant /2 from an infinite perfectly conducting plane and
the dipole is parallel to the plane. Find the electromagnetic field and the
time-averaged angular distribution of the emitted radiation for distances
r>» A
(Princeton)

Solution:

Use Cartesian coordinates as shown in Fig. 4.34. The action of the
conducting plane on the =z > 0 space is equivalent to that of an image
dipole at (—$, 0, 0) of moment

P’ = —P = —~Pye~“te, .
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The vector potential at a point r is

- /‘_o(?_+£)
47T \ re

ikr, ikry
.o € € -3
= —1"—wPo — ) e, .
47

™ T2

As we are only interested in the radiation field which dominates at r 3> a,
we use the approximation

-,

<=

a a 1 1
rAr— <€y e, roRTr+ —e;-€e, —_— R —
2 2 ry 9

er, €y, e, being the unit vectors in spherical coordinates. As e; =
e, 8in 0 cos @ + eg cos f cos p — e, sinp, we have

a .
1 zr—-§sm0cos¢,
a .
ro T+ §s1n0cosqp,
and

Axn z’_“l ‘i&(eiﬁlsinﬂcosv _ e—i‘,‘-ninOainqp)ei(l.'r—«vt)ez

~

AT
_ WP irewry g (k8
=-g ¢ sin | = sinfcosyp le, .

In spherical coordinates
e, =e,cosf —egsind,

To obtain B = V x A, we neglect terms of orders higher than ! and obtain

B(r,t) ~ 22 i(;»A,)

r dr
=% 9
= - ar(rsmﬂA)

iw?Ppeibr-wt) (k.
:stnBSIn Easmacosgo e,.
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The associated electric field intensity is

E(r,t)=cB x e,
iw2poei(kr—wt)

.. k.
sinfsin [ —asin@cosy jep .
2megcir ¥

2
The average Poynting vector is

wiP2sin®0 . ,(k .
=m—31n 5asm0cos<p e .

The angular distribution of the radiation is therefore given by

dP 5  wiP¥sin?6 . ,(k .
E.—.;:—%Tzeo—ca—sm -2—asm0cos<p .

If A > a, then sin(£asin 0 cos ) ~ £asin 8 cosp and we have the approxi-
mate expression
dP _ wPja’sin®fcos’

=~

dQ 32m2eqct

4064

A small electric dipole of dipole moment P and oscillating with fre-
quency v is placed at height A/2 above an infinite perfectly conducting
plane, as shown in Fig. 4.35, where X is the wavelength corresponding to
the frequency v. The dipole points in the positive 2-direction, which is
normal to the plane, regarded as the ry-plane. The size of the dipole is
assumed very small compared with A. Find expressions for the electric and
magnetic fields, and for the flux of energy at distances r very large com-
pared with A as a function of r and the unit vector n in the direction from
the origin to the point of observation.

(UC, Berkeley)

Solution:
The effect of the conducting plane is equivalent to an image dipole of
moment P’ = —P = —Pye~“*e,, where w = 27v, at z = —%. Consider a
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point of observation M of position vector r (r, 8, ¢) and let the distances
from P and P’ to point M be r, and r; respectively. For r 3> A we have

rlzr—gcosﬂ,

A
rga-sr+§coso.

Fig. 4.35

Using the solution of Problem 4063 with ¢ = 0, a = ) and noting that
kX = 27, we have

;g2 i(kr—-wt)
B(r,t) ~ &5—;2—;3;— sin @ sin(7 cos f)e,, ,
0
E(r,t)=cB xn
5,2 i(kr—wt)
~ X ;:_: o sin @ sin(7 cos@)ey ,
0

and the average energy flux density (Problem 4011)
w*PEsin @
86063

where w = 27y

S= ﬂ(Elzn =

5 sin®(w cos@)n ,

4065

Two electric dipole oscillators vibrate with the same frequency w, but
their phases differ by %+ The amplitudes of the dipole moments are both
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equal to Po, but the two vectors are at an angle ¥ to each other, (let Py be

along the z-axis and P; in the zy plane) as in Fig. 4.36. For an oscillating
dipole P at the origin, the B-field in the radiation zone is given by

B= kzle“"<5 x P) .
r r

Find (a) the average angular distribution, and (b) the average total intensity
of the emitted radiation in the radiation zone.

(SUNY, Buffalo)

Fig. 4.36

Solution:

The electric dipole moments of the two oscillators are

P: = Poe"“"e,

P; = Py(cosyppe; + sin ¢oey)e"(‘”‘_ 1),
The dipole moment of the whole system is
P=P,+P;
and the magnetic field in Gaussian units is given by
B= k’-}e”"(er x P).
As

e; =e.sinfcosp+egpcosfcosp—e,singp,

ey, = e, sinfsinp + egcosfsing +e,cosp,
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ci* = i,
we have
e x Py = Poe""‘"(ev cosBcosp + egsing),
er x Py = iPge™*[e, cos(¢ — 1ho) cos§ + eq sin(p — %)) ,

8o that

2
B= K Py {[sin ¢ + isin(p — ¥o)]es

-
+[cos ¢ + i cos(p — o)) cos fe, } e ETwH)

(a) The average power per unit solid angle is then

dg c w2
@ we B
P2k .
081r £ {2 — sin® [cos® p + cos?(p — )]} -

(b) The average total power of the emitted radiation is

2% I’d§ ) 2 4n2
/0 d(p/o msmﬂdG-gL Pje.

4066

A system of N atoms with electric polarizability « is located along the
z-axis as shown in Fig. 4.37. The separation between the atoms is a. The
system is illuminated with plane polarized light traveling in +z direction
with the electric field along the z-axis, viz.

E = (0,0, Epe'**~*),
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(a) Calculate the angular distribution of the radiated power that would
be measured by a detector located far from the atoms (r 3> A and r > Na).
Express the result as a function of the polar and azimuth angles 8 and ¢
shown in the figure.

(b) Calculate and sketch the @ dependence of the radiated power in
the yz plane. Excluding the trivial case £ = 0, find the conditions for no
radiated power in the yz plane.

(c) Compute a general expression for the ¢ dependence of the radiated
power in the zy plane and sketch the dependence for the case ka > 1.
(MIT)

Solution:

(a) The position of the m-th atom is
Xm = (ma, 0, 0).
Under the illumination of the plane wave, its dipole moment is
P, = aE(xpy,t) = aEgelkma-wilg
The vector potential produced by the N atoms is

N-1 ¢
A=l—‘-°— _l_'i"_

dr m=0 T'm

N-1
= —iio?uane, Z ri-exp {i[kma - w(t - Lc"l)] } .

m=0" ™

For r > A, r > Na, we approximate

rm & r—masinfcosp,

R

l o~
o

Then
i(kr-wt) N-1

e, Z exp[ikma(l — sin 8 cos p)] .

m=0

i[lo wane

A= 47 r
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To find the radiation field we need to retain in B = V x A only terms ~ -}
Hence, according to Problem 4063, we have

B(r,t) = —% -(,;9—r(rA sinf)e,

2 . s k —-wt N_l
__v aEq sin fef(kr-wt) Z eikma(l—sin@co‘w)ev ‘

dreqoc3r =
Using the identity
N-1 2 iNz |2 2
Z dms| 1 — eiN® sin®(3%)
= 1 — et sinf £’

we find the average Poynting vector of the radiation as

wia?Elsin?@ sin?[{Nka(l —sinfcosy)]
3272e0c3r?  sin’[lka(l —sinfcosp)]

The angular distribution is given by the average power radiated per unit
solid angle

dP _ w'o’E} sin 0 sin®[3 Nka(1 — sin 8 cos p)]

dQ ~  32r2c0c®  sin®[lka(l —sinfcosgp)]

(b) In the yz plane ¢ = 90°, cosp = 0, the angular distribution of the
radiation is given by

P 2esin’[%]\ika]

— "~ 1 2
19 « sin sinz(%ka) sin® @,
which is shown in Fig. 4.38.
4
)
y

Fig. 4.38



Electromagnetic Waves 547

For §k = 0, we require sin(} Nka) = 0, i.e. the condition for no radiation
in the yz plane is

%Nka:mr n=0,12....

(¢) In zy plane & = 90°, sin @ = 1, the angular distribution is given by

dP o sin’[1 Nka(1 — cos )] _ sin’[Nkasin® £] .
dQ — sin®[1ka(l — cosp)] sin®[kasin? £]

As klim 'i":k’ = 76(z), we have
-+ 00

sin?(Nkz) _ N2sin’(Nkz)/(Nkz)? k — o0 wnN2§(Nz) _ N2
sin?(kz)  sin?(kz)/(kz)? Cows(z)

Hence, for ka 3> 1 the angular distribution of the radiation in the zy plane
is isotropic, i.e. the distribution is a circle as illustrated in Fig. 4.39.

y

(1N
N

Fig. 4.39

4067

A complicated charge distribution rotates rigidly about a fixed axis
with angular velocity we. No point in the distribution is further than a
distance d from the axis. The motion is non-relativistic, i.e. wod < ¢ (see
Fig. 4.40.)

(a) What frequencies of electromagnetic radiation may be seen by an
observer at a distance r 2> d7
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(b) Give an order of magnitude estimate of the relative amount of
power radiated at each frequency (averaged over both time and angle of
observation).

(MIT)

d}o

Fig. 4.40

Solution:

As can be seen from Fig. 4.40, d is the distance far away from the axis
of rotation of the system with v = wod < ¢, so the radiation of this system
can be considered as a multipole radiation.

Let 3 (z,y, 2) be the observer’s frame and 3'(z', ¥, z') a frame fixed
on the system. The radius vector of a point in the distribution may be
expressed as

€ = ze; + ye, + 26, = 2'e; +y'e, + 2'e 1)

inthe 3" and 3’ frames. We take the axis of rotation as the common z-axis
of the two frames and that at ¢t = 0 the z'- and z-axes, the y'- and y-axes
coincide. We then have the transformation equations

z = z' cos(wot) — ¥ sin(wot) ,
y = &’ sin(wot) + ¥ cos(wot) , (2)
z=2".

We can now find the electric dipole moment P(t), electric quadrupole mo-
ment D(t) and magnetic dipole moment m(t) in the 3_ frame. The electric
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dipole moment is
P(t) = / ptdV = / p(zes + yey + ze,)dV

= / p{[a’ cos(wot) — ¥/ sin(wot)]es + [z’ sin(wot)
+ y' cos(wot)ley + 2'e, }dV
= [P, cos(wot) — Py, sin(wot)]e, + [Py, sin(wot)

+ P, cos(wot)ley + Pye;, 3)
where P,,, P,, and P;, are the z, y and z components of the electric dipole
moment in the 3_' frame in which the charge distribution is at rest. Eq. (3)
shows that P(¢) oscillates with the frequency wp. Hence the electric dipole
radiation is a monochromatic radiation of angular frequency wp.

As the angular velocity wq is a constant, the rotation of the charge
system produces a stable current only. Hence the magnetic dipole moment
of the system, m, is a constant vector, independent of time. Therefore no
magnetic dipole radiation, which is oc 1, is emitted.

For the electric quadrupole moment D(t), the components are given
by

Dy(t) = [[Baia; = (a3 + 23+ ) lodV .

(i)j=l)2)3) =z, r2=Y, 173——-2)

For example,
Dyy =Dy = 3/pzde
=3 / plz’ cos(wot) — ¥ sin(wot)] [z’ sin(wot) + ¥’ cos(wpt)]dV
=3 / p[%(:x'2 — y'?)sin(2wet) + 2’y cos(2uot)] dv.
In the E' frame the quadrupole components are

Dy, = Dy = 3/pz’y’dV,
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4 ! / /
11 - D22 ot D’Izl - Dylvl

= / p(2z2 — 2 — 2} — 22 — 22 — 2})dV
= 3//}(2:'12 —z)av.

Note that under the rotation the charge element pdV does not change.
Thus D D!
=1L 722 gin(2wot) + D, cos(2wot) - 4)

Dhia =Dy = 2

Similarly, we have

D3 = D3, = 3/pzde = 3/p[z' cos(wot) — y' sin(wot)] 2'dV
= D3 cos(wot) — Doy sin(wet) . ()

And other components of D(t) can be similarly obtained. It is seen from
Eq. (4) and Eq. (5) that the electric quadrupole radiation is a mixture of
two monochromatic angular frequencies wg and 2wg.

In short, Egs. (3), (4) and (5) show that the frequencies of electro-
magnetic radiation of the system are wq (electric dipole radiation, which is
dominant) and 2w (electric quadrupole radiation).

The fields of the successive multipole radiations are reduced in magni-
tude by a factor kd = “2d. So the electric quadrupole radiation is weaker
than the electric dipole radiation by a factor (“2d)32.
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1. THE LORENTZ TRANSFORMATION (5001-5017)

5001

The radar speed trap operates on a frequency of 10° Hz. What is
the beat frequency between the transmitted signal and one received after
reflection from a car moving at 30 m/sec?

(Wisconsin)
Solution:

Suppose the car is moving towards the radar with velocity v. Let the
radar frequency be vy and the frequency of the signal as received by the car
be v;. The situation is the same as if the car were stationary and the radar
moved toward it with velocity v. Hence the relativistic Doppler effect gives

_ 1+v/c v
n =y 1—v/c~V°(l+c) )

correct to the first power of v/c. Now the car acts like a source of frequency
11, so the frequency of the reflected signal as received by the radar (also
correct to the first power of v/c) is

1+v/c 2 9
v =1 I_Z;Czul(l+%)zun(l+%> zug(1+—cv-)_

Thus the beat frequency is

2x30
W—200HZ,

The result is the same if we had assumed the car to be moving away from

the stationary radar. For then we would have to replace v by —v in the

above and obtain vy — va &2 g 2.

2v
V2—V0=VD'—=109X
c

5002

A plane monochromatic electromagnetic wave propagating in free space
is incident normally on the plane of the surface of a medium of index of
refraction n. Relative to stationary observer, the electric field of the incident
wave is given by the real part of E%¢*(*~%“*) where z is the coordinate along
the normal to the surface. Obtain the frequency of the reflected wave in
the case that the medium and its surface are moving with velocity v along
the positive z direction, with respect to the observer.

(SUNY, Buffalo)

553
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Solution:

Let the observer’s frame and a frame fixed on the moving medium be
X and L' respectively. ¥’ moves with velocity v relative to X along the
z direction. Let the propagation four-vectors of the incident and reflected
waves in ¥ and ¥’ be respectively

w

B=(0,0,k ), k=(0,0, -k, 2),

wl

=(0,0, K, %), K=(00-k %
—s))c) r"':;'—27c))

’ '
where k = &, k; = 42, k' = & k) = 22,
Lorentz transformation for a four-vector gives

W' w W
‘E‘=‘Y(;—ﬂk)=7'c‘(1—ﬂ),

2=y [L4pe-m)] =vSa-s),
with 8= ¥, 5y = (1-g2)-4,

In ¥’, no change of frequency occurs on reflection, i.e., w) = w’. Hence

- -at-or- ().
being the angular frequency of the reflected wave as observed by the ob-
server.

5003

In the inertial frame of the fixed stars, a spaceship travels along the
z-axis, with z(t) being its position at time {. Of course, the velocity v and
acceleration a in this frame are v = %"5 and ¢ = %zﬁ-. Suppose the motion
to be such that the acceleration as determined by the space passengers
is constant in time. What this means is the following. At any instant
we transform to an inertial frame in which the spaceship is momentarily
at rest. Let g be the acceleration of the spaceship in that frame at that
instant. Now suppose that g, so defined instant by instant, is a constant.

You are given the constant g. In the fixed star frame the spaceship
starts with initial velocity v = 0 when ¢ = 0. What is the distance 2
traveled when it has achieved a velocity v?
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Allow for relativistic kinematics, so that v is not necessarily small
compared with the speed of light c.
(CUSPEA)

Solution:

Consider two inertial frames ¥ and ¥’ with £’ moving with a constant
velocity v along the z direction relative to . Let the velocity and acceler-
ation of an object moving in the z direction be 4, a = %“i, and v/, a' = %‘-“7'-
in the two frames respectively. Lorentz transformation gives

z = y(z' + Pet’), ct = y(ct'+B2'),

where g = 2,y = (1- 8%~ % Then the velocity of the object is transformed
according to ,
uz U 1)

14+ %

Differentiating the above, we have
_ v o, .\ _ v .,
dt =« (dt’+ ;dz) _7dt’(1+ c—zu) ,

du’
U= 2 vu'y2 ?
7 (1+ %)
whose ratio gives the transformation of acceleration:

al

4= ——. (2)

Y1+ %)
Now assume that I is the inertial frame attached to the fixed stars and ¥’
is the inertial frame in which the spaceship is momentarily at rest. Then

in X'
and Egs. (1) and (2) give

A

u=v, a=
3
v

P § s v .
with v = (l - %;—) 3. As the velocity of the spaceship is increased from 0
to v in X, the distance traveled is

Yudu 1 [ udu c? 1
x = udt = —-:—/ ———Ts—/2—=— —_——1 .
o &  gJo (1-%) g 1-

v3
7
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5004

As observed in an inertial frame S, two spaceships are traveling in op-
posite directions along straight, parallel trajectories separated by a distance
d as shown in Fig. 5.1, The speed of each ship is ¢/2, where c is the speed
of light.

(a) At the instant (as viewed from S) when the ships are at the points
of closest approach (indicated by the dotted line in Fig. 5.1) ship (1) ejects
a small package which has speed 3c/4 (also as viewed from S). From the
point of view of an observer in ship (1), at what angle must the package
be aimed in order to be received by ship (2)? Assume the observer in ship
(1) has a coordinate system whose axes are parallel to those of S and, as
shown in Fig. 5.1, the direction of motion is parallel to the y axis.

(b) What is the speed of the package as seen by the observer in ship
(1)?
(CUSPEA)

Solution:

(a) In the inertial frame S, the y-component of the velocity of the
package should be ¢/2 in order that the package will have the same y
coordinate as ship (2) as the package passes through the distance Az = d
The velocity of the package in S can be expressed in the form

u = uge; + uyey
with uy = ¢/2. Asu=u|=3%

4

2 - X
uy_4c.

Uy = Ju? —
Let S’ be the inertial frame fixed on ship (1). In S’ the velocity of the
package is

u_ue +uyey.

S’ moves with speed ¢/2 relative to S along the —y direction, i.e. the
velocity of S’ relative to S is v = —ce, /2. Velocity transformation then
gives

u = Uy —v %+%_é

YT 1-%r 1+ T8

\/_—— Feyfi-i N

vy -
1- 2z 141

c,
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Let o’ be the angle between the velocity u’ of the package in S’ and the z'
axis as shown in Fig. 5.2. Then

tan o = i— 8 or o = arctan (—8—)
u, V15’ - vis/ '’

(b) In S’ the speed of the package is

V179
'~ g = 2 2 —
v == Jull+ul= T

5005
(a) Write down the equations of conservation of momentum and energy
for the Compton effect (a photon striking a stationary electron).

(b) Find the scattered photon’s energy for the case of 180° back scat-
tering. (Assume the recoiling electron proceeds with approximately the
speed of light.)

(Wisconsin)

Solution:

(a) Conservation of momentum is expressed by the equations

hv h/
-C—=Tcos 0 4+ ymv cos ¢,

/

— sin 6 = ymv sin ¢,
c

where @ is the angle between the directions of motion of the incident and
scattered photons, ¢ is that between the incident photon and the recoiling
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electron, as shown in Fig. 5.3, m is the rest mass of an electron, § = %, v
being the speed of the recail electron, and v = (1 — ﬁz)’i.

P
‘@ nl

Fig. 5.3
Conservation of energy is expressed by the equation
hv +me® = b/ + yme? .

(b) For back scattering, § = 180°, p = 0°. The above equations reduce
to

hv 4 /' = yBmc* | 8))
hv — hv' = (y = )mc? . (2)
Squaring both sides of Eq. (1) we have
(hv + hv')? = ¥2%m2e* = (v - 1)m?ct . 3)
Combining Eqgs. (2) and (3), we have
4h*v/ = 2me? h(v - '),

or
hy
)
'Zn’lcll + 1

which is the energy of the scattered photon.

hv' =

5006

A charged particle is constrained to move with constant velocity v
in the z-direction (with y = yo, z = 0 fixed). It moves above an infinite
perfectly conducting metal sheet that undulates with “wavelength” L along
the z-direction. A distant observer is located in the z = 0 plane and detects
the electromagnetic radiation emitted at angle 6 (the angle between the
velocity vector and a vector drawn from the charge to the observer) as
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shown in Fig. 5.4. What is the wavelength A of the radiation detected by

the observer?
(Princeton)

\,"°"Q

Ay

Fig. 5.4

Solution:

The induced charges in the metal sheet will move on the surface of
the sheet along the general direction of motion of the charged particle.
The acceleration of the induced charges moving on the undulating surface
will lead to emission of bremsstrahlung (braking radiation). The radiation
detected by a distant observer located along the 8 direction is that resulting
from the constructive interference in that direction. Hence, the wavelength
of the radiation satisfies the condition

L L cos@ A
—=m

v c c'

where m is an integer, or

Am = —Ii (-c-——cos0> .
m \v
Form=1, A = L(£ —cos §).

We can also approach the problem by regarding the effect of the metal
sheet as that of an image charge, which together with the real charge forms
an oscillating dipole of velocity v = ve, and frequency of vibration fo = 7.
From the formula of Doppler shift the frequency detected by the observer

is
148 cos ¢

v
f(a):\/—l_-—_ﬂ_z-—fo»v (1+Z coSs B)f,
and the corresponding wavelength is

z\(0)=-)c;=%<l—% cos 0).

This result is the same as the foregoing A;.
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5007
Two large parallel plates (non-conducting), separated by a distance d
and oriented as shown in Fig. 5.5, move together along z-axis with velocity
v, not necessarily small compared with ¢. The upper and lower plates have
uniform surface charge densities +0 and —o respectively in the rest frame
of the plates. Find the magnitude and direction of the electric and magnetic

fields between the plates (neglecting edge effects).
(Columbia)

z' ’
F4
o
T o‘ xl
0 X d
10 fev
Fig. 5.5

Solution:

Let the electromagnetic fields be E', B’ in frame S’ (0 2’ ¥’ 2’) where
the plates are at rest; and be E, B in the laboratory frame S (0 z y 2).
The field vectors transform according to

E.=FE,, B:=B,,
-_— ! ’ — / ﬁ /
E!l "7(Ey+ﬂCBz)x By =7 By_;Ez ’
—_ 4 / —_ ’ ﬂ 7]
Ez "7(Ez —ﬂCBy)1 Bl =7 Bz+ ;Ey )
where g =%, vy=(1- B~ %.
In the rest frame S,

E,=F =0, E=-—,
so that
E.=0, B;=0,
78
E, =0, By=—o¢,
v ) v Eoc"
E,=-12, B,=0
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Hence in the laboratory frame, the electric intensity is in the —z direction
and has magnitude 31%, while the magnetic induction is in the +y direction

and has magnitude X35 o, where vy = (1 — %:-)'é.

5008

Show that £2 — B2 and E - B are invariant under a Lorentz transfor-
mation.
(UC, Berkeley)

Solution:

Decompose the electromagnetic field into longitudinal and transverse
components with respect to the direction of the relative velocity between
two inertial frames ¥ and £’'. In X, we have

E:E_L+E", B=B_|_+B|| .
In ¥, which moves with velocity v relative to X, we have (in Gaussian

units)
Ej=E, Byj=By,

1=7(E1+%XBL),

’J_=7(BJ.—'EXEJ.))

where
1

1= e

Thus

:.E||~B||+72 [EJ‘~B-L_(VXB_L)'(VXEJ_)] .

o2
As v is perpendicular to both B, and E;, we have

(VXB_L)-(VXEL)zsz_L-BL ,
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so that

2
E'-B':E"'B"-{-‘yz(l—z—z)E_L-B_L=E||-B"+E_|_~BJ_=E-B.
From the expression for E/, , we have
12 2 | @2 1 2 v
Ef = E.L+c—2(VXB-L) +2E_L 'c—XBl

2E_._-(val))’

— 212 v’
=y E'L+-C-?Bl+

c
and R °B B
B2 =42 B?L-i-'—)—E_zL—_——l'(vx 1) .
c? c
Hence
E? -B” = (E| + E|)* - (B + B.)’
= Ef - B} + Ef - B}
= (E2 — B2 2 (g2 £B2—B2—£E2
= (Ej i+ 1+381 1-Fhk
2v?
+T[EL-VXB_L+BJ_'VXEJ_]
= (Ej - Bj) + (E] - B1)
=E2—B2,
sinceE; -vxB; =E; xv.-B), =—-B, :vxE, for a box product.

Therefore E2 — B2 and E - B are invariant under a Lorentz transfor-
mation. Note that in SI units it is E2 — ¢2B? that is Lorentz invariant.

5009
(a) A classical electromagnetic wave satisfies the relations

E-B=0, E?=¢B?

between the electric and magnetic fields. Show that these relations, if
satisfied in any one Lorentz frame, are valid in all frames.
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(b) If K is a unit three-vector in the direction of propagation of the
wave, then according to classical electromagnetism, K- E = K-B = 0.
Show that this statement is also invariant under Lorentz transformation
by showing its equivalence to the manifestly Lorentz invariant statement
n#F,, = 0, where n* is a four-vector oriented in the direction of propaga-
tion of the wave and F,, is the field strength tensor.

Parts (a) and (b) together show that what looks like a light wave in
one frame looks like one in any frame.

(c) Consider an electromagnetic wave which in some frame has the

form
E; =cBy = f(ct - 2),,

where s lirilm f(z) — 0. What would be the values of the fields in a different

coordinate system moving with velocity v in the z direction relative to the
frame in which the fields are as given above? Give an expression for the
energy and momentum densities of the wave in the original frame and in
the frame moving with velocity v, show that the total energy-momentum
of the wave transforms as a four-vector under the transformation between
the two frames. (Assume the extent of the wave in the z-y plane is large
but finite, so that its total energy and momentum are finite.)

(Princeton)

Solution:

(a) It has been shown in Problem 5008 that E - B, E? — c?B? are
Lorentz invariant. Hence in another Lorentz frame £’ we have

E-B=E-B=0, E?-c’B?=E’-¢B’=0,

ie.
El . BI - 0 El2 — C2B,2 .

(b) The electromagnetic field tensor can be represented by the matrix

0 —cBa CB2 —El

F.. = CBa 0 —cBl —E2

g —ch c¢B 1 0 —E3
E, E, E3 0

Using the electromagnetic wave propagation four-vector K* = (K, Kj,
K3, £) where K = ¥, we can express n* = 71( K#. n#F,, = 0 which is
then equivalent to K#F,, = 0. For v = 1, we have

+KscBs — K3cBy + %El =0,
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or c
E, =7{-(BXK)1 .

Similar expressions are obtained for E; and E3. Hence
E = — (B x K) (1)
=% .
For v = 4, we have
~K\E, — K3E; - K3E3 =0,

or
K-E=0. (2)

Since n#F,, = 0 is Lorentz covariant, it has the same form in all inertial
frames. This means that Eqs. (1) and (2) are valid in all inertial frames.
Now Eq. (1) gives

E2=%(BxK)-(BxK):c’Bz—cz(B-K)z. 3)

From (a) we see that if E2 = ¢2B? is valid in an inertial frame it is valid in
all inertial frames. Since this relation is given for one inertial frame, Eq. (3)
means that the relation K - B = 0 is satisfied in all inertial frames.

(c¢) In frame ¥ one has
Er=f(ct—2), Ey=E, =0,

1
B: =0, By=_f(c—2), B,=0.

Suppose a frame ¥’ moves with velocity v relative to ¥ frame along the
z-axis. Then Lorentz transformation gives

E;:EzZO, E;,:T(Ey"'sz):O’
E;_=7(E,—va):‘)f(l—ﬂ)f(Ci—Z),
' , Bp)_
B,=B,=0, B,=1(B.+5E,)=0,

By=7(8-25)=20-pse-2),
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where v
=;, 7:(1_ﬂ2)'% )

The energy densities in frames £ and I’ are respectively given by

2
w= % (60E2 + B—) =eof (et - 2),
2 Ho

/ 1 /2 B’2 2 2 22
w=3 ok +‘E)=€o7 (1-PB)* f(ct-2).

The inverse Lorentz transformation z = (2’ + fct’), ct = y(ct’ + p2') gives

ot —z=5(1-B)(ct - ). (4)

Thus
w' = e0y? (1= B) FPlv(1 - B) (e’ - )] .

The momentum density is

= ¢E x B = ¢oFE: Bye; .
Hence the momentum density as seen in £ and X’ has components
— €0 r2
9 =9y =0, g=—fct—2),

=g,=0, g=2y(1-pflr1-p)(ct ~)].

The total energy and the total momentum are
W= / wdV = eo/ f(ct — 2)dV,
1% v
G.=G,=0, G,= £ / fz(ct—z)dV=-v!-
c 1% [
in £ and

W'=/ w'dV’
Vl

=car’(1-8) [ 1 [7(1— 2) (ct'—z')]dv' ,
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G: =Gy =0,
G, = -Ec—°72(1 -ﬂ)’/w (1= B) (ct' - 2)]dV’ = Zc-

in X',

As the wave has finite extension, V and V’/ must contain the same
finite number of waves in the direction of propagation, i.e. the z direction.
As Eq. (4) requires

dv =v(1 - pB)dv’,

W =v(1-8W.

Similarly
!

w
G;=:7r==7ﬂn—ﬂ)G,.

Thus the transformation equations for total energy-momentum are
!
G.=G;, G =Gy, G.=¥ G,—ﬂK , V—V—=7 -W-—ﬂGs .
v v ¢ c c

That is, (G, v—r—) transforms like a four-vector.

5010

An infinitely long perfectly conducting straight wire of radius r carries
a constant current ¢ and charge density zero as seen by a fixed observer A.
The current is due to an electron stream of uniform density moving with
high (relativistic) velocity U. A second observer B travels parallel to the
wire with high (relativistic) velocity v. As seen by the observer B:

(a) What is the electromagnetic field?

(b) What is the charge density in the wire implied by this field?

(c) With what velocities do the electron and ion streams move?

(d) How do you account for the presence of a charge density seen by
B but not by A?
(Princeton)
Solution:

(a) Let ¥ and X’ be the rest frames of the observers A and B re-
spectively, the common z-axis being along the axis of the conducting wire,
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which is fixed in X, as shown in Fig. 56. In L, p=0,j = ;—:,e,, so the
]
electric and magnetic fields in ¥ are respectively

E=0,

z‘,i}}'}e , (r<rg)
B(r):{ “ i“ ¢

%,“;e.,, (r>ro)

where e;, e,, and e, form an orthogonal system. Lorentz transformation
gives the electromagnetic field as seen in ¥’ as

E|'|=E||=0, B|'|=B||=0,
—ﬁggﬁ‘:—ﬁe,, (r <rg)

—Eg}:le,, (r > rg)
iyr

BI:B:L'_"Y(B-L-VXEJ-):')’Be(p:{ 7o €p> (1‘<r0)

E’=E’J_=7(E_L+VXB1)=—7vBe,.={

3 .
¢ Efle,, (r>r)

where v = 7;71"2—/5, and the lengths r and ro are not changed by the

transformation.

% 0

-
E“ ro
— X

4

Fig. 5.6

(b) Let the charge density of the wire in I’ be p’, then the electric field
produced by p’ for r < ry is given by Gauss’ law

2xrEl = p'nr?feq

to be

/
r
E' = PT . (r<r
2¢gp er- ( 0)
Comparing this with the expression for E’ above we have
g viy
T owrde?’

where we have used goeq = -};
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(c) In X the velocity of the electron stream is ve = ~Ue,, while the
ions are stationary, i.e. v; = 0. Using the Lorentz transformation of velocity
we have in ¥’

U
vi=-2t e, vi=—te,. (6)
1+

(d) The charge density is zero in £. That is, the positive charges of
the positive ions are neutralized by the negative charges of the electrons.
Thus p. + pi = 0, where p. and p; are the charge densities of the electrons
and ions. As . .

] i

Pe =0 = "wreU
we have )
i
gy
However, the positive ions are at rest in £ and do not give rise to a current.
Hence

pi=

je=i=—ze:, Ji=0.

(-cl, p) form a four-vector, so the charge densities of the electrons and ions
in &' are respectively

, v __i7_vi7
pe—‘)’(pe cz‘k‘)_ arilU  wric?’

iy
ril
Obviously, p. + p{ # 0, but the sum of p} and p} is just the charge density
p detected by B.

P =P =

5011

(a) Derive the repulsive force on an electron at a distance r < a from
the axis of a cylindrical column of electrons of uniform charge density pg
and radius a.

(b) An observer in the laboratory sees a beam of circular cross section
and density p moving at velocity v. What force does he see on an electron
of the beam at distance r < a from the axis?
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(c) If v is near the velocity of light, what is the force of part (b) as
seen by an observer moving with the beam? Compare this force with the
answer to part (b) and comment.

(d)Ifn =2x 10" cm™3 and v = 0.99¢c (¢ = light velocity), what
gradient of a transverse magnetic field would just hold this beam from
spreading in one of its dimensions?

(Wisconsin)

Solution:

(a) Use cylindrical coordinates with the 2-axis along the axis of the
cylindrical column of electrons. By Gauss’ flux theorem and the symmetry
we obtain the electric field at a distance r < a from the axis:

E(r) = ,2)—2:—9,.. (r < a)

Thus the force on an electron at that point is

Note that this is a repulsive force as pg itself is negative.

(b) Let the rest frame of the column of electrons and the laboratory
frame be L’ and X respectively with £’ moving with velocity v relative to
Y along the z-axis. By transforming the current-charge density four-vector
we find p = ypq, where v = (1 — :—:—)"*. In ¥’ the electric and magnetic

fields are B’ = 329‘-:—1 e, B’ =0. In L, one has

E.L=7(E'L_VXB1L)=7EI) E“:Eilzoy
v v
B_1_=7( i+-chE1) =7c—2XE', B||=Bi|=0.
Thus the force on an electron of the beam at r < a is given by
1 v 4
F=-c¢E—-evxB=—eyE' —ev x (7c—2xE)
v2
=—eyE' +ey s E,
c

as v = ve, is perpendicular to E’.
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As there is no transverse Lorentz contraction, r = r'. Hence

po_E__ e
¥ 2e07?
(c) In &' the force on the electron is

Flom—eB =P 8,
20 = 207

f 30

As v > 1, F' > F. Actually, in the rest frame ¥’ only the electric field
exerts a force on the electron, while in the laboratory frame X, although
the electric force is larger, there is also a magnetic force acting opposite in
direction to the electric force. As a result the total force on the electron is
smaller as seen in .

(d) In X the force on the electron is

epr

F=-—2 e,.
2%07? "

The additional magnetic field By necessary to keep it stationary is given
by
—evxBog+F=0,
ie.
epr

CVXB0+2—€0—72-G,-=0.

As v = ve;, the above requires

__Pr
0= 2e0v?v € -

The gradient of the magnetic field is then

dBy_ o ___ne
dr ~ 2072v " 20720

With n = 2 x 101° x 10° m™3, v = 0.99¢, &0 = 8.84 x 10~!2 C/Vm, we
obtain

dB,| _ 2x 10 x 1.6 x 10~1°
dr | 7| 2x8.84x 10712 x =5y x 0.99 x 3 x 108

= 0.0121 T/m ='1.21 Gs/em.
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5012

The uniformly distributed charge per unit length in an infinite ion
beam of constant circular cross section is g. Calculate the force on a single
beam ion that is located at radius r, assuming that the beam radius R is
greater than r and that the ions all have the same velocity v.

(UC, Berkeley)

Solution:

Use cylindrical coordinates with the z-axis along the axis of the ion
beam such that the flow of the ions is in the +2 direction. Let ¥’ and
T be the rest frame of the ions and the laboratory frame respectively, the
former moving with velocity v relative to the latter in the +z direction, The
charge per unit length in X is ¢. In £’ it is given by ¢ = 7(1—?1—) =v¢,or
¢ = ¢/v, where y = (1 — [32)‘§, A = L. In ¥’ the electronic field is given
by Gauss’ law 27E! = 7';5 f& to be
' rq’

=mer. (r<R)

As the ions are stationary,
B'=0.

Transforming to T we have E; = y(E} — v x B)) =1E}, E = E}; =0,

or
'

rYq rq
E=4E = =
7 2meo R? er 2meo R2 O

and By =7 (B) + XF) =y ¥ By =B =0, 0r

v rq

e e
- — ey =
c? 21!’50122

B=1 " 2meqcR2 e -

v
[

Note that, as r is transverse to v, ' = r. Hence the total force acting on
an ion of charge @ at distance r < R from the axis in the laboratory frame
is

F=QE+QvxB
— AT v _ 9
= (Q Dyl 21reoR2) er

_ _Qgr v Qg
= 2xeoR? -2 & xR




572 Problems & Solutions on Electromagnetism

If v < ¢, then F = %% e,, which is what one would obtain if both the
charge and the ion beam were stationary.

5013

Given a uniform beam of charged particles ¢/{ charges per unit length,
moving with velocity v, uniformly distributed within a circular cylinder of
radius R, What is the

(a) electric field E

(b) magnetic field B
(c) energy density

(d) momentum density

of the field throughout space?
(UC, Berkeley)

Solution:
(a), (b) Referring to Problems 5011 and 5012, we have

E = { 21’:,:125( €r, (7' < R)
E;tgo_ri e,. (!‘ > R)

B= { 2R¢ZC;R51 €, (1' < R)
2t¢'¢’,c,rl € . (1‘ > R)

(c) The energy density is

1
w= - (60E2 + i Bz)
Ho

2
2 3.3
(1+ %) stimm. (<R
(H'i;) st (P> R)

(d) The momentum density is

g = cgExB
2.2
— { 47’:ocr’R‘I= €, (7‘ < R)
- 2
4:5:)«:’1'515 €. (1‘ > R)
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5014

Calculate the net radial force on an individual electron in an infinitely
long cylindrical beam of relativistic electrons of constant density n moving
with uniform velocity v. Consider both the electric and magnetic forces.

(Wisconsin)

Solution:

The charge density of the electron beam is p = —en. As shown in
Problem 5011, the net radial force on an individual electron is

epr e?nr

F=-P o =1
2¢07? e 2megy?

e, ,

where
1

UV

5015

A perfectly conducting sphere of radius R moves with constant velocity

v = ve, (v < c) through a uniform magnetic field B = Bey. Find the
surface charge density induced on the sphere to lowest order in v/e.

(MIT)

Solution_:

Let £’ and ¥ be the rest frame of the conducting sphere and the
laboratory frame respectively. In X we have B = Bey, E = 0. Transforming
to ' we have

EI’I‘_'EII:O: E| =v9(Ey + v xB1) = vvBe,,

vxE
Bj =B =0, Bi:y(Bl- = J‘):-yBey.

Hence
E' =yvBe,, B’'=9Be,.

112

In the lowest order approximation, v = (1 — %:-)‘ a1, one has

E'~vBe,, B'=Bey,.
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In ' the electric field external to the sphere E’ is uniform so the potential
outside the sphere is (see Problem 1065)

/ ‘ 'R
¢'=~-E'r cos 8+ = cos 8,
with # as shown in Fig. 5.7.
z
E

r

y
x
Fig. 5.7

The surface charge density on the conductor is given by the boundary
condition for D:

a 7

o' = —€0 2 = 3equB cos 0.
or r=R
On transforming back to £, as the relative velocity of I’ is along the z

direction, the angle 4 remains unchanged. Hence the surface charge density
induced on the sphere to lowest order in v/c is

o =7v0'~ o' =3eqvB cos 8§ .

5016

Let a particle of charge ¢ and rest mass m be released with zero initial
velocity in a region of space containing an electric field E in the y direction
and a magnetic field B in the z direction.

(a) Describe the conditions necessary for the existence of a Lorentz
frame in which (1) E =0 and (2) B=0.

(b) Describe the motion that would ensue in the original frame if case
(a) (1) attains.

(c) Solve for the momentum as a function of time in the frame with
B = 0 for case (a)(2).

(UC, Berkeley)
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Solution:

(a) Let £ be the laboratory frame and X’ be a frame moving with
relative velocity v along the z direction. In ¥ we have

E=Fe,, B=Be,.
Lorentz transformation gives the electromagnetic field in ¥’ as

E,=E;=0, E,=v(Ey—vB,)=v(E-vB), E,=v(E;+vBy)=0,

(1) For E' = 0 in ¥’ we require that
E—-vB=0,

orv= %— However, as v < ¢, for such a frame L' to exist we require that
E < c¢B.

(2) For B’ = 0 in L', we require that B— 3 E=0,0rv = "—:32. Then for
such a frame ¥’ to exist we require that

¢cB<E.

b) If E' = 0, the motion of the charge ¢ in ¥’ is described by
4

i
% (ﬂ_) —qu' x B 1)

V1-u/c?
d me ) g(u' x B -u' =0 @)
dt' \ /1 —u?]c? -1 o
where u’ is the velocity of the particle in £’. Equation (2) means that

mc?

= constant .

u?
1- =

Hence u’ = constant as well. This implies that the magnitude of the velocity
of the particle does not change, while its direction changes. As the initial
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velocity of the particle in X is zero, the velocity of the particle in ¥’ at the
initial time ¢’ = 0 is by the transformation equations

' Uy — V / Uy

— YV Y _ -
uw.-]_%"st v, U, 0= 55 0, u,=0
to be
u(,:—ve,:—-ée,.

Thus the magnitude of the velocity of the particle will always be v’ = g-,
and we have

B2c2 - E2
V1i—u?je? = —;30—'E— = constant.
Then Eq. (1) reduces to
W= i\/l—u’?/czu' x B’. 3)
m

From the transformation equations for B we have B’ = 1 /B2Z¢? — EZe,.
Hence Eq. (3) gives rise to

U, = wuy, (4)
iy = —wuy, )
i, =0, (6)

where
gB' /1-u?/c?  ¢(c?B% - E?)

m c¢?mB

w =

Equation (6) shows that u, = constant. As u, =0 att' =0, u, = 0 for all
times.
(4) + (5)xi gives

.y el 2 Y] . ¢
uy + iUy, = —iw(uy + iuy),

or
€ = ~iwk,

where
[ e 1
§=uy +iuy.
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The solution is
s
= —“36—""' )

or

u, = up cos (wt'), wuy = —ug sin (wt'),

where uj is a constant.
As up = § at t' = 0 we find that

E
cos (wt'), u, = -5 sin (wt').

!
up ==
£ B

These equations show that the particle will undergo circular motion in the
zy plane with a radius

w_E __ mb
w Bw  ¢(c2B?2-E?)’

In X, because of Lorentz contraction in the z direction, the orbit is an
ellipse with the minor axis along the z-axis,

(¢) Consider a frame ¥’ in which B’ = 0. Let p’ be the momentum of
the particle. The equation of motion is then

dl

The quantity E2 — ¢?B? is Lorentz invariant as shown in Problem 5008.
Hence E' = VE? — ¢2B? ¢, using also the result of (a). Then the equation
of motion has component equations

dp, dp, _

= a = )
d ']
% = qVE*~ B2, (8)

Equation (7) shows that both p,, and p) are constant, being independent of
time. The particle is initially at rest in I, so its initial velocity is opposite
that of ', ie., ug = —CQTB e;, as shown in (a)(2). Hence

mu) cmB

e = Vi—uw?j2  VEE-cB?'

-~
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Equation (8) gives
py(t'y =gV E?-c2B2Y,

where we have used the initial condition up, = 0 at ¢/ = 0.

5017

Consider an arbitrary plane electromagnetic wave propagating in vac-
uum in z-direction. Let A(z — ct) be the vector potential of the wave; there
are no sources, so adopt a gauge in which the scalar potential is identi-
cally zero. Assume that the wave does not extend throughout all spaces,
in particular A = 0 for sufficiently large values of z — ct. The wave strikes
a particle with charge e which is initially at rest and accelerates it to a
velocity which may be relativistic.

(a) Show that A, = 0.

(b) Show that p; = —eA, where py is the particle momentum in the
yz plane. (Note: Since this is a relativistic problem, do not solve it with
non-relativistic mechanics.)

(UC, Berkeley)
Solution:

(a) As A = A(z — ct),

OA_ _OA  BA_ . 0A
Oz ~ B(z—ct)’ 8t O(z-—ect)’
With the gauge condition ¢ = 0,

OA JA
E——Vgo—-a—t——'gt—.

As plane electromagnetic waves are transverse, E; = 0. Thus

0A; 04, -0
T8t B(z—ct)

showing that A;(z — ct) = constant.

Since the wave does not extend throughout all space, the vector poten-
tial vanishes for sufficiently large values of z —ct. Hence the above constant
is zero, i.e., A, = 0 at all points of space.
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(b) Let r be the displacement of the charged particle at time ¢ and
write the vector potential as A(r, t). We have

dA A < A 9z; 8A
W—ﬁ'-i-j:la—zjw——gt—-}—(v-V)A. (1)

The equation of motion of a particle of charge e and momentum p in
the electromagnetic field is

9 _

= =e(E+vxB). @)

Treating r and v as independent variables, we have
vx(VxA)=V(v-A)-(v-V)A. 3)
Equations (1)-(3) give

dp dA

7 -eV(v-A)—eE-.

Consider the transverse component of the particle momentum, p, = pye,+
Pi€s-

The vector potential A(z — ct) of the plane electromagnetic wave is
independent of the coordinates y and z, and has no longitudinal component
(see (a)). As r and v are to be treated as independent variables also, we
have

dA 0A,

8 _ y -
%(V.A)_vy 3y + v, Ep =0,

and similarly 367 (v-A)=0. Hence
dpl = —e dAL
dat dt

Integration gives
P1L = —ﬁAJ_ + C .

Since the initial velocity of the particle is zero, the constant C is zero.
Furthermore with A, = 0, A = A. So we can write the above as

PL = —vA.
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2. ELECTROMAGNETIC FIELD OF A CHARGED
PARTICLE (5018-5025)

5018

Show that the electromagnetic field of a particle of charge ¢ moving
with constant velocity v is given by

E}:%'y(m—vt), B, =0,
q q
Ey = =y, By = —= Pz,
YT X v X Y
Ezzl‘yz) Bz=lﬂ7y:
X X

where

v 2\~
ﬂ221 72(1__) )

c2
x= {7 (@ —vt)2 +y* + 272,

and we have chosen the z-axis along v (note that we use units such that
the proportionality constant in Coulomb’s law is K = 1).
(SUNY, Buffalo)

Solution:

Let ¥ be the observer’s frame and &’ the rest frame of the particle. In
the units used we have in L’

!
Ex)=%, BE)=0,

where
= x|

The Lorentz transformation for time-space between X and ¥’ is given by

z' = y(z ~ vt),
¥ =y,
=z,

so that

r12 — 1:12 +yl2 + 212 - 72(1 _ vt)2 +y2 +22 .
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The (inverse) Lorentz transformation for electromagnetic field gives

gz’ _ ¢
E,:E;,:;;_;'r(z—vt),

Ey =7(E;+ﬂB;)::%7,
z
E, =(E, - 8By =L,

x
B, =B, =0,
B, = y(B, - BE}) = —%ﬂ'rz,

B, = (B, + BE,) = %ﬂ'ry-

5019

(a) Consider two positrons in a beam at SLAC. The beam has energy
of about 50 GeV (v &~ 10%). In the beam frame (rest frame) they are
separated by a distance d, and positron e is traveling directly ahead of
ei, as shown in Fig. 5.8. Write down expressions at e'l* giving the effect of
e . Specifically, give the following vectors: E, B, the Lorentz force F, and
the acceleration a. Do this in two reference frames:

1. the rest frame, 2. the laboratory frame.

The results will differ by various relativistic factors. Give intuitive expla-
nations of these factors.

(b) The problem is the same as in part (a) except this time the two
positrons are traveling side by side as sketched in Fig. 5.9.

(UC, Berkeley)

Solution:

(a) Let £’ and ¥ be the beam rest frame and the laboratory frame
respectively. In £’ the effects exerted by e} on e} are

1 e
I-——-——
B =~ re &%
B' =0,

1 €?

'— ’_——-—
F=cb = dmeo 2 7'
A
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Thus in X', e} is a nonrelativistic particle that will undergo rectilinear
accelerated motion under the action of the electrostatic field E’ established
by ef.

The Lorentz transformation for electromagnetic field £y = E|'|, By =
BI’I’ gives

1 e :
= - e e .
E=E'= Treg O B=0
Hence the force on e} is
1 ¢?
= =————-—,=F'.
F =eE 41r£od2e

As vy = 105, e} is a relativistic particle in £ and must satisfy the relativistic
equations of motion

d d
(_mv___) =F, or mca—t(-yﬂ)=F,

*\ 1=/

2
d (——’lc—) =F.v, or mcd—7=Fﬁ

dt V1-v2/c? dt

where = ¢, y=(1- p?)~%, since F = Fe,, v = ve,. We then have

_dﬂ_c[d dy] 1 o _ F
a—cdt-y[dt(vﬂ) ﬁdt]—m'y(F Fs T myd’
or
a__dv_ F e? o 2
Tdt T my® T dmegrd3md? T T 437

It follows that when the motion of the two positrons is as shown in
Fig. 5.8, the electromagnetic field and the Lorentz force are the same in &
and T’. However, due to the relativistic effect the acceleration of e} in the
laboratory frame is only J times that in the rest frame. As X ~ 10~15,
a is extremely small. In other words, the influence of the force exerted by
a neighboring collinear charge on a charge moving with high speed will be
small. The whole beam travels together in a state of high velocity and high
energy.
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(b) In the case shown in Fig. 5.9, we have in the rest frame X' the
various vectors at e} :

€

B =—-———e B =0
4xeod? 7’ !
2
e
F' =¢E = - e
4ﬂ'€od2 e
a' = F_ e? e
“m = Axeomd® ¢
X
dI ¢
< z Y —
y
Fig. 5.9

In the laboratory frame X, as

E, =v(E| -vxB,),

x B}
B¢=7( l+v ),

we have
ve
E=9E =—-———e,,
7 4ﬂ’€od2 *
T rve
B= 'Yc_’.Eey T T 4xegcid? >
e? )

F=e(E+VXB)=—4—ﬂTOdz—70,—7.

In this case F - v = 0, so that ¥ = constant and

mec d F
@ )= oy

or
F e? a’

a= my  4xeod?my? O = 43
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These results show that when the two positrons are traveling side by side,
all the vectors in ¥, as compared with the corresponding vectors in ¥,
will involve the Lorentz factor 4 which is a constant of the motion. In the
laboratory frame, both the electric and magnetic fields exist, the former
being increased by v from that in the rest frame. As to the effects of E
and B on e, they tend to cancel each other, which reduces the force on
the acceleration of ef by factors % and ;1; respectively, as compared with
those in the rest frame.

5020

In Fig. 5.10 a point charge ¢ moves with constant velocity v in the
z direction so that at time ¢ it is at the point Q with coordinates z = 0,
y = 0, z = vt. Find at the time { and at the point P with coordinates
z=b, y=0, 2= 0 (see Fig. 5.10)

(a) the scalar potential ¢,

(b) the vector potential A,

(c) the electric field in the z direction, E,.

(Wisconsin)

Fig. 5.10

Solution:

(a) The Liénard-Wiechert potentials at P due to the charge are given
by
e ev

= A=z————
dmeo[r— ¥ -] 4megc?[r — ¥ .x]

where r is the radius vector from the retarded position of the charge to the
field point P, i.e.,

r:be,—v(t—%)e,=be,,—vt’e,,
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with

Thus

r\? 2rt  r?
P=rr=b+0° (t——) =8 +0? (tz__+_2),
c c c
or . .
(S P
¢ c

This is the retardation condition, with the solutions

_ =But £ /(1 - )b + v3¢?
r= =5 ,

where § = ¢,
However the upper sign is to be taken since r > 0. As v = ve;,

. 2t, ‘
r—v—c—£=r+2-c—-=r+vﬂ(t—£) =(1-8Y)r+uvpt

= /(1 - 82) b2 + v2¢2.

The scalar potential ¢ is then

4

= dmeo /(1 — B2) 0% + 0212

(b) The vector potential A is

ev
A= e
4megc? /(1 - §2) b2 + v2t?

F

(c¢) The electric field at P is obtained by differentiating the Liénard-

Wiechert potentials: 0
A
E(t) = -V¢- 5.

For the spatial differentiation, b is to be first replaced by . We then have

_ (%) .- o1 = 57)8
0= (52), = et 7 o o
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As A is in the z-direction, it does not contribute to E,. Hence

£ - e(1 - )b
7 4weo[(1 ~ B2) b2 + w2232

5021
For a particle of charge e moving non-relativistically, find

(a) The time-averaged power radiated per unit solid angle, dP/dQ, in
terms of velocity B¢, acceleration B¢, and the unit vector n’ from the charge
toward the observer;

(b) dP/dS2, if the particle moves as z(t) = a cos(wot);

(c) dP/dSQ for circular motion of radius R in the zy plane with constant
angular frequency wy.

(d) Sketch the angular distribution of the radiation in each case.
(e) Qualitatively, how is dP/dQ changed if the motion is relativistic?
(Princelon)
Solution:

(a) For a non-relativistic particle of charge e the radiation field is given

by

en’ x (n' x Bc) e .
E = = ! x (o’
4meg c2r 4xeqer o’ x (0" x B),
B= ln’ xE,
c

where r is the distance of the observer from the charge. The Poynting
vector at the observer is then

1 1 2.,.7 2
N=ExH=;—ExB=-——En =
0

- _In'x " % \12 '
Hoc 1672egcr? o x (0’ x B)['n

Let & be the angle between n' and ﬁ, then

E_N-n’ e?

_ 22 2
dQ ~ r-2 7 1672%eqc BT sin®0 .

This result is not changed by time averging unless the motion of the charge
is periodic.
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(b) If 2 = acos(wot), then fe = i = —awdcos(wot) and as
:}r f(;r cos?(wot) dt = %, where T is the period,
. 1
((Bey’) = 5 Qi
Hence
dP _ e*d’ud
df) - 327"28063

(c) The circular motion of the particle in the zy plane may be consid-
ered as superposition of two mutually perpendicular harmonic oscillations:

R(t') = R cos (wot')e; + R sin (wot')ey .

In spherical coordinates let the observer have radius vector r(r, 6, ¢) from
the center of the circle, which is also the origin of the coordinate system.
The angles between r or n’ and 8 for the two oscillations are given by

sinZ 0.

cosf, =sinf cos o,
cosfly = sin § cos (%—w) =sin 6 sinep.

Using the results of (b) we have

dP eszwg ) ")
-dﬁ = W (sm 0; + sin 92)
2 RWwj 9
= —— 9.
TonTeges (L T 05 0)

(d) For the cases (a) and (b), the curves p = 4F vs. 0 are sketched in
Figs. 5.11 and 5.12 respectively, where z is the direction of 3.

z

!

Fig. 5.11
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8/P

Fig. 5.12

(€) For B = 0, the direction of maximum intensity is along 8 = 5. As
B — 1, the direction of maximum intensity tends more and more toward
the direction § = 0, i.e., the direction of 3. In fact the radiation will
be concentrated mainly in a cone with A ~ %1- about the direction of 8.
However there is no radiation exactly along that direction.

5022

Cerenkov radiation is emitted by a high energy charged particle which
moves through a medium with a velocity greater than the velocity of elec-
tromagnetic wave propagation in the medium.

(a) Derive the relationship between the particle velocity v = fe, the
index of refraction n of the medium, and the angle # at which the Cerenkov
radiation is emitted relative to the line of flight of the particle.

(b) Hydrogen gas at one atmosphere and at 20°C has an index of
refraction n = 1+ 1.35 x 10™%. What is the minimum kinetic energy in
MeV which an electron (of rest mass 0.5 MeV/c?) would need in order to
emit Cerenkov radiation in traversing a medium of hydrogen gas at 20°C
and one atmosphere?

(c) A Cerenkov radiation particle detector is made by fitting a long
pipe of one atmosphere, 20°C hydrogen gas with an optical system capable
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of detecting the emitted light and of measuring the angle of emission 8 to an
accuracy of 66 = 10~3 radian. A beam of charged particles with momentum
of 100 GeV/c are passed through the counter. Since the momentum is
known, the measurement of the Cerenkov angle is, in effect, a measurement
of the particle rest mass mg. For particles with mg near 1 GeV/c?, and to
first order in small quantities, what is the fractional error (i.e., 8mo/mq) in
the determination of mg with the Cerenkov counter?

(CUSPEA)

Solution:

(a) As shown in Fig. 5.13, the radiation emitted by the charge at Q'
at time ¢’ arrives at P at time ¢ when the charge is at Q. As the radiation
propagates at the speed ¢/n and the particle has speed v where v > ¢/n,
we have

QP=—(-1), QQ=v(t-1),

or

/
g_[_)_ =cos & = i — _1_ ,
QQ v fn
where 8 = £. At all the points intermediate between Q' and Q the radiation
emitted will arrive at the line QP at time ¢. Hence QP forms the wavefront
of all radiation emitted prior to .

Cerenkov wavefront

Fig. 5.13

(b) As |cos 8] < 1, we require § > ;1.- for emission of Cerenkov radia-
tion. Hence we require
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Thus the particle must have a kinetic energy greater than

= (v~ ymoc?

B [\/(n+1n)(n—1) —l] moc’

1
=~ -1)x05
( V2 x 1.35 x 10-4 )
~ 29.93 MeV .

(c) For a relativistic particle of momentum P > mqc,

E _ /PiZymict . P

T= moe? mgc? ~ moc’
With P fixed we have
P dmo
c md

Nowﬂ_—:112=\/%;lz\/l—;‘s;zl—ﬁ;for'y»l,sothat

dy
dﬂ=;§.

For the Cerenkov radiation emitted by the particle, we have

cos 0:-31:,

or
dB = nB%sin0do .

Combining the above we have

dy
'_‘!EQ = I-nPO—cd7~ > = 7’3 = nB%y?sin 0d0 = By tan 6d0.

Mo

With v = Le — T0=100 n=14135x 10"%, we have

MgcC

ﬂz1—2—xllwzl—5x10'5,

1
cos § = = (1-5x107%)"1(1+135x107%) '~ 1-85x 10~°
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1
- — - — 8. -5 -2_
tano_,/coszo 1=/(1-85x10-%)-2—1

~V17x 104~ 1.3 x 1072,

and hence

dmo

— | = (1-5x10"%) x10* x 1.3 x 10~2 x 10~3 = 0.13.
0

5023

A waveguide is formed by two infinite parallel perfectly conducting
planes separated by a distance a. The gap between the planes is filled
with a gas whose index of refraction is n. (This is taken to be frequency
independent.)

(a) Consider the guided plane wave modes in which the field strengths
are independent of the y variable. (The y axis is into the paper as shown
in Fig. 5.14.) For a given wavelength X find the allowed frequency w. For
each such mode find the phase velocity v, and the group velocity vg.

T

Fig. 5.14

(b) A uniform charged wire, which extends infinitely along the y direc-
tion (Fig. 5.15), moves in the midplane of the gap with velocity v > ¢/n. It
emits Cerenkov radiation. At any fixed point in the gap this reveals itself as
time-varying electric and magnetic fields. How does the magnitude of the
electric field vary with time at a point in the midplane of the gap? Sketch
the frequency spectrum and give the principal frequency.
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(¢) Any electromagnetic disturbance (independent of y) must be ex-
pressible as a superposition of the waveguide modes considered in part (a).
What is the mode corresponding to the principal frequency of the Cerenkov
spectrum considered in part (b)?

(Princeton)

Solution:

(a) Take the midplane of the gap between the two planes as the zy
plane. As the field strength does not depend on y and the wave is guided
along the z direction, we can write

E= E(Z) el’(k,.t—wt)
with k; = &%. E satisfies the wave equation

2 92 2
2 n* 0°E 0’E 2
VE—wa—O, or a2+k'E 0,

where

2
n
K2 = S -k,
subject to the boundary conditions

E;=FE,=0, for z=0, a.

E is also subject to the condition V-E = 0, i.e,, £ = —ik, E,. This gives
rise to another boundary condition that
OF
2=Q for 2=0,a.
0z

Consider the equation for E,:

0*E,

B2 — X 4+k*E,=0.

The solution is
E, = E,o[sin(k'z) + A cos (k'z)] k=2,
The boundary conditons give

A=0, ka=mr. (m=0,1,2,3...)
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Hence
. mn i -
E, = Eg sin (— z) gflkez—wt)
a

Similarly
Ey = Ey() Sin (g z) el'(k:::—wt) ,

E, = E.q cos (% z) eiksz—wi)

n2w? 27\ 2 mr\?
=k2 kl2= ki phadid .
a Tt ()«) +( a )

Thus for a given wavelength A the allowed angular frequencies are the series
of discrete values

2r\ 2 + (m7r 2

A a )’
The phase velocity is then

2q1/2
= m o Sy (M
ks n 2a
and the group velocity is

_dwm_c1 mi\ 2]~ V?
”g‘dk,‘ﬁ[ + ?a")] '

(b) In vacuum the electric field at a field point at time £ produced by
a particle of charge ¢ moving with uniform velocity v is

We also have

Wm =

Sl

_ ¢ aR
T 4mey 3

where R is the radius vector from the location of the charge at time ¢ to
the field point,

i
2

a=1- (%)2 5= [aR2+c—12(v-R)2]
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If the charge moves in a medium of permittivity ¢ and refractive index n,
the above expression is to be modified to

q aR

T 4we s3

on\ 2 n 273
a=1-—<—) , s:[aR2+(—v-R)] .
c ¢

Let ¢ be the angle between v and R, then

vn\? b
s=[l—(-;—) sinztp] R.

If v > £, s will become imaginary except for the region of space with
sinp < .=, As the particle speed is greater than the speed of propagation
of electromagnetic waves in the medium, the field point must be to the rear
of the particle at time ¢ (Problem 5022). Thus the field will exist only
within a rear cone of half angle ¢ = arcsin (%) with the vertex at the
location of the particle at time . On the surface of this cone E — o0o. This
surface is the surface of the Cerenkov shock wave and contains the Cerenkov
radiation field. The infinitely long charged wire can be considered an infinite
set of point charges, so the region of the Cerenkov radiation will be a rear
wedge with the wire forming its thin edge and the inclined planes making
an angle 2. At any point in the wedge the intensity E of the radiation
field is the superposition of the intensities of the Cerenkov radiation field
at that point due to all the point charges.

Consider a point P in the midplane as shown in Fig. 5.16. Obviously
P has to be at the rear of the line of charges represented by the y-axis. Let
the line of charges pass through P at ¢ = 0, then at time ¢ the line is at

where

X
t‘ —-fyt-—’l'o y
vt | R $
1 )
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a distance vt from P. The radius vector from a line charge element Ady to
point P is
R = —vte; —yey.

As v = vey, R-v = —v%t. The intensity of the field at P caused by Ady is

_ Ay (1 —n? !’c-;-) (—vte, — yey)
T n2[(1- u’c_r;_’_) (v2 +v2t2) + %»,’f_’]s/z ’

The total Cerenkov field intensity at P at time ¢ is the vector sum of
the intensities contributed by all charge elements on the line. By symmetry
the contributions of two charge elements located at y and —y to E, will
cancel out and the total contribution is the sum of their z components.
Hence the total electric field at P is in the z direction and has magnitude

Yo
E(t) = 2/ dE, ,
0

where the upper limit of the integral is given by the requirement that P
should fall within the Cerenkov cone of the charge element Ady at yo. Thus

2,\ 2 v2 vitan ¢ dy
E(t) = F (n 6_2 - l) vt /0 [v2t2 ,.2,,2 l)y2]3/2

2/\("2"2 - 1) tan ¢ 1
= x -,
n"’vt\/l —1) tangp t
This can be written as A
E(t) = T

where A is a constant.
By Fourier transform

o0 .
EQ) = / E(w) e “dw
1 oo fwi _ A * e“w‘
E(w)—ﬂ'/looE(t)e dt—ﬂ/ Tdt

-0
o0 _ix
e .
/ —dz =i,
—0 %

with
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Ai
E(w) = '_2—)

i.e., |E(00)| is a constant, independent of frequency. This means that the
Cerenkov radiation has a “white spectrum”, i.e., each of its monochromatic
components has the same intensity and there is no principal frequency.

(c) As shown in Fig. 5.15, let a unit vector S be normal to the upper
plane of the wedge forming the surface of the Cerenkov radiation. S is just
along the direction k (k| = % n) of the Cerenkov radiation. Then

w o w c w
k= —nsinp=—n{—|)=—.
c c nv

However not all the frequencies in the “white spectrum” of the Cerenkov
radiation can propagate in the waveguide, only those that satisfy

MG EIORICOR

mr n? |

w=—(——

a ‘c? 2

or
-1/2
) =wy. (M=1,2,...)

The frequencies w,, which are allowed by the waveguide may be considered
the principal modes of the Cerenkov radiation in the waveguide.

5024

A particle with mass m and electric charge ¢ is bound by the Coulomb
interaction to an infinitely massive particle with electric charge —q. At
t = 0 its orbit is (approximately) a circle of radius R. At what time will it
have spiraled into R/2? (Assuine that R is large enough so that you can
use the classical radiation theory rather than quantum mechanics.)

(Columbia)

Solution:

The massive particle can be considered stationary during the motion.
The total energy of the particle of mass m is

E=-21-m02+v,
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where the potential energy of the particle is that due to the Coulomb in-
teraction,
2
__9
4 EoT ’
r being the distance of the particle from the massive particle.
As the particle moves in a circle of radius r, we have

2 2
L_myt g
mlvl - r - 41reor2 ’

or

Hence

As the particle undergoes centripetal acceleration v it loses energy by ra-
diation:

dE _ ¢*|vf?
dt - 61!'6003 ’
On the other hand, we have for the above
dE ¢ dr
dt ~ 8megr? dt’
Hence
dr 4r2 o ¢
== V= .
dt 3¢ 1272e2c3m?r2
As r = Ratt =0, the time at which r = % is
12n%3c3m? (% Tnledc®m?R3
TE—— ridr= ————
q R 2
5025

A classical hydrogen atom has the electron at a radius equal to the
first Bohr radius at time ¢ = 0. Derive an expression for the time it takes
the radius to decrease to zero due to radiation. Assume that the energy
loss per revolution is small compared with the remaining total energy of
the atom.

(Princeton)
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Solution:

As the energy loss per revolution is small we may assume the motion
to be nonrelativistic. Then in Gaussian units the rate of radiation loss of
the electron is

dE 2% ,

a - 33
where a is the magnitude of the acceleration. In the Coulomb field of
the hydrogen nucleus the total energy and acceleration of the electron are
respectively

2 2
2 € 4

F=-mv— —=—— a= —s
2 r 2r’ mr2’

e2

. . . 3
where we have used the expression for the centripetal acceleration @ = *-.
Hence

dE dE dr € dr 2¢? ( e? )2

dt _drdt 22 dl 33 \mr?
or 3 2.3
_ _om"c 4
dt = et rédr.

Therefore, the time taken for the Bohr orbit to collapse completely is

t 323 o 2,3,.3
m-c mec-a
T=/dt=— /rzdrz.—__g
0 ao

4e1 4et '

where a¢ = mL:,- is the first Bohr radius.

3. MOTION OF A CHARGED PARTICLE IN
ELECTROMAGNETIC FIELD (5026-5039)

5026

A particle of mass m and charge e is accelerated for a time by a uniform
electric field to a velocity not necessarily small compared with c.

(a) What is the momentum of the particle at the end of the acceleration
time?

(b) What is the velocity of the particle at that time?

(c) The particle is unstable and decays with a lifetime 7 in its rest
frame. What lifetime would be measured by a stationary observer who ob-
served the decay of the particle moving uniformly with the above velocity?

( Wisconsin)



Relativity, Particle-Field Interactions 599
Solution:
(a) As

1
M =eE, myv= / eEdt = eEt,
dt 0

where E is the intensity of the uniform electric field,

r=(1-p)"F with g=-.

(b) As
mvyfc = eEt,
or Et
e
B=-)="—,
mc
we have
TN o R
T EI= B2~ \me !
or )
5 = (eEt)
(eEt)? + (mc)?’
giving
v=fe= eEct
T T MeEDT+ (me?
(¢) On account of time dilation, the particle’s lifetime in the observer’s
frame is

2
T=vyr=r l+(ﬂ) .
me

5027

The Lagrangian of a relativistic charged particle of mass m, charge e
and velocity v moving in an electromagnetic field with vector potential A

is
L=—rnc2\/1—ﬂ7+§A-v.

The field of a dipole of magnetic moment u along the polar axis is described
by the vector potential A = L%;'—' ey where 8 is the polar angle and ¢ is
the azimuthal angle.
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(a) Express the canonical momentum py conjugate to ¢ in terms of the
coordinates and their derivatives.

(b) Show that this momentum p4 is a constant of the motion.
(c) If the vector potential A given above is replaced by

=A+Vx(r0,4),

where x is an arbitrary function of coordinates, how is the expression for
the canonical momentum py4 changed? Is the expression obtained in part
(a) still a constant of the motion? Explain.

(Wisconsin)
Solution:

We first use Cartesian coordinates to derive an expression for the
Hamiltonian.
Let v = 71-1? The canonical momentum is

_6_L—m .+EA.
p'_av;—' Y4 PR

or, in vector form,
e
p=myv+ —-A.
c

The Hamiltonian is then

2 2
H:p-v—L=m7v2+T}c—=mTc(72ﬂ2+l)=m-yc2,

Y8 =" -1.
(a) In spherical coordinates the velocity is
v =re, + réea + rsin 0$e¢.

The Lagrangian of the magnetic dipole in the field of vector potential A is
therefore

L= _m + e usin?é . é.
¥ c r
The momentum conjugates to ¢ is
_ 0L 2 3 Oy 08 e usin®0
A I ()0ﬁ6¢ c v
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As
l . H . H
,32 = _62 (1'2 + r202 + 1'2 sm2 0¢2) ,

Oﬂ r2

8¢ ﬁzsmzﬂtﬁ,
and as 72 =1~ %
8—7—7 B.
ap

Hence
e psin 0

r

Py = myr? sin 0¢ +

(b) As the Hamiltonian does not depend on ¢,

. oH

Hence py is a constant of the motion.

(c) If the vector potential is replaced by A’ = A + Vx(r, 8, ¢), the
new Lagrangian is

—mc?

7

L'=

+ZA v+ f-Vx-v.
c c
The canonical momentum is now
p=myv+ oA+ vy
c c
But the Hamiltonian
H' =p' -v—-L=myc

is the same as before.
For an arbitrary scalar function y,

dx 10x 1 dx

VX:E_;G tr r 80 +rsin0%e¢’

so that

Vx - v_r%—+9 +¢
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Thus the momentum conjugate to ¢ is now

aL’ . . e (psin?0 Oy
- - 2,02 - —_— =
p¢_a$ myr*sin 0¢+c< - +0¢)’

i.e., p} is modified by the addition of the term < %%.

As H'’ is still independent of ¢, the canonical momentum pj is a con-
stant of the motion. However, as

R ) 4

£
and x is an arbitrary scalar function, the part py is not a constant of the
motion.

5028

An electron (mass m, charge ¢) moves in a plane perpendicular to a
uniform magnetic field. If energy loss by radiation is neglected the orbit is
a circle of some radius R. Let E be the total electron energy, allowing for
relativistic kinematics so that £ 3> mec?.

(a) Express the needed field induction B analytically in terms of the
above parameters. Compute numerically, in Gauss, for the case where
R = 30 meters, E = 2.5 x 10° electron-volts. For this part of the problem
you will have to recall some universal constants.

(b) Actually, the electron radiates electromagnetic energy because it
is being accelerated by the B field. However, suppose that the energy
loss per revolution, AE, is small compared with E. Express the ratio
AE/E analytically in terms of the parameters. Then evaluate this ratio
numerically for the particular values of R and E given above.

(CUSPEA)

Solution:

(a) In uniform magnetic field B the motion of an electron is described
in Gaussian units by
dp e
—=-vxB,
at o

where p is the momentum of the electron,

P=myv,
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with y = (1 - ﬂ’)"f, B = %. Since £v x B : v = 0, the magnetic force
does no work and the magnitude of the velocity does not change, i.e., v,
and hence 7, are constant. For circular motion,

do|_ o

dt)” R’
Then d

my —{- =-|vxB|

As v is normal to B, we have

2

m-rE_;vB

or pe

B:e—iz—,

With E » mc?, pc = VET —m2ef ~ E and
B=x £z0.28x 10* Gs.
eR

(b) The rate of radiation of an accelerated non-relativistic electron is

2e ., 2 & (dp dp
P“E?“"iﬁ@(ﬁ”ﬁ)’

where v and p are respectively the velocity and momentum of the electron.
For a relativistic electron, the formula is modified to

p=2_ € (dpudp”
Im2cs \ dr dr /)’

where dr = %, pu and p* are respectively the covariant and contravariant

momentum-energy four-vector of the electron:

Pu = (pc, —E), P = (pc, E)

Thus

dp, dp* _ (dp dp\ , (dE)’
dr dr \dr dr)° dr ) -
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Since the energy loss of the electron per revolution is very small, we can

take approximations %’Ti = 0 and v = constant. Then

dp_ dp _ g dv
dar Ta =™ w-

Substitution in the expression for 7 gives

2k (v 4,
=3®m\z) 7
The energy loss per revolution is

27R ar e fv\?
AE=2p_TTE (2) e
i R(c) ’

dv

2 ¢ 2,42
P m o

T3mis e

5029
Consider the static magnetic field given in rectangular coordinates by

B=Bo(rz—-yg)/a.

(a) Show that this field obeys Maxwell’s equations in free space.

(b) Sketch the field lines and indicate where filamentary currents would
be placed to approximate such a field.

(c) Calculate the magnetic flux per unit length in the Z-direction be-
tween the origin and the field line whose minimum distance from the origin
is R.

(d) If an observer is moving with a non-relativistic velocity v = vZ at
some location (z, y), what electric potential would he measure relative to
the origin?

(e) If the magnetic field Bo(t) is slowly varying in time, what electric
field would a stationary observer at location (z, y) measure?

(Wisconsin)
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Solution:

(b) The magnetic field lines are given by the differential equation

dr B, z’
ie.,
zdy+ydz =0,
or
d(zy) = 0.
Hence
Ty = const.

The field lines are shown in Fig. 5.17. In order to create such a field, four
infinitely long straight currents parallel to the z direction are symmetrically
placed on the four quadrants with flow directions as shown in Fig. 5.17.

y
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(c) Consider a rectangle of height z = 1 and length R along the bisector
of the right angle between the z- and y-axes in the first quadrant (1i.e., along
the line z = y). Then the unit normal to this rectangle is n = 7 (- 9).
Along the length R, B(z,y) = %‘1 (zz —yy) = %‘1 z(Z — ). Taking as the
area element of the rectangle do = v/2dz, one has for the magnetic flux
through the rectangle

2
¢8—/B(z y) - nd 2?0 /% zdz = BoR .
0

2a
(d) Transforming to the observer’s frame, we find
=y(EL+vxBy)=yvxB, Ej=E =0,

or
E'=vxB,

as for small velocities, = 2 =~ 0,y = (1 - )t~
Hence

E' = vz x [-i—o(zi:—-yg)] = -Bf-v(zﬁ+y£).

The potential ¢(z, y) relative to the origin (0, 0) as measured by the ob-
server is given by

¢(z,y)=—./0 E”dl‘,

where r = 2% + y§.
Thus

be, )= 22 j (zdy + ydz)

=- Bov/ d(zy) = ——vzy

(e) Maxwell’s equation V x E = -%?- gives

0E, 0E, . z
oy 8z =Bo(?) a’
0E; OE, _ . y

8z 8z Bo(?) a'
OBy _ 8& =0

bz Oy
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As B is only slowly varying in time, B can be taken to be independent
of the spatial coordinates. The solution of this set of equations is E, =
constant, E, = constant, and

po= Bl foy o Bl g

or

Bo(t)zy

E, = + f2(y) -

Hence fi(z) = f2(y) = constant, whlch as well as the other constants can
be taken to be zero as we are not interested in any uniform field. Therefore

E= —Bo(t) —_ e,

5030

Consider the motion of electrons in an axially symmetric magnetic
field. Suppose that at z = 0 (the “median plane”) the radial component
of the magnetic field is 0 so B(z = 0) = B(r)e,. Electrons at z = 0 then
follow a circular path of radius R, as shown in Fig. 5.18.

(a) What is the relationship between the electron momentum p and
the orbit radius R? In a betatron, electrons are accelerated by a magnetic
field which changes with time. Let By, be the average value of the magnetic
field over the plane of the orbit (within the orbit), i.e.,

Y8

Ba = 225,

where ¥p is the magnetic flux through the orbit. Let B¢ equal B(r =
R, z = 0).

Fig. 5.18
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(b) Suppose B,, is changed by an amount A B,, and By is changed by
ABy. How must AB,, be related to A By if the electrons are to remain at
radius R as their momentum is increased?

(c) Suppose the 2z component of the magnetic field near r = R and
z = 0 varies with r as B(r) = Bo(R)(£)". Find the equations of motion
for small departures from the equilibrium orbit in the median plane. There
are two equations, one for small vertical changes and one for small radial
changes. Neglect any coupling between radial and vertical motion.

(d) For what range of n is the orbit stable against both vertical and
radial perturbations?

(Princeton)
Solution:
For simplicity, we shall assume nonrelativistic motions.
(a) The equation of motion is m|%|=—-elvxB|or me’ — _eyB.

Hence P = mv = —eBR, where —e is the electronic charge.

(b) It is required that R remains unchanged as Bg increases by ABq
and v changes by Av. Thus

A 2
m O oo 4+ Av) (Bo + ABY),
or A
mav
ABoz— R s
as 2
%:—CUBQ.

The change of v arises from B changing with time. Faraday’s law

fE-dm_/B.ds
¢ S

indicates that a tangential electric field

_ 1 4
TR dt

i8 induced on the orbit. Thus the resultant change of momentum is

At _e d¢ —eA¢ —eRAB,,
'"A”‘/o wRa& =R - 2
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as A¢ = ABa,7R?. Hence
1
ABpy = 3 AByy .

(c) Suppose the electron suffers a radial perturbation, so that the equi-
librium radius and angular velocity change by small quantities:

r=R+r, w=wotuwr,

where wo = £ = -ﬁ“-

In cylindrical coordmates r, 8, z, the electron has velocity
v=re + 6 €.

As .
e, =fes, ey=—0Oe,,

the acceleration is
a=v=(f—-r6%)e, + (270 + r8)es.

Newton’s second law

F=ma=—-evxB
then gives ) )
—erB, = m(# — r6?),
erB, = m(ré + 270).
AsB=B;e,,

v x B=r6B,e, — rB,ep.

In terms of the perturbations,
F=r, 0=wo+ws, f=un
and to first approximation, the above equations respectively become
m(F; ~ ng — rlw:‘; — 2Rwowy) ~ —e(Rwo + Rwy + rywe)B;

ef.‘1 B, ~ de:l + 2mf'1wo .

Using B;(R+ r) = B;(R) + (38*)p 1, eB.(R) = mwo, these equations
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become, again to first approximation,
—BRL«)()B;(R)rl - BB,(Rth + rlwo) = rn(r1 - 2Rwow1 - r;wg),

and
Ry + 7wy =0,

where B,(R) = (&) g+ Integrating the second equation and using it in
the first give
—eRwoB;(R)r; = m# + mwgrl .

B!(R) = Bo(R)n (?)H - (- rﬁ;)

we have, again using eB,(R) = muwy, the radial equation of motion

1+ (1 —n)wir; = 0. (1)

Now as

n
- —E BJ(R)x

r=R

The vertical motion is given by Newton’s second law F; = mZ. Now

F, =—e(vxB)-e, = —e(rBg — réB,)
= —er By + e(R+ 1) (wp + w1 ) B, = eRwy B, ,

as By and B, are first order small quantities. Hence
mz = ewgRB, .

To find B,, consider a small loop C in a plane containing the z axis as
shown in Fig. 5.19. Using Ampére’s circuital law §, B - dl = 0 and noting
that there is no radial component of B in the plane z = 0, we find

B;(R)z + B.(z)dr — B,(R+dr)z=0,

or
By(z)= BB+ 4N = B:(R) , _ iy,
dr
z
-———dz
Cl ___Jo
l-dr-—R

Fig. 5.19
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As B!/(R) = —% B;(R), eB,(R) = mwq, we have
mi + mwinz = 0. (2)

Equations (1) and (2) describe small departures from the equilibrium orbit.

(d) For the orbit to be stable both the vertical and radial perturbations
must be sinusoidal. Then Eq. (1) requires n < 1 and Eq. (2) requires n > 0.
Hence we must have 0 < n < 1.

5031

An electron moves in a one-dimensional potential well of harmonic
oscillator with frequency w = 10° rad/s, and amplitude zo = 10~3 cm.

(a) Calculate the radiated energy per revolution.

(b) What is the ratio of the energy loss per revolution to the average
mechanical energy?

(c) How much time must it take to lose half of its energy?
(Columbia)
Solution:

(a) The radiation reaction which acts as a damping force to the motion
of a nonrelativistic electron is, in Gaussian units, (Problem 5032(a))

2e? .
f=3a%
Thus the equation of motion for the electron is
2¢?
=~kz+ — 3 c3
or
i=-wiz+ ——262 T
=TT I
where w§ = £. We consider the radlat,lon damping to be small and first

neglect the radlatlon term so that z 4+ woz =0, or z = zpe~ "o, Then

2e? .. - 2wl

3mc3 3mc3

z = 2wz

3,2

. e w
with a = g%
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The equation of motion now becomes
&= —(wi - i2wpa)z.

The solution is

_: T3
T = zge t\/wo $2woar t

x zoe~ *eWol

Note that as 2% = %ro %, where ro = m—:, = 2.82x10713 cm is the classical
radius of electron is much smaller than unity, the above approximation
holds. Furthermore, we can take

Ex—wiz.

The average mechanical energy of the electron is

(B) = 5 m{z) + 5 (=)

1 _ 1 _
= 1 mwg:cge 2at 4 3 lc:vge 2at

1 -
= 2mw§zoe 2ot

The average rate of energy loss by radiation is

oy 2621 2 1.
< > /f‘” 33T/ Fadt = 3c3T[ - 33 7B

2e? wizd
33 2

so the energy loss per revolution is

2e? wixd 27r_21rew01:0_ _51 - _as
33 9 v =3 3 1.8x 107" erg=1.1x 107" eV.

AE =

(b) The ratio of the energy loss per revolution to the total mechanical
energy is

AE 2
m:%’i.;‘:;’z%"ro‘i‘l_sgxlo-‘s.
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(c) ,
E(t) =3 mwizle 2,
Let E(t +7) = } E(t). Then

,_n2 _ 3mc®
T 20 T 2e2w?
3c
2row?

=1.1x103s.

In2

In2

5032

An electron of charge ¢ and mass m is bound by a linear restoring force
with spring constant & = mw3. When the electron oscillates, the radiated
power is expressed by
2e24?

33

where v is the acceleration of the electron and ¢ is the speed of light.

P =

(a) Consider the radiative energy loss to be due to the action of a
damping force F,. Assume that the energy loss per cycle is small compared
with the total energy of the electron. Using the work-energy relationship
over a long time period, obtain an expression for F, in terms of v. Under
what conditions is F, approximately proportional to v?

(b) Write down the equation of motion for the oscillating charge, as-
suming that F, is proportional to v. Solve for the position of the charge as
a function of time.

(c) Is the assumption of part (a) that the energy loss per cycle is small
satisfied for a natural frequency ¥2 = 10’5 Hz?

(d) Now assume that the electron oscillator is also driven by an exter-
nal electric field E = E; cos(wt). Find the relative time-averaged inten-
sity I/Iax of the radiated power as a function of angular frequncy w for
|w — wo| € wp (near resonance). Find the frequency w; for which I is a
maximum, find the fractional “level shift” (w) — wg)/wo and the fractional

full width at half-maximum Awrwpam/wo.
(MIT)
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Solution:

(a) The damping force is defined such that the work done against it
per unit time by the electron just equals the power radiated. In Gaussian
units we thus have

¢ 2 ¢ 2 2¢?
- F, -vdt = ot = L v.d
/n vd ‘/z 363”‘1 /; 3czv v

1
2¢?
= —=Vv-V

33

2 9e2 [t

- — V-vdt.
39 303 ty

Letting t; — t; = T be one period of oscillation and assuming that the
energy loss per cycle is small compared with the total energy, we can treat
the motion of the electron as quasi-periodic. Then vl o= vl 12 \'r| 0= \'r| t

and the first term on the right-hand side cancels out. So, the above gives

If the damping force is very weak compared with the restoring force on
the electron, the displacement of the electron can be taken to be still x =
xg e~*o! and, furthermore, we can take v = —w3v. Then F, would be
proportional to v,
2ew?

33

(b) The equation of motion for the electron is

F, =—-

2

2, _ ¢
33

mE = —mwgzr — i

0% -

2 .3
By setting v = %;1—‘:-}, the above equation can be written as
P+yi+wiz=0.

If F, is much smaller than the restoring force, i.e., v € wq, the above has
the solution (Problem 5031)
3t

—-fwol

r=zge 3¢

(c) For a natural frequency f = 42 = 10! Hz,

_2 wg_ 8 _—1
7_3ro p =25x10°s87",
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where ro = mL:, = 2.82 x 10~13 ¢m is the classical radius of electron. The
condition ¥ € wy is obviously satisfied.
The potential energy of the electron is  mwZz?. After each cycle, z is

reduced by a factor e~ 37, where T is the period %% Thus the ratio of the
energy loss per cycle to the total mechanical energy can be estimated as

1-—e " = 1—exp(—25x 10° x 107'%)
=25x1077« 1.

The same goes for the kinetic part of its energy.
Thus the assumption of (a) is valid.

(d) After adding the external field, the equation of motion becomes

2
; e

u —iwt 2 2,
mi = —eEge™™ —MWGT ~ T W L.

: _ 2% . .
Putting v = 37#, it can be written as
—jwt .

" ) €
1‘+72+ng = —;Eoe

By substituting z = zge~*“! in the equation, we get the steady state solu-

tion )
(4 -3
r=— S Eoe iwi ,
m w® —wy + wy
which gives
2
v e w —i
z= —————2————Eoe twt

m w? — wg + iwy

The time-averaged radiated power is now

2% 2? 1 e
I(w) = 53-(22) = 53- . *Z-RE(Z' Z)
G wi
T 3Im?3 (W —wd)? +wiy?’

Inax occurs near the natural frequency wyp.
Let Aw =w—wpand u = 82 Agy= &2 g |, L 1, we have,
correct to second order of small quantities,

Ju) = S L+ du+ 6l
T aw+ 5
g
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From 4 = ¢ we find

wi — Wo 1 ’)‘2
Yy =—=r;--3,
wo 2 W
80 the frequency corresponding to Iy is

1 2
w1=wo+—7—,
2&)0

and the maximum radiated power is

e*E} Wi

Imax = I(ul) ~ 3m203 72 .

Hence
Iw) _ wd 7? 7

Imax AW —wo)2+72 w2  d(w—wo)+72"

For I{w)/Imax = %, w=ws = wpx . The full width at half maximum is
therefore

Wwo wo Wwo

AWFWHM _ w4 —w_ Y

5033
To account for the effects of energy radiation by an accelerating charged
particle, we must modify Newton’s equation of motion by adding a radiative
reaction force Fg.

(a) Deduce the classical result for F:

2e? .
FR==-—=vVv
RT3
by using conservation .of energy. Assume for simplicity that the orbit is
circular so that v - v = 0, where v is the particle’s velocity.
Now consider a free electron. Let a plane wave with electric field
E = Ege**! be incident on the electron. Again assume v < c.

(b) What is the time-averaged force (F) on the electron due to the
electromagnetic wave?
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(c) Use the radiation pressure p of this wave to deduce the effective
croas section for the scattering of radiation

o= (F)/p.
(Chicago)
Solution:

(a) See Problem 5032.
(b) The equation of motion for an electron under the action of a plane
electromagnetic wave is

o —fwi 282 ver
mr = —eEge +—T.

38
In the steady state r = roe~*“!. Substitution in the above gives
_ eEo
ro= mw? 41 2% 2‘3“’3 ’

The force on the electron averaged over one period is
(F) = (—eEqe™"* — -Zv x B) = ‘% (v x B)

with
vV = F = ~iwrge™"!

as (e""‘") =0.
(F) = —f; ~ Re(v* x B)

iweEp
20‘“[:,,‘,,——@,»: By

ez 8x w
=‘%'T(S)R"[——mw2_-2—-ﬂg:]’

where
c
(S) = (1= Ex B)
¢ 1 ,
c
B -8—1r-E0 X Bo

is the average Poynting vector.
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Now

-1
tw 2%t |, o [2%3\? 2¢?
Re[mw’—i——,—-’%l“”]__ 33 [mw +( 3 ) ~ T 3m3cs’

. N 2,.,3 3
since the assumption v < ¢ means that wr € ¢, or & = mry & mw3,

where ro = mL:,, the classical radius of electron, ~ r. Hence
8wet
(F) ~ Imict (S).

(c) The average rzdiation pressure is (p) = LI%D._ It is related to (F)
through the eflective cross section ¢ by

where rg is the classical radius of the electron.

5034

Consider the classical theory of the width of an atomic spectral line.
The “atom” consists of an electron of mass m and charge e in a harmonic
oscillator potential. There is also a frictional damping force, so the equation
of motion for the electron is

mx + mwix+vx=0.

{a) Suppose at time ¢t = 0, x = xp and x = 0. What is the subse-
quent motion of the electron? A classical electron executing this motion
would emit electromagnetic radiation. Determine the intensity I(w) of this
radiation as a function of frequency. (You need not calculate the absolute
normalization of /(w), only the form of the w dependence of I(w). In other
words, it is enough to calculate I(w) up to a cosntant of proportionality.)
Assume y/m € wy.

(b) Now suppose the damping force ¥z is absent from the equation in
(a) and that the oscillation is damped only by the loss of energy to radiation
(an effect which has been ignored above). The energy U of the oscillator
will decay as Upe~™. What, under the above assumptions, is I'? (You
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may assume that in any one oscillation the electron loses only a very small
fraction of its energy.)

(c) For an atomic spectral line of 5000 A, what is the width of the
spectral line, in Angstroms, as determined from the calculation of part
(b)? About how many oscillations does the electron make while losing half
its energy? Rough estimates are enough.

(Princeton)
Solution:

(a) The equation of motion for the electron is
mx+mwix+yx=0,

with the initial conditions

*|t=0 =0.
Its solution is

z = zoe TR e

where

As ;L. € wo, w = wo, and x = xge~ T te~™ot The oscillation of the
electron about the positive nucleus is equivalent to an oscillating dipole
of moment p = poe~ 3= ‘e~"wo! je., a dipole oscillator with attenuating
amplitude, where po = exg. Its radiation field at a large distance away is
given by

E(r, t) = Eo(r) e 7 (4= 2) g=iwo(t-5) |

For simplicty we shall put ¢t — £ = ' and write
E(t) = Eoe™ 7"’ e~ient’

Note that ¢’ is the retarded time. By Fourier transform the oscillations are
a superposition of oscillations of a spread of frequencies:

+o0 o
E(t) = / E(w)e~% dw,

-00
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where, as E(t) = 0 for t < 0,

1 oo fwt' g1
Ew=g [ B0 &

1 0 1 . [ - '
= 51; / (Eoe-f’,;t e~ twot ) vt gy
o
_By__ 1
T 2m i(w —wo) — 2
The rate of radiation is then
1

¢ 4m

This is a Lorentz spectrum.
(b) Fory=0,p = poe"*o! and the rate of dipole radiation is

e wgzg

(P) = 525 (B = o5 5 Re(5'5) =

The total energy of the dipole is U = § mw3z3, so (P) = g—cc:%;: U. As the
loss of energy is due solely to radiation, we have

dU 22w}
@ " Bmes U =0

which has solution U = Upe™T', with T = 2%
(¢) To find the width of the spectral line, we see that, for vy = 0, 3k- in
Eq. (1) is to be replaced by P. Then if we define Aw = w4 —w_, where wy

are the frequencies at which the intensity is half the maximum intensity,
we have

Aw_[‘
2 2
or
Aw=T.
Hence
Aw 22wy 2¢? 4x
=l — =Xg— = — 2mc = —
Ad=do Lo =do o =do g s = G TC= 0
:531x282x10- =12x10"*4,

where ry = mL:; = 2.82 x 1073 A is the classical radius of electron.
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The time needed for losing half the energy is T = 132 while the time for
one oscillation is 7 = i—’; Hence to lose half the energy the number of
oscillations required is

T In2 Wo 3c 3 Ao

o e I e e T e—— — l
T ' 27 4xwerg In2= 872 ro 2
3In?2 5000

= 4.7 x 10%.

= 812 X282 x 10-F

5035

Energy loss due to radiation is supposed to be insignificant for a non-
relativistic charged particle in a cyclotron. To illustrate this fact, consider
a particle of given charge, mass and kinetic energy which starts out in a
circular path of given radius in a cyclotron with a uniform axial magnetic

field.
(a) Determine the kinetic energy of the particle as a function of time.

(b) If the particle is a proton with the initial kinetic energy of 100
million electron volts, find how long it takes, in seconds, for it to lose 10
percent of its energy, if it starts at a radius of 10 meters.

(UC, Berkeley)

Solution:

(a) Let the particle’s mass, charge, and kinetic energy (at time t) be
m, ¢ and T respectively. As the particle is non-relativistic, the radiation
energy loss per revolution is very much smaller than the kinetic energy, so
that we may consider the particle as moving along a circle of radius R at
time . Its rate of radiation is

¢I2 -2

= —1
67!’6003
The equation of motion for the charge as it moves along a circular path
in an axial uniform magnetic field B is
2

. v
mlv| = Lnl—i— =quvB.

The non-relativistic kinetic energy of the particle is T =  mv?. Thus its
rate of radiation is
_ ¢ 2 ¢*BT
6regcd Ireomd3
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The magnetic force does no work on the charge sincevxB-v=0. P
is therefore equal to the loss of kinetic energy per unit time:

_ __g _ ¢'B*T
T dt T 3xegm3c3’
which gives

4p3

T = Tye oo™ |

where 7j is the initial kinetic energy of the charge.

(b) For a proton, ¢ = 1.6 x 10~!° C, m = 1.67 x 10~27 kg. The time
it takes to lose 10 percent of its initial energy is

3xgom3c3
AsT = L mv? = ;L. R%q?B?, with Ty = 100 MeV, R = 10 m, the magpetic
field is given by

_ 2mTo

2
B® = quz

~2.09 x 1072 Wb?/m?.

Substituting it in the expression for 7, we find

T4 807x10"s,

5036

A non-relativistic positron of charge e and velocity v; (vi € ¢) im-
pinges head-on on a fixed nucleus of charge Ze. The positron, which is
coming from far away, is decelerated unitil it comes to rest and then is ac-
celerated again in the opposite direction until it reaches a terminal velocity
vz. Taking radiation loss into account (but assuming it is small) find v; as
a function of v and Z. What are the angular distribution and polarization
of the radiation?

(Princeton)

Solution:

As the radiation loss of the positron is much smaller than its kinetic
energy, it can be considered as a small perturbation. We therefore first
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neglect the effect of radiation. By the conservation of energy, when the
distance between the positron and the fixed nucleus is » and its velocity is

v we have ) 2
1 Ze 1
—— 2 o —— e—— = — 2 .
2™ Y e > — 2™

When v = 0, r reaches its minimum ry. Thus

l Zez 1 1)2
4160 To - 2 1
or
Ze?
rg = ——
2xeomu}’
whence

vz=v12(l—£q).
r

Differentiating the last equation we have

v% ro

2rr = bl

or
vfro
2r?

The rate of radiation loss is given by

dw _ dW aw 2¢?

P==r @ A o a ' T 363
so that 2 aa
e® vyr, 1
dW = L0 dr.
6c rd ,/I—J’r
Hence

e Ulro

00
AW=2/ dw =
To

2a, we can carry out the integration and find

By putting r = ry sec



624 Problems € Solutions on Eleciromagnetism

As 1 mv? = L mv? — AW, we have

Hence

as vy € c.
Because v < ¢, the radiation is dipole in nature so that the angular distri-
bution of its radiated power is given by

dP .
— x sin“g,

dQ
0 being the angle between the directions of the radiation and the particle
velocity. The radiation is plane polarized with the electric field vector in
the plane containing the directions of the radiation and the acceleration
(which is the same as that of the velocity in this case).

5037

A charged particle moves near the horizontal symmetry plane of a
cyclotron in an almost circular orbit of radius R. Show that the small
vertical motions are simple harmonic with frequency

- = w _B_’aBz 1/2 g =qu
v ¢ B, Oor e m

(Wisconsin)
Solution:
As shown in Fig. 5.20, we choose a loop C for Ampere’s circuital law
fc B dl = gl =0. Thus
B,(r}z — B,{(r + dr)z + B,(2)dr — B,(: = 0)dr = 0.
As B.(z = 0) = 0, we have

B/ (z)= %-z.
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F 4

(Vs
A

Fig. 5.20
The vertical motion of the particle is described by

mi = gq(v x B), = ¢(v, By — v B,).

As By =0, vg = v, this gives

. 0B, (r)
mi=—qu - ————= -z,
or
or
F=-wliz,
where

2 _ qv 8B. _ v? 8B,
" m O0r  RB, 0Or

W

as '"Tf’a = quB,. The angular velocity of circular motion is w. = %. Fur-
thermore, %B;L is negative for z # 0 as shown in Fig. 5.20. Hence using %L
to denote the absolute value we can write

XA
Wo = e B, Or ‘

5038

A high-current neutral plasma discharge is intended to focus a weak
beam of antiprotons. The relativistic antiprotons are incident parallel to
the axis of the discharge, travel a distance L through the arc, and leave the
axis.

(a) Calculate the magnetic field distribution produced by a current I
in the discharge, assumed to be a cyclinder of uniform current density of
radius R.
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(b) Show that the magnetic deflection of the particles is such that
the beam entering the field parallel to the axis can be focused to a point
down-stream of the discharge.

(¢) Which way must the arc current be directed?

(d) Using the thin lens approximation, find the focal length of such a
lens.

(e) If the plasma were replaced by an electron beam with the same
current, would the focal length be the same? Explain your answer.

(UC, Berkeley)

Solution:

(a) The magnetic field at a point distance r < R from the axis of the
current cylinder is given by Ampére’s circuital jaw fc B-dl = pol to be

= fo () telr
B=omr (Rz)l“%’Rz'

Note that the relative directions of I and B are given by the right-handed
screw rule,

(b) (¢) The antiproton carries charge ~e¢. Its motion must be opposite
in direction to the current for it to experience a force —ev x B pointing
towards the axis of the discharge for focusing.

(d) From the above we see that an antiproton has velocity v = —v, e, —
vee.. As B = Bey, its equation of radial motion is

dvu, poevl
m—-= —e(v X B), = —ev; B~ —evB = — 2Rz
Note that 4
dt = i{ ~ —z- ,
U,

and

v = const.
Furthermore, m = 1m2/c= can also be taken to be approximately con-

-

stant. Thus after traveling an arc of length L the radial velocity is

L dv, dz _ poelrl

U, = —— =

o dt v 2xmR?
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toward the axis. In the thin lens approximation the focal length is then

h~vt_v_r__21rmR2v
T U lvel T poellL

(e) If the plasma were replaced by an electron beam of the same cur-
rent, the antiprotons would experience an electric force whose direction
deviates from the axis of the discharge. Under the assumption of uniform
current distribution the electron number density n is constant. Applying
Gauss’ flux theorem to a unit length of the electron beam we find

21reoE = —nenr?,
or ner
E=z———.

260
As I = —nev,wR?, where v, is the velocity of the electrons, the electric
force on an antiproton is

2
ne‘r —elr
fe=—eE =

%0 2eomR7v.’
while the magnetic force on the antiproton is

_ poevir
2xR? "’

fm = —evB =

where v is the velocity of the antiprotons. Hence

Je 1 c?
—= =—>1.
fm  Eopovve VYV >

The magnetic force can therefore be neglected and the antiprotons, which
come mainly under the action of electric repulsion, can no longer be focused.

5039

A beam of relativistic particles with charge e > 0 is passed successively
through two regions, each of length ! which contain uniform magnetic and
electric fields B and E as shown in Fig. 5.21. The fields are adjusted so
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that the beam suffers fixed small deflections 8p and 0g (68 < 1,05 < 1)
in the respective fields.

(a) Show that the momentum p of the particle can be determined in
terms of B, 8p, and [.

(b) Show that by using both the B and E fields, one can determine
the velocity and mass of the particles in the beam.
(Wisconsin)
Solution:

The equation of the motion of a particle of charge e and rest mass mg
in a magnetic field B is

-(%(mv):eva

where
1

V1-vZfeZ

Differentiating (yv)? = c¢2(y* — 1), we have

m=qymg, Y=

2yv - (I‘PPYE) = 2vc 7
or
dy 7% dv

a2 A

In the magnetic field v 1L v, so ‘—:,'{- = 0, i.e., v = const. Using Cartesian
coordinates such that B = Be,, we can write the equation of motion as

z=0, z=0
initially, there is no z motion.
Putting wo = ,ﬁ%, we have
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and, by differentiation,

(2 -wiz0,

Y +wez=0.
Combining the above we obtain

{ T+wiz=0,

V+4wiy=0.

This set of equations shows that the particle executes circular motion with
angular velocity wp and radius
v
R — p

wp Ty

Note that m = ymy is constant in the magnetic field. As shown in Fig. 5.21,

— 1
orp= ¢t

P
o il S [y ety
)——'X * _/E/

‘*l———'E — p—

: — %
/‘——vx'

P4

Fig. 5.21

(b) In the electric field, 4 (mv) = eE. Taking Cartesian coordinates
such that E = Eej, we have

{
myy, =eEt meE—,
v
ie,
o ekl
v mo
Then ,
v eEl
bp~ L =-—,
v v
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from which v can be calculated as p can be determined from 0p.
2
Asm=ymo=E = %—f“, mq can also be calculated.

4. SCATTERING AND DISPERSION OF
ELECTROMAGNETIC WAVES (5040-5056)

5040

Calculate the scattering cross section of a classical electron for high-
frequency electromagnetic waves.

(Columbia)
Solution:

Let the fields of the high frequency electromagnetic waves be Eo(r, t)
and By(r, t). For plane electromagnetic waves, /2o |[E| = /jio |H|, or
IB| = 1 |E|, so that for a classical electron with v < c the magnetic force
ev x By can be neglected when compared with the electric force eEg. We let
Eo(r, t) = Ege~*! at afixed point r. As the frequency of the incident waves
is high, we must take into account the radiation damping (see Problem
5032). Then the equation of motion for the electron is

e2?

mx = eEge™ """ +

61[‘6063 X
where x is the displacement of the electron from the equilibrium position,
the point r above. Consider small damping so that X = —w?x and let
2 32
7= ’5‘%23' We then have

L. e
X +9x = — Ege™'t.
m

Letting x = xpe~** we have

BEO

X0 T (e + i)

The radiation field of the electron at a point of radius vector r from it is

E(x)t): nx(nxi),

4dxeocr
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where
n=

R

Let o be the angle between n and Ey. We then have

e3wEy sin o

e—ﬁdl
4weome(w + iv)r

’

E(x,t) = -

whose amplitude is

e*wEp sin a
dregmc?(w? + )4 r

E(x) =

The intensity of the incident waves, averaged over one cycle, is

c€o EgC

=(IExH|) = - ([ExB|) = —(E%) = £ Re(E*E) = 2 .
Ho cHo

Similarly, the intensity of the scattered waves in the direction « is

Eoc

2
- E*,

I=

or
w? 2

I= (4)2—4-_‘7_2_ 5 I ] Sll’l o,
where rg = ————-, is the classical radius of electron.
Take coor(fmate axes as shown in Fig. 5.22 such that the origin O is at

the equilibrium position of the electron, the z-axis is along the direction of
the incident waves, and the z-axis is in the plane containing the z-axis and
r, the direction of the secondary waves. With the angles definéd as shown,

we have, since Ep is in the zy plane,

cos aa =s8in 8 cos¢.

Fig. 5.22
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If the incident waves are not polarized, ¢ is random and the secondary
intensity I(6) for a given scattering angle § must be averaged over ¢:

w2 r3. 1 . g 9
(1(9)) = m ‘,‘—2 Oi; A (l—sm 0 cos ¢)d¢
1 w? 2
=-2-w—2-+—72r—2(1+cos 0)10

The total radiated power is then

8 Ww?

— h 2 o =
P—/o (1(8)) 27r® sin OdO_Tm

Hence the scattering cross section is

P 8 w2 2

10—-?‘»2‘{_721‘0.

5041

A linearly polarized plane electromagnetic wave of frequency w, inten-
sity Io is scattered by a free electron. Starting with a general formula for
the rate of radiation of an accelerated charge, derive the differential cross-
section for scattering in the non-relativistic limit (Thompson scattering).
Discuss the angular distribution and polarization of the scattered radiation.

(UC, Berkeley)

Solution:

Consider the forced oscillation of the electron by the incident wave. As
v € ¢ the magnetic force could be ignored in comparison with the electric
force, and we can think of the electron as in a uniform electric field since
the incident wavelength is much greater than the amplitude of electron’s
motion. The electric intensity of the incident plane wave at the electron is
E = E¢e~*“* and the equation of motion is

mv = —¢E.

The rate of the radiation emitted by the electron at angle o with the
direction of acceleration is, in Gaussian units,
dP 82\.!2 2
= sin“ .

dQ ~ 4rc3
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3
As the average intensity of the incident wave is Iy = (|[E x H|) = %ﬂ-, we

have P
5= Ipr? sin’a,
where r, = % is the classical radius of electron.
Let 8 be the scattering angle and define ¢ as in Problem 5040. We
have

2

sin2a =1—-sin?0cos? §.

So the differential cross section for scattering is

o .
:_Q = I:,iTPQ =r2(1 —sin? G cos? ),
which shows that the angular distribution of the secondary radiation de-
pends on both the scattering angle  and the polarization angle ¢. In the
forward and backward directions of the primary radiation, the scattered ra-
diation is maximum regardless of the polarization of the primary waves. In
the transverse directions, § = I, the scattered radiation is minimum; it is
zero for ¢ = 0, ». For any other scattering angle 6, the scattered radiation
intensity depends on ¢, being maximum for ¢ = %, 37" and minimum for
¢=0,n

The electric intensity of the secondary waves is

e .

E=—Z§;‘-§rx(rxv),
where r is the radius vector of the field point from the location of the
electron. This shows that E is in the plane containing r and v. As the inci-
dent waves are linearly polarized, v has a fixed direction and the secondary
radiation is linearly polarized also.

5042

A linearly polarized electromagnetic wave, wavelength ), is scattered
by a small dielectric cylinder of radius b, height h, and dielectric constant
K (b € h < )). The axis of the cylinder is normal to the incident wave
vector and parallel to the electric field of the incident wave. Find the total
scattering cross section.

(UC, Berkeley)
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Solution:

As b € h < A, the small dielectric cylinder can be considered as an
elctric dipole of moment p for scattering of the electromagnetic wave. The
electric field generated by p is much smaller than the electric field of the in-
cident electromagnetic wave. Since the tangential component of the electric
field intensity across the surface of the cylinder is continuous, the electric
field inside the cylinder is equal to the electric field E = Egei(kr~«Ye, of
the incident wave. Take the origin at the location of the dipole, then r = 0
and the electric dipole moment of the small cylinder is

p = 7b?heo(K — 1) Ege~ e, ,

the z-axis being taken along the axis of the cylinder.
The total power radiated by the oscillating electric dipole, averaged
over one cycle, is

P _ wbih2ew (K — 1)2E?
T 127meqcd 12¢3

The intensity of the incident wave is Iy = ¢ EZ, so the total scattering
cross section of the cylinder is

5043

A plane electromagnetic wave of wavelength ) is incident on an in-
sulating sphere which has dielectric constant ¢ and radius a. The sphere
is small compared with the wavelength (¢ < A). Compute the scattering
cross section as a function of scattering angle. Comment on the polarization
of the scattered wave as a function of the scattering direction.

(Princeton)

Solution:

Assume the incident electromagnetic wave to be linearly polarized and
let its electric intensity be E = Eqef(¢*~%!), In this field the insulating
sphere is polarized so that it is equivalent to an electric dipole at the center
of dipole moment (Problem 1064)

E—E&9 —iwt!
=4 3 —— | Ege™™" .
P xEQA (£+2€0) 0
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Take coordinates with the origin at the center of the sphere and the
z-axis parallel to Eq as shown in Fig. 5.23. Then

. €—-¢ —iwt!
p = —4nepadn? - Epe~ ' e, .
e+ 2¢g

Fig. 5.23

The radiation field of the dipole under the condition ¢ € A at a point
of radius vector R is given by

1 . £—¢gg \ atw? e
— — é i(kR-wt)
B_——““ocstxeR_(—*—e 250) R Ey sinde ey,

— _{(E£—¢0 ) a®? o i(kR-wt)
E=cBxeg= (€+2€o) 2R Eysinfe e,

where ¢ is given by the retardation condition ¢’ =t — &, and k = %, The
averaged Poynting vector (Problem 4049) is

_ 1 . _f(e—¢€o 2 a8w* sin20
(S>-mR¢(E XB)—(6+250) 2u0c® R?

_ €—¢€q 2 46t sin20e
T 0\ e+ 260 4 Rz R

Egen

where [y = %eocEg is the (average) intensity of the incident wave. As the
average power scattered into a solid angle dSQ in the radial direction at angle
0 to the z-axis is (S) R2df2, the differential scattering cross section is

2 - 2 6,4
ﬁ_(S)R::(C 50) Gwsinzo'

daQ - Io €+ 250 ct

The scattered wave is polarized with the electric vectors in the plane
containing the scattered direction and the direction of the electric vector of
the primary wave at the dipole.
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5044

A beam of plane polarized electromagnetic radiation of frequency w,
electric field amplitude Eq, and polarization z is normally incident on a
region of space containing a low density plasma (p = 0, no electrons/vol).

(a) Calculate the conductivity as a function of frequency.

(b) Using the Maxwell equations determine the index of refraction
inside the plasma.

(c) Calculate and plot the magnitude of E as a function of position in
the region of the edge of the plasma.

(Wisconsin)

Solution:

(a) As the plasma is of low density, the space is essentially free space
with permittivity €o and permeability uo. Maxwell’s equations are then

v.E=2=0,
€o
B’
"_-_—
VxE = T
V-B'=0,
1 dE'
! . —
VxB —-uo,|+c2 FTER
We also have Ohm’s law
j = —ngev =oE',

where v is the average velocity of the electrons inside the plasma. For v < ¢,
the magnetic force on an electron is much smaller than the electric force
and can be neglected. The equation of motion for an electron is therefore

dv €

AN ol

dt m
As the traversing radiation has electric intensity E' = E{(x)e~**, the
displacement of the electron from the equilibrium position is r = ree=**
in the steady state. The equation of motion then gives

e
r:———zE’
mw
and e
v=r=—-i—F,

wm
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Hence

2

. , No€
j=i—FE

mw

and the conductivity is
. n082

o=1—.

(b) The polarization vector of the plasma is by definition

—noe2

Y]
mw’E’

P = —nger=

so that the electric displacement is
D =¢E’ =£0E‘+P.

Hence the effective dielectric constant of the plasma is given by

P noe?
E=¢€o+ B = é€o 2
or
wo\?
—=1-(-2),
€0 W
where
npe?
WP = —_—
Eom

is called the plasma (angular) frequency.
The index of refraction of the plasma is therefore

nz,/uoe =‘/i= 1—(%1)2.
Hoto €o w

(¢) Consider the primary wave Eq = Ege*(¥2~“Ye,, where k = £, as
incident normally on the boundary of the plasma, then the wave inside the
plasma is also a plane polarized wave, with amplitude Ej = % and wave
number k' = £ n = kn (see Problem 4011). Hence the electric intensity of
the wave in the region of the edge of the plasma is

g < 2E0

=1 — ei(knz-wt)ez .
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Note that for w > wp, n and kn are real and E’ propagates as wave, but for
w < wp, n and kn are imaginary and E’ attenuates exponentially as shown
in Fig. 5.24.

E '
W< uwp
4
w> ll)p
Fig. 5.24
5045

A “tenuous plasma” consists of free electric charges of mass m and
charge e. There are n charges per unit volume. Assume that the density
is uniform and that interactions between the charges may be neglected.
Electromagnetic plane waves (frequency w, wave number k) are incident on
the plasma.

(a) Find the conductivity o as a function of w.
(b) Find the dispersion relation, i.e., find the relation between k and w.

(c) Find the index of refraction as a function of w. The plasma fre-
quency is defined by

2 4""82
W = ——
P m ’

if e is expressed in e.s.u. units. What happens if w < wp?

(d) Now suppose there is an external magnetic field Bo. Consider
plane waves traveling parallel to Bg. Show that the index of refraction is
different for right and left circularly polarized waves. (Assume that B of
the traveling wave is negligible compared with Bq.)

(Princelon)
Solution:

Gaussian units are to be used for this problem.

The electric vector of the incident wave at a charge is Ege™**, while
the effect of the magnetic vector can be ignored in the non-relativistic case.
Thus the equation of motion for a charge e in the plasma is

mx = eEge™ ",
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In the steady state x = xge~***. Substitution gives

or

J=nex=i—E,
80 that the conductivity is
: 2
=J _;ne
o=F=i

where x. is the polarizability of the plasma. The dielectric constant is by
definition

47ne? 2
e=144nx.=1- r::(; =l—;§,
where
o = 4mne?
P m

is the plasma frequency. Then the refractive index of the plasma is

n=\/E= —;!21,

as we may assume g = gp = 1 for the plasma. The wave number in the
plasma is therefore given by

1
= -c-z-(wz—w:),

which is the dispersion relation.
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(c) The index of refraction is

w2\ ?
n=\/£_p=\/5=(l—;%) .

If w < wp, n is an imaginary number, and so is k. Take the z-axis along
the direction of propagation. Writing k = ik, where « is real, we see
that e'** = ¢~**, so the wave will attenuate exponentially and there is no
propagation, the plasma serving only to reflect the incident wave.
(d) As B = Bype;, k = ke,, the equation of motion for a charge ¢ in
the plasma is
mié:eE-}-%vao.

Since the plane wave is transverse, we have E = E;e; + Eyey. In the steady
state, the charge will oscillate with the same frequency w and the solution
will have the form x = xge~**. Thus v = x = (—iw)x, and the component
equations are

mi = eEy + %QBO, (1)
mij = eE, — %wo, (2)
mz=20.

Suppose z and z are both zero initially. Then z =0 and x = ze,; + yey.
For the right circularly polarized wave (looking against the direction
of propagation E rotates to the right, i.e., clockwise) the electric vector is

Er = Re { Eg(es + e"'%ey)e""‘"}
= Eq cos(wt) e, — Epsin(wt) ey,

and Eqgs. (1) and (2) reduce to

mz = eEqycoswt + < Boy,
c

.. . e .
my = —eEysinwt — - Bpz .
¢
Let u =z — iy, w, = -—ﬂe'ffc , the above equations can be combined into

. . . eEo . . EEU :
il — fwcth = —— (coswt + isinwt) = —— !,
m
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The steady state solution is

u = uge'’.

Substitution gives

eEy

o = T mw(w - we)

hence
eEp (coswt + isinwt)

mw(w — we)

]

whose real and imaginary parts respectively give

eFq coswt eEysinwt
= —— Y= —_—
mw(w — we) mw(w — we)
or, in vector form,
eER

xz_mw(w—wc)'

Thus for the right circularly polarized wave, the polarizability of the plasma

18

ne?

X = e

and the corresponding index of refraction is
nR = Er = 1+ 4dnxer
( 4mne? ) 4
=(1- ——— ,
mw(w — we)

or, in terms of the plasma frequency wp,
w? ]
=|1-—2b 1.
"R [ w(w - “’c)]

For the left circularly polarized wave, the electric vector is

EL = Re {Eo(e, + ¢*Te,)e~ '}
= Ep cos(wt)e; + Epsin(wt)e, .
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Then, putting u = =+ iy and repeating the above procedure, we obtain
the index of refraction

w;‘; 3
= [‘ " ol +wc)] ‘

It is obvious that ny, # ng, unless w, = 0, i.e., By = 0.

5046

The dispersion relation for electromagnetic waves in a plasma is given
by
wi(k) = w;‘: +c2k?,

where the plasma frequency wy, is defined as

o 47xNée?

w2 =
P m

for an electron density N, charge per electron e, and mass per electron m.
(a) For w > wy, find the index of refraction n of the plasma.
(b) For w > w, is n greater than or less than 1?7 Discuss.

(c) For w > wp, calculate the velocity at which messages can be trans-
mitted through the plasma.

(d) For w < wp, describe quantitatively the behavior of an electromag-
netic wave in the plasma.

(UC, Berkeley)
Solution:
(3) n = (1 —w2/w?)i.
(b) Forw > wp, n< 1.
(c) For w > wp, the phase velocity in the plasma is

C>
vp=-—>cC.
P

However, messages or signals are transmitted with the group velocity

As w > wp, it is clear that vy < c.
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(d) For w < wp, n and k are imaginary and the electromagnetic waves
attenuate exponentially after entering into the plasma. Hence electromag-
netic waves of frequencies w < w, cannot propagate in the plasma.

5047

Discuss the propagation of electromagnetic waves of frequency w
through a region filled with free electric charges (mass m and charge e)

of density N per cm3.

(a) In particular, find an expression for the index of refraction and
show that under certain conditions it may be complex.

(b) Discuss the reflection and transmission of waves at normal inci-
dence under conditions when the index of refraction is real, and when it is
complex.

(c) Show that there is a critical frequency (the plasma frequency) di-
viding the real and complex regions of behavior.

(d) Verify that the critical frequency lies in the radio range (N = 10°)

for the ionosphere and in the ultraviolet for metallic sodium (N = 2.5 x
102%).

(UC, Berkeley)

Solution:
(a) See Problem 5044.

(b) For normal incidence, if the index of refraction is real, both reflec-
tion and transmission will take place. Let the amplitude of the incident
wave be Ey, then the amplitude of the reflected wave and the reflectivity
are respectively (Problem 4011)

1-n 1-n\?
t _ =
Eo_1+nEo, R—(l+n) ,

and the amplitude of the transmitted wave and the transmittivity are re-
spectively

2 4n
" o_ & LA
Eo-l+nE°’ T (14 n)?

If n is complex, the transmitted wave will attenuate exponentially so that
effectively only reflection occurs (see Problem 5044).
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2
(c) The index of refraction is n = (1 — ‘—:7%)5, where w? = ¥ i SI

P meo
. 2 . . . 3 . .
units and wg = 4—"—;—”— in Gaussian units. n is real for w > w;, and imaginary
for w < wy,. Thus w, can be considered a critical frequency.
P P

(d) For the electron
e=16x10"1"C, m=91x10"3 kg.

With N = 10%/cm?® for the ionosphere and o = 8.85 x 10~!? F/m, they
give

Ne? (106 x 106 x (1.6 x 10~19)2

“p =\ mee - \9.1x 10-31 x 8.85 x 10-12

%
) =564 x10"s7?,

within the range of radio frequencies.
For metallic sodium, N = 2.5 x 10%2/cm?, so that

(25 x 102 x 10° x (1.6 x 1071%)2\ }
“p= 9.1 x 10-31 x 8.85 x 10-12
=8.91x10'%s?,

in the ultraviolet range.

5048

Assume that the ionosphere consists of a uniform plasma of free elec-
trons and neglect collisions.

(a) Derive an expression for the index of refraction for electromagnetic
waves propagating in this medium in terms of the frequency.

(b) Now suppose that there is an external uniform static magnetic field
due to the earth, parallel to the direction of propagation of the electromag-
netic waves. In this case, left and right circularly polarized waves will have
different indices of refraction; derive the expressions for both of them.

(c) There is a certain frequency below which the electromagnetic wave
incident on the plasma is completely reflected. Calculate this frequency for
both left and right polarized waves, given that the density of electrons is
10% cm~3 and B = 0.3 gauss.

(UC, Berkeley)
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Solution:
(a), (b) See Problem 5045.
(c) The refractive index n of the plasma is given by

»

EN I'oen

nt=1-

where wp, = \/31":’—“ is the plasma frequency, N being the density of free

electrons. When n? < 0, n is imaginary and electromagnetic waves of
(angular) frequency w cannot propagate in the plasma. Hence the cutoff
frequency is that for which n = 0, i.e., wp.

For frequencies < wp, the wave will be totally reflected by the plasma.
For the right and left circularly polarized waves, the refractive indices ng
and ny, are given by (Problem 5045)

2
Ywp

2 1 —P
ng =1 w(w Fwe)'

= ¢B

where n_ = ngr, w. = The cutoff frequencies are given by n% = 0.

me’
Thus the cutoff frequencies for right and left circularly polarized waves are
respectively
we + yfw? + 4wl —we + /w2 + 4wl
WRe = 2 ’ Whe = 9 .

With N = 10%/cm®, B=03Gs,and m =91 x 10" g, ¢ = 4.8 x 1071°
e.s.u. for the electron, we have

o _ 4w x 10° x (4.8 x 1071%)
we =
P 9.1 x 10-%8

_ 48x107°x03
T 3x 1019 x9.1x10"

=3.18 x 10" 572,

We

55 =5.2Tx 10°s77,

and hence
WRe = 2.1 %107 57!, wre=15x107s"1.

5049

Derive an expression for the penetration depth of a very low frequency
electromagnetic wave into a plasma in which electrons are free to move.
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Express your answer in terms of the electron density ng, electron charge e
and mass m. What does “very low” mean in this context? What is the
depth in cm for ng = 1014 cm—37

(UC, Berkeley)

Solution:
The dispersion relation for a plasma is (Problem 5045)

where wg = ";‘““—: is the plasma frequency. A “very low” frequency means
that the frequency satisfies w < wp. For such frequencies & is imaginary.

Let k = ix, where k = 1, /w2 — w2, then e** = ¢7**, the z-axis being

taken along the direction of propagation. This means the wave amplitude
attenuates exponentially in the plasma. The penetration depth § is defined
as the depth from the plasma surface where the amplitude is e~! of its
surface value, i.e.,

kb=1,

or

With ng = 10" ¢cm~3, we have

o 10 x 10% x (1.6 x 10~19)2
P71 9.1x10-3! x 8.85 x 10-12

3
) ~ 5.64 x 101! ™1

and
3 x 1010

8= 5 6ax 100

= 0.053 cm.

5050

In the presence of a uniform static magnetic field H, a medium may
become magnetized. The magnetization may be coupled self-consistently
to an electromagnetic field set up in the medium.

(a) Write down an equation of motion governing the time variation

of the magnetization under the influence of a (generally time-dependent)
magnetic field.
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(b) An electromagnetic field is, of course, in turn generated by the
time-dependent magnetization as described by the appropriate Maxwell’s
equations. Assume the dielectric constant ¢ = 1 for the magnetic medium.
Find the dispersion relation w = w(k) for the propagation of a plane wave

of magnetization in the medium.
(SUNY, Buffalo)

Solution:

(a) Assuming the medium to be linear, M = x,,H, we have, by the
definition of permeability y,

w
M() = xm(@)H() = 2" Lag)
(b) Maxwell’s equations for the medium are

V- -D=4nmp, v-B=20,
10B 4 10
E=--— = B B
V x P el VxH=—)+ i
Note that B in the equations is the superposition of the external field and
the time-dependent field produced by the magnetization M(t).
Consider the medium as isolated and uncharged, then p = j = 0. Also
D = E as € = 1. Maxwell’s equations now reduce to

V-E=0, v-B=0,
1 4B 1 JE
VxE=-Cor VXH=T5
with
B=uH.
Deduce from these equations the wave equation
0’H
’H - £ 9.
¥ ez ot 0

Consider a plane wave solution
H(t) — Hoei(k-r—wt) .

Substitution in the wave equation gives the dispersion relation

w?

kz_l‘—=01
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or

k=2 = &)-\/p(w).

v ¢
The magnetization M can then be represented by a plane wave

M(t) = Xm(w)H(t) = xmHg ek r—wt)

As M satisfies the same wave equation the dispersion relation above remains

valid.

5051

In a classical theory of the dispersion of light in a transparent dielectric
medium one can assume that the light wave interacts with atomic electrons
which are bound in harmonic oscillator potentials. In the simplest case,
the medium contains N electrons per unit volume with the same resonance
frequency we.

(a) Calculate the response of one such electron to a linearly polarized
electromagnetic plane wave of electric field amplitude Ey and frequency w.

(b) For the medium, give expressions for the atomic polarizability, the
dielectric susceptibility and the refractive index as functions of the light
frequency. What happens near resonance? What happens above resonance?
The phase velocity of the light wave exceeds the vacuum velocity of light if
the refractive index becomes smaller than 1. Does this violate the principles
of the special theory of relativity?

(SUNY, Buffalo)

Solution:
(a) The equation of motion for the electron is

mk = —nuwix — eEqe

—fwt .
Consider the steady state solution x = xge™*“!. Substituting in the equa-
tion gives
x = eE()
T m(w? - wi)

—iwt

(b) Assume that each atom contributes only one oscillating electron.
The electric dipole moment of the atom in the field of the light wave is

e?E

PETE T}
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giving the atomic polarizability

P e?
=T = oy -
E  m(wi-—uw?)
As there are N electrons per unit volume, the polarization of the medium
is

Ne’E

T =

The electric displacement is by definition
D=¢cE=¢E+P.

Hence the dielectric constant is

Ne?

£E= ———or .
£o + m(wg _wz)

Assume the medium to be non-ferromagnetic, then u = yo, and the
refractive index is given by

n= /_l“:’_= /i,
#o€o €o

Putting
o2 = Ne?
P mey ’
we have s
w?
— P
n=(1+725)" M

For w < wg, we have € > £¢, n > 1, and the phase velocity of the wave in
the medium is v, = £ < c.

Forwg <w < ,:w;‘; + wi, n is real but smaller than unity. This means

that v, > ¢ and the wave propagates with a velocity greater than the
velacity of light in free space. However, the energy or signal carried by the
wave travels with the group velocity vg given by

de n 3112
- ¢ dw
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as k = 2%, Equation (1) gives

in(“____’—"z‘;g)>_‘._zg
v

w? —wf
as n > 1. Then as v, > ¢, vy < c. Hence there is no violation of the
principles of special relativity. For both the above cases, n increases with
increasing w and the dispersion is said to be normal.

For w = wy, Eq. (1) does not hold but damping (collision and radiation)
must be taken into account. Equation (1) is modified to

1
wp (wf = w?) ]

ns [1 + @I — D) Fwiy?

w?(wp —w
z1+—"(—2(1—-—)-.
712wo

Thus n = 1 for w = wp. As w increases from a value smaller than wq
to one larger than wg, n decreases from a value greater than unity to one
smaller than unity. In this region n decreases with increasing w and the
dispersion is said to be anomalous.

For w > \/wg + w2, n is imaginary so that k& = £ n is also imaginary.
Let it be ix. Then the wave amplitude at a point distance r from the surface
of the medium simply attenuates according to e~*" and propagation is not
possible in the medium.

Near resonance w = wy, the absorption coefficient becomes very large.
Thus the medium is essentially opaque to the wave at w & wy and for

/ 2
w >y Jwl +wi.

5052

Consider a model of an isotropic medium composed of N harmonically
bound particles of charge e, mass m and natural frequency wg, per unit
volume.

(a) Show that, for a zero magnetic field, the dielectric function of the
medium is given by
4rNe?/m

ew)=1+4 =t
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(b) (The Faraday effect) Now a static magnetic field B in the direction
of propagation of the electromagnetic wave is added. Show that the left
and right circularly polarized electromagnetic waves have different dielectric
functions, with the difference equals to

47 Ne? 2e¢Bw/me
(w3 - w?)? ~ (eBw/mc)? "

66((4)) =

(Chicago)
Solution:
(a) See Problem 5051.

(b) Take the z-axis along the direction of propagation, then k = ke,.
When a static magnetic field B = Be;, is added, the equation of motion for
a harmonically bounded particle is

. e.
mi = —mwix+¢E+-xxB.
c

As plane electromagnetic waves are transverse, E has only z and y compo-
nents. The component equations are

. e, .
mz = -mwgz + ek, + -By,
c
. 2 € .
my = —mwyy +eEy — -Bz,
c
oo 2
mz = —muwgz .

The last equation shows that motion along the z direction is harmonic but
not affected by the applied fields and can thus be neglected. For the right
circularly polarized wave (Problem 5045)

ERr = Epcos(wt)e, — Egsin(wt)ey ,

so the remaining equations of motion are

mi = —nmwiz + eEy coswt + %Bf/, (1)
mj = —mwiy — eEpsinwt — % Bz. (2)
Putting
eB

u=z+1iy, wc=—mc,
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(1) — i x (2) gives

.. ek . . eEy .
u—wcu+w3u = —m—q(coswt+tsmwt) = 20 gt

In the steady state, u ~ €*“*. Substitution in the above gives

_ eEo(coswt + isinwt)
T omw? - w? tww)

Separating the real and imaginary parts we have

_ eEycoswt _ eFEqysinwt
T m(wg - w? +wwe)’ v= m(wi — w? +wwe)

Combining the above in vector form gives

x= eER
T omwg —w?tww,)

Hence the polarization of the medium due to the right circularly polarized
wave is
N ezER

P=Nex= .
ex m(w? — w? + ww,)

As € = 1 4 4n £, the above gives

47 Ne?
mwé —w? +ww,)

eEr=1+

Similarly for the left circularly polarized wave
EL = Ej cos(wt)e; + Egsin(wt)ey ,

we find
=14 4xNe?
LT el — 0 —wwg)

The difference between 1, and eg is therefore

be(w) = €L —€R

_ 4rNe? 1 1
T om |wi-w?—wwe wi—-w?tww
_ 4aNé? 2eBw/mc

m (Wi —-w?)? - (eBw/mc)?’
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5053

An electrically neutral collisionless plasma of uniform density nyp is at
rest and is permeated by a uniform magnetic field (0, 0, By). Consider an
electromagnetic wave of frequency w propagating parallel to the magnetic
field. Show that the wave splits into two waves for which the refractive
indices are

w?fw?

w? fw? 2 _
T+ (wefw)’

2 _
ng =1~ 1= (wefe)’ ni =
where the plasma frequency is wp, = (41rnoez/me)§ and the cyclotron fre-
quency is we = eBo/mec. Show that these waves are, respectively, right-
hand and left-hand circularly polarized. Explain physically why the refrac-
tive index can be less than one. What happens when it vanishes? What
happens when it becomes infinite? (You may assume that only the elec-
trons respond to the wave and that the positive charges remain uniformly
distributed.)

(UC, Berkeley)

Solution:

Suppose the neutral plasma consists of free electrons and an equal
nurnber of positive charges. Only the free electrons, for which wy = 0, take
part significantly in the oscillations. Using the results of problem 5045 we
have, as p &~ pg = 1,

47nge? w?
2 0
=eér=1- =1- s
"R T R Mew?(l ~ we/w) w(w — we)

3 _ 4mnge? wi

=L =1- =1- P .
L= L mew?(1 + we/w) w(w +we)

Since the Phase velocity of electromagnetic waves in the medium,
c(pe)‘% = c€~ 3, may exceed the velocity of light speed ¢ in vacuum, the
refractive index n = £ may be less than one. Physically, as

n & e =/1+4rxe.,

where x. is the polarizability of the medium, n < 1 means that y. < 0.
As the electric dipole moment per electron is p = x.E, this means that
the polarization vector P of the medium caused by the external waves is
antiparallel to E.
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With wo = 0, the group velocity vy = cn (Problem 5051). Thus
vg = 0 when n = 0. This means that a signal consisting of such waves will
be turned back at that point. Consider the case n} = 0. We have

w2+wcw—w;‘:=0,

or

Thus wpe > wre. If w > wre, then both ng and ny, are real, and prop-
agation is possible for both polarizations. A plane electromagnetic wave
in the medium will split into two circularly polarized waves with different
refraction properties. If wge > w > wy, np is imaginary and propagation
is possible for only the left circularly polarized wave. A plane electromag-
netic wave will become left circularly polarized in the medium. If w < wi.,
then propagation is not possible for both circular polarizations. Note that
for n imaginary, say n = i3, ¢*” = e™"" and the amplitude attenuates
exponentially.

2
Ifw=we, nr = ioco, np, = (1 — g;%)% As wp > wc generally, ny, is also
a large imaginary number. No propagcation is possible. Both ng, np, = ico
if w = 0. In such a case, there is no wave but only an electrostatic field
which separates the positive and negative charges at the boundary of the.
plasma. Then the plasma surface acts as a shield to external electrostatic

fields.

5054

A radio source in space emits a pulse of “noise” containing a wide band
of frequencies. Because of dispersion in the interstellar medium the pulse
arrives at the earth as a whistle whose frequency changes with time. If this
rate of change (frequency versus time) is measured and the distance D to
the source is known, show that it is possible to deduce the average electron
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density in the interstellar medium (assumed fully ionized). (Hint: Look at
the response of a free electron to a high frequency electric field to deduce
the relation between frequency and the wave number 27/1).

(CUSPEA)

Solution:

Considering the interstellar medium as a tenuous plasma, we have from
Problem 5044

n:(l—w:/wz)%, (1)

where w is the frequency of the transversing radio wave, wp = ﬁf
plasma frequency of the medium, N being the average number density of
the electrons in the medium. With the wave number £ = % n, the group

velocity vg of the electromagnetic wave is given by

b=l — dk _ LY dn
E T dw ¢ cdw’
2
Equation (1) gives 42 = %}; <L, so that

2 “’g -
vg=nc|ln +F = nc.

Since a pulse propagates with the group velocity, the propagating time from
the source to the earth is approximately

vg ne ¢ w?
Thus
-2
D 1 WI\-% s 2
== -=)l1-=2 L) dw
w=2-(-3) (-3) (3)w
or
3
dw c w? wg H
Z=pa\!"a
Thus if D and %% are known, we can calculate wg = f::: and hence the

average electron density N.
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5055

A pulsar emits a pulse of broadband electromagnetic radiation which
is 1 millisecond in duration. This pulse then propagates 1000 light years
(102! ¢m) through interstellar space to reach radio astronomers on earth.

(a) What must be the minimum bandwidth of a radio telescope receiver
in order that the observed pulse shape be not distorted greatly?

(b) Now consider that the interstellar medium contains a low density
plasma (plasma frequency w, = 5000 radians/sec). Estimate the difference
in measured pulse arrival times for radio telescopes operating at 400 MHz
and 1000 MHz. Recall that the dispersion relation for a plasma is w? =
k2e? + wg.

(MIT)
Solution:

(a) The uncertainty principle AvAt = 1 gives the minimum bandwidth
of the radio telescope receiver as

1 3
Au~z—t-—10 Hz.

b) The group velocity of electromagnetic waves in the interstellar
[:2 g

medium is
Sw 27 2
Vg = op = e/l —wifw?.
For operating frequencies wy = 4 x 108 s~!, wy = 10° s~! we have

e _195x 1075, “B_ 06,
Wi w2

With an interstellar distance L = 10!° m, the difference in the measured
pulse arrival times is

5056

A pulsar emits short regularly spaced burst of radio waves which have
been observed, e.g., at the frequencies wy = 27 f; = 2563 MHz and wy =
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27 f, = 3833 MHz. It is noted that the arrival times of these bursts are
delayed at the lower frequencies: the pulse at f; arrives 0.367 sec after the
pulse at f;. Attributing this delay to dispersion in the interstellar medium
which is assumed to consist of ionized hydrogen with 10° electrons per m?,
give an estimate for the distance of this pulsar from earth.

(a) Show that the electron plasma frequency for a tenuous neutral gas
consisting of heavy ions and free electrons is given in Gaussian units by

where N is the electron density.
(b) Using that result and remembering that the index of refraction of

a tenuous plasma is given by n = /e = (1 — g;-)*, calculate the distance
of the pulsar.
(Chicago)

Solution:

(a) In a neutral plasma, when the distribution of the electrons is per-
turbed and undulates non-uniformly, an electric field will be produced which
causes the electrons to move in a way to tend to return the plasma to the
neutral state. The characteristic (angular) frequency of the undulation can
be estimated as follows. Consider an electron of the plasma in an electric
field E, the equation of motion is

d
med—rz—eE.

The motion of electrons produces a current of density

j=—Nev.
Cormbining the above we have

dj _ Né

8 m, '

or, taking divergence of the two sides,

i} . Ne?
E(V-J)—TV-E.
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Using the continuity equation V -j = —%"1 and Maxwell’s equation V-E =
47p, we obtain

2 2
gt5+4wnjie p:O,
or o
5z +wop=0
with

4w Ne?
wp = e .

This equation shows that the charge density at a point oscillates simple
harmonically with characteristic (angular) frequency wp.

(b) Using the results of Problem 5055 we find the distance from the
pulsar to the earth:

2\ -4 2y =371
L:cAt[(l_‘"_g) -(1-%) ] |
wi wa

The electron plasma frequency

4rNe?
wp = | ———— = \/4xNroc? = 1.79 x 10* 571,

me

ro == 2.82 x 1073 cm being the classical radius of electron.
The observed (angular) frequencies are w; = 2.563 x 10° 57!, wy; =
3.833 x 10° s™1. As wi, ws > wp we have approximately

2cAt
L~ 571 -
wo (a7~ 27)

With At = 0.367 s,

L =8.16 x 10%° cm = 8.5 x 10? light years.
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Conductor between paralle] plates 3032
Coulomb’s law 1002, 1005
Counter 3061
Cross section for scattering of EM waves 5040, 5041, 5042, 5043
Current carrying cylinder
field of 2001, 2002, 2003, 2004, 2006, 2007, 2018, 2024
with hole 2030
Current element
field of 2005
Current loop
in magnetic field 2068
magnetic moment of 2010
Cylindrical shell in magnetic field 2038

dc circuit 3001, 3002, 3003, 3005, 3019
De Morgan relation 3058

Depth of penetration 4028
Derandomizer 3071

Determination of the ampere 2063



Index to Problems

Dielectric cylinder
in electric field 1072, 2061
polarized 2020, 2021
Diode circuit 3011
Discriminator 3072
Dispersion relation 4028, 5046, 5049, 5051, 5052
Doppler eflect 5001, 5002, 5006

Earth’s magnetic field 2010
Eddy currents 4033
Electric conductivity of atmosphere 1104
Electric dipole
in presence of conducting sphere 1088, 1089
in presence of plane conductor 1084, 1088, 1094
layer of 1023
rotating 1103
Electric field
by magnetic field induction 5029
from charge distribution 1003, 1004
of atmosphere 1104
Electromagnet 2027, 2028, 2029
direct current 2049
Electromagnetic field of relativistic charge 5018
Electromagnetic waves
along transmission line 4003
from several sources 4007
in anisotropic medium 4006
in conducting medium 4023, 4024, 4025, 4026, 4027
in free space 4001, 4002, 4003, 4015
in ionosphere 4045
in magnetically biased medium 4021
in nonlinear medium 4017
in optically active medium 4018, 4019, 4020
in plasma with magnetic field 4018
Electron beam traversing foil 1107
Electron velocity in conductor 2015, 2016
Electrostatic accelerator 1108
Emitter follower 3077

Faraday effect 5052

661



662 Indez to Problems

Focusing of charge beam 3082
by dipole magnet 2087, 2088
Force between
charged sphere and wire 1095
coils 3044
current and a current sheet 2066
current and metal slab 2072
current loops 2048
electric dipoles 1092, 1093
magnetic dipole and wire loop 2077
magnetic dipoles 2076
parallel currents 2064
perpendicular currents 2065
point charges 1078
relativistic moving charges 5019
Force on
coil in magnetic field 2052, 2078
moving charge 5011, 5012, 5014
Fourier transform 4009, 5023, 5034
Fresnel’s formula 4012

Gauss’ law 1005
Geiger counter 3068

Induced emf in
coils in relative motion 2057
wire loop in changing magnetic field 2077
wire loop near current 2041, 2042, 2043, 2060, 2061
wire loop rotating in magnetic field 2040, 2051
Inductance circuit 3021, 3028
Inductances
combination of 3034
Induction between coils 3033, 3090
Ionization chamber 1106
Ionosphere 5048

Larmor precession 2084
Lines of force 5029
Logic gate 3060
London’s equations 2071

Magnet in earth’s field 2069



Index to Problems

Magnetic field inside
current-carrying cylinder 2086
iron core of current coil 2044
Magnetization 5050
Magnetization of iron needle 2074
Maxwell’s equations, solution of 4004, 4005
Microprocessor 3065
Motion in magnetic field of
anisotropic particle 2089
long wire 2053, 2054, 2056
metal block 2073
metal disc 2070
wire loop 2055
Motion of charge
in cyclotron 5035, 5037
in electric field 2080
in electric and magnetic fields 2082, 2090, 5038
in magnetic field 2083, 5030, 5035
in potential well 5031
parallel to wire carrying current and charge 2079
Motion of magnetic dipole about fixed magnetic dipole 2081
Motion of metal sphere in electric and magnetic fields 2075
Motion of relativistic charge in EM field 5016, 5026, 5028, 5039
Lagrangian and Hamiltonian for 5027
Mutual inductance of coaxial coils 2039, 2046, 2048

Network 3074
Oscillation of charge caused by EM wave 5032, 5033, 5034

Paramagnetic sphere in magnetic field 2067
Plasma

conductivity of 5044

group velocity in 5054, 5055

refractive index of 5044, 5045, 5047, 5048, 5053
Plasma frequency 5045
Point charge in presence of

conducting sphere 1080, 1081, 1082, 1083, 1087

dielectric 1047

plane conductor 1073, 1074, 1076, 1077, 1079, 1085, 1086
Poisson’s equation 1090



664 Index to Problems

Polarization vector 1007
Polarized hydrogen atoms in magnetic field 2084
Potential
Liénard—-Wiechert 5020
vector 5017
Poynting vector 4032
Protection of devices from fields 4046
Pulsar 5055, 5056
Pulse, subnanosecond 3073
Pulse generator 3076, 3083

Radiation from
ac loop 4055
ac sheet 4047
accelerated charge 4052, 5021, 5036
combination of oscillating dipoles 4065, 4066
linear antenna 4048, 4053, 4056, 4057, 4058, 4059
oscillating electric dipole 4049, 4050, 4063, 4064
pulsating charged sphere 4051
rotating charge distribution 4067
television transmitter 4054
Radiation of quadrupole field 4060, 4061, 4062
Radiative reaction 5032, 5033
RC network 3008, 3012, 3013, 3018, 3024, 3084
RCL circuit 3022, 3025, 3087
Reflection and refraction of EM waves
at conductor surface 4031
at dielectric surface 4010
at surface of anisotropic medium 4022
on normal incidence on conductor 4014, 4027
on normal incidence on dielectric 4011, 4012, 4016
Reflection coeflicient 4013
Reflection of X-rays 4029
Relaxation oscillator 3055
Resistances
combination of 3007, 3026
RL network 3014, 3015, 3016, 3017
Rotating charged
cylinder 2061
sphere 2036, 2059
spherical shell 2032, 2033, 2035



Index to Problems

Self-inductance of
copper-foil cylinder 2058
toroid coil 2045
Schmitt trigger 3062
Solenoid
field of 2008, 2009, 2050, 3034
inductance of 3027, 3030, 3034
Space inversion
effect on electromagnetic quantities 4008
Spaceship kinematics 5003, 5004
Spectral lines 4044, 5034
Sphere in conducting medium 2031
Sphere in electric field
dielectric 1056, 1062, 1063, 1064
conducting 1065, 1069
Storage cells 3038

Telegraph line 3088
Thévenin’s theorem 3003
Time revepsal
effect-on electromagnetic quantities 4008
Toroid -
magnetization of 2025
Transformation of
acceleration 5003
current-charge density 5010
energy-momentum density 5009
field vectors 5007, 5008, 5009
Transformer 3023, 3086
Transistor 3049
Transistor circuit 3063, 3064, 3080
Transmission coefficient 4028
Transmission line 3067, 3089, 4043

Units 3040

Waveguide
parallel plane-conductor 5023
rectangular 4036, 4037, 4038, 4039
triangular 4040

Zener diode 3045
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