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PREFACE 

This series of physics problems and solutions, which consists of seven 
volumes - Mechanice, Electromagnetism, Optics, Atomic, Nuclear and 
Particle Physics, Thermodynamics and Statistical Physics, Quantum M e  
chanice, Solid State Physics and Relativity, contains a selection of 2550 
problems from the graduate school entrance and qualifying examination 
papers of seven U.S. universities - California University Berkeley Cam- 
pus, Columbia University, Chicago University, Massachusetts Institute of 
Technology, New York State University Buffalo Campus, Princeton Uni- 
veraity, Wisconsin University - as well as the CUSPEA and C. C. Ting’s 
papers for selection of Chinese students for further studies in U.S.A. and 
their solutions which represent the effort of more than 70 Chinese physicists 
plus some 20 more who checked the solutions. 

The series is remarkable for its comprehensive coverage. In each area 
the problems span a wide spectrum of topics while many problems overlap 
several areas, The problems themselves are remarkable for their versatil- 
ity in applying the physical laws and principles, their uptodate realistic 
situations, and their scanty demand on mathematical skills. Many of the 
problems involve order of magnitude calculations which one often requires 
in an experimental situation for estimating a quantity from a simple model. 
In short, the exerciees blend together the objectives of enhancement of one’s 
understanding of the physical principles and ability of practical application. 

The solutions as presented generally just provide a guidance to solving 
the problem, rather than step by step manipulation, and leave much to 
the students to work out for themselves, of whom much is demanded of the 
basic knowledge in physics. Thus the series would provide an invaluable 
complement to the textbooks. 

The present volume for Electromagnetism consists of five parts: elec- 
trostatics, magnetostatic and quasi-stationary electromagnetic fields, cir- 
cuit analysis, electromagnetic waves, relativity and particle-field interac- 
tions, and contains 440 problems. 34 Chinese physicists were involved in 
the task of preparing and checking the solutions. 

In editing, no attempt has been made to unify the physical terms, 
unita and symbols. Rather, they are left to the setters’ and solvers’ own 
preference so as to reflect the realistic situation of the usage today. Great 

V 
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pains has been taken to trace the logical steps from the first principles to 
the final solutions, frequently even to the extent of rewriting the entire 
solution. In addition, a subject index has been included to facilitate the 
location of topics. These editorial efforts hopefully will enhance the value 
of the volume to the students and teachers alike. 

Yung-Kuo Lim 
Editor 



INTRODUCTION 

Solving problems in school work is the exercise of the mind and ex- 
amination questions are usually picked from the problems in school work. 
Working out problems is an essential and important aspect of the study of 
Physics. 

Major American Universiiy Ph. D. Qualifying Quesiions and Soluiione 
is a series of books which consists of seven volumes. The subjects of each 
volume and the respective referees (in parentheses) are as follows: 

1. Mechanics (Qiang Yan-qi, Gu En-pu, Cheng Jia-fu, Li Ze-hua, Yang 

2. Electromagnetism (Zhao Shu-ping, You Jun-han, Zhu Jun-jie) 
3. Optics (Bai Gui-ru, Guo Guang-can) 
4. Atomic, Nuclear and Particle Physics (Jin Huai-cheng, Yang Bao- 

6. Thermodynamics and Statistical Physics (Zheng Jiu-ren) 
6. Quantum Mechanics (Zhang Yong-de, Zhu Dong-pei, Fan Hong-yi) 
7. Solid State Physics, Relativity and Miscellaneous Topics (Zhang Jia-lu, 

Zhou You-yuan, Zhang Shi-ling) 
This series covers almost all aspects of University Physics and contains 

2550 problems, most of which are solved in detail. 
The problems have been carefully chosen from 3100 problems, of which 

some came from the China-U.S. Physics Examination and Application Pro- 
gram, some were selected from the Ph.D. Qualifying Examination on Ex- 
perimental High Energy Physics sponsored by Chao Chong Ting. The rest 
came from the graduate school entrance examination questions of seven 
world-renowned American universities: Columbia University, University of 
California at Berkeley, Massachusetts Institute of Technology, University of 
Wisconsin, University of Chicago, Princeton University and State Univer- 
sity of New York, Buffalo. 

In general, examination problems in physics in American universities 
do not involve too much mathematics; however, they are to a large ex- 
tent characterized by the following three aspects: some problems involving 
various frontier subjects and overlapping domains of science are selected 
by professors directly from their own research work and show a “modern 
style”. Some problems involve broad fields and require a quick mind to 
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analyse, while the methods needed for solving the other problems are sim- 
ple and practical but requires a full “touch of physics”. Indeed, we ven- 
ture to opine that the problems, as a whole, embody to some extent the 
characteristics of American science and culture, as well as the philosophy 
underlying American education. 

Therefore, we considered it worthwhile to collect and solve these prob- 
lems and introduce them to students and teachers, even though the effort 
involved was extremely strenuous. As many as a hundred teachers and 
graduate students took part in this time-consuming task. 

A total of 440 problems makes up this volume of five parts: electrostat- 
ics (loti), magnetostatic and quasi-stationary electromagnetic fields (119), 
circuit analysis (go), electromagnetic waves (67), and relativity, particle 
field interactions (56).  

In scope and depth, most of the problems conform to the undergrad- 
uate physics syllabi for electromagnetism, circuit analysis and electrody- 
namics in most universities. However, many of them are rather profound, 
sophisticated and broad-based. In particular, problems from American uni- 
versities often fuse fundamental principles with the latest research activities. 
Thus the problems may help the reader not only to enhance understanding 
in the basic principles, but also to cultivate the ability of solving practical 
problems in a realistic environment. 

International units are used whenever possible, but in order to conform 
to some of the problems, Gaussian units are also used. This in fact would 
give the student broader training and wider experience. 

This volume is the result of collective efforts of 34 physicists involved 
in working out and checking of the solutions, among them Zheng D-chen, 
Eu You-qiu, Ning Bo, Zhu Xue-liang, and Zhao Shu-ping. 
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ELECTROSTATICS 





1. BASIC LAWS OF ELECTROSTATICS (1001-1023) 

1001 
A static charge distribution produces a radial electric field 

e-k  E = A-e, , r 

where A and b are constants. 
(a) What is the charge density? Sketch it. 
(b) What is the total charge Q? 

Solution: 
(a) The charge density is given by Maxwell’s equation 

p = V . D  = BOV .E. 

AS V .  uv = VU * V  + UV ’ v ,  

Making use of Dirac’s delta function 6(r) with properties 

6(r)=O for r#O, 
=oo for r=O, 

J, 6(r)dV = 1 if v encloses r = 0 ,  

= 0 if otherwise, 

Thus 

3 
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Hence the charge distribution consists of a positive charge 4rsoA at the 
origin and a spherically symmetric negative charge distribution in the sur- 
rounding space, as shown in Fig. 1.1. 

Fig. 1.1 

(b) The total charge is 

It can also be obtained from Gauss' flux theorem: 

Q =  r-wx lim faoE-dS  

in agreement with the above. 



1002 
Suppose that, instead of the Coulomb force law, one found experimen- 

tally that the force between any two charges q1 and 42 was 

where a is a constant. 
(a) Write down the appropriate electric field E surrounding a point 

charge q. 

(b) Choose a path around this point charge and calculate the line 
integral f E - dl. Compare with the Coulomb result. 

(c) Find f En dS over a spherical surface of radius r1 with the point 
charge at  this center. Compare with the Coulomb result. 

(d) Repeat (c) at radius r1 + A  and find V .E at a distance rl from the 
point charge. Compare with the Coulomb result. Note that A is a small 
quantity. 

( Wisconsin) 

Solution: 
(a) The electric field surrounding the point charge q is 

E(r) = -- I (I - f i l e r ,  
h e 0  r2 

where r is the distance between a space point and the point charge q, and 
er is a unit vector directed from q to the space point. 

Fig. 1.2 

(b) As in Fig. 1.2, for the closed path L we find 
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and 

From Coulomb’s law Fl2 = a e r , z t  we can obtain the electric field 

!? 
of the point charge 

E(r) = - 
4mOr2 er * 

Clearly, one has 

A E . d l = O .  

So the Coulomb result is the same as that of this problem. 

center. Defining the surface element dS = dSe,, we have 
(c) Let S be a spherical surface of radius rl with the charge q at its 

= - ( l - f l ) .  4 
&O 

From Coulomb’s law and Gauss’ law, we get 

The two results differ by $-. 
(d) Using the result of (c), the surface integral at rl + A is 

Consider a volume V’ bounded by two spherical shells Sl and Sz with radii 
r = r1 and r = rl + A respectively. Gauss’ divergence theorem gives 

E .  dS = l, V. EdV. f SI +Sa 



Ae the directions of dS on S1 and Sz are outwards from V', we have for 
small A 

As ;4f < 1, we can approximately set 

- Thus one gets 

On the other hand, Coulomb's law would give the divergence of the electric 
field produced by a point charge q as 

V . E(r) = -6(r). 4 
€0 

1003 
Static charges are distributed along the z-axis (one-dimensional) in the 

interval -a < z' 5 a. The charge density is 

(a) Write down an expression for the electrostatic potential @(z)at a 

(b) Derive a multipole expansion for the potential valid for z > a. 
(c) For each charge configuration given in Fig. 1.3, find 

point z on the axis in terms of p(z'). 

(i) the total charge Q = Jpdz',  
(ii) the dipole moment P = Jz'pdz',  
(iii) the quadrupole moment Qoo = 2 J d2pdz', 
(iv) the leading term (in powers of l/z) in the potential CP at a 

( Wisconsin) 
point z > a. 
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Solution: 
(a) The electrostatic potential at a point on z-axis is 

(b) For c > a,a  > 2' > -a, we have 

1 2' 2'2 

12- 2'1 2 2 2  23 
-- - -+-+-+...  . 1 

Hence the multipole expansion of @(z) is 

(c) The charge configuration (I) can be represented by 

P ( 4  = q W )  9 

for which 

9 
4'X&oX 

(i) Q = q ;  (ii) P = 0 ;  (iii) QEE = 0 ;  (iv) O(z) = -. 

The charge configuration (11) can be represented by 

for which 

qa (i) Q = 0;  (ii) P = go; (iii) Qlo = 0; (iv) O(z) = -- 
4Ir€ot2 * 



9 

The charge configuration (111) can be represented by 

for which 

paZ (i) Q = 0 ;  (ii) P = 0 ;  (iii) QOE = qa2 ; (iv) *(z) = - 
8reox3 

1004 
Two uniform infinite sheets of electric charge densities +a and --4 

intersect at right angles. Find the magnitude and direction of the electric 
field everywhere and sketch the lines of E. 

( Wisconsin) 

Solution 
First let us consider the infinite sheet of charge density +a. The mag- 

nitude of the electric field caused by it at  any space point is 

The direction of the electric field is perpendicular to the surface of the 
sheet. For the two orthogonal sheets of charge densities fa, superposition 
of their electric fields yields 

a-4 

2EO 
E = - .  

The direction of E is as shown in Fig. 1.4. 

Fig. 1.4 
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1005 

Gauss’ law would be invalid if 
(a) there were magnetic monopoles, 
(b) the inversesquare law were not exactly true, 
(c) the velocity of light were not a universal constant. 

(CCT) 
Solution: 

The answer is (b). 

1006 
An electric charge can be held in a position of stable equilibrium: 
(a) by a purely electrostatic field, 
(b) by a mechanical force, 
(c) neither of the above. 

(CCT) 
Solution: 

The answer is (c). 

1007 
If P is the polarization vector and E is the electric field, then in the 

(a) scalar, (b) vector, (c) tensor. 
equation P = aE, a in general is: 

V C T )  
Solution: 

The answer is (c). 

1008 

(a) A ring of radius R has a total charge +Q uniformly distributed on 
it. Calculate the electric field and potential at the center of the ring. 
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(b) Consider a charge -Q constrained to slide dong the axis of the 
ring. Show that the charge will execute simple harmonic motion for small 
displacements perpendicular to the plane of the ring. 

( Wisconsin) 

Solution: 

field and the potential at the center of the ring are given by 
As in Fig. 1.5, take the z-axis along the axis of the ring. The electric 

* Q  

Fig. 1.5 

The electric field at a point P on the z-axis is given by 

Qz 
h & o  ( R2 -k Z2)3/2 eg E(z) = 

Thus a negative charge -Q at point p is acted upon by a force 

Q2 Z 
cine4 R2 + z2)3/1 e* F(z) = - 

As z < R, F ( t )  a P and -Q will execute simple harmonic motion. 

1009 
An amount of charge q is uniformly spread out in a layer on the surface 

of a disc of radius a. 

(a) Use elementary methods based on the azimuthal symmetry of the 
charge distribution to find the potential at any point on the axis of sym 
metry. 
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(b) With the aid of (a) find an expression for the potential at any point 

( Wisconsin) 
r(1.I > a) as an expansion in angular harmonics. 

Soh t ion: 
(a) Take coordinate axes as in Fig. 1.6 and consider a ring formed by 

circles with radii p and p + dp on the disc. The electrical potential at a 
point (0, 0, z) produced by the ring is given by 

Integrating, we obtain the potential due to the whole ring: 

z 

t 

Fig. 1.G 

(b) At a point 1.1 > a, Laplace's equation V2cp = 0 applies, with 
solution 

As 'p -+ 0 for r + 00, we have an = 0. 

As Pn(l.) = 1, we have 
In the upper half-space, P > 0, the potential on the axis is 'p = p(r, 0). 

n=O 
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In the lower half-space, z < 0, the potential on the axis is 'p = 'p(r ,r) ,  As 
Pn(-l) = we have 

W 

Using the results of (a) and noting that for a point on the axis 1.1 = z ,  we 
have for z > 0 

However, as 

1(1- 1). . . . . . (3 - n + 1) a2 
+ 2  n! G)'+ ... 1 .  

the equation becomes 

Comparing the coefficients of powers of r gives 

Hence, the potential at any point r of the half-plane z > 0 is given by 
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Similarly for the half-plane z < 0, as (-l)2n-z = 1 we have 

Thus the same expression for the potential applies to  all points of space, 
which is a series in Legendre polynomials. 

1010 
A thin but very massive disc of insulator has surface charge density (I 

and radius R. A point charge +Q is on the axis of symmetry. Derive an 
expression for the force on the charge. 

( Wisconsin) 

Solution: 
Refer to Problem 1009 and Fig. 1.6. Let Q be at a point (O,O, z )  on 

the axis of symmetry. The electric field produced by the disc at this point 
is 

whence the force on the point charge is 

By symmetry the direction of this force is along the axis of the disc. 

1011 

The cube in Fig. 1.7 has 5 sides grounded. The sixth side, insulated 
from the others, is held at  a potential 40. What is the potential at the 
center of the cube and why? 

(MIT) 
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Fig. 1.7 

Solution: 

a linear function of the potentials of the six sides, i.e., 
The electric potential qic at the center of the cube can be expressed as 

i 

where the Ci’s are constants. As the six sides of the cube are in the same 
relative geometrical position with respect to the center, the Ci’s must have 
the same value, say C. Thus 

If each of the six sides has potential 40, the potential at the center will 
obviously be 4 0  too. Hence C = 3. Now as the potential of one side only 
is 40 while all other sides have potential zero, the potential at the center is 
40/6. 

1012 
A sphere of radius R carries a charge Q, the charge being uniformly 

distributed throughout the volume of the sphere. What is the electric field, 
both outside and inside the sphere? 

( Wisconsin) 

Solution: 
The volume charge density of the sphere is 
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Take as the Gaussian surface a spherical surface of radius r concentric with 
the charge sphere. By symmetry the magnitude of the electric field at all 
points of the surface is the same and the direction is radial. From Gaud 
law 

f E . d s  = --/pdv 1 
€0 

we immediately obtain 

1013 
Consider a uniformly charged spherical volume of radius R which con- 

tains a total charge &. Find the electric field and the electrostatic potential 
at all points in the space. 

( Wisconsin) 
Soh tion: 

Using the results of Problem 1012 

and the relation between electrostatic field intensity and potential 

P ( P ) = J r n E - 4  P 

we obtain 
c . l ( r ) = l  R E l . d r + L r n E 2 . d r  

Qrdr * Qdr 
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1014 
For a uniformly charged sphere of radius R and charge density p, 
(a) find the form of the electric field vector E both outside and inside 

(b) from E find the electric potential Q using the fact that Q -+ 0 as 

( Wisconsin) 

the sphere using Gauss' law; 

r+oo .  

Solution: 
(a) Same as for Problem 1013. 
(b) Referring to Problem 1013, we have 

R3P for r > R , q i = -  

for 

3eor ' 

1015 
In the equilibrium configuration, a spherical conducting shell of inner 

radius a and outer radius b has a charge q fixed at the center and a charge 
density u uniformly distributed on the outer surface. Find the electric field 
for all r, and the charge on the inner surface. 

( Wisconsin) 

Solution: 
Electrostatic equilibrium requires that the total charge on inner surface 

of the conducting shell be - q .  Using Gauss' law we then readily obtain 

E(r) = 1 
4r&or2 er for r < a ,  

E = O  for a < r < 6, 
1 4rb2a ab2  

e, = - E(r) = -- for r > 6. 
€0 r2 er 4rcO r2 

1016 
A solid conducting sphere of radius rl has a charge of +Q. It is sur- 

rounded by a concentric hollow conducting sphere of inside radius r2 and 
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outside radius 1-3. Use the Gaussian theorem to get expressions for 
(a) the field outside the outer sphere, 
(b) the field between the spheres. 
(c) Set up an expression for the potential of the inner sphere. It is not 

necessary to perform the integrations. 
( Wisconsin) 

Solution: 
Because of electrostatic equilibrium the inner surface of the hollow 

conducting sphere carries a total charge -8, while the outer surface carries 
a total charge +Q. Using Gauss’ law 

i E . d S = - - ,  Qtot 

€0 

where Qtot is the algebraic sum of all charges surrounded by a closed surface 
s, we obtain 

(a) ~ ( r )  = +er (r >r3) 

(b) E(r) = &er ( f 2  > r > r1) 
(c) Using the expression for the potential cp(p) = r,” E - d ,  we find the 

potential of the inner sphere: 

1017 
The inside of a grounded spherical metal shell (inner radius R1 and 

outer radius Rz)  is filled with space charge of uniform charge density p. Find 
the electrostatic energy of the system. Find the potential at the center. 

( Wisconsin) 

Soh t ion: 

Gauss’ law we get 
Consider a concentric spherical surface of radius r(r < Rl) .  Using 
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As the shell is grounded, p(R1) = 0, E = O(r > Rz).  Thus 

The potential at the center is 

The electrostatic energy is 

1018 
A metal sphere of radius a is surrounded by a concentric metal sphere 

of inner radius b, where b > a. The space between the spheres is filled 
with a material whose electrical conductivity u varies with the electric field 
strength E according to the relation u = K E ,  where K is a constant. A 
potential difference V is maintained between the two spheres. What is the 
current between the spheres? 

( Wisconsin) 

Solution: 
Since the current is 

the electric field is 

and the potential is 

Hence the current between the spheres is given by 

I = 4 r K  V’/ ln(b/a) . 
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1019 
An isolated soap bubble of radius 1 cm is at  a potential of 100 volts. If 

it collapses to a drop of radius 1 mm, what is the change of its electrostatic 
energy? 

( Wisconsin) 

Solution: 
If the soap bubble carries a charge Q, its potential is 

For r = rl = 1 cm, V = V1 = 100 V, we have Q = 4ueorlV1. As the radius 
changes from rl to r2 = 1 mm, the change of electrostatic energy is 

= 5 x lo-" J . 

1020 
A static electric charge is distributed in a spherical shell of inner radius 

R1 and outer radius K2. The electric charge density is given by p = u + br, 
where r is the distance from the center, and zero everywhere else. 

(a) Find an expression for the electric field everywhere in terms of T. 

(b) Find expressions for the electric potential and energy density for 

(SUNY, Buflalo) 
t < R I .  Take the potential to be zero at r -+ 00. 

Solution: 
Noting that p is a function of only the radius r, we can take a concentric 

spherical surface of radius r as the Gaussian surface in accordance with the 
symmetry requirement. Using Gauss' law 

1 f E . dS = - / p(r)dr , 
I €0 



Electrortolicr 21 

we can get the following results: 
(a) Electric field strength. 
For r < R1, El = 0. 
For R1 < r < R2, using the relation 4rr2E2 = 5 Jil(a + 6r')f2df 

we find 
6 

J::(a + br')r'2dr' we get 

- e) + 4(r4 - R;')]. . E2 = - [-(r3 l a  
cOr3 3 

For Rz > r, from 4ar2E3 = 

(b) Potential and the energy density for r < Rt. 
Noting that cp(00) = 0, the potential is 

cp(r) = lrn E dl = ( lR' +hr +L:)E -dr 

Also, as El = O(r < R, ) ,  the energy density for r < R1 is 

w = $ E ? = O .  

1021 
An electric charge Q is uniformly distributed over the surface of a 

sphere of radius r. Show that the force on a small charge element dq ie 
radial and outward and is given by 

1 
dF = TEdq, 

where E = &-$ is the electric field at  the surface of the sphere. 

Solution: 

( Wisconsin) 

The surface charge density is given by 
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As shown in Fig. 1.8, we consider a point P inside the sphere cloee to an 
area element ds.  The charge dq on this area element will produce at the 
point P an electric field which is approximately that due to a uniformly 
charged infinite plate, namely, 

where n is a unit vector normal to ds in the outward direction. 

Fig. 1.8 

The electric field is zero inside the sphere. Hence, if we take E2p as 
the electric field at P due to all the charges on the spherical surface except 
the element ds, we must have 

Therefore, 

As P is close to ds,  E2p may be considered as the field strength at  ds due 
to the charges of the spherical surface. Hence, the force acting on de is 

1 
2 

dF = dqE2p = -Edqn ,  

where E = Q/4r60r2 is just the field strength on the spherical surface. 

1022 
A sphere of radius R1 has charge density p uniform within its volume, 

except for a small spherical hollow region of radius R2 located a distance a 
from the center. 
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(a) Find the field E at the center of the hollow sphere. 
(b) Find the potential q5 at the same point. 

( VC, Berkeley) 

(a) Consider an arbitrary point P of the hollow region (see Fig. 1.9) 
Solution: 

and let 
O P = r ,  Q'P=r', 00'=a, r ' = r - a .  

Fig. 1.9 

If there were no hollow region inside the sphere, the electric field at the 
Doint P would be 

If only the spherical hollow region has charge density p the electric field at 
P would be 

E2 = L r ' .  
3.50 

Hence the superposition theorem gives the electric field at P as 

Thus the field inside the hollow region is uniform. This of course includes 
the center of the hollow. 

(b) Suppose the potential is taken to be zero at an infinite point. Con- 
sider an arbitrary sphere of radius R with a uniform charge density p .  We 
can find the electric fields inside and outside the sphere as 

El r < R ,  { &r, r > R .  
E(r) = 
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Then the potential at an arbitrary point inside the sphere is 

where r is the distance between this point and the spherical center. 
If the charges are distributed 

throughout the sphere of radius R1, let 41 be the potential at the center 
0‘ of the hollow region. If the charge distribution is replaced by a small 
sphere of uniform charge density p of radius R2 in the hollow region, let the 
potential at 0’ be 4 2 .  Using (1) and the superposition theorem, we obtain 

Now consider the problem in hand. 

P P 
660 6EO 

P = -[3(R: - R:) - a’ ] .  
660 

40) = 41 - 4’ = -(3R; - a’) - -(3G - 0) 

1023 
The electrostatic potential a t  a point P due to  an idealized dipole layer 

of moment per unit area T on surface S is 

where r is the vector from the surface element to the point P. 
(a) Consider a dipole layer of infinite extent lying in the z-y plane of 

uniform moment density T = re,. Determine whether 4 or some derivative 
of it is discontinuous across the layer and find the discontinuity. 

(b) Consider a positive point charge q located at  the center of a spher- 
ical surface of radius a. On this surface there is a uniform dipole layer T 
and a uniform surface charge density u. Find T and u so that the poten- 
tial inside the surface will be just that of the charge q ,  while the potential 
outside will be zero. (You may make use of whatever you know about the 
potential of a surface charge.) 

(S VNY,  Buflalo) 

Solution: 
(a) By symmetry the electrostatic potential a t  point P is only depen- 

dent on the z coordinate. We choose cylindrical coordinates (R, 8 ,  z) such 
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that P is on the z-axis. Then the potential at  point P is 

As r2 = Ra -+ t2 ,  dS = 2rRdR, we get 

Hence, the electrostaic potential is discontinous across the 2-y plane (for 
which z = 0). The discontinuity is given by 

(b) It is given that 4 = 0 for r > a. Consequently E = 0 for r > a. 
Using Gauss’ law 

Q E-dS  = - ,  4 EO 

we find that u 4ra2 + q = 0. Thus 

If the potential at  infinity is zero, then the potential outside the spherical 
surface will be zero everywhere. But the potential inside the sphere is 
p = &. For r = a , p  = &, so that the discontinuity at the spherical 
surface IS 

4 
4reoa 

A4 = --. 

We then have 2 = -- 4 r c o a  I giving 

4 
4ra 

T = --e,. 
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2. ELECTROSTATIC FIELD IN A CONDUCTOR (1024-1042) 

1024 

A charge Q is placed on a capacitor of capacitance Cl . One terminal is 
connected to ground and the other terminal is insulated and not connected 
to anything. The separation between the plates is now increased and the 
capacitance becomes C2 (C2 < C1). What happens to the potential on the 
free plate when the plates are separated? Express the potential VZ in terms 
of the potential V1. 

Solution: 
In the process of separation the charge on the insulated plate is kept 

constant. Since Q = C V ,  the potential of the insulated plate increases as C 
has decreased. If VI and V2 are the potentials of the insulated plate before 
and after the separation respectively, we have 

( Wi8ConSin) 

1025 

Figure 1.10 shows two capacitors in series, the rigid center section of 
length b being movable vertically. The area of each plate is A. Show that 
the capacitance of the series combination is independent of the position 
of the center section and is given by C = q. If the voltage difference 
between the outside plates is kept constant a;?& what is the change in the 
energy stored in the capacitors if the center section is removed? 

( Wisconsin) 

"0 

Fig. 1.10 
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Solution: 

distance between the two lower plates. From Fig. 1.10 we see that 
Let dl be the distance between the two upper plates and d2 be the 

dl + d3 = a - b , 

For the two capacitors in series, the total capacitance is 

AEO AEO =--- - c1 c2 C =  
Ct+C2 d l + d 2  a - b *  

Ae C is independent of dl and dz ,  the total capacitance is independent of 
the position of the center section. The total energy stored in the capacitor 
is 

The energy stored if the center section is removed is 

AEOV: W' = - 
2a ' 

and we have 

1026 
A parallel-plate capacitor is charged to a potential V and then dis- 

connected from the charging circuit. How much work is done by slowly 
changing the separation of the plates from d to d' # d? (The plates are 
circular with radius r > d. )  

( Wisconsin) 
Solution: 

Neglecting edge effects, the capacitance of the parsllel-plate capacitor 
is C = Q$ and the stored energy is W = $V2.  As the charges on the 
plates, Q = f C V ,  do not vary with the separation, we have 

C 
C' v'= -v. 
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The energy stored when separation is d' is 

W' = &v) 1 = 5. 1 Fv2 c2 

Thus the change of the energy stored in the capacitor is 

AW = W ' -  W = 

Therefore, the work done in 

b'( g - 1) = f V 2  1 ($ - 1) . 2 

changing the separation from d to  d' is 

conr2(d' - d ) V 2  
2d2 

1027 
A parallel-plate capacitor of plate area 0.2 m2 and plate spacing 1 cm 

is charged to 1000 V and is then disconnected from the battery. How much 
work is required if the plates are pulled apart to double the plate spacing? 
What will be the final voltage on the capacitor? 

(€0 = 8.9 x lo-'' C2/(N . m')) 

( Wisconsin) 

Solution: 
When the plates are pulled apart to double the plate spacing, the 

capacitance of the capacitor becomes C' = Q ,  where C = Qf is the ca- 
pacitance before the spacing was increased. If a capacitor is charged to  a 
voltage U, the charge of the capacitor is Q = CU. As the magnitude of the 
charge Q is constant in the process, the change of the energy stored in the 
capacitor is 

E ~ A U ~  - 8.9 x 1 0 - l ~  x 0.2 x ( 1 0 ~ ) ~  - - - 
2d 2 x 0.01 

= 8.9 x J . 
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AW is just the work required to pull the plates apart to double the plate 
spacing, As the charge Q is kept constant, the final voltage is given by 

CU = C'U' , or U' = 2U = 2000 V . 

1028 
Given two plane-parallel electrodes, space d, a t  voltages 0 and VO, find 

the current density if an unlimited supply of electrons at rest is supplied to 
the lower potential electrode. Neglect collisions. 

(Wisconsin; UC Berkeley) 

Solution: 
Choose z-axis perpendicular to the plates as shown in Fig. 1.11. Both 

the charge and current density are functions of z .  In the steady state 

Fig. 1.11 

Hence j = -joe,, where jo is a constant. Let u ( z )  be the velocity of the 
electrons. Then the charge density is 

The potential satisfies the Poisson equation 
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Using the energy relation )mu2(x)  = e V ,  we get 

To solve this differential equation, let u = E. We then have 

d2V du du dV du 
dz2 dx dV dx d V '  
- = - =  -- = u- 

and this equation becomes 

udu = A V - i d V  , 

where A = kfi. Note that 
there. Integrating the above gives 

= 0 at x = 0, as the electrons are at rest 

1 
-u2 = 2 A V * ,  2 

or 
V - f d V  = 2A3dx.  

As V = 0 for z = 0 and V = VO for x = d, integrating the above leads to 

-Vo 4 3  3 = 2 A i d = 2  ( $ g ) ' d .  

Finally we obtain the current density from the last equation: 

1029 
As can be seen from Fig. 1.12, a cylindrical conducting rod of diameter 

d and length 1 (I >> d)  is uniformly charged in vacuum such that the electric 
field near its surface and far from its ends is Eo. What is the electric field 
at r W 1 on the axis of the cylinder? 

(VC, Berkeley) 
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Fig. 1.12 

Solution: 
We choose cylindrical coordinates with the z-axis along the axis of the 

cylinder and the origin at the center of the rod. Noting 1 > d and using 
Gauss’ theorem, we can find the electric field near the cylindrical surface 
and far from its ends as 

where X is the charge per unit length of the cylinder and ep is a unit vector 
in the radial direction. For r > I ,  we can regard the conducting rod as a 
point charge with Q = Xl. So the electric field intensity at a distant point 
on the axis is approximately 

Q Eodl 
4rcor2 4r2 

E = - = - .  

The direction of E is along the axis away from the cylinder. 

1030 
An air-spaced coaxial cable has an inner conductor 0.5 em in diameter 

and an outer conductor 1.5 cm in diameter. When the inner conductor is 
at a potential of +8000 V with respect to the grounded outer conductor, 

(a) what is the charge per meter on the inner conductor, and 
(b) what is the electric field intensity at  r = 1 cm? 

( Wisconsin) 
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Solution: 
(a) Let the linear charge density for the inner conductor be A. By 

symmetry we see that the field intensity at a point distance r from the axis 
in the cable between the conductors is radial and its magnitude is given by 
Gauss’ theorem as 

E = - .  x 
2 s ~ r  

Then the potential difference between the inner and outer conductors is 

A 
V = Edr = In(b/a) 

with a = 1.5 cm, b = 0.5 cm, which gives 

2 ~ 0 V  2 s  x 8.9 x lo-’’ x 8000 A=-=  
W / a )  In( 1.5/0.5) 

= 4.05 x lo-’ C/m.  

(b) The point r = 1 cm is outside the cable. Gauss’ law gives that its 
electric intensity is zero. 

1031 
A cylindrical capacitor has an inner conductor of radius r1 and an 

outer conductor of radius r2. The outer conductor is grounded and the 
inner conductor is charged so as to have a positive potential VO. In terms 
of VO, r1 , and rz, 

(a) what is the electric field a t  r? (rl < r < rz) 
(b) what is the potential at r? 
(c) If a small negative charge Q which is initially a t  r drifts to r1, by 

( Wisconsin) 
how much does the charge on the inner conductor change? 

Solution: 
(a) From Problem 1030, we have 
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(c) Let the change of the charge on the inner conductor be AQ = 
Q1 - Q a  with Q1 = CVO. When a negative charge Q moves from r to 
rl, the work done by electrostatic force is Q(h  - V). This is equal to a 
decrease of the electrostatic energy in the capacitor of 

1-2, Q 2  Q2 Q(V0-V). 2c 2c 
As Q is a sma11 quantity, we have approximately 

Q i + Q z ~ 2 Q i .  

Hence 
291 -AQ=Q(Vo-V), 2c 

or 

1032 
A very long hollow metallic cylinder of inner radius ro and outer radius 

ro+Ar (Ar < ro) is uniformly filled with space charge of density PO. What 
are the electric fields for r < ro,r > ro + Ar,  and ro  + Ar > r > ro? 
What are the surface charge densities on the inner and outer surfaces of 
the cylinder? The net charge on the cylinder is assumed to be zero. What 
are the fields and surface charges if the cylinder is grounded? 

( Wisconsin) 

Solution: 

the cylinder. Gauss’ law gives the field intensity as 
Use cylindrical coordinates (r, p, z )  with the z-axis along the axis of 

e r  for r < ro, POT El(r)  = - 
2&0 

n 

for r > ro + A t ,  

for ro < P < ro + At-. 

por; e, Ez(r) = - 
2re0 

E3(r) = 0 .  
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The surface charge density u on a conductor is related to the surface electric 
intensity E by E = 5 with E in the direction of an oufward normal to the 
conductor. Thus the surface charge densities at r = ro and r = ro + Ar are 
respectively 

+o) = -EoJ%(Po) 
- Pore - -- 

2 ’  
u(r0 + Ar) = coEz(ro + At) 

If the cylinder is grounded, then one has 

E=O for r > ro + Ar,  
u(r0 + Ar) = 0 r = ro + A r ,  for 

E and (I in other regions remaining the same. 

1033 
An air-filled capacitor is made from two concentric metal cylinders. 

The outer cylinder has a radius of 1 cm. 
(a) What choice of radius for the inner conductor will allow a maximum 

potential difference between the conductors before breakdown of the air 
dielectric? 

(b) What choice of radius for the inner conductor will allow a maximum 
energy to be stored in the capacitor before breakdown of the dielectric? 

(c) Calculate the maximum potentials for cases (a) and (b) for a break- 
down field in air of 3 x lo6 V/m. 

(VC, Berkeley) 

Solution: 
(a) Let Eb be the breakdown field intensity in air and let R1 and Rz 

be the radii of the inner and outer conductors respectively. Letting r be 
the charge per unit length on each conductor and using Gauss’ theorem, 
we obtain the electric fiield intensity in the capacitor and the potential 
difference between the two conductors respectively as 
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As the electric field close to the surface of the inner conductor is strongest 
we have 

7 
Eb=-.  

2+&o R1 
Accordingly, we have 

In order to obtain the maximum potential difference, R1 should be such that 
f& = 0, i.e., In 5% = 1 or R1 = e. The maximum potential difference is 
then 

R2 
e 

Vmax = - E b .  

(b) The energy stored per unit length of the capacitor is 

1 R2 w = - rV = TE~E:R:I~ - 
2 R1 

and 
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1034 

In Fig. 1.13 a very long coaxial cable consists of an inner cylinder 
of radius a and electrical conductivity u and a coaxial outer cylinder of 
radius b. The outer shell has infinite conductivity. The space between the 
cylinders is empty. A uniform constant current density j, directed along 
the axial coordinate z ,  is maintained in the inner cylinder. Return current 
flows uniformly in the outer shell. Compute the surface charge density on 
the inner cylinder as a function of the axial coordinate z,  with the origin 
z = 0 chosen to  be on the plane half-way between the two ends of the cable. 

(Prince ton) 

Fig. 1.13 

Solution: 
Assume that the length of the cable is 21 and that the inner and outer 

cylinders are connected a t  the end surface E = -1. (The surface E = 1 
may be connected to a battery.) The outer cylindrical shell is an ideal 
conductor, whose potential is the same everywhere, taken to  be zero. The 
inner cylinder has a current density j = aE, i.e., E = $ = $ez,  so that its 
cross section z = const. is an equipotential surface with potential 

j V ( z )  = --(% u + 1 )  

In cylindrical coordinates the electric field intensity at a point ( r ,  p, E )  inside 
the cable can be expressed as 

As the current does not change with z ,  E,(r,z)  is independent of z also. 
Take for the Gaussian surface a cylindrical surface of radius r and length dz 
with z-axis as the axis. We note that the electric fluxes through its two end 
surfaces have the same magnitude and direction so that their contributions 
cancel out. Gauss’ law then becomes 

Er(r, z )  - 27rrdz = A ( z ) d z / ~ ~ ,  
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where A(a) is the charge per unit length of the inner cylinder, and gives 

Hence, we obtain the potential difference between the inner and outer con- 

As V ( a )  = - $ ( a  + I ) ,  the above gives 

SseoV(2) 27reoj(a + I )  
A ( 2 )  = = -  

In(%) u ln(b/a) ' 

The surface charge density at a is then 

A ( Z )  &oi(Z + I )  a&) = - = - 
27ra auln(b/a) ' 

Choosing the origin at the end surface with a = -1 ,  we can write 

E o i Z  u, (z )  = - 
au ln(b/a) ' 

1035 
A finite conductor of uniform conductivity u has a uniform volume 

charge density p. Describe in detail the subsequent evolution of the system 
in the two cases: 

(a) the conductor is a sphere, 
(b) the conductor is not a sphere. 
What happens to the energy of the system in the two cases? 

(UC, Berkeley) 

Let the permittivity of the conductor be E .  F'rom V - E = P / E ,  V - J + 
Solution: 

= 0 and J = uE, we get 
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(a) If the conductor is a sphere, spherical symmetry requires that E = 
Ere,. Hence 

giving 

Note that E(0,f) = 0 for symmetry. It is evident that for t -+ 00, E = 
0 , p  = 0, and J = 0 inside the conductor. Thus the charge is uniformly 
distributed on the spherical surface after a sufficiently large time. 

(b) If the conductor is not a sphere, the solution is more complicated. 
However we still have that 

This means that El J and p inside the conductor each decays exponentially 
to zero with the time constant 5.  Eventually the charge will be distributed 
only on the conductor’s surface. As for the energy change let us first con- 
sider the case (a). The electric field outside the conductor is always the 
same, while the field inside will change from a finite value to zero. The net 
result is that the electric energy decreases on account of loss arising from 
conversion of electric energy into heat. For case (b) the field outside the 
conductor will depend also on 0 and ‘p but the qualitative result is still the 
same, namely, the electric energy decreases with time being transformed 
into heat. In short, the final surface charge distribution is such that the 
electric energy of the system becomes a minimum. In other words, the 
conductor will become an equipotential volume. 

1036 
A spherical conductor A contains two spherical cavities as shown in 

Fig. 1.14. The total charge on the conductor itself is zero. However, there 
is a point charge +Qb at the center of one cavity and +qc at the center of 
the other. A large distance r away is another charge +Qd. What forces 
act on each of the four objects A,qb,q,, and Qd? Which answers, if any, 
are only approximate and depend on r being very large. Comment on the 



uniformities of the charge distributions on the cavity walls and on A if r ie 
not large. 

( Wisconsin) 

I I - r - ,  
I 

I 
I 
I 

qd 
a 

q C 

Fig. 1.14 

Solution: 
Charges outside a cavity have no influence on the field inside because 

of the electrostatic shielding by the conductor. On account of spherical 
symmetry the forces acting on the point charges q b  and qc at the center of 
the cavities are equal to zero. By electrostatic equilibrium we Ree that the 
surfaces of the two spherical cavities carry a total charge - (qb  + qc) ,  and, 
since the sphere A was not charged originally, its spherical surface must 
carry induced charges q b  + qc. As r is very large, we can approximate the 
interaction between sphere A and point charge Qd by an electrostatic force 
between point charges q b  + qc at the center and Q d ,  namely 

qd(Qb + F =  
4raor2 ' 

This equation, however, will not hold for r not sufficiently large. 
The charge distribution over the surface of each cavity is always uni- 

form and independent of the magnitude of r. However, because of the 
effect of q d ,  the charge distribution over the surface of sphere A will not be 
uniform, and this nonuniformity will become more and more evident aa r 
decreases. 

1037 
A spherical condenser consists of two concentric conducting spheres of 

radii a and b (a > b). The outer sphere is grounded and a charge Q is placed 
on the inner sphere. The outer conductor then contracts from radius a to 
radius a'. Find the work done by the electric force. 

(UC, Berkeley) 
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Solution: 

electric field is 
The electric fields a t  r < b and r > a are both zero. At b < r < a the 

Q 
4m0r2er 

E = -  

Hence the field energy is 

When the outer spherical surface contracts from r = a to  r = a', the work 
done by the electric force is equal to the decrease of the electric field energy 

1038 
A thin metal sphere of radius b has charge Q. 
(a) What is the capacitance? 
(b) What is the energy density of the electric field at a distance r from 

(c) What is the total energy of the field? 
(d) Compute the work expended in charging the sphere by carrying 

infinitesimal charges from infinity. 
(e) A potential V is established between inner (radius a) and outer 

(radius b) concentric thin metal spheres. What is the radius of the inner 
sphere such that the electric field near its surface is a minimum? 

( Wisconsin) 

Solution: 
(a) Use spherical coordinates ( r ,  8 ,  p). The electric field outside the 

sphere is 

E(r) = - 

the sphere's center? 

Q 
4 T E o f 2  er ' 

Let the potential at infinity be zero, then the potential at r is 
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Hence the capacitance is 

(b) W e ( r )  = !jD * E = ;coE2 = 6. 
(c) we = ~ W ) Q  = &- 
It may also be calculated from the field energy density we(r) :  

(d) The work expended in charging the sphere by carrying infinitesimal 
charges in from infinity is 

as expected. 

the field intensity is 
(e) Suppose that the inner sphere carries a charge Q. For a < r < b 

Q E(r )  = - 
4neor2 er . 

The potential difference between the concentric spheres is 

In terms of V we have 
4T&ov Q=- <: - $1 

and 

In particular, we have 
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Rom = 0, we see that E(a) is a minimum at a = 3, and the minimum 
value is 

1039 
A conducting sphere with total charge Q is cut into half. What force 

must be used to hold the halvea together? 

Solution: 
The charge is entirely distributed over the surface with a surface charge 

density of u = Q/4rR2 ,  where R is the radius of the sphere. We know 
from Problem 1021 that the force exerting on a surface element dS of the 
conducting sphere is 

( M W  

U' 

2eo 
dl?= - d S .  

Use the coordinate system shown in Fig. 1.15. The plane where the sphere 
is cut in half is taken to be the zoz plane. The repulsive force between 
the two half-spheres is perpendicular to the cut plane, so that the resultant 
force on the right-half must be along the y-axis. The magnitude of the 
resultant force is 

F = 1 dF sin Osin cp = ZR' 1' sin cpdcp 1' sin' OdO 
2 E O  

9' - ra2R2 --- - 
2 ~ 0  32*s0R2 ' 

This is the force needed to hold the two halves together. 

z 

t 

Fig. 1.15 
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1040 
A particle of charge q is moved from infinity to the center of a hollow 

conducting spherical shell of radius R, thickness t ,  through a very tiny hole 
in the shell. How much work is required? 

(Princeton) 

Solution: 
The work done by the external force is equal to the increase of the 

electric field energy of the whole system. 
The electric field intensity at a point distance r from the point charge q 

is E = ~*. When q is at  infinity the electric energy of the whole system 
is 

W = I ,  7 E a d V ,  

integrating over all space, since, as the distance between the spherical shell 
and q is infinite, the field due to q at the conducting sphere can be taken 
to be zero. 

After q is moved to the center of the conducting spherical shell, as the 
shell has no effect on the field inside, the electric intensity at a point inside 
the shell is still .*,, r being the distance of the point from q. At a point 
outside the shell, Gauss' law shows that the electric intensity is still ,*$. 
Hence the electric energy of the system remains the same as W but mnus 
the contribution of the shell itself, inside whose thickness the field is zero. 
Thus there is a decrease of energy 

which is equal to the negative work done by the external force. 

1041 
A capacitor is made of three conducting concentric thin spherical shells 

of radii a, b and d(a < b < d). The inner and outer spheres are connected 
by a fine insulated wire passing through a tiny hole in the intermediate 
sphere. Neglecting the effects of the hole, 

(a) find the capacitance of the system, 
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(b) determine how any net charge QB placed on the middle sphere 
distributes itself between the two surfaces of the sphere. 

(Columbia) 
Solution: 

(a) Suppose that the charge of the inner spherical shell is &I and the 
charge of the outer shell is - 9 2 .  Then the charges on the inner and outer 
surfaces of the middle spherical shell are - Q 1  and +&a ( Q l , & 2  > 0 )  as 
shown in Fig. 1.16. The electric field intensities are as follows: 

( u < r < b ) ,  E = -  Qir 
47r.50r3 ’ 

4nsor3 ’ 
E = -  ‘” ( b <  r < d ) ,  

E = O ,  ( r < a , r > d )  

The potential at a point P is given by 

Fig. 1.16 

with cp(00) = 0. Thus we have 

As the inner and outer spherical shells are connected their potentials should 
be equal. Hence 



Electsosta i ics  45 

whence 

The potential differences of the spherical shells are 

Thus the capacitance between the inner sphere and the inner surface of the 
middle spherical shell is 

and the capacitance between the outer surface of the middle shell and the 
outer shell is 

Q2 Q2 C b d  = - = - 
V b d  db) * 

The capacitance of the whole system can be considered as C a b  and c a d  in 
series, namely 

(b) The net charge QB carried by the middle shell must be equal to 
Q 2  - QI ,  so that 

a ) Q B .  
a ( d  - b)  d(b  - 

Q1 =-- Q B ,  Qz=- b(d - a)  b(d - a )  

This is to say, the inner surface of the middle shell will carry a total charge HQB while the outer surface, ~ Q B .  

1042 
A long conducting cylinder is split into two halves parallel to its axis. 

The two halves are held at VO and 0, as in Fig. l.l7(a). There is no net 
charge on the system. 

(a) Calculate the electric potential distribution throughout space. 
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(b) Calculate the electric field for r > a. 

(c) Calculate the electric field for r < a. 
(d) Sketch the electric field lines throughout space. 

(MITI 
Solution: 

onto the upper half of the w-plane by the transformation Fig. l.l7(b) 
(a) Use conformal mapping to map the interior of the circle 1.1 = a 

w = ;(=). 
z + a  

The upper and lower arcs of the circle are mapped onto the negative 
and positive axes (u-axis) of the w-plane respectively. 

Y 
A 

(a) *plane (b) ucplane 

Fig. 1.17 

The problem is now reduced to finding a function V harmonic in the 
upper half of w-plane and taking the values 0 for u > 0 and VO for u < 0. Use 
the function V = A8 + B, where A,  B are real constants, as 0 = Im {In w} 
is harmonic. The boundary conditions give B = 0 , A  = Va/r.  Hence 

11 
I >  vo U { [ ( rcose+a)2+r2s in2e  

= 5 l m ( l n [ i  r cosB-a+ i r s inB  
rcos 0 + a + irsin 0 

= - Irn In i 

lr 

r2 - a2 + 2iar sin e 

I -  2ar sin 8 
1.2 - a21 - - [; + arctan 
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(b) For r > a, we have 

v * - [ , + + = -  VO x 2asinB VO 2VoasinB 
2 + xr I x 

and hence 

Fig. 1.18 

(c) For r < a, we have 

1 ira 

and hence 

8V 2Vosin8 
ar ira 
1av 2vo E~ = = ---case. r ae ua 

E,. = -- = - 
1 

(d) The electric field lines are shown in Fig. 1.18. 
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3. ELECTROSTATIC FIELD IN A DIELECTRIC MEDIUM 
(1043-1061) 

1043 
The space between two long thin metal cylinders is filled with a mate- 

rial with dielectric constant s. The cylinders have radii a and b, as shown 
in Fig. 1.19. 

(a) What is the charge per unit length on the cylinders when the 
potential between them is V with the outer cylinder at the higher potential? 

(b) What is the electric field between the cylinders? 
( Wisconsin) 

Fig. 1.19 

Solution: 

length of 
This is a cylindrical coaxial capacitor with a capacitance per unit 

2ae 
In( f) ' 

C=- 

As the outer cylinder is at the higher potential, we have from Q = C V  the 
charges per unit length on the inner and outer cylinders: 

Gauss' law then gives the electric field intensity in the capacitor: 
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1044 
Calculate the resistance between the center conductor of radius a and 

the coaxial conductor of radius b for a cylinder of length 1 > 6, which is 
filled with a dielectric of permittivity E and conductivity u. Also calculate 
the capacitance between the inner and outer conductors. 

( Wisconsin) 

Soiut ion: 
Letting V be the voltage difference between the inner and outer con- 

ductors, we can express the electric field intensity between the two conduc- 
tors as 

V 
r In( !) E(r) = - e r  

Ohm's law J = aE then gives the current between the two conductors as 

The resistance between the inner and outer conductors is thus 

Since the field is zero inside a conductor, we find the surface charge 

V 

density w of the inner conductor from the boundary relation E = y ,  i.e., 

W = E -  
a In( t) * 

Thus the inner conductor carries a total charge Q = 2nafw. Hence the 
capacitance between the two conductors is 

1045 
Two conductors are embedded in a material of conductivity 10-4Q/m 

and dielectric constant E = 8 0 ~ 0 .  The resistance between the two con- 
ductors is measured to be 10%. Derive an equation for the capacitance 
between the two conductors and calculate its value. 

(VC, Berkeley) 
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Solution: 
Suppose that the two conductors carry free charges Q and -6. Con- 

sider a closed surface enclosing the conductor with the charge Q (but not 
the other conductor). We have, using Ohm’s and Gauss’ laws, 

I =  j . d S =  a E . d S = a  f f  6 

If the potential difference between the two conductors is V, we have V = 
I R  = +R, whence 

Numerically the capacitance between the conductors is 

1046 

Consider a long cylindrical coaxial capacitor with an inner conductor 
of radius a, an outer conductor of radius b, and a dielectric with a dielectric 
constant K(r), varying with cylindrical radius r .  The capacitor is charged 
to voltage V. Calculate the radial dependence of K(r) such that the energy 
density in the capacitor is constant (under this condition the dielectric has 
no internal stresses). Calculate the electric field E(r) for these conditions. 

( Wisconsin) 

Solution: 

Gauss’ law gives 
Let X be the charge per unit length carried by the inner conductor. 

A 
27rr ’ D(r) = - 

as D is along the radial 
The energy density 

direction on account 
at r is 

of symmetry. 

A2 

If this is to be independent of r ,  we require r2K(r) = constant = k, say, 
i.e., K(r) = kr-2 .  
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The voltage across the two conductors is 
b l r d r  

V = - Edr = -- 
2 r ~ o k  

x = - - (b2 - d). 
4TEok 

Hence 

giving 

1047 
Find the potential energy of a point charge in vacuum a distance x 

away from a semi-infinite dielectric medium whose dielectric constant is K .  
(UC, Berkeley) 

Solution: 
Use cylindrical coordinates ( r ,  p, z )  with the surface of the semi-infinite 

medium as the z = 0 plane and the z-axis passing through the point charge 
q ,  which is located at z = x .  Let up(r) be the bound surface charge density 
of the dielectric medium on the z = 0 plane, assuming the medium to carry 
no free charge. 

The normal component of the electric intensity at a point (r, (p, 0)  is 

on the upper side of the interface ( z  = 0,). However, the normal component 
of the electeric field is given by 

on the lower side of the interface (z = 0-). The boundary condition of the 
displacement vector at z = 0 yields 

eoEzl(r) = E o K E ~ ~ ) .  
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Hence 
(1 - K ) q z  

up(r) = 2 4 3  + K ) ( +  + ~ 2 ) ~ / 2  ’ 

The electric field at the point (O,O,z), the location of q ,  produced 
by the distribution of the bound charges has only the normal component 
because of symmetry, whose value is obtained by 

- & (1 - K ) q  - - 16x(1+ K)coa?’ 

where the surface element d S  has been taken to be 2 m d r .  Hence the force 
acted on the point charge is 

The potential energy W of the point charge q equals the work done by 
an external force in moving q from infinity to the position 2, i.e., 

= (1 -K)q2  (1 - K)q2 dz’ = 
1 6 ~ (  1 + K ) E ~ z ’ ~  16r( l+  K ) E O Z  * 

W = -L Fdz’ = - 

1048 

The mutual capacitance of two thin metallic wires lying in the plane 
z = 0 is C. Imagine now that the half space z < 0 is filled with a dielectric 
material with dielectric constant E .  What is the new capacitance? 

Solution: 
As shown in Fig. 1.20, before filling in the dielectric material, one of the 

thin conductors carries charge +Q, while the other carries charge -9. The 
potential difference between the two conductors is V and the capacitance 
of the system is C = Q / V .  The electric field intensity in space is E. After 
the half space is filled with the dielectric, let E’ be the field intensity in 
space. This field is related to the original one by the equation E’ = KE, 
where K is a constant to be determined below. 

W I T )  
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Fig. 1.20 

We consider a short right cylinder across the interface z = 0 with its 
cross-section at  z = 0 just contains the area enclosed by the wire carrying 
charge +Q and the wire itself. The upper end surface 271 of this cylinder is 
in the space z > 0 and the lower end surface Sz is in the space z < 0. Apply 
Gauss' law to this cylinder. The contribution from the curved surface may 
be neglected if we make the cylinder sufficiently short. Thus we have, before 
the introduction of the dielectric, 

and, after introducing the dielectric, 

Note that the vector areas S1 and S2 are equal in magnitude and oppo- 
site in direction. In Eq. (1) as the designation of 1 and 2 is interchangeable 
the two contributions must be equal. We therefore have 

Equation (2) can be written as 
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or 

Problcmr 

whence we get 
K =  

d Soluiionr on E~cciwma#nciirm 

To calculate the potential difference between the two conductors, we 
may select an arbitrary path of integration L from one conductor to the 
other. Before filling in the dielectric material, the potential ie 

V = - L E - d l ,  

while after filling in the dielectric the potential will become 

V ' = -  E ' . d l = - K  E . d l = K V .  J, J, 
Hence, the capacitance after introducing the dielectric is 

1049 
A parallel plate capacitor (having perfectly conducting plates) with 

plate separation d is filled with two layers of material (1) and (2). The first 
layer has dielectric constant e l ,  conductivity ul, the second, E ~ , U S ,  and 
their thicknesses are dl and d2,  respectively. A potential V is placed across 
the capacitor (see Fig. 1.21). Neglect edge effects. 

(a) What is the electric field in material (1) and (2)? 
(b) What is the current flowing through the capacitor? 
(c) What is the total surface charge density on the interface between 

(d) What is the free surface charge density on the interface between 

(CUSPEA) 

(1) and (2)? 

(1) and (2)? 
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Solution: 
(a) Neglecting edge effects, the electric fields El and E2 in material 

(1) an (2) are both uniform fields and their directions are perpendicular to 
the parallel plates. Thus we have 

As the currents flowing through material (1) and (2) must be equal, we 
have 

~1 El = ~ a E 2  . (2) 

Combination of Eqs. (1) and (2) gives 

(b) The current density flowing through the capacitor is 

6 1  02 v 
dlU2 + d2Ul * 

J = u1E1 = 

Ib direction is perpendicular to the plates. 
(c) By using the boundary condition (see Fig. 1.21) 

n .(El - El) = ur/&o , 

we find the total surface charge density on the interface between material 
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(d) From the boundary condition 

n ' ( 0 2  - D1) = n . (~2E2 - c1E1) = uj , 
we find the free surface charge density on the interface 

1050 
In Fig. 1.22, a parallel-plate air-spaced condenser of capacitance C 

and a resistor of resistance R are in series with an ac source of frequency 
w .  The voltage-drop across R is VR. Half the condenser is now filled with 
a material of dielectric constant E but the remainder of the circuit remains 
unchanged. The voltage-drop across R is now 2vR.  Neglecting edge effects, 
calculate the dielectric constant E in terms of R, C and w .  

(Columbia) 

= 
Fig. 1.22 

Solution: 

the condenser (two condensers in parallel) becomes 
When half the condenser is filled with the material, the capacitance of 

c EC 
2 2E0  2 

C' = - + - = 1 (1 + i) c 
The voltage across R is V R I Z ,  where V is the voltage of the ac source and 
2 is the total impedance of the circuit. Thus 
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where j = G. Therefore we get 

= R 2 + -  1 16 
w2c2 . 

Solving this equation, we obtain 

4 
dl - 3R2C2w2 

t =  ( 

1051 
A capacitor is made of two plane parallel plates of width a and length 

b separated by a distance d ( d  << a, b), as in Fig. 1.23. The capacitor has a 
dielectric slab of relative dielectric constant I< between the two plates. 

(a) The capacitor is connected to a battery of emf V. The dielectric 
slab is partially pulled out of the plates such that only a length t remains 
between the plates. Calculate the force on the dielectric slab which tends 
to pull it back into the plates. 

(b) With the dielectric slab fully inside, the capacitor plates are charged 
to a potential difference V and the battery is disconnected. Again, the 
dielectric slab is pulled out such that only a length t remains inside the 
plates. Calculate the force on the dielectric slab which tends to pull it back 
into the plates. Neglect edge effects in both parts (a) and (b). 

(Columbia) 

LI=*_I 
Fig. 1.23 

Solution: 

obtain the total capacitance as 
Treating the capacitor in Fig. 1.23 as two capacitors in parallel, we 

K t a  E O ( b  - c)a EO(K - 1)at toba - EO[(K - 1)s + b]a 
d 

- +d - - 
d + d  c = to- 

d 
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Consider the charging of the capacitor. The energy principle gives 

V d Q = d  -V2C + F d z .  (: 1 
(a) As V = constant, Q = CV gives 

VdQ = V2dC.  
Hence 

1 2dC E O ( K -  l)aV2 F = - V  -= 
2 d z  2d 

Since K > 1, F > 0. This means that F tends to increase z, i.e., to 
pull the slab back into the plates. 

(b) Since the plates are isolated electrically, dQ = 0. Let the initial 
voltage be Vo. As initially z = b,Co = E O ~  and Q = COVO. The energy 
principle now gives 

A S  

dV Q dC 
- C2 d z  ' 

the above becomes 

dV Q2 dC Q2 dC 
d z  2C2 d z  - 2 0  d z  

J' = Q- - -- - -- 
aoK2(K - 1) ab2 - - -Vd". [ (K  - 1 ) ~  + b]' 2d 

Again, as F > 0 the force will tend to pull back the slab into the plates. 

1052 
A dielectric ia placed partly into a parallel plate capacitor which is 

(a) of aero 
charged but isolated. It feels a force: 

(b) pushing it out (c) pulling it in .  
(CCT) 
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Solution: 
The answer is (c). 

1053 
A cylindrical capacitor of length L consists of an inner conductor wire 

of radius a, a thin outer conducting shell of radius 8. The space in between 
is filled with nonconducting material of dielectric constant E .  

(a) Find the electric field aa a function of radial position when the 
capacitor is charged with Q. Neglect end effects. 

(b) Find the capacitance. 
(c) Suppoee that the dielectric is pulled partly out of the capacitor 

while the latter is connected to a battery of potential V. Find the force 
necessary to hold the dielectric in this position. Neglect fringing fields. In 
which direction must the force be applied? 

(CIISPEA) 

Solution: 
(a) Supposing that the charge per unit length of the inner wire is - A  

and using cylindrical coordinates (r, 9, I), we find the electric field intensity 
in the capacitor by Gauss' theorem to be 

(b) The potential difference between the inner and outer capacitors is 

Hence the capacitance is 

(c) When the capacitor is connected to a battery, the potential dif- 
ference between the inner and outer conductors remains a constant. The 
dielectric ia now pulled a length t out of the capacitor, so that a length 
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L - x of the material remains inside the capacitor, as shown schematically 
in Fig. 1.24. The total capacitance of the capacitor becomes 

27rsox 27rE(L - x )  

In(;) In(:) 
c= - + 

2 7 r E O  E - - - [ - + (1 - ") .] . 
In($) EOL € 0  

Pulling out the material changes the energy stored in the capacitor and 
thus a force must be exerted on the material. Consider the energy equation 

1 
2 

Fdx = VdQ - -V2dC.  

As V is kept constant, dQ = VdC and we have 

as the force acting on the material. 
As E > € 0 ,  F < 0 .  Hence F will tend to decrease c, i.e., F is attractive. 

Then to hold the dielectric in this position, a force must be applied with 
magnitude F and a direction away from the capacitor. 

1054 
As in Fig. 2.15, you are given the not-so-parallel plate capacitor. 
(a) Neglecting edge effects, when a voltage difference V is placed across 

the two conductors, find the potential everywhere between the plates. 
(b) When this wedge is filled with a medium of dielectric constant C, 

calculate the capacitance of the system in terms of the constants given. 
(Princeton) 
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1 d + a  

Fig. 1.25 

Soh tion: 
(a) Neglecting edge effects, this problem becomes a 2-dimensional one. 

Take the z-axis normal to the diagram and pointing into the page as shown 
in Fig. 1.25. The electric field is parallel to the cy plane, and independent 
of %. 

Suppose that the intersection line of the planes of the two plates crosses 
the z-axis at O', using the coordinate system shown in Fig. 1.26. Then 

- bd a 
00' = - , 80 = arctan - 

a b '  
where 80 is the angle between the two plates. Now use cylindrical coordi- 
nates ( r ,  0, 2)  with the %'-axis passing through point 0' and pard161 to the 
z-axis. Any plane through the z'-axis is an equipotential surface according 
to the symmetry of this problem. So the potential inside the capacitor will 
depend only on 8: 

d r ,  8 ,  %'I = $40) ' 

Y 

t 

Fig. 1.26 

The potential 'p satisfies the Laplace equation 
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whose general solution is 

p(0) = A + B e .  

Since both the upper and lower plates are equipotential surfaces, the 
boundary conditions are 

whence A = 0, B = V/Bo. For a point (z,y) inside the capacitor, 

e = arctan [y/(z + ?)I . 

Hence 
ve v arctan [y/(z + e)] 

arctan( 3 )  dX1Y) = = 

(b) Let Q be the total charge on the lower plate. The electric field 
inside the capacitor is 

For a point (z,O) on the lower plate, 8 = 0,t = y + c and E is normal to 
the plate. The surface charge density 4 on the lower plate is obtained from 
the boundary condition for the displacement vector: 

Integrating over the lower plate surface, we obtain 

Hence, the capacitance of the capacitor is 
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1055 
Two large parallel conducting plates, each of area A, are separated by 

distance d. A homogeneous anisotropic dielectric fills the space between 
the plates. The dielectric permittivity tensor E i j  relates the electric d i e  
placement D and the electric field E according to Di = E:=l SijEj. The 
principal axes of this permittivity tensor are (see Fig. 1.27): Axis 1 (with 
eigenvalue e l )  is in the plane of the paper at an angle 0 with respect to the 
horizontal. Axis 2 (with eigenvalue €2) is in the paper at an angle i - 0  with 
respect to the horizontal. Axis 3 (with eigenvalue E S )  is perpendicular to 
the plane of the paper. Assume that the conducting plates are sufficiently 
large so that all edge effects are negligible. 

(a) Free charges +QF and -QF are uniformly distributed on the left 
and right conducting plates, respectively. Find the horizontal and vertical 
components of E and D within the dielectric. 

(b) Calculate the capacitance of this system in terms of A , d , ~ i  and 8. 
( Columbia) 

**F -QF 

Fig. 1.27 

Solution: 
(a) Let n be a unit normal vector to the left plate. As E = 0 inside the 

plates, the tangential component of the electric field inside the dielectric 
is also zero because of the continuity of the tangential component of E. 
Hence, the electric field intensity inside the dielectric can be expressed as 

E = E n .  

Resolving E along the principal axes we have 

El = EcosB, E2 = Esin8,  E3 = 0 .  
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In the coordinates (6l,e2,es) based on the principal axes, tensor ~ i j  is 8 

diagonal matrix 
0 0  

0 0 E 3  

( E i j ) =  (" € 2  0 )  

and along these axes the electric displacement in the capacitor has compe 
nents 

D1 = ~ l E l = ~ ~ E e o s 6 ,  D 2 = ~ 2 E s i n 6 ,  D3=0. (1) 

The boundary condition of D on the surface of the left plate yields 

That is, the normal component of the electric displacement is a constant. 
Thus 

D, C O S ~  + D2sin8 = D, = QF (2) A '  
Combining Eqs. (1) and (2), we get 

QF 

A(EI cosz 8 + c2 sin2 8) 
E =  

Hence the horizontal and vertical components of E and D are 

Et = 0, QF 
A ( E ~  C O S ~  8 + €2 sin2 8) 

E,,=E= 

D , = A '  QF Q F ( E ~  - c2)sinBcosB 
A(e1 cos2 8 + e2 sin' 8) ' Dt = D1 sin8 - D2 cos8 = 

where the subscript t denotes components tangential to the plates. 
(b) The potential difference between the left and right plates is 

V =  E d t =  Q F ~  J A(.clc0;S28+Ezsin28)' 

Therefore, the capacitance of the system is 

Q F  A(EI  cos2 0 + 62 sin2 8 )  c=-= 
V d 
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1056 
I t  can be shown that the electric field inside a dielectric sphere which 

is placed inside a large parallel-plate capacitor is uniform (the magnitude 
and direction of Eo are constant). If the sphere has radius R and relative 
dielectric constant K e  = E / E O ,  find E at point p on the outer surface of the 
sphere (use polar coordinates R, 0). Determine the bound surface charge 
density at point p. 

Solution: 
The electric field inside the sphere is a uniform field Eo, as shown 

in Fig. 1.28. The field at point p of the outer surface of the sphere is 
E = Ere, + Efee, using polar coordinates. Similarly EO may be expressed 

Eo = EO cos Be, - Eo sin Bee . 

( Wisconsin) 

88 

Fig. 1.28 

From the boundary conditions for the electric vectors at p we obtain 

EE~COSB = cOEr, -EosinO = Ei. 

Hence 
E = I(,  Eo cos Ber - Eo sin 8ee . 

The bound surface charge density at point p is ub = P . e,, where P is the 
polarization vector. As P = ( E  - EO)EO, we find 

up = ( E  - EO)EO cos8 = E O ( K e  - l )E~cosB.  
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1057 
One half of the region between the plates of a spherical capacitor of 

inner and outer radii a and b is filled with a linear isotropic dielectric of 
permittivity €1  and the other half has permittivity €2,  as shown in Fig. 1.29. 
If the inner plate has total charge Q and the outer plate has total charge 
-Q, find: 

(a) the electric displacements D1 and D2 in the region of €1 and -52; 

(b) the electric fields in €1 and ~ 2 ;  

(c) the total capacitance of this system. 
( S U N  Y, Buflalo) 

@ 
Fig. 1.29 

Solution: 
We take the normal direction II at the interface between the dielectrics 

el and €2 as pointing from 1 to 2. The boundary conditions at the interface 
are 

Elt = E2t I D1n = D2n 

If we assume that the field E still has spherical symmetry, i.e., 

El = E2 = Ar/r3 , 

then the above boundary conditions may be satisfied. Take as Gaussian 
surface a concentric spherical surface of radius r (a < r < b). From 

f D dS = Q , 
we obtain 

or 
Q 

2T(€l+ €2) - A =  



We further find the electric intensity and displacement in regions 1 and 2: 

Consider the semispherical capacitor 1. We have 

a A A ( b - a )  
Vab z-1 -pdr= ab 

and 
Q1 2 r ~ l a b  
Vab b - (1 c1= - = -. 

A similar expression is obtained for C2. Treating the capacitor as a com- 
bination of two semispherical capacitors in parallel, we obtain the total 
capacitance as 

27461 + ~ ~ ) a b  C =  
b - a  

1058 

Two concentric metal spheres of radii a and b (a < b) are separated by 
a medium that has dielectric constant e and conductivity u. At time t = 0 
an electric charge q is suddenly placed on the inner sphere. 

(a) Calculate the total current through the medium as a function of 
time. 

(b) Calculate the Joule heat produced by this current and show that it 
is equal to the decrease in electrostatic energy that occurs as a consequence 
of the rearrangement of the charge. 

(Chicago) 

Solution: 

intensity inside the medium is 
(a) At t = 0, when the inner sphere carries electric charge q,  the field 
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and directs radially outwords. At  time t when the inner sphere has charge 
q ( t ) ,  the field intensity is 

4 2 )  E ( t )  = - 
4mr2 ’ 

Ohm’s law gives the current density j = aE. Considering a concentric 
spherical surface of radius r enclosing the inner sphere, we have from charge 
conservation 

The differential equation has solution 

q ( t )  = q e - 5 ‘ .  

Hence 

9 - = t  E ( t , r )  = -e 0 , 4mr2 

The total current flowing through the medium a t  time t is 

0 9  e- f t  Z ( t )  = 47rr2j(t, r )  = - & 

(b) The Joule heat loss per unit volume per unit time in the medium 
is 

and the total Joule heat produced is 
W = l t m d t [ d r . 4 n r  2 w ( t , r ) =  

The electrostatic energy in the medium before discharging is 

Hence W = Wo. 
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1059 
A condenser comprises two concentric metal spherea, an inner one of 

radius a, and an outer one of inner radius d. The region a < r < b is filled 
with material of relative dielectric constant K1, the region b < r < c is 
vacuum (K = l),  and the outermost region c < r < d is filled with material 
of dielectric constant Kz. The inner sphere is charged to a potential V with 
respect to the outer one, which is grounded (V = 0). Find: 

(a) The free charges on the inner and outer spheres. 
(b) The electric field, as a function of the distance r from the center, 

fortheregions: a < r < b ,  b < r < c ,  c < r < d .  
(c) The polarization charges at  r = a, r = b, r = c and r = d. 
(d) The capacitance of this condenser. 

(Columbia) 
Solution: 

outer sphere will carry total free charge -Q as it is grounded. 

results: 

(a) Suppose the inner sphere carries total free charge Q. Then the 

(b) Using Gauss' law and the spherical symmetry, we find the following 

E= Q er,  ( ~ < r < d ) .  
4neo Kzr2 

(c) Using the equations 

we obtain the polarization charge densities 

Q 1 - K1 up = -- at r = a ,  
4na2 K1 

at r = b  

at r = c  

at r = d .  

Q K i - 1  

Q 1 - K z  

Q K2-1 

u p =  -- 
4 ~ b 2  K1 

4rc2 K2 

4 ~ d 2  Kz 

up = -- 
u p  = -- 
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(d) The potential is 

Therefore, the charge in the inner sphere is 

and the capacitance is 

1060 
The volume between two concentric conducting spherical surfacea of 

radii a and b (a < b) is filled with an inhomogeneous dielectric constant 

6 0  

l + K r ’  
& = -  

where €0 and K are constants and r is the radial coordinate. Thus D(r) = 
EE(r). A charge Q is placed on the inner surface, while the outer surface 
is grounded. Find: 

(a) The displacement in the region a < r < 6 .  
(b) The capacitance of the device. 
(c) The polarization charge density in a < r < 6. 
(d) The surface polarization charge density at r = a and r = b. 

( Columbia) 

Soh tion: 
(a) Gauss’ law and spherical symmetry give 

(b) The electric field intensity is 

(1 + K r ) e , ,  Q E= - 
4n&or2 (a < r < 6 ) .  
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Hence, the potential difference between the inner and outer spheres is 

4 x ~ 0  a b + K l n b ) .  a 

The capacitance of the device is then 

Q 4rsoab 
V - ( b  - a) + abK ln(b/a) * 

c = - -  

(c) The polarization is 

QK 
4nr er * P = ( E  - EO)E = -- 

Therefore, the volume polarization charge density at a < r < b is given by 

(d) The surface polarization charge densities at r = a, Q are 

at r = b .  QK at r = a ;  u p = - -  QK 
4nu 4xb u p  = - 

1061 
For steady current flow obeying Ohm's law find the resistance between 

two concentric spherical conductors of radii a < b filled with a material of 
conductivity u. Clearly state each assumption. 

( Wisconsin) 

Solution: 
Suppose the conductors and the material are homogeneous so that the 

total charge Q carried by the inner sphere is uniformly distributed over its 
surface. Gauss' law and Spherical symmetry give 

Q E(r) = - 4xw2 er 

where E is the dielectric constant of the material. From Ohm's law j = uE, 
one has 

j = -  UQ 

4rar2 er * 
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Then the total current is 

The potential difference 

.=-la, 
giving the resistance as 

I = f j . d S = - Q .  U 

€ 

between the two conductors is 

4. TYPICAL METHODS FOR SOLUTION OF 

VARIABLES, METHODS OF IMAGES, GREEN'S 
ELECTROSTATIC PROBLEMS - SEPARATION OF 

FUNCTION AND MULTIPOLE EXPANSION (1062-1095) 

1062 
A dielectric sphere of radius a and dielectric constant el is placed in 

a dielectric liquid of infinite extent and dielectric constant €2. A uiform 
electric field E was originally present in the liquid. Find the resultant 
electric field inside and outside the sphere. 

Solution: 
Let the origin be at the spherical center and take the direction of the 

original field E to define the polar axis z, as shown in Fig. 1.30. Let the 
electrostatic potential a t  a point inside the sphere be 01, and the potential 
at a point outside the sphere be a*. By symmetry we can write 0 1  and @9 

(SUNY, Buffolo) 

as 
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where A,, Bn, Cn, Dn are constants, and Pn are Legendre polynomials. The 
boundary conditions are as follows: 

(I) 41 is finite at  r = 0. 
(2) iPtIr+., = -Ercos0 = -ErPl(cos@). 
(3) a1 = %lr=a,Cl+ 84 = €2#lr=a* 84 

Fig. 1.30 

From conditions (1) and (2), we obtain 
& = O r  C l= -E ,  C n = O ( , # l ) .  

Then from condition (3), we obtain 

These equations are to be satisfied for each of the possible angles 0. That 
is, the coefficients of Pn(Cos0) on the two sides of each equation must be 
equal for every n. This gives 

An = Dn = O ,  (. # 1) - 
Hence, the electric potentials inside and outside the sphere can be expressed 
as 
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and the electric fields inside and outside the sphere by 

1063 
Determine the electric field inside and outside a sphere of radius R 

and dielectric cosntant E placed in a uniform electric field of magnitude EO 
directed along the z-axis. 

(Columbia) 
Solution: 

Using the solution of Problem 1062, we have 

1064 
A sphere of dielectric constant is placed in a uniform electric field 

Eo. Show that the induced surface charge density is 

where 0 is measured from the Eo direction. If the sphere is rotated at 
an angular velocity w about the direction of Eo, will a magnetic field be 
produced? If not, explain why no magnetic field is produced. If so, sketch 
the magnetic field lines. 

( Wisconsin) 
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Solution: 
The solution of Problem 1063 gives the electric field inside the sphere 

as 

which gives the polarization of the dielectric as 

The bound charge density on the surface of the dielectric sphere is 

n being the unit vector normal to the surface. The total electric dipole 
moment is then 

Note that P haa the same direction as Eo. Then when the sphere is rotated 
about the direction of Eo , P will not change. This implies that the rotation 
will not give rise to a polarization current and, therefore, will not produce 
a magnetic field. 

1065 
A perfectly conducting sphere is placed in a uniform electric field point- 

(a) What is the surface charge density on the sphere? 
(b) What is the induced dipole moment of the sphere? 

ing in the z-direction. 

(Columbia) 

Solution: 
(a) The boundary conditions on the conductor surface are 

0 = constant = a', say, 
60 
6r 

60- = -6, 
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where a, is the potential of the conducting sphere and u is its surface 
charge density. On account of symmetry, the potential at a point (r, 8, ‘p) 

outside the sphere is, in spherical coordinates with origin at the center of 

Let EO be the original uniform electric intensity. As r -+ 00, 

Qt = -Eorcos8 = -EorPl(cos8) 

By equating the coefficients of Pn(cosO) on the two sides of Eq. (I), we 
have 

co = 0 ,  Ci = -Eo, D1 = E0a3,  C, = Dn = 0 for n > 1 .  

Hence 

(2) 
EO a3 

r2 
Q, = -Eorcosd + - case , 

where a is the radius of the sphere. The second boundary condition and 
Eq. (2) give 

= 3EoEo cos e . 
(b) Suppose that an electric dipole P = Pe, is placed at the origin, 

instead of the sphere. The potential a t  r produced by the dipole is 

Comparing this with the second term of Eq. (2) shows that the latter cor- 
responds to  the contribution of a dipole having a moment 

which can be considered as the induced dipole moment of the sphere. 

1066 
A surface charge density a(O) = ‘TO cose is glued to the surface of a 

spherical shell of radius R (‘TO is a constant and 0 is the polar angle). There 
is a vacuum, with n o  charges, both inside and outside of the shell. Calculate 



the electrostatic potential and the electric field both inside and outside of 
the spherical shell. 

(Columbia) 

Solution: 
Let 0+, O- be respectively the potentials outside and inside the shell. 

Both O+ and 8- satistify Laplace's equation and, on account of cylindrical 
symmetry, they have the expressions 

n=O 

The boundary conditions at  r = R for the potential and displacement vector 
are 

Substituting in the above the expressions for the potentials and equating 
the coefficients of P,(cosf?) on the two sides of the equations, we obtain 

a, = bn = 0 for n # 1 ,  

Hence 

o+ = - mR3 case, r > R ,  

a~ = -ccose, r <  R .  
3s0r2 
6 0  7- 

3 ~ 0  

F'rom E = -V@ we obtain 

60 R3 sin6ee , r > R ,  2u0 R3 E+ = - C O S ~ ~ ,  + - 
3cor3 &or3 
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1067 
Consider a sphere of radius R centered at the origin. Suppose a point 

charge q is put at the origin and that this is the only charge inside or outside 
the sphere. Furthermore, the potential is CP = Vo cos9 on the surface of the 
sphere. What is the electric potential both inside and outside the sphere? 

( Coiumbia) 

Solution: 
The potential is given by either Poisson’s or Laplace’s equation: 

4 
&O 

V2@- = --b(r), r < R ;  

V2@+ = 0, r > R .  

The general solutions finite in the respective regions, taking account of the 
symmetry, are 

m 

Then from the condition @- = O+ = Vocos9 at r = R we obtain A0 = 
-A, A1 = 2 , B1 = VoR2, EO = 0, An = En = 0 for n # 0, 1, and hence 

vo cos e +- r ,  r < R ;  a_=--- 9 
4reor  4neoR R 

cost), r > R .  Vo R2 a+ = - 
r2 

1068 
If the potential of a spherical shell of zero thickness depends only on 

the polar angle B and is given by V(B) ,  inside and outside the sphere there 
being empty space, 

(a) show how to obtain expressions for the potential V(r, 4 )  inside and 
outside the sphere and how to obtain an expression for the electric sources 
on the sphere. 
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(b) Solve with V(t9) = VO cos2 8. 
The first few of the Legendre polynomials are given as follows: 

We also have 

( Wisconsin) 

Solution: 
(a) Since both the outside and inside of the spherical shell are empty 

space, the potential in the whole space satisfies Laplace's equation. Thus 
the potential inside the sphere has the form 

m 

while that outside the sphere is 

Letting the radius of the shell be R, we have 
M ~~ 

V ( e )  = a,R"P,(cosB). 
f l = O  

Multiplying both sides by Pfl(cos8)sin8dB and integrating from 0 to r, we 
obtain 

Hence 
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and similarly 

The charge distribution on the spherical shell is given by the boundary 
condition for the displacement vector: 

(b) From 

2 VO VO v(e) = V ~ C O S ~ ~  = --~2(cose)+ 3 - ~ ~ ( ~ ~ ~ e ) ,  3 

we obtain 

V(e)Pn(cos 0) sin Ode = 0,  lo 
Hence 

VoR 2Vo R3 
3r 3 r3 

Q~ = - + -p2(cme)- 

for n # 0 , 2 .  

1069 
A conducting sphere of radius a carrying a charge q is placed in a 

uniform electric field Eo. Find the potential a t  all points inside and outside 
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of the sphere. What is the dipole moment of the induced charge on the 
sphere? The three electric fields in this problem give rise to six energy 
terms. Identify these six terms; state which are finite or zero, and which 
are infinite or unbounded. 

(Columbia) 

Solution: 
The field in this problem is the superposition of three fields: a uniform 

field Eo, a dipole field due to the induced charges of the conducting sphere, 
and a field due to  a charge q uniformly distributed over the conducting 
sphere. 

Let a1 and a2 be the total potentials inside and outside the sphere 
respectively. Then we have 

v20, = v2a2 = 0, a1 = 4 0 ,  

where 'Pa is a constant. The boundary conditions are 

= @ 2 ,  for r = a ,  
a2 = -EorPl(cos@) for r -+ 00. 

On account of cylindrical symmetry the general solution of Laplace's equa- 
tion is 

Inserting the above boundary conditions, we find 

a1 = -Eo , bo = d o ,  bl = Eoa3, 

while all other coefficients are zero. As u = - E O ( * ) ~ = . ,  we have 

or 
a0 = - 

4moa 
So the potentials inside and outside the sphere are 
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The field outside the sphere may be considered a8 the superpwition of three 
fields with contributions to the potential equal to the three terms on 
the right-hand side of the last expression: the uniform field Eo, a field due 
to the charge q uniformly distributed over the sphere, and a dipole field 
due to charges induced on the surface of the sphere. The last is that which 
would be produced by a dipole of moment P = 4rroa3Eo located at  the 
spherical center. 

The energies of these three fields may be divided into two kinds: elec- 
trostatic energy produced by each field alone, interaction energies among 
the fields. 

The energy density of the uniform external field Eo is %fEi. Its total 
energy EzdV is infinite, i.e. Wl -+ 00, since Eo extends over the entire 
space. 

The total electrostatic energy of an isolated conducting sphere with 
charge q is 

which is finite. 
The electric intensity outside the sphere due to the dipole P is 

2 a 3 ~ o  cos e a 3 ~ o  sin e 
e, + r3 ee 

The corresponding energy density is 

EO a6E; (4 cos2 e + sin2 e) 1 
2 2 r6 

w3 = - ~ o E i  = -- 

(1 + 3 cos2 e) EO a6 E: 
2 r6 
-- - - 

As the dipole does not give rise to a fkld inside the sphere the total elec- 
trostatic energy of P is 

which is also finite. 
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For the conducting sphere with total charge q, its suface charge density 
is o = q /4ra2 .  The interaction energy between the sphere and the external 
field Eo is then 

W ~ Z  = u (-&a COB B)2ra2 sin BdB J 
- - 1' cOBBdcosB = 0 .  

Similarly, the interaction energy of the conducting sphere with the field of 
dipole P is 

The interaction energy between dipole P and external field Eo is 

1 
2 

WI3 = --P a Eo = -2reoa3E; , 

which is finite. The appearance of the factor in the expression is due 
to the fact that the dipole P is just an equivalent dipole induced by the 
external field Eo. 

1070 
A conducting spherical shell of radius R is cut in half. The two hemi- 

spherical pieces are electrically separated from each other but are left close 
together a8 shown in Fig. 1.31, so that the distance separating the two halves 
can be neglected. The upper half is maintained at  a potential 4 = 40, and 
the lower half is maintained at a potential 4 = 0. Calculate the electrostatic 
potential 4 at all points in space outside of the surface of the conductors. 
Neglect terms falling faster than l/r4 (Le. keep terms up to and including 
those with l/r4 dependence), where r is the distance from the center of 
the conductor. (Hints: Start with the solution of Laplace's equation in the 
appropriate coordinate system. The boundary condition of the surface of 
the conductor will have to be expanded in a series of Legendre polynomials: 

(Columbia) 
Po(t) = 1, P,(z) = 2 ,  P&) = $ 2 2  - 4, P3(2) = 52 6 3  - 5 % .  3 
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Solution: 

Use spherical coordinates (P, 8,+) with the origin at  the spherical cen- 
ter. The z-axis is taken perpendicular to the cutting seam of the two 
hemi-spheres (see Fig. 1.31). It  is readily seen that the potential q5 is a 
function of r and 0 only and satisfies the following 2-dimensional Laplace's 
equation, 

Fig. 1.31 

The general solution of this equation is 

Keeping only terms up to 1 = 3 as required, we have 

The boundary condition a t  r = R is 

f(e) can be expanded as a series of Legendre polynomials, retaining terms 
up to 1 = 3: 
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where, making use of the orthogonality of the Legendre polynomials, 

Integrating the first few Legendre polynomials as given, we obtain 

which in turn give 

From 

we further get 
A~ = R'+' B~ . 

Hence 
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1071 
As can be seen in Fig. 1.32, the inner conducting sphere of radius a 

carries charge Q, and the outer sphere of radius b is grounded. The diefanee 
between their centers is c, which is a small quantity. 

(a) Show that to first order in c, the equation describing the outer 
sphere, using the center of the inner sphere as origin, is 

r(6) = b + Ccwe. 

(b) If the potential between the two spheres contains only 1 = 0 and 

( Wisconsin) 
1 = 1 angular components, determine it to first order in c. 

Fig. 1.32 

Solution: 

to first order in c 
(a) Applying the cosine theorem to the triangle of Fig. 1.32 we have 

b2 = e2 + r2 - 2crcose N r2 - 2crcost?, 

or 

(b) Using Laplace's equation V 2 8  = 0 and the axial symmetry, we can 
express the potential at a point between the two spheres as 

Then retaining only the 1 = 0 , l  angular components, we have, 



Elcciroridcr 87 

AE the surface of the inner conductor is an equipotentid, 4 for r = a should 
not depend on 8. Hence 

B1 A l a +  = O .  

The charge density on the surface of the inner sphere is 

and we have 1' a212 sin ede = Q . 

Then as the outer sphere is grounded, 4 = 0 for r w b + ccoe8. This givee 

To first order in c, we have the appraximations 

Substituting theae expressions in Eq. (3) gives 

neglecting ccm2 0 and higher order terms. As (4) ia valid for whatever 
vdue of 8, we require 
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The last two equations, ( I )  and (2) together give 

Hence the potential between the two spherical shells is 

1072 
Take a very long cylinder of radius r made of insulating material. Spray 

a cloud of electrons on the surface. They are free to move about the surface 
so that, a t  first, they spread out evenly with a charge per unit area UO. Then 
put the cylinder in a uniform applied electric field perpendicular to the axis 
of the cylinder. You are asked to think about the charge density on the 
surface of the cylinder, u(e), as a function of the applied electric field E.,. 
In doing this you may neglect the electric polarizability of the insulating 
cylinder. 

(a) In what way is this problem different from a standard electrostatic 
problem in which we have a charged conducting cylinder? When are the 
solutions to  the two problems the same? (Answer in words.) 

(b) Calculate the solution for a(0) in the case of a conducting cylinder 
and state the range of value of Ea for which this solution is applicable to 
the case described here. 

(Chicago) 
Solution: 

Use cylindrical coordinates (p,  8, z )  with the z-axis along the cylindrical 
axis and the direction of the applied field given by 8 = 0. Let the potentials 
inside and outside the cylinder be PI and respectively. As a long cylinder 
is assumed, ( ~ 1  and are independent of z. As there is no charge inside 
and outside the cylinder, Laplace's equation applies: V2pr = V2plr = 0. 
The boundary conditions are 



Note the first two conditions arise from the continuity of the tangential 
component of the electric intensity vector. hrthermore aa the electrons 
are free to move about the cylindrical surface, Ee = 0 on the surface at 
equilibrium. As z is not involved, try solutions of the form 

Then the above boundary conditions require that 

and 

A 1 + C ~ r c o s B = A ~ + B z l n r -  EarcosO+ -cosO, 0 2  
r 

D2 
r2 

- C1 sin 8 = E a  sin 0 - - sin 0 = 0 .  

The last equation gives 

C1 = 0, 0 2  = Ear2. 

Applying Gauss’ law to unit length of the cylinder: 

i.e., 

we obtain 
0 0  r 
€0 

B2 = --. 

Neglecting any possible constant potential, we take A2 = 0. Then 

uoa In r 
E O  

A1 = Bzlnr = --, 
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We ultimately obtain the following expreseions 

(a) The difference between this case and the case of the cylindrical con- 
ductor liea in the fact that o(@) can be positive or negative for a conductor, 
while in this case u(@) 5 0. However, when lE,l < jell the two problems 
have the same solution. 

(b) For the case of a conducting cylinder the electrostatic field must 
satisfy the following: 

(1) Inside the conductor El = 0 and 91 is a constant. 
(2) Outside the conductor 

vaV7prr = 0 I 

The solution for p11 is the same as before. For the solution of the con- 
ductor to fit the case of an insulating cylinder, the necessary condition is 

5 121, which ensures that the surface charge density on the cylinder 
ie negative everywhere. 

1073 
Two semi-infinite plane grounded aluminium sheets make an angle of 

60°. A single point charge +g is placed as shown in Fig. 1.33. Make a large 
drawing indicating clearly the position, size of a11 image charges. In two or 
three mnteneee explain your reasoning. 

( Wiuconria) 



Fig. 1.33 

Solution: 

distributed symmetrically on the two sidea of each plane. 
As in Fig. 1.33, since the planes are grounded, the image charges are 

1074 
A charge placed in front of a metallic plane: 
(a) is repelled by the plane, 
(b) does not know the plane is there, 
(c) is attracted to the plane by a mirror image of equal and opposite 

charge. 

Solution: 
(CCT) 

The answer is (c). 

1075 
The potential at a distance r from the axis of an infinite straight wire 

of radius u carrying a charge per unit length u is given by 

a 1  - In - + const. 
2n r 
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This wire is placed at a distance 6 > a from an infinite metal plane, whoee 
potential is maintained at  zero. Find the capacitance per unit length of the 
wire of this system. 

( Wisconsin) 

Soh t ion: 
In order that the potential of the metal plane is maintained at zero, 

we imagine that an infinite straight wire with linear charge density -u is 
symmetricalIy placed on the other side of the plane. Then the capacitance 
between the original wire and the metal plane is that between the two 
straight wires separated at 26. 

The potential p(r) at  a point between the two wires at distance r from 
the original wire (and at distance 2b - r from the image wire) is then 

a l u  1 
2 n  r 2~ 2 6 - r  

p(r) = -In - - - In - . 

So the potential difference between the two wires is 

V = p(a) - 4 2 6  - a) = n 

Thus the capacitance of this system per unit length of the wire is 

U 2b C =  -=7r/ ln-  
V a 

1076 
A charge q = 2pC is placed at a = 10 cm from an infinite grounded 

(a) the total charge induced on the sheet, 
(b) the force on the charge q ,  

(c) the total work required to remove the charge slowly to an infinite 

( Wisconsin) 

conducting plane sheet. Find 

distance from the plane. 

Solution: 
(a) The method of images requires that an image charge -q  is placed 

symmetrically with respect to the plane sheet. This means that the total 
induced charge on the surface of the conductor is -q. 
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(b) The force acting on +q is 

93 

= 0.9 N , 

where we have used E O  = 4rxjx100. C2/(N.m2). 

(c) The total work required to  remove the charge to infinity is 

1077 

Charges +q, -q lie at the points (2, y, z )  = ( a ,  0, a), (-a, 0, u) above a 
grounded conducting plane a t  z = 0. Find 

(a) the total force on charge +q, 

(b) the work done against the electrostatic forces in assembling this 

(c) the surface charge density at  the point (a, 0,O). 

system of charges, 

( Wisconsin) 

Solution: 

(a) The method of images requires image charges +q at (-a, 0, -a) 
and -q at (u, 0, -a)  (see Fig. 1.34). The resultant force exerted on +q at 
(a, 0, a) is thus 

This force has magnitude 
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It  is in the xz-plane and points to the origin along a direction at  angle 4 5 O  
to  the x-axis as shown in Fig. 1.34. 

z 

t 

I /  

- q  
*q  0 l o  

( - a ,  O,-a) ( a ,  0,- a )  

Fig. 1.34 

(b) We can construct the system by slowly bringing the charges +g 
and -q from infinity by the paths 

L 1 : r = x , y = O ,  
La : z = - 2 ,  y =  0, 

symmetrically to the points (a, 0, a) and (-a,O, a) respectively. When the 
charges are at ( I ,  0, I) on path L1 and ( - I , O ,  I) on path L2 respectively, each 
suffers a force whose direction is parallel to the direction of the 
path so that the total work done by the external forces is 

(c) Consider the electric field a t  a point (a, O,O+) just above the con- 
ducting plane. The resultant field intensity El produced by +q at (a,O,a) 
and -q at (a, 0, -a) is 

The resultant field E2 produced by -q at (-a,O,a) and +q at (--a,% -0) 

is 

Hence the total field a t  (a,O,O+) is 
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and the surface charge density at this point is 

1078 
Suppose that the region z > 0 in three-dimensional apace is filled 

with a linear dielectric material characterized by a dielectric constant €1,  
while the region z < 0 has a dielectric material €2. Fix a charge -q at 
(2, y, z )  = (O,O, a) and a charge g at (O,O, -a). What is the force one must 
exert on the negative charge to keep it at rest? 

( Columbia) 
Solution: 

Consider first the simple case where a point charge g1 is placed at 
(O,O, a). The method of images requires image charges qi at (O,O, -a) and 
q;' at (O,O, a). Then the potential (in Gaussian units) at a point (2, y, z )  is 
given by 

4 , ( z  Z O ) ,  (Pa= - gy , ( z  < O) ,  Q1 
( P I = - + -  

El f1  Elr2  & 2 t l  

where 

Applying the boundary conditions at (zI y, 0): 

we obtain 

Similarly, if a point charge 42 is placed at (O,O, -a) inside the dielectic €2, 

its image charges will be qi at (O,O, a) and 4;' at (O,O, -a) with magnitudes 
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When both q1 and q2 exist, the force on q1 will be the resultant due to 
Q Z , Q {  and q r .  It follows that 

In the present problem q1 = -q ,  q2 = +q, and one has 

€1 - E 2  -- q2 q2 - Q2 

E ~ ( E I  + €1) 4 a 2  

Hence, a force -F is required to keep on -q at rest. 
2 ( ~ 1  + ~ ~ l a ~  - em ' 

F =  

1079 
When a cloud passes over a certain spot on the surface of the earth a 

vertical electric field of E = 100 volts/meter is recorded here. The bottom 
of the cloud is a height d = 300 meters above the earth and the top of the 
cloud is a height d = 300 meters above the bottom. Assume that the cloud 
is electrically neutral but has charge +q a t  its top and charge -q at its 
bottom. Estimate the magnitude of the charge g and the external electrical 
force (direction and magnitude) on the cloud. You may assume that there 
are no charges in the atmosphere other than those on the cloud. 

( Wisconsin) 
Solution: 

We use the method of images. The positions of the image charges are 
shown in Fig. 1.35. Then the electric field intensity a t  the point 0 on the 
surface of the earth is 

whence we get 
8*cod2 E 

3 = 6.7 x 1 0 - ~  c .  9 =  

The external force acting on the cloud is the electrostatic force between the 
image charges and the charges in the cloud, i.e., 
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This force is an attraction, as can be seen from Fig. 1.35. 

d 

1 0 - q  

Fig. 1.35 

1080 

A point charge q is located at  radius vector s from the center of a 
perfectly conducting grounded sphere of radius a. 

(a) If (except for q)  the region outside the sphere is a vacuum, calculate 
the electrostatic potential a t  an arbitrary point r outside the sphere. As 
usual, take the reference ground potential to be zero. 

(b) Repeat (a) if the vacuum is replaced by a dielectric medium of 
dielectric constant E .  

(CUSPEA) 

Solution: 
We use the method of images. 
(a) As shown in Fig. 1.36, the image charge q’ is to be placed on the 

= $, line oq at distance s’ from the spherical center. Letting n = f,n‘ = 
the potential a t  r is 
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The boundary condition requires q5(r = a) = 0. This can be satisfied if 

q ' = - ; q ,  a 6 I = - .  a2 
S 

The electrostatic uniqueness theorem then gives the potential at a point r 
outside the sphere as 

(b) When the outside of the sphere is filled with a dielectric medium 
of dielectric constant E ,  we simply replace €0 in (a) with E .  Thus 

Fig. 1.36 

1081 
Two similar charges are placed at a distance 2b apart. Find, approx- 

imately, the minimum radius a of a grounded conducting sphere placed 
midway between them that would neutralize their mutual repulsion. 

( S  VNY, Buflalo) 

Solution: 
We use the method of images. The electric field outside the sphere 

corresponds to the resultant field of the two given charges +q and two image 
charges +q'. The magnitudes of the image charges are both q1 = - q f ,  and 
they are to be placed at two sides of the center of the sphere at the same 
distance b' = f from it (see Fig. 1.37). 
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Fig. 1.37 

For each given charge +q, apart from the electric repulsion acted on 
it by the other given charge +q, there is also the attraction exerted by the 
two image charges. For the resultant force to vanish we require 

The value of a(a c 6) that satisfies the above requirement is therefore 
approximately 

b 
a =  S '  

1082 
(a) Two equal charges +Q are separated by a distance 2d. A grounded 

conducting sphere is placed midway between them. What must the radius 
of the sphere be if the two charges are to experience zero total force? 

(b) What is the force on each of the two charges if the same sphere, 
with the radius determined in part (a), is now charged to a potential V? 

(Columbia) 

Soh t ion: 
(a) Referring to Problem 1081, we have ro = d/8 .  
(b) When the sphere is now charged to a potential V, the potential 

outside the sphere is correspondingly increased by 

where r ie the distance between the field point and the center of the sphere. 
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An additional electric field is established being 

Therefore, the force exerted on each charge +Q is 

The direction of the force is outwards from the sphere along the line joining 
the charge and the center. 

1083 
A charge q is placed inside a spherical shell conductor of inner radius r1 

and outer radius r2. Find the electric force on the charge. If the conductor 
is isolated and uncharged, what is the potential of its inner surface? 

( Wisconsin) 
Solution: 

Apply the method of images and let the distance between q and the 
center of the shell be a. Then an image charge q' = -%q is t o  be placed 

at b = (see Fig. 1.38). Since the conductor is isolated and uncharged, it 
is an equipotential body with potential 'p = 90, say. Then the electric field 
inside the shell ( r  < r l )  equals the field created by q and q'. 

4' 
I 
I 
I 

4 

P 

Fig. 1.38 

The force on the charge q is that exerted by q': 

EL q2 - _  a - QQ' F =  
4.lr€o(b - 0)' 4rso( $ - a)2 
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In zone r > r 2  the potential is pout = &. In particular, the potential 
of the conducting sphere at r = r 2  is 

9 
4 n c o r 2  

'Psphere = - . 
Owing to the conductor being an equipotential body, the potential of the 
inner surface of the conducting shell is also &. 

1084 
Consider an electric dipole P. Suppose the dipole is fixed at a distance 

zo along the z-axis and at  an orientation 8 with respect to that axis (i.e., 
P - e, = IPI cos 0). Suppose the zy plane is a conductor a t  zero potential. 
Give the charge density on the conductor induced by the dipole. 

(Colurnbio) 

Solution: 
As shown in Fig. 1.39, the dipole is P = P(sin B,O, cosfl), and its image 

dipole is P' = P(-sin8,OIcos6). In the region z > 0 the potential at a 
point r = (z,y,z) is 

P[z sin e + ( z  - LO) cos el P[-z sin 8 + ( z  + Z O )  cos 61 + [G + y2 + ( z  - .t0)213/2 [ z 2  + y 2  + ( z  + z0)213/2 

x 
A 

Fig. 1.39 

The induced charge density on the surface of the conductor is then 
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Two large flat conducting plates separated by a distance D are con- 
nected by a wire. A point charge Q is placed midway between the two 
plates, as in Fig. 1.40. Find an expression for the surface charge density 
induced on the lower plate as a function of D,Q and z (the distance from 
the center of the plate). 

(Columbia) 

f 

Fig. 1.40 

Solution: 
We use the method of images. The positions of the image charges 

are shown in Fig. 1.41. Consider an arbitrary point A on the lower plate. 
Choose the zt-plane to contain A. It can be seen that the electric field at 
A, which is a t  the surface of a conductor, has only the t-component and 
its magnitude is (letting d = 4) 

Q 2d E, = 
4T€o(d2 + Z2) (6L Z2)l/' 

Q 2 - 3d - 
47r&0[(3d)~ + z'] [(3d2 + z ~ ] ~ / ~  

4 ~ ~ 0 [ ( 5 d ) ~  + z2] [(!id2 + z2]1/2 
- ... Q 2 * !id + 

- QD (-1)"(2n+ 1) -- 
4 m o  E [(n + $)2D2 + 4 3 / 2  a 

n=O 

Accordingly, 



la3 

-Q Q -Q Q 
-30 -2D -D 

- - - 

- 9  

L 
(1A 

-4 Q - - Q  - 
D ZD 3 0  
- 

- 

1086 

Two large parallel conducting plates are separated by a small distance 
4x. The two plates are gounded. Charges Q and -Q are placed a4 distances 
z and 3z from one plate as shown in Fig. 1.42. 

(a) How much energy is required to remove the two charges from be- 
tween the plates and infinitely apart? 

(b) What is the force (magnitude and direction) on each charge? 

(c) What is the force (magnitude and direction) on each plate? 

(d) What is the total induced charge on each plate? (Hint: What ie 

(e) What is the total induced charge on the inside surface of each plate 
the potential on the plane midway between the two charges?) 

after the -Q charge has been removed, the +Q remaining at rest? 
W I T )  

Solution: 
(a) The potential is found by the method of images, which requires 

image charges +Q at - . . - 92, -52,32,72,11z.. . and image charges -Q 
at * .  -72, -32,52,9z, 132, - . along the z-axis as shown in Fig. 1.43. Then 
the charge density of the system of real and image charges can be expressed 
8a 

W 

p = (-l)k+*QS[z - (2k + l)z] 
k = - w  

where 6 is the one-dimensional Dirac delta function. 



Fig. 1.42 Fig. 1.43 

The electrostatic field energy of the system is 

1 1 1 
2 

w = - C Q U  = ,QU+ - ?QU-, 

where U+ is the potential a t  the +Q charge produced by the other real and 
image charges not including the +Q itself, while U- is the potential at the 
-Q charge produced by the other real and image charges not including the 
-Q itself, As 

u+=- 1 --+---+... 2Q 2Q 2Q 
47x0 [ (22) (42) (62) 1 

we have 
W = - -  Q2 1n2.  

47reox 
Hence the energy required to remove the two charges to infinite distances 
from the plates and from each other is -W. 

(b) The force acting on +Q is just that exerted by the fields of all the 
other real and image charges produced by Q. Because of symmetry this 
force is equal to zero. Similarly the force on -Q is also zero. 

(c) Consider the force exerted on the left conducting plate. This is 
the resultant of all the forces acting on the image charges of the left plate 
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(i.e., image charges to the left of the left plate) by the real charges +Q, -8 
and all the image charges of the right plate (i.e., image charges to the right 
side of right plate). 

Let us consider first the force F1 acting on the image charges of the 
left plate by the real charge tQ: 

taking the direction along +x as positive. 

charges of the left plate: 
We next find the force F 2  between the real charge -Q and the image 

Finally consider the force F3 acting on the image charges of the left 
plate by the image charges of the right plate: 

Thus the total force exerted on the left plate is 

Using the identity 9 (-1)n-l = In2, 

we obtain 
F=- Q2 1n2. 

1 6 ~ ~ 0 ~ ~  
This force directs to the right. In a similar manner, we can show that the 
magnitude of the force exerted on the right plate is also equal to -& In 2, 
its direction being towards the left. 



(d) The potential on the plane 2 = 0 is zero, 80 only half of the linee 
of force emerging from the +Q charge reach the left plate, while thoae 
emerging from the -Q charge cannot reach the left plate at all. Therefore, 
the total induced charge on the left plate is -9, and similarly that of the 
right plate is 9. 

(e) When the +Q charge alone exists, the sum of the total induced 
charges on the two plates is -9. If the total induced charge is -Qo on 
the left plate, then the total reduced charge is -Q + Qr on the right plate. 
Similarly if -Q alone exists, the total induced charge on the left plate ie 
Q - Qr and that on the right plate is +Qo, by reason of symmetry. If the 
two chargee exist at the same time, the induced charge on the left plate ie 
the superpoeition of the induced charges produced by both +Q and -9. 
Hence we have, using the result of (d), 

or 

Q 
2 '  

Q-2Qo = -- 

Thus after -Q has been removed, the total induced charge on the inside 
surface of the left plate is -3Q/4 and that of the right plate is -Q/4. 

108.7 
What is the least positive charge that must be given to a spherical 

conducter of radius a, insulated and influenced by an external point charge 
+q at a distance r > a from its center, in order that the surface charge 
density on the sphere may be everywhere positive? What if the external 
point charge is -q? 

(SUN Y, Buflalo) 

Solution: 
Use Cartesian coordinates with the origin at the center of the sphere 

and the z-axis along the line joining the spherical center and the charge 
q. It is obvious that the greatest induced surface charge density, which ia 
negative, on the sphere will occur at (O,O, a). 

The action of the conducting spherical surface may be replaced by that 
of a point charge (- :q) at (0, 0, $) and a point charge ($4) at the spherical 
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center (O,O,O). Then, the field E at (O,O,a+) is 

=----- 9 
4m0 “ ar (r- a)2 (r-a)’ 

Hence, the maximum negative induced surface charge density is 

If a positive charge Q is given to the sphere, it will distribute uniformly on 
the spherical surface with a surface density 4/4ra2. In order that the total 
surface charge density is everywhere positive, we require that 

1 1 
a ( r - a ) 2  ar Q 2 --d .4na2 = a’q[ (1 + 5) - - -1 

- a2(3r - a)q ~ 

r(r - a)2 
- 

On the other hand, the field at point (O,O, -a-) is 

if we replace q by -q, the maximum negative induced surface charge density 
will occur at (O,O, -a). Then as above the required positive charge is 

1 Q >  -u .4ra2  = - t o  -4?ra2 -+--- 
ra (‘+a)’ (r+a)’ 

1088 
(a) Find the electrostatic potential arising from an electric dipole of 

magnitude d situated a distance L from the center of a grounded conducting 
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sphere of radius a; assume the axis of the dipole passes through the center 
of the sphere. 

(b) Consider two isolated conducting spheres (radii a) in a uniform 
electric field oriented so that the line joining their centers, of length R, is 
parallel to the electric field. When R is large, qualitatively describe the 
fields which result, through order R-4. 

Solution: 
(a) Taking the spherical center as the origin and the axis of symmetry 

of the system as the z-axis, then we can write P = de,. Regarding P as a 
positive charge q and a negative charge -q separated by a distance 21 such 
that d = limZq1, we use the method of images. As shown in Fig. 1.44, the 
coordinates of q and -q  are respectively given by 

( Wisconsin) 

1-0 

q :  t = - L - t l ,  - 4 :  t = - L - 1  

Let q1 and q2 be the image charges of q and -q respectively. For the 
spherical surface to be of equipotential, the magnitudes and positions of q1 
and 42 are as follows (Fig. 1.44): 

a 
QI = --q at L - I  

a 
q2 = -q at 

L+I  

i +  -1 L -, 
Fig. 1.44 

As L >> 1, by the approximation 
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the magnitudes and positions may be expressed as 

a ad 
at (o,o, 2 L - $) , 

a ad 
at (o,o,-.i;+ a2 $) , 

q1 = -P- - 2L2 

q z = p - s  

where we have used d = 2ql. Hence, an image dipole with dipole moment 
P' = t q .  ue, 2aaI = &P and an image charge q' = -# may be used in place 
of the action of q1 and qz. Both P' and q' are located at r' = (O,O, $) 
(see Fig. 1.45). Therefore, the potential at r outside the sphere is the 
superposition of the potentials produced by PI P', and q', i.e., 

P' . (r - r') 
+ 

P - (r + Le,) 
Ir + Le, l3 

I ad 

a3d(r cos B + d( r cos B + L) 
(r2 + 2 r ~  cos e + ~ 2 ) 3 / 2  

+ + 

~ 3 ( r 2  + c o s ~  + ~ ) 3 / 2  

Fig. 1.45 

(b) A conducting sphere of radius a in an external field E corresponds 
to an electric dipole with moment P = 47rsoa2E in respect of the field 
outside the sphere. The two isolated conducting spheres in this problem 
may be regarded as one dipole if we use the approximation of zero order. 
But when we apply the approximation of a higher order, the interaction 
between the two conducting spheres has to be considered. Now the action 
by the first sphere on the second is like the case (a) in this problem (as the 
two spheres are separated by a large distance). In other words, this action 
can be considered as that of the image dipole P' = &P and image charge 
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q' = -$. As a2 << L, the image dipole and charge can be taken to be 
approximately located at the spherical center. Thus the electric field at a 
point outside the spheres is the resultant of the fields due to a point charge 
q' and a dipole of moment P + P' = (1 + $)P at each center of the two 
spheres. The potential can then be expressed in terms through order l/R'. 

1089 
An electric dipole of moment P is placed at a distance r from a per- 

fectly conducting, isolated sphere of radius a. The dipole is oriented in the 
direction radially away from the sphere. Assume that r > a and that the 
sphere carries no net charge. 

(a) What are the boundary conditions on the E field at the surface of 
the sphere? 

(b) Find the approximate force on the dipole. 
(MZT) 

Solution: 
(a) Use spherical coordinates with the z-axis along the direction of the 

dipole P and the origin at the spherical center. The boundary cbnditions 
for E on the surface of the sphere are 

where u is the surface charge density. 
(b) The system of images is similar to that of the previous Problem 

1088 and consists of an image dipole P' = ($)3P and an image charge 
q' = -3. at r' = $ez. In addition, an image charge q" = -q' is to be 
added at the center of the sphere as the conducting sphere is isolated and 
uncharged. However, since r > a, we can consider q' and q" as composing 
an image dipole of moment Prt = 5 - $ = $P. 

As r > a, the image dipoles P' and P" may be considered as approx- 
imately located at the center of the sphere. That is, the total image dipole 
moment is 

( :)3p 
Pimage = P' + P I '  = 2 

The problem is then to find the force exerted on P by P image. 
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The potential at a point r produced by Pjmwe is 

At  the location of P, r = re,, the field produced by Pimage is then 

The energy of P in this field is 

which gives the force on P 89 

1090 
Suppose that the potential between two point charges q1 and 92 sepa- 

rated by r were actually q l ~ Z e - ~ ' / r ,  instead of qIqZ/r, with K very small. 
What would replace Poisson's equation for the electric potential? Give the 
conceptual design of a null experiment to test for a nonvanishing K. Give 
the theoretical basis for your design. 

(Chicago) 

Soh tion: 
With the assumption given, Poisson's equation is to be replaced by 

v24 + Z P ( 6  = -47rp 

in Gaussian units, where p is the charge density. 
To test for a nonvanishing K ,  consider a Faraday cage in the form of 

a conducting spherical shell S, of volume V, encloeing and with the center 
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at 41, as shown in Fig. 1.46. Let the radius vector of 92 be rb. Denoting a 
source point by r' and a field point by r, use Green's theorem 

l ( $ V f 2 4  - q5V'2$)dV' = ($0'4 - do'$) - dS' . 

Choose for 4 the potential interior to S due to 92, which is external to S, 
given by 

as p = 0 (being the charge density corresponding to  the distribution of 42) 
inside S, and for $ a Green's function G(r,r') satisfying 

v'G = -47r~(r - r') , 
G = O  on S ,  

h 
V24+Ii%#=O,  

where S(r - r') is Dirac's delta function. 

0 
Fig. 1.46 

The integrals in the integral equation are as follows: 

= -4~4 .5  S(r - r')dV' = -474.5 J, 
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as q5 =const.= q5s, say, for S a conductor. Note that the divergence theorem 
has been used in the last equation. 

The integral equation then gives 

If K = 0, then +(r) = q5s, i.e., the sphere V is an equipotential volume so 
that no force will be experienced by q1. If K # 0, then q5(r) will depend on 
r so that q1 will experience a force -qlVq5. 

Hence measuring the force on q1 will determine whether or not K = 0. 

1091 
A very long conducting pipe has a square cram section of its inside 

surface, with side D as in Fig. 1.47. Far from either end of the pipe is 
suspended a point charge located a t  the center of the square cross section. 

(a) Determine the eletric potential a t  all points inside the pipe, perhaps 
in the form of an infinite series. 

(b) Give the asymptotic expression for this potential for points far from 

(c) Sketch some electric field lines in a region far from the point charge. 

(UC, Berkeley) 

the point charge. 

(Hint: avoid using images.) 

7 
D 

Fig. 1.47 
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Solution: 

can be written as follows: 
(a) Poisson's equation for the potential and the boundary conditions 

I V2P = - $ W ( Y ) W  , 

Plz=fD/2 = ' 

Ply=fD/Z = o.  

By Fourior transform 

the above become 

Use F(Q) to  denote the functional space of the functions which are equal 
to zero at x = &f or y = &$. A set of unitary and complete basis in this 
functional space is 

I 2 c~ (Zm+d)rr cos Pm'D+1)q ,+ co9 Lzm+gl)rz sin + , 
D 

6 sin cos &.$k~ $sin 9 sin In'rt D '  

m,m' 2 0,  nln'  2 1 .  

In this functional space 6(z)6(y) may be expanded as 

Letting @(z, y, k) be the general solution in the following form, 
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and substituting Eq. (3) into Eq. (l), we find from Eq. (2) that 

11s 

we finally obtain 

(b) For points far from the point charge we need only choose the t e r m  
with m = m' = 0 for the potential, i.e., 

(c) For the region z > 0, the asymptotic expression of the electric field 
for z B D is 

I E , = - * =  82 + s i n ~ c ~ i j l e - % ~ ,  t.D 

4 --2= - By ~ c ~ ~ s i n + - + z l  

E, = cos cm v e - * z  . 
The electric lines of force far from the point charge are shown in Fig. 1.48. 

Fig. 1.48 
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1092 
Consider two dipoles P1 and P g  separated by a distance d. Find the 

force between them due to the electrostatic interaction between the two 
dipole moments, for arbitrary orientation of the directions of P1 and Pz.  
For the special case in which PI is parallel to the direction between the 
two dipoles, determine the orientation of P g  which gives the maximum 
attraction force. 

(Columbia) 

Soh t ion: 
In Fig. 1.49 the radius vector r is directed from Pi to P z .  Taking 

the electric field produced by P1 as the external field, its intensity at the 
position of P2 is given by 

3(P1 . r ) r  - r2P1 
4ncor5 

E, = 

Hence the force on P2 is 

Fig. 1.49 

I f P l l l r , l e t P z . r =  P2rcosB. T h e n P l . P z =  PlPgcos8andtheforce 
between PI and P g  becomes 

The maximum attraction is obviously given by B = O",  when P2 is also 
parallel to r. This maximum is 

Note that the negative sign signifies attraction. 



Electrorfaticr 117 

1093 
An electric dipole with dipole moment PI = Plea is located at the 

origin of the coordinate system. A second dipole'of dipole moment Pz = 
4e, is located at (a) on the +o axis a distance r from the origin, or (b) 
on the +y axis a distance r from the origin. Show that the force between 
the two dipoles is attractive in Fig. 1.50(a) and repulsive in Fig. 1.50(b). 
Calculate the magnitude Gf the force in the two cases. 

(Columlia) 

Soh t ion: 
The electric field produced by P1 is 

where 8 is the angle between PI and r. The interaction energy between Pa 

Hence the components of the force acting on Pz are 

(a) In this case 8 = 0 and we have 
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The negative sign denotes an attractive force. 
(b) In this case 8 = f and we have 

The positive sign denotes a repulsive force. 

1094 

An electric dipole of moment P = (P,,O,O) is located at  the point 
(zo,yo,O), where zo > 0 and yo > 0. The planes z = 0 and y = 0 are 
conducting plates with a tiny gap at the origin. The potential of the plate 
at z = 0 is maintained at  VO with respect to the plate y = 0. The dipole is 
sufficiently weak so that you can ignore the charges induced on the plates. 
Figure 1.51 is a sketch of the conductors of constant electrostatic potentials. 

(a) Based on Fig. 1.51, deduce a simple expression for the electrostatic 
potential +(z, y). 

(b) Calculate the force on the dipole. 
(MITI 

Y 

Fig. 1.51 

Solution: 
(a) Any plane passing through the z-axis is an equipotential surface 

whose potential only depends on the angle 8 it makes with the y = 0 plane: 

d(z, Y) = +(e). 
Accordingly, Laplace’s equation is reduced to one dimension only: 

d24 - = O ,  do2 
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with the solution 

taking into account 
for 8 = 5.  This can 

(b) The field is 

the boundary conditions 4 = 0 for 8 = 0 and 4 = Vo 
also be written in Cartesian coordinates as 

then 

Hence, the force acting on the dipole (P,,O,O) is 

1095 
Inside a smoke precipitator a long wire of radius R has a static charge 

A Coulombs per unit length. Find the force of attraction between this wire 
and an uncharged spherical dielectric smoke particle of dielectric constant 
t and radius a just before the particle touches the wire (assume a < R). 
Show all work and discuss in physical terms the origin of the force. 

Solution: 
As a g: R, we can consider the smoke particle to lie in a uniform field. 

In Gaussian units the field inside a spherical dielectric in a uniform externd 
field is (see Problem 1062) 

(SVNY, Buflalo) 

The small sphere can be considered an electric dipole of moment 
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The energy of the polarized smoke particle in the external field is 

Ee, is radial from the axis of the wire and is given by Gauss’ flux theorem 

Ee, = -e, . 
as x 

2rr 
Hence 

- 1 1 ~ 3 ~ 2  W = -  
2 7 4 ~  + 2)rz ’ 

and the force exerting on the smoke particle is 

Just before the particle touches the wire, r = R and the force is 

The negative sign shows that this force is an attraction. This force is 
caused by the nonuniformity of the radial field since it is given by -VW. 
The polarization of the smoke particle in the external field makesit act like 
an electric dipole, which in a nonuniform field will suffer an electric force. 

5. MISCELLANEOUS APPLICATIONS (1096-1108) 

1096 
A sphere of radius a has a bound charge Q distributed uniformly over 

its surface. The sphere is surrounded by a uniform fluid dielectric medium 
with fixed dielectric constant E as in Fig. 1.52. The fluid also contains a 
free charge density given by 

where k is a constant and V(r) is the electric potential at r relative to 
infinity. 
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(a) Compute the potential everywhere, letting V = 0 at r -P 00. 

(b) Compute the pressure as function of r in the dielectric. 
(Princeton) 

Fig. 1.52 

Solution: 
The electric potential satisfies Poisson’s equation 

Considering the spherical symmetry of this problem, we have V(r) = V(r). 
Equation (1 )  then becomes 

Writing V = u/r, one has 
d2u k 
dr2 & 
- = - u .  

The solutions of Eq. (2) can be classified according to the values of k: 
(1) If k > 0, the solution is 

Accordingly, 

The condition V = 0 for r -, 00 indicates that only the negative exponent 
is allowed. Gauss’ theorem for the spherical surfaces, 
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then determine8 the coefficient A as 

Qeaa 
4 4 a a  + 1) ’ A =  

where a = m. On the other hand, as there is no electric field inside 
the sphere, the potential inside is a constant equal to the potential on the 
eurface. Therefore 

Stability of the fluid means that 

pn + n - T = const, 

where n = e,, T is Maxwell’s stress tensor. If the fluid is still, the constant 
is equal to zero and one has 

pe, = -e, .T. 

As E is fixed, we further have 

(AV)’ 0 0 

Hence, the pressure is 

(2) If k < 0, with j3’ = - k / ~ ,  the solution of Eq. (2) becomes 

with real part 
B 

V(r) = - cos(j3r). 
f 

Substitution in Gauss’ theorem 
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gives 
8 

&(pa sin pa + COB pa) ' B =  

Hence the electric potential is 

c 0 1 0  v=( 4r(po:"Bo:capo)+ ' ' a ' 
a*u 1 r S a ,  

and the pressure is 

1097 
Flat metallic plates P, P', and P" (see Fig. 1.53) are vertical and the 

plate P ,  of mass M ,  is free to move vertically between P' and PI'. The 
three plates form a double parallel-plate capacitor. Let the charge on this 
capacitor be q. Ignore all fringing-field effects. Assume that this capacitor 
is discharging through an external load resistor R, and neglect the small 
internal resistance. Assume that the discharge is slow enough so that the 
system is in static equilibrium at all times. 

P' P. 

Fig. 1.53 

(a) How does the gravitational energy of the system depend on the 

(b) How does the electrostatic energy of the system depend on h and 
height h of P? 

on the charge g? 



(c) Determine h as a function of q. 

(d) Does the output voltage increase, decrease, or stay the same as this 

( Wisconsin) 
capacitor discharges? 

Solution: 
(a) The gravitational energy of the system is 

W, = M g h  . 

(b) We suppose that the distance between P and PI and that between 
P and PI1 are both d.  Also suppose that each of the three plates has width 
a and length I ,  and when h = ho, the top of plate P coincides with those 
of plates PI and PIr. The system may be considered as two capacitors in 
parallel, each with charge q / 2  and capacitance 

w ( l +  h - ho) 
d 

C =  

when the height of P is h. 
The electrostatic energy stored in the system is then 

(c) The total energy of the system is 

Since the discharge process is slow, P for each q will adjust to an equilibrium 
position h where the energy of the system is minimum. Thus for each q,  
8W = 0, giving 

Therefore, h varies linearly with q. 

also. Hence the output voltage 
(d) As the system is discharging through R, q decreases and h decreases 

vo = ! 7 / E O . ( I  2 +dh - ho) =E 
does not vary with q ,  i.e., Vo remains constant as the capacitor discharges. 
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1098 
A capacitor consisting of two plane parallel plates separated by a dis- 

tance d is immersed vertically in a dielectric fluid of dielectric constant K 
and density p .  Calculate the height to which the fluid rises between the 
plates 

(a) when the capacitor is connected to  a battery that maintains a 
constant voltage V across the plates, and 

(b) when the capacitor carries a charge Q, but is not connected to a 
battery. 

Explain physically the mechanism of the effect and indicate explicitly 
how it  is incorporated in your calculation. (You may neglect effects of 
surface tension and the finite size of the capacitor plates.) 

(UC, Berkeley) 

Solution: 
When the capacitor is charged, it has a tendency to attract the dieiec- 

tric fluid. When the electrostatic attraction is balanced by the weight of 
the excess dielectric fluid, the fluid level will rise no further. As shown in 
Fig. 1.54, let b be the width and (I the length of the plates, 2 be the height 
of the capacitor in contact with the fluid, and h be the height to  which the 
fluid between the plates rises from the fluid surface. Then the capacitance 
of the capacitor (in Gaussian units) is 

b b 
4xd 4xd 

C = - [ ~ z + ( a - z ) ]  = - [ ( ~ ~ - l ) z + a ] ,  

where K is the dielectric constant of the fluid. 

the dielectric will be acted upon by an upward electrostatic force 
(a) If the voltage V does not change, as shown in Problem 1051 (a), 

( K  - l)bV2 
8ra 

F, = 

Fig. 1.54 



This force is balanced by the weight mg = pghbd in equilibrium. Hence 
the rise is 

(b) If the charge Q is kept constant instead, then according to Problem 
1051 (b) the electrostatic force is 

At equilibrium the fluid level will rise to a height 

2rQ2(K - 1) h =  
Pgb2[(K - 1)" + a]' ' 

1099 
A cylindrical capacitor is composed of a long conducting rod of radius 

a and a long conducting shell of inner radius b. One end of the system 
is immersed in a liquid of dielectric constant E and density p as shown 
in Fig. 1.55. A voltage difference Vo is switched on across the capacitor. 
Assume that the capacitor is fixed in space and that no conduction current 
flows in the liquid. Calculate the equilibrium height of the liquid column 
in the tube. 

(MIT) 

Fis. 1.55 



Solution: 

contained in the cylinder. Neglecting edge effects, the capacitance is 
Let 1 be the length of the cylinder, and t the length of the dielectric 

As the voltage difference VO across the capacitor is kept constant, according 
to Problem 1051 the upward force acting on the dielectric is 

V: dC T ( E  - Q)V: F = - - =  
2 dz ln(b/a) + 

This force is in equilibrium with the gravity force: 

giving 
(e - &O)V,2 h =  pg(b2 - a2) ln(b/a) ' 

1100 
As in Fig. 1.56, the central plate, bearing total charge Q, can move as 

indicated but makes a gastight seal where it slides on the walls. The air on 
both sides of the movable plate is initially at the same pressure PO. Find 
value(s) of 2 where the plate can be in stable equilibrium. 

(OC, Berkeley) 

Fig. 1.56 
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Solution: 
Initially, as the voltages on the two sides of the central plate are the 

same, we can consider the three plates as forming t w o  parallel capacitora 
with capacitances C1 and C2. When the central plate is located at  position 
x ,  the total capacitance of the parallel capacitors is 

2 A L  - A A c=c1+c2= + 
EO(L + x )  EO(L - x )  - Q ( L 2  - G )  * 

Hence the electrostatic energy of the system is 

1 Q2 E o Q ~ ( L ’  - x 2 )  
2 c  4 A L  

we = -- - - 

As the charge Q is distributed over the central plate, when the plate moves 
work is done against the electrostatic force. Hence the latter is given by 

As F > 0, the force is in the direction of increasing x .  As an electric 
conductor is also a good thermal conductor, the motion of the central plate 
can be considered isothermal. Let the pressures exerted by air on the left 
and right sides on. the central plate be p 1  and p2 respectively. We have by 
Boyle’s law 

POL Po L 
L + x  L - x  1 p2=-* P1 = - 

When the central plate is in  the equilibrium position, the electrostatic force 
is balanced by the force produced by the pressure difference, i.e., 

or 
Q’EOZ 2 A p o L ~  
2 A L  L 2 - x 2  
-- - 

This determines the equilibrium positions of the central plate as 

x = f L  ( 1-- z;22)i. 
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1101 
Look a t  the person nearest to you. If he (or she) is not already spher- 

ical, assume that he (or she) is. Assign him (or her) an effective radius R, 
and recall that he (or she) is a pretty good electrical conductor. The room is 
in equilibrium at temperature T and is electromagnetically shielded. Make 
a rough estimate of the rms electrical charge on that person. 

(Prince ion) 

Solution: 
The capacitance of a conducting sphere of radius R is C = 4aeoR. If 

the sphere carries charge Q, then its electric energy is Q2/2C. According 
to the classical principle of equipartition of energy, 

or 

- 
Q2 1 - = -kT, 
2c 2 

where k is Boltzmann’s constant. 
Taking R = 0.5 m, T = 300 K,  we get 

&% 
= J ~ A  x 8.85 x 
= 4.8 x C .  

x 0.5 x 1.38 x x 300 

1102 
An isolated conducting sphere of radius a is located with its center at 

a distance z from a (grounded) infinite conductor plate. Assume z > a 
find 

(a) the leading contribution to the capacitance between sphere and 
plane; 

(b) the first (non-vanishing) correction to this value, when the capaci- 
tance is expressed in terms of a power-series expansion in a/%; 

(c) to leading order the force between sphere and plane, when the 
sphere carries a charge Q. What is the energy of complete separation of 
the sphere from the plane? How does this energy compare with the energy 
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of complete separation of t w o  such spheres, with charges +Q and -9, 
initially spaced apart by a distance 2r? Explain any difference between 
these two values. 

(Columbia) 
Solution: 

(a) To leading order, we can regard the distance between the conduct- 
ing sphere and the conductor plane as infinite. Then the capacitance of 
the whole system corresponds to that of an isolated conducting sphere of 
radius a, its value being 

C = 4reoa. 

(b) To find the first correction, we consider the field established by a 
point charge Q at the spherical center and its image charge -Q at distance 
x from and on the other side of the plane. At a point on the line passing 
through the spherical center and normal to the plane the magnitude of this 
field is 

Q - Q E =  4T€o(% - h)2 4Z€o(% + h)2 ' 
where h is the distance from this point to the plane. The potential of the 
sphere is then 

Hence the capacitance is 

c = - Q = 4nEoo(l + ;) 
V 

and the first correction is 2xe0a2 f r .  
(c) When the sphere carries charge Q, the leading term of the force 

between it and the conducting plane is just the attraction between two 
point charges Q and -Q separated by 2%. It  follows that 

The energy required to completely separate the sphere from the plane is 

W l = - l m F d r = l  O0 = d t = - .  Q2 Q2 
l6reor 
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On the other hand, the energy of complete separation of the two charges Q 
and -8, initially spaced by a distance 22, ia 

The difference in the required energy is due to the fact that in the first case 
one has to move Q from z to 00 while in the second case one has to move 
Q from z to 00 and -& from -2 to -00, with the same force -Q2/4neor' 
applying to all the three charges. 

1103 
A dipole of fixed length 2R has mass m on each end, charge +Q2 on one 

end and - 9 2  on the other. It is in orbit around a fixed point charge +@. 
(The ends of the dipole are constrained to remain in the orbital plane.) 
Figure 1.57 shows the definitions of the coordinates r,O,a. Figure 1.58 
gives the radial distances of the dipole ends from +Q1. 

(a) Using the Lagrangian formulation, determine the equations of mc+ 
tion in the (r, 8, a) coordinate system, making the appraximation r > R 
when evaluating the potential. 

(b) The dipole is in a circular orbit about Q1 with i * f' B ai' w 0 and 
a < 1. Find the period of small oscillations in the a coordinate. 

( Wisconsin) 

Fig. 1.57 Fig. 1.58 

Solution: 
(a) The angle between the dipole and the polar axis is (8 + a), so the 

angular velocity of the dipole about its center of mass is (d+ci). The kinetic 
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energy of the dipole is then 

1 1 
2 2 

T = - . 2m ( r 2  + r2e2) + - . 2mR2 * ( e  + &)’ 

= mr2 + m(r2 + R2)e2 + rnR2&’ + 2mR29& 

Moreover, the potential energy of the dipole is 

AS 
R R 

r * =  d r 2 + R 2 & 2 r R c o s a = r  

a rj/&= r(1 f 5 . 2 7 c o s a  1 R  

2Rcoscu a -- - 2 R cos a 1 1  - --- - 
r+ r- r2 - R2 c w 2  a r2 ’ 

and the potential energy is 

Q l Q 2  ~ R C O S ~  
4n€o r2 

v = --.-. 

The above give the Lagrangian L = T - V .  Lagrange’s equation 

gives 

of the other Lagrange’s equations: 

0 

gives 
( r 2  + R ~ ) B ~  + ~ ~ i i  + 2 m r 4  = 0,  

d BL and x( z) - = 0 gives 

Equations (1)-(3) are the equations of the motion of the dipole. 
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(b) As i k: r x 0, r is a constant. Also with = 0,a << 1 (i.e., 
sin a k: a), Eq. (3) becomes 

This shows that the motion in a is simple harmonic with angular frequency 

w =  J= 
4 7 ~ 0  mRr2 ’ 

The period of such small oscillations is 

1104 
The Earth’s atmosphere is an electrical conductor because it contains 

free charge carriers that are produced by cosmic ray ionization. Given that 
this free charge density is constant in space and time and independent of 
the horizontal pmi tion. 

(a) Set up the equations and boundary conditions for computing the 
atmospheric electric field as a function of altitude if the near-surface field 
is constant in time and vertical, has no horizontal variation, and has a 
magnitude of 100 voltq’rneter. You may assume that the surface of the 
Earth is perfectly flat if you wish. 

(b) Estimate the altitude dependence of the conductivity. 
(c) Solve the equations of part (a) above. 

(VC, Berkeley) 

Solution: 

equation V E + 
(a) This problem is that of a steady field in a conductor. The continuity 

= 0 and Ohm’s law j = aE give the basic equation 

= 0, di - 
dz 

taking the z-axis along the vertical. 
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The given boundary condition is 

Elr=@ = 100 V/m. 

(b) Since the frequency of collision between a free charge and the 
atmospheric molecules is proportional to the density of the latter, while 
the conductivity is inversely proportional to the collision frequency, the 
conductivity will be inversely proportional to the density of atmospheric 
molecules. For an isothermal atmosphere the number density of the atme 
spheric molecules is 

n = n o e - w ,  

where rn is the average mass of a molecule, g is the acceleration of gravity, 
k is Boltzmann’s constant, and T is the absolute temperature. Besides, 
the conductivity is also proportional to the number density of the free 
charges. As this density is assumed to be independent of altitude, the 
altitude dependence of the conductivity can be given as 

u = a o e w .  

(c) Equation (1) gives 

Using Eq. (2) and integrating we have 

where EO = 100 V/m. 

1105 
Two flat plates, each 5 cm in diameter, one copper, one zinc (and both 

fitted with insulating handles), are placed in contact (see Fig. 1.59) and 
then briskly separated. 

(a) Estimate the maximum charge one might expect to find on each 
plate after complete (> 5 cm) separation. 

(b) Volta in experiments of this sort (c.1795) observed charges of the 
order (in our units) of Coulomb. Compare this result with your eati- 
mate in (a), reconciling any difference. 
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(c) What charge would be expected if the plates, before separation, 

(Columbia) 
were arranged as in Fig. 1.60? 

Fig. 1.59 Fig. 1.60 

Solution: 
(a) When the two plates are in contact, they can be taken aa a parallel- 

plate capacitor. Letting 6 be their separation and V be the potential dif- 
ference, the magnitude of charge on each plate is 

ZLO( Q)'V 
6 .  Q = C V =  

As d = 0.05 m, taking the contact potential as V - 
we obtain 

V and 6 - lo-'' m 

QSS? 1.7 x 1 0 - ~  c.  
(b) The above estimated value is greater than the experimental results 

of Volta (w C). This is probably caused by the following. First of all, 
due to the roughness of the plates' surfaces, their average separation might 
be larger than lo-'' m. Secondly, in the separating process the charges 
might accumulate on some ridges of the plates (also because of roughness), 
so that some of the charges might cancel between the two plates. 

(c) According to Fig. 1.60, the contact area is less than that of case (a), 
hence the corresponding charges after separation will be much diminished. 

1106 
An ionization chamber is made of a metal cylinder of radius a and 

length L with a wire of radius b along the cylinder axis. The cylinder is 
connected to negative high voltage -h and the wire is connected to ground 
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by a resistor R, as shown in Fig. 1.61. The ionization chamber is filled with 
argon at  atmospheric pressure. Describe (quantitatively) as a function of 
time the voltage AV across the resistor R for the case where an ionizing 
particle traverses the tube parallel to the axis at a distance r = a/2 from 
the central axis and creates a total of N = lo5 ion-electron pairs. 

Fig. 1.61 

Given: a= 1 cm, b = 0.1 mm, L = 50 cm, VO = 1000 V, R = lo", 

mobility of argon ions p+ = 1.3 
cm cm - . -  
s V '  

cm cm - . - mobility of electrons p- = 6 x lo3 
s V '  

(Hint: In order to make reasonable approximation, you might have to  cal- 
culate the RC time constant of this system.) 

The voltage (1000 volts) is insufficient to produce ion multiplication 
near the wire (i.e., this is not a proportional counter). 

Note that the detailed shape of the pulse rise is important. 
(Princeton) 

Solution: 
Use cylindrical coordinates ( r ,  'p, z )  with the z-axis along the cylindrical 

axis. The electric field at a point (r ,  'p, z )  satisfies E o( fe, according to  
Gauss' flux theorem. From 

- la E(r)dr = -VO 

we get 
Va E ( r )  = - 

r ln ( t ) e r  * 

If Qo is the charge on the wire, Gauss' theorem gives 

Qo E(r) = - 2raoLre' ' 
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The capacitance of the chamber is accordingly 

C = Qo/VO = 27reoL/ In(a/b) 

= 27 x 8.85 x x 0.5 In 1 (A) 
= 6 x F. 

Hence the time constant of the circuit is 

RC = lo5 x 6 x lo-'' = 6 x s .  

The mobility of a charged particle is defined as p = &%, or dt = $, 
Hence the time taken for the particle to  drift from r1 to r2 is 

For an electron to drift from r = a/2 to the wire, we have 

10-4 x - = 9.6 x s 
- In 100 - 

2 x 6 x lo3 x x 1000 4 

and for a positive ion to reach the cylinder wall, we have 

3 = 1.3 x 10-3 s .  
In 100 

2 x 1.3 x 10-4 x 1000 4 

It follows that At- cg RC << A t + .  When the electrons are drifting from 
r = a/2 to the anode wire a t  r = b, the positive ions remain essentially sta- 
tionary at r = a / 2 ,  and the discharge through resistor R is also negligible. 
The output voltage A V  of the anode wire at t 5 A t -  (taking t = 0 at the 
instant when the ionizing particle enters the chamber) can be derived from 
energy conservation. When a charge q in the chamber displaces by dr, the 
work done by the field is qE . dr corresponding to a decrease of the energy 
stored in the capacitance of d ( C V 2 / 2 ) .  Thus CVdV = -qE + dr = -qEdr. 
Since A V  < VO, V VO, and we can write 

CVodV = -qEdr . 
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Integrating, we have 
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CVoAV = -qli2 

Noting that 

we have 

or 

and, as q = - N e ,  

, O s t < A t , .  At- 

At t = At-, 

AV = k 1 n  c (!)/In (:) 
10' x 1.6 x lo-'' In50 

6 x 10-12 In 100 
= -  x- 

= -2.3 x 1 0 - ~  v .  
This voltage is then discharged through the RC circuit. Therefore, the 
variation of AV with time is as follows: 

AV = 5.86 x 10-31n 1 - 

AV = -2.3 x 10-3exp (- 
This means that the voltage across the two ends of R decreases to -2.3 mV 
in the time At-, and then increases to zero with the time constant RC. A 

[ 
- 

9.6 x 
t 

6 x lo-? 

V , for 0 5 t 5 9.6 x s;  

) V ,  for t > 9 . 6 x  lO-'s. 
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final remark is that, as the ions drift only slowly and the induced charges on 
the two electrodes of the chamber are discharged quickly through the RC 
circuit, their influence on the wave form of AV can be completely ignored. 

1107 

An intense energetic electron beam can pass normally through a 
grounded metal foil. The beam is switched on at t = 0 at a current 
Z = 3 x 10' amp and a cross sectional area A = 1000 cm'. After the 
beam has run for sec, calculate the electric field at  the point P on the 
output face on the foil and near the beam axis due to the space charge of 
the beam. 

( Wbcon8in) 

Solution: 

At t = lo-%, the beam forms a charge cylinder on the right side of 
the foil with a cross sectional area A = 1000 cm2 as shown in Fig. 1.62. 
The length h of the cylinder is ct = 3 x lo8 x = 3 m, assuming the 
electrons to have sufficiently high energy so that their speed is close to the 
velocity of light. We may consider a total charge of 

-& = - I t  = -3 x lo6 x lo-8 = -3 x c 

being uniformly distributed in this cylinder. As the charge on the left side 
of the foil does not contribute to the electric field at point P (Shielding 
effect), the action of the grounded metal foil can be replaced by an image 
charge cylinder. This image cylinder and the real cylinder are symmetrical 
with reapect to the metal foil and their charges are opposite in sign (see 
Fig. 1.82). 

foil 

Fig. l.G2 Fig. 1.63 
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We first calculate the electric field at point P on the axis of a uniformly 
charge disc of surface charge density u as shown in Fig. 1.63. The potential 
ie 

and the field intensity is 

Refer now to Fig. 1.62. The field a t  the point P produced by the right 
charge cylinder is 

Hence the total electric field a t  P is 

= -1.42 x lo9 V/m. 

The minus sign indicates that the field intensity points to  the right. 

1108 
The Fig. 1.64 could represent part of a periodic structure of alternating 

metallic electrodes and gaps found in an electrostatic accelerator. The 
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voltage on any electrode is higher by VO than that on the previous electrode. 
The structure is twcldimensional in that the electrodes have infinite extent 
in the z direction. The object of this problem is to find the electric field in 
the region 191 < W. 

(a) For the purpose of mathematical simplicity we will assume that 
E along lines such as that between points a and b is constant and has 
no y component. What does this imply about the electrostatic potential 
between a and b? How might one try to achieve such a boundary condition 
in practice? 

(b) As a guide to subsequent calculations, use physical reasoning to 
make a sketch of the electric field lines (with directions) in the structure. 

(c) Find an expression for the electrostatic potential 4(zly)  in the 
region lyl < W as an infinite sum over individual solutions of Laplace's 
equation. 

(d) Find the electric field E(z, y). 

W I T )  

I 
zw 

Fig. 1.64 

Solution: 
(a) Use the coordinates shown in Fig. 1.64. The electric field between 

the points ai and bi is constant, and has no y component. This shows 
that the electric field lines between ai and bi are parallel to the x-axis. 
Mathematically the potential can be expressed as 
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Here (p2(2) represents the sawtooth wave shown in Fig. 1.65. Its Fourier 
cosine series, of period L, is 

2mrz L 
dz 

m=l 

To achieve these conditions in an electrostatic accelerator, the separation 
of the electrodes in the y direction must be much greater than L. 

Fig. 1.65 

(b) The electric field lines in the accelerator is shown in Fig. 1.66. 
(Here we only show the electrostatic lines of force between two neighboring 
electrodes; the pattern repeats itself.) 

Fig. 1.GG 
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(c) The electric potential in the region Iyl < W satisfiea the following 
equation and boundary condition: 

Defining $(z, y) = 4(z, y) + V - 2 + 9, it satisfies the following equation 
and boundary condition 

Since pz(z) in the boundary condition is an even periodic function with 
period L (see Fig. 1.65)' the solution must also be an even periodic function 
of 2. Thus we can write 

and substitute it in the equation for $(z,y). We immediately obtain 
2mry 2mry + bm sinh - $m ( v )  = am cash - L .  L 

Also, substituting $(c, y) in the boundary condition and comparing the 
coefficients, we get 

Hence 

vo voz 2vo +O0 1 
+,y) = v - - + + - L r2 n=O ' (2n + 1)2 c o s h [ v b W ]  

. cosh [ 2(2n: "ry] cos [ 2(2n + 1) r x ]  . 
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1. MAGNETIC FIELD OF CURRENTS (2001-2038) 

2001 
A cylindrical wire of permeability p carries a steady current I. If the 

radius of the wire is R, find B and H inside and outside the wire. 
( Wisconsin) 

Solution: 
Use cylindrical coordinates with the z-axis along the of the wire 

and the positive direction along the current flow, as shown in Fig. 2.1. On 
account of the uniformity of the current the current density is 

8 
L 

Fig. 2.1 

Consider a point at  distance r from the axis of the wire. Ampbre’s circuital 
law A H . & =  I ,  

where L is a circle of radius r with centre on the x-axis, gives for r > R, 

I 
2rr H(r) = -ee , 

or 
POI 
2rt 

B(r) = -ee 

since by symmetry H(r) and B(r )  are independent of 8.  For r < R, 

147 
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and the circuital law gives 

2002 

A long non-magnetic cylindrical conductor with inner radius a and 
outer radius b carries a current 1.  The current density in the conductor is 
uniform. Find the magnetic field set up by this current as a function of 
radius 

(a) inside the hollow space ( r  < a); 

(b) within the conductor (a < r < b ) ;  
(c) outside the conductor ( r  > b).  

( Wisconsin) 

Solution: 

in the conductor is 
Use cylindrical coordinates as in Problem 2001. The current density 

I 
= r (b2  - a2) ‘ 

The current passing through a cross-section enclosed by a circle of radius 
r ,  where a < r < b, is 

By symmetry, Ampkre’s circuital law gives 
(a) B = 0, ( r  < a). 

(b) B ( r )  = g .  H e @ ,  (a < r < b ) .  

(c) B ( r )  = g e e ,  ( r  > b ) .  

2003 
The direction of the magnetic field of a long straight wire carrying 8 

(a) in the direction of the current 
current is: 
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(b) radially outward 
(c) along lines circling the current 

Solution: 
The answer is (c). 

2004 
What is the magnetic field due to a long cable carrying 30,000 amperes 

(a) 3 x 

at a distance of 1 meter? 
Tesla, (b) 6 x Tesla, (c) 0.6 Tesla. 

W T )  
Solution: 

The answer is (b). 

2005 
A current element id1 is located at  the origin; the current is in the 

direction of the z-axis. What is the I component of the field at a point 
P(X, Y, t)? 

(a) 0, (b) -iydl/(z2 + y2 + z2)3/2, (c) izdl/(t2 + p a  + t2)3/2. 

W T )  
Solution: 

The answer is (b). 

2006 
Consider 3 straight, infinitely long, equally spaced wires (with zero 

(a) Calculate the location of the two zeros in the magnetic field. 
(b) Sketch the magnetic field line pattern. 
(c) If the middle wire is rigidly displaced a very small distance t (z < 

d) upward while the other 2 wires are held fixed, describe qualitatively the 
subsequent motion of the middle wire. 

radiua), each carrying a current I in the same direction. 

( Wisconsin) 
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Solution: 
(a) Assume the three wires are coplanar, then the points of zero mag- 

netic field must also be located in the same plane. Let the distance of such 
a point from the middle wire be x. Then the distance of this point from 
the other two wires are d f t. Applying Ampkre’s circuital law we obtain 
for a point of zero magnetic field 

POI PO - -+ PO] 
2z(d - x) - 2rx  2r(d + x) ‘ 

Two solutions are possible, namely 

corresponding to two points located between the middle wire and each of 
the other 2 wires, both having distance &d from the middle wire. 

(b) The magnetic field lines are as shown in Fig. 2.2(a). 

Fig. 2.2(a) 

(c) When the middle wire is displaced a small distance t in the same 
plane, the resultant force per unit length on the wire is 

Po z2 - P 0 Z 2  

= 2 4 d  + t) 2 4 d  - t) * 

As t << d, this force is approximately 



That is, the force is proportional but opposite to the displacement. Hence, 
the motion is simple harmonic about the equilibrium position with a period 
T = 2 1 E 9 ,  where rn is the mass per unit length of the middle wire. 

This however is only one of the normal modes of oscillation of the 
middle wire. The other normal mode is obtained when the wire is displaced 
a small distance z out from and normal to the plane as shown in Fig. 2.2(b). 
The resultant force on the wire is in the negative z direction, being 

This motion is also simple harmonic with the same period. 

L It' 
Fig. 2.2(b) 

2007 
As in Fig. 2.3, an infinitely long wire carries a current I = 1 A. It ia 

bent so as to have a semi-circular detour around the origin, with radius 1 
cm. Calculate the magnetic field at the origin. 

(UC, Berkelegl) 

Fig. 2.3 
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Solution: 
The straight parts of the wire do not contribute to the magnetic field 

at 0 since for them Z d l  x r = 0. We need only to consider the contribution 
of the semi-circular part. The magnetic field a t  0 produced by a current 
element Z d l  is 

Zdl  x r d B = - - .  
4r r3 

As Z d l  and r are mutually perpendicular for the semi-circular wire, dB is 
always pointing into the page. The total magnetic field of the semi-circular 
wire is then 

B =  d B = -  do=- .  J efl" YrZ 

With Z = 1 A, r = m, the magnetic induction a t  0 is 

B = 3.14 x 10-5 T ,  

pointing perpendicularly into the page. 

2008 

A semi-infinite solenoid of radius R and n turns per unit length carries 
a current I .  Find an expression for the radial component of the magnetic 
field Br(zo) near the axis at  the end of the solenoid where r << R and z = 0. 

Solution: 
We first find an expression for the magnetic induction at a point on 

the axis of the solenoid. As shown in Fig. 2.4, the field a t  point zo on the 
axis is given by 

( M m  

Let z - to = Rtan 8. Then dz = Rsec2 ad0 and we get 
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AS 
Rtan80 = Z O ,  

or 

Hence 

Next, we imagine a short cylinder of thickness dzo and radius r along 
the z-axis as shown in Fig. 2.5. Applying Maxwell's equation 

f B . d S = O  

to its surface S we obtain 

[Bz(t.o + d z )  - B,(zo)] * xr2 = B,(za 

Fig. 2.4 Fig. 2.6 

For r < R, we can take B,(zo) = B(z0). The above equation then gives 

or 
r dB(z0) ponIrR2 B,(ro) = -- - 
2 dzo - 4(R2 + ~ i ) ~ / ~  . 

At the end of the solenoid, where t o  = 0, the radial component of the 
magnetic field is 
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2009 
A very long air-core solenoid of radius b has n turns per meter and 

carries a current i = i o  sin wt. 
(a) Write an expression for the magnetic field B inside the solenoid aa 

a function of time. 
(b) Write expressions for the electric field E inside and outside the 

solenoid aa functions of time. (Assume that B is zero outside the solenoid.) 
Make a sketch showing the shape of the electric field lines and also make a 
graph showing how the magnitude of E depends on the distance from the 
axis of the solenoid at time t = c, 
Solution: 

axial direction, i.e., 

( Wisconsin) 

(a) Inside the solenoid the field B is uniform everywhere and is in the 

B(t) = poni(t)e, = ponio sin(wt)e, . 

(b) Using f E dl = - J . dS and the axial symmetry we can find 
the electric field a t  points distance r from the axis inside and outside the 
solenoid. For r < b, one has E - 2nr = -m2% = --A? - poniow coswt, 
giving 

E(t) = -%iOur coawt . 
2 

For r > b ,  one has E - 2nr = -nb2 . poniow coswt, giving 

b2 
2r 

E(t) = --niow coswt . 

In the vector form, we have 

At t = E , c o s w t  = 1 and we have 

niowreg ( r  < b ) ,  

2rniOwee (r > b) . 
( 2 )  = { -f -- 

The relation between IEI and t is shown in Fig. 2.6. Up to r = b the electric 
field lines are a series of concentric circles as shown in Fig. 2.7. 
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Fig. 2.6 Fig. 2.7 

2010 
Assume that the earth’s magnetic field is caused by a small current 

loop located at the center of the earth. Given that the field near the pole 
is 0.8 gauss, that the radius of the earth is R = 6 x lo6 rn, and that 
po = 4r x 10’’ H/m, use the Biot-Savart law to calculate the strength of 
the mangnetic moment of the small current loop. 

Solution: 
Assume that the axis of the current loop, of small radius a, coincides 

with the axis of rotation of the earth, which is taken to be the z-axis as 
shown in Fig. 2.8. The contribution of a current element Zd to the magnetic 
induction B at an axial point z is, according to the Biot-Savart law, 

( WkOn8lft)  

dB is in the plane containing the z-axis and r and is perpendicular to 
r. Summing up the contributions of all current elements of the loop, by 
symmetry the resultant B will be along the z-axis, i.e., 

B = B,e,, or 
a 

d B , = d B . - .  r 
At the pole, z = R. As R > a, r = R and 

where S = xaZ is the area of the current loop. 
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&. 
Id I 

Fig. 2.8 

The magnetic moment of the loop is m = ZSe,, thus 

Using the given data R = 6 x lo6 m, B, = 0.8 Gs, we obtain 

m sz 8.64 x Am2. 

2011 
A capacitor (in vacuum) consists of two parallel circular metal plates 

each of radius r separated by a small distance d.  A current i charges the 
capacitor. Use the Poynting vector to show that the rate a t  which the 
electromagnetic field feeds energy into the capacitor is just the time rate of 
change of the electrostatic field energy stored in the capacitor. Show that 
the energy input is also given by iV, where V is the potential difference 
between the plates. Assume that the electric field is uniform out to the 
edges of the plates. 

( Wisconsin) 

Fig. 2.9 
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Solution: 

charge 8, the electric field between the plates is 
Use coordinates as shown in Fig. 2.9. When the positive plate carries 

Q E = -(-ez) 
rr2&0 

As Q is changing, so is E, producing a magnetic field between the plates. 

to a loop C between the plates, of area S parallel and equal to that of the 
plates, by symmetry we obtain 

or 
a 

H = -(-ee). 2rr  
Hence the Poynting vector of the electromagnetic field is 

Th  energy flux enters the capacitor through the curved sides of the capac- 
itor. The flow per unit time is then 

P = N .2nrd = - iQ d .  

The electrostatic energy stored in the capacitor is 

rr% 

and the rate of increase is 

Thus we have 
dW, P = - .  

dt 

On the other hand, Q = CV = q V ,  or 5 = V. Hence P = iV also. 
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2012 
A parallel-plate capacitor is made of circular plates as shown in 

Fig. 2.10. The voltage across the plates (supplied by long resistancelean 
lead wires) has the time dependence V = Vo coawt. Assume d < a < cfw, 
so that fringing of the electric field and retardation may be ignored. 

(a) Use Maxwell's equations and symmetry arguments to determine 
the electric and magnetic fields in region I as functions of time. 

(b) What current flows in the lead wires and what is the current density 
in the plates as a function of time? 

(c) What is the magnetic field in region II? Relate the discontinuity of 
B accrwe a plate to the surface current in the plate. 

(CUSPEA) 

Solution: 

E!')e,, where 
(a) Because d << a, the electric field in region I is approximately E(') = 

= -3 coswt 
d 

at time 1. 
Apply Maxwell's equation 

to a circle L of radius r centered at the line joining the centers of the two 
plates. By symmetry, B(') = B f ) e + .  Thus one has 
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or 

(b) Let u be the surface charge density of the upper plate which is the 
interface between regions I and 11. We have 

Then the total charge on the plate is 

Note that u is uniform because E$') is uniform for any instant t .  The time 
variation of Q shows that an alternating current Z passes through the lead 
wires: 

dQ na2EoVow 
dl d 

I = - = -  sin wt . 
As the charge Q on the plate changes continuously with time, there will 
be surface current flowing in the plate. As shown in Fig. 2.11, this current 
flows towards the center of the plate along radial directions. The total 
current flowing through the shaded loop is 

n(a2 - r2)eoVow 
d 

sin wt . [.(a2 - r2)u] = . d  
dt 

1 = -- 

Hence, the linear current density (current per unit width), in the plate is 

I a i r l  - 
Fig. 2.11 
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(c) In Ampere's circuital law 

the direction of flow of I and the sense of traversing L follow the right- 
handed screw rule. At time t ,  I flows along the -%-direction and by axial 
symmetry 

B(") = B(")e6.  
0 

Hence 

or 
n x (B(") - ~ ( ' 1 )  = poj. 

This is just the boundary condition for the magnetic field intensity 

2013 

A capacitor having circular disc plates of radius R and separation 
d << R is filled with a material having a dielectric constant K,. A time 
varying potential V = VO coswt is applied to the capacitor. 

(a) As a function of time find the electric field (magnitude and di- 
rection) and free surface charge density on the capacitor plates. (Ignore 
magnetic and fringe effects.) 

(b) Find the magnitude and direction of the magnetic field between 
the plates as a function of distance from the axis of the disc. 

(c) Calculate the flux of the Poynting vector from the open edges of 
the capacitor. 

( Wisconsin) 
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Solution: 
This problem is similar to Problem 2012. The answers for (a) and (b) 

are 
vo vo 
d d (a) E = - cos(wt)e, , d = i k e c o -  cos(wt) , 

(c) The Poynting vector at r = R is 

Thus N is radial in the cylindrical coordinates. Hence the flux of the Poynt- 
ing vector from the open edges of the capacitor (i.e., the curved surface of 
a cylinder of height d and radius R) is 

~ b ~ c ~ w  b2 R2 sin 2wt 
2d 

4 = 2irRdN = 

2014 
A parallel plate capacitor has circular plates of radius R and separation 

d a R. The potential difference V across the plates varies as V = VO sin w t .  
Assume that the electric field between the plates is uniform and neglect edge 
effects and radiation. 

(a) Find the direction and magnitude of the magnetic induction B a t  
point P which is at a distance r (r < R) from the axis of the capacitor. 

(b) Suppose you wish to measure the magnetic field B at the point P 
using a piece of wire and a sensitive high-impedance oscilloscope. Make a 
sketch of your experimental arrangement and estimate the signal detected 
by the oscilloscope. 

( Wisconsin) 

Solution: 
(a) Referring to Problem 2012, the magnetic induction at point P is 

Eo'oI/gWr cos(wt)ee B ( r , t )  = 
2d 
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(b) Figure 2.12 shows the experimental arrangement, A small square 
loop of area AS  made of a wire, whose two ends are connected to the 
oscilloscope, is placed at P such that the plane of the loop contains the 
axis of the capacitor. A sinusoidal wave will appear on the oscilloscope, 
whose amplitude and frequency are measured. These correspond to the 
amplitude and frequency of the electromotive force E .  Then from 

we can find the amplitude of the magnetic induction B. 

Fig. 2.12 

2015 
What is the drift velocity of electrons in a 1 mm Cu wire carrying 

(Columbia) 
10 A? 

Soh t ion: 

lo-', lo', lo5 cm/sec. 

It is IO-'cm/sec. 

2016 
What is the average random speed of electrons in a conductor? 

lo', lo4, lo6, 10' cm/sec. 

Solution: 
(Columbia) 

It is lo6 cm/sec. 

2017 
Which is the correct boundary condition in magnetostatics at a bound- 

ary between two different media? 



(a) The component of B normal to the surface has the same value. 
(b) The component of H normal to the surface has the same value. 
(c) The component of B parallel to the surface has the same value. 

( C W  
Soh t ion: 

The answer is (a). 

2018 
A system of conductors has a cross section given by the intersection of 

two circles of radius b with centers separated by 2a as shown in Fig. 2.13. 
The conducting portion is shown shaded, the unshaded lens-shaped region 
being a vacuum. The conductor on the left carries a uniform current den- 
sity J going into the page, and the conductor on the right carries a uniform 
current density J coming out of the page. Assume that the magnetic per- 
meability of the conductor is the same as that of the vacuum. Find the 
magnetic field at all points t , y  in the vacuum encloeed betwen the two 
conductors. 

( M W  

Fig. 2.13 

Solution: 
As the magnetic permeability of the conductor is the same as that of 

the vacuum, we can think of the lens-shaped region as being filled with 
the same conductor without affecting either the magnetic property of the 
conducting system or the distribution of the magnetic field. We can then 
consider this region as being traversed by two currents of densities fJ, 
i.e., having the same magnitude but oppoeite directions. Thus we have two 
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cylindrical conductors, each having a uniform current distribution, and the 
magnetic induction in the region is the sum of their contributions. In their 
own cylindrical coordinates AmpBre’s circuital law yields 

As 

we have 

PO Bz = TJ(-yze ,  + x.zey). 

Using the transformation 

x2 = X I  - 2a 
Yz = Y l  

we have 
PO BZ = ,J[-meZ + ( X I  - 2 a ) g l .  

Hence the magnetic field induction in the lens-shaped region is 

This means that the field is uniform and is in the -ey direction. 

2019 
A cylindrical thin shell of electric charge has length I and radius a, 

where 1 >> a. The surface charge density on the shell is g. The shell rotates 
about its axis with an angular velocity w which increases slowly with time 
as w = kt ,  where k is a constant and t 2 0, as in Fig. 2.14. 
Neglecting fringing effects, determine: 
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(a) The magnetic field inside the cylinder. 
(b) The electric field inside the cylinder. 
(c) The total electric field energy and the total magnetic field energy 

inside the cylinder. 
( Wisconsin) 

Solution: 
(a) Use cylindrical coordinates ( p ,  9, t) with the z-axis along the axis of 

the cylinder. The surface current density (surface current per unit width) 
on the cylindrical shell is a = uwaev. It can be expressed as a volume 
current density (current per unit cross-sectional area) J = awab(p - a)eV. 
By symmetry we have B = B, (p )e , .  Then the equation V x B = p0J 
reduces to 

P o a w 4 P  - a) 1 

a B, 
dP 

--= 

which gives 
B(P) = pouwaez 1 ( P  < a) * 

(b) Apply Maxwell’s equation 

to a circle of radius p in a plane perpendicular to the x-axis and with 
the center at the axis. On this circle, E is tangential and has the same 
magnitude, i.e., E = E(p)e, .  Hence, noting that w = kt  we have 

2 nsop~u2k2a61 
:cOl la (q) 2rpdp = 16 

1 
2 

(c) WE = J -EoE2dV 
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2020 
A long, solid dielectric cylinder of radius a is permanently polarized 

so that the polarization is everywhere radially outward, with a magnitude 
proportional to the distance from the axis of the cylinder, i.e., P = $Pore,. 

(a) Find the charge density in the cylinder. 
(b) If the cylinder is rotated with a constant angular velocity w about 

its axis without change in P, what is the magnetic field on the axis of the 
cylinder a t  points not too near its ends? 

(S  U N Y ,  Buflalo) 

Solution: 
(a) Using cylindrical coordinates (r,O,z),  we have P = P, = Por/2. 

The bound charge density is 

(b) As w = we,, the volume current density at  a point r = rer + re, 
in the cylinder is 

j(r) = pv = pw x r = -Powe, x (re,  + ze,) = - P o w r e g .  

On the surface of the cylinder there is also a surface charge distribution, of 
density 

P0r P0a u = n . P  = e, . TIr=' = - 
2 .  

This -produces a surface current density of 

PO 
2 

a = uv = -wa2eg 

To find the magnetic field at a point on the axis of the cylinder not too near 
its ends, as the cylinder is very long we can take this point as the origin 
and regard the cylinder as infinitely long. Then the magnetic induction at 
the origin is given by 

where V and S are respectively the volume and curved surface area of the 
cylinder and r' = ( r , f l , z )  is a source point. Note the minus sign arises 
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because r' directs from the field point to a source point, rather than the 
other way around. Consider the volume integral 

r2drdddt 
ea - J, (r2 + .213/2er] * 

As the cylinder can be considered infinitely long, by symmetry the second 
integral vanishes. For the first integral we put z = r tan P. We then have 

Similary, the surface integral gives 

dS' 1 x r' ds, = 1 +a2,@ x (aer + 
2 3  (a2 + z3 )3 /2  

Hence, the magnetic induction B vanishes at points of the cylindrical axis 
not too near the ends. 

2021 
A cylinder of radius R and infinite length is made of permanently 

polarized dielectric. The polarization vector P is everywhere proportional 
to the radial vector r, P = a r ,  where a is a positve constant. The cylinder 
rotates around its axis with an angular velocity w .  This is a non-relativistic 
problem -w R < c. 

(a) Find the electric field E at a radius r both inside and outside the 
cylinder. 

(b) Find the magnetic field B at a radius r both inside and outside the 
cylinder. 

(c) What is the total electromagnetic energy stored per unit length of 
the cylinder, 

(i) before the cyliner started spinning? 
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(ii) while it is spinning? 
Where did the extra energy come from? 

Solution: 
(a) Use cylindrical coordinats ( r ,  8 ,  z )  with the axis of the cylinder along 

the z direction, the rotational angular velocity of the cylinder is w = we,.  
The volume charge density inside the cylinder is 

( UC, Berkeley) 

p = -V . P = -V . (ar)  = -2a.  

The surface charge density on the cylinder is then 

u = n . P = er . (ar) Ir=R = a R  . 

The total charge per unit length is therefore - 2 a .  nR2 + 2sR - aR = 0. 
Thus the net total charge of the cylinder is zero. l+om Gauss’ flux theorem 
f E . dS = Q / E O  and the axial symmetry we find that 

ar E = {  - p r >  r < R ,  
0 r > R .  

(b) The volume current density is j = pv = -2awre9, and the surface 
current density is a = uv = awR2ee. If the cylinder is infinitely long, 
by symmetry B = B(r)e , .  The equation and boundary condition to be 
satisfied by B are 

Here B1 and B Z  are the magnetic inductions inside and outside the cylinder, 
respectively. The equation gives 

Thus 82 is a constant. As Bz 4 0 for r + 00, the constant is zero. The 
boundary conditon at r = R, 

yields 
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Integrating the differential equation for B1 from r to R ,  we obtain 

&(r)  = B, (R)  - poaw(R2 - r 2 )  = poawr2. 

Hence the magnetic fields inside and outside the cylinder are 

poawr2ez , r < R ,  
0 , r > R .  

* = {  
(c) (i) Before the cylinder starts spinning, only the electric energy 

exists, the total being 
We = 1- 2 E2dV.  

So the energy stored per unit length of the cylinder is 

(ii) When the cylinder is spinning, both electric and magnetic energies 
exist. The electric energy is the same as for case (i), and the magnetic 
energy stored per unit length of the cylinder is 

Therefore the total energy stored per unit length is 

dW dW, dWm sa2R4 p0na2w2R6 -- - - +-=- 
d t  dt dz 4Eo ' 6  

-- - na2 R4 [I + 91 * 
~ E O  

The extra energy, the magnetic energy, comes from the work done by ex- 
ternal agency to initiate the rotation of the cylinder from rest. 

2022 

A long coaxial cable consists of a solid inner cylindrical conductor of 
radius R1 and a thin outer cylindrical conducting shell of radius R2. At 
one end the two conductors are connected together by a resistor and at 
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the other end they are connected to a battery. Hence, there is a current i 
in the conductors and a potential difference V between them. Neglect the 
resistance of the cable itself. 

(a) Find the magnetic field B and the electric field E in the region 
Rz > r > R I ,  i.e., between the conductors. 

(b) Find the magnetic energy and electric energy per unit length in 
the region between the conductors. 

(c) Assuming that the magnetic energy in the inner conductor is neg- 
ligible, find the inductance per unit length L and the capacitance per unit 
length C. 

( Wisconsin) 

Solution: 
(a) Use cylindrical coordinates (r,O,z) where the z axis is along the 

axis of the cable and its positive direction is the same as that of the current 
in the inner conductor. From & B * d = poi and the axial symmetry we 
have 

PO i 
27rr 

B =  -eg 

From jS E . dS = 2 and the axial symmetry we have 

where A is the charge per unit length of the inner conductor. The voltage 
between the conductors is V = - IRa1 E - dr, giving R 

R2 
R1 

X = 27r&oV/ In - . 

Accordingly, 
V E =  - r ln  her * 

RI 

(b) The magnetic energy density is wm = 3 = 4f(&)2. Hence the 
magnetic energy per unit length is 
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The electric energy density is we = 
energy per unit length is 

= y(-4;c)2. Hence the electric 
2'n Ir: 

(c) Rom = #($$) i2 ,  the inductance per unit length ia 

From 9 = 4($$)V2, the capacitance per unit length is 

dC 2 ~ ~ 0  -= -  
dx I n & '  

2023 
The conduthors of a coaxial cable are connected to a battery and resis- 

tor as shown in Fig. 2.15. Starting from first principles find, in the region 
between rl and r2, 

(a) the electric field in terms of V, rl and r2, 
(b) the magnetic field in terms of V, R,r1 and r2, 
(c) the Poynting vector. 
(d) Show by integrating the Poynting vector that the power flow be- 

( Wisconsin) 
tween r1 and 1-2 is V2/R. 

Fig. 2.15 

Solution: 
(a), (b) Referring to Problem 2022, we have 
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As I = V / R  
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PO V B = -  
2arRee ’ 

B V V V 2  
2 m 2  R In ez* Po r ln  aer rl 2.1rrRee = (c) N = E x H = E x - = - 

2024 

Suppose the magnetic field on the axis of a right circular cylinder is 
given by 

B = Bo( 1 + vz2)e,  . 

Suppose the 8-component of B is zero inside the cylinder. 

the axis. 

field described above is valid for all radii r? 

(a) Calculate the radial component of the field Br(r, z) for points near 

(b) What current density j(r,,z) is required inside the cylinder if the 

( Wisconsin) 

Solution: 

r at and perpendicular to the z-axis and apply Maxwell’s equation fs B 
dS = 0. As r is very small, we have 

(a) As in Fig. 2.16, consider a small cylinder of thickness dz and radius 

Hence 
[B,(O, z + d z )  - B,(O, z ) ]ar2  + Br(r, z)2ardz = 0 ,  

or 

giving 

r d B ( 0 , z )  ---po(i r d + vz’)]  = -vBorz 
2 8% 

- - 
2 dz 

&(r,  z )  = -- 
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(b) Suppose the following are valid everywhere: 

Br(r, Z) = -vBorz, 
B,(r,z)  = Bo(l+ vz') 

For a conductor D can be neglected and Maxwell's equation reduces to 
j = 1 V  x B. Noting that Be = 0, % = $& = 0, we have 

PO 

This is the current density required. 

2025 

A toroid having an iron core of square cross section (Fig. 2.17) and 
permeability p is wound with N closely spaced turns of wire carrying a 
current I. Find the magnitude of the magnetization M everywhere inside 
the iron. 

( Wisconsin) 

f N turns 

Fig. 2.17 
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Solution: 
According to Ampkre’s circuital law 

NZ H = -  
2nr ’ 

where r is the distance from the axis of the toroid. 
The magnetization M inside the iron is 

2026 

A C-magnet is shown in Fig. 2.18. All dimensions are in cm. The 
relative permeability of the soft Fe yoke is 3000. if a current Z = 1 amp is 
to produce a field of about 100 gauss in the gap, how many turns of wire 
are required? 

( Wisconsin) 

f I 
f 
2 
f 

Fig. 2.18 

Solution: 
Consider a cross section of the magnet parallel to the plane of the 

paper and denote its periphery, which is (including the gap) a square of 
aides 1 = 20 cm, by L. As the normal component of B is continuous, 
the magnetic intensity in the gap is B / p o ,  while that inside the magnet 
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is B/popr, where pr is the relative permeability of the iron. Ampere’s 
circuital law 

i H . d Z =  NZ 

applied to L becomes 

B B 
-d + ~ ( 4 1 -  d )  = NZ , 
PO POPr 

where d = 2 cm is the width of the gap. Hence 

B 1 
N = - [d + -(41- d) ]  

POI Pr 
0.2 x 4 - 0.02 - - 

4r x 10-7 x 1 
= 161 turns 

are required. 

2027 
An electromagnet is made by wrapping a current carrying coil N times 

around a C-shaped piece of iron ( p  > PO) as shown in Fig. 2.19. If the 
croes sectional area of the iron is A, the current is i ,  the width of the gap 
is d,  and the length of each side of the “C” is 1, find the B-field in the gap. 

(Columbia) 

C---~--l 
Fig. 2.19 

Solution: 
Putting Pr = p/po in the result of Problem 2026, we find 
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2028 

Design a magnet (using a minimum mass of copper) to  produce a field 
of 10,000 gauss in a 0.1 meter gap having an area of lmx2m.  Assume very 
high permeability iron. Calculate the power required and the weight of the 
necessary copper. (The resistivity of copper is 2 x ohm-cm; its density 
is 8 g/cm3 and its maximum current density is 1000 amp/cm2.) What is 
the force of attraction between the poles of the magnet? 

(Princeton)  

Solution: 

of the diagram as shown in Fig. 2.20.  Amphre’s circuital law becomes 
L is the periphery of a crass section of the magnet parallel to the plane 

B B  
Po P 

where x is the width of the gap. A s  p >> PO, the second term in the middle 
may be neglected. Denoting the cross section of the copper wire by S, the 
current crossing S is I = j S .  Together we have 

The power dissipated in the wire, which is the power required, is 

B 
p = I2R = 1 2 p 2 N ( a  + *) = 2 j p ( a  + *)--., 

S P O  

where p is the resistivity of copper. Using the given data, we get 

P = 9.5 x lo4 w. 

Fig. 2.20 
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is 
Let 6 be the density of copper, then the necessary weight of the copper 

B 
3PO 

2N(a + b)S6 = 2(a + b ) - z 6  = 3.8 kg . 

The cross section of the gap is A = 0; + 6. Hence the force of attraction 
between the plates is 

- 8 x lo5 N. A B ~  
2PO 

F = - -  

2029 

A cylindrical soft iron rod of length L and diameter d is bent into a 
circular shape of radius R leaving a gap where the two ends of the rod 
almost meet. The gap spacing s is constant over the face of the ends of the 
rod. Assume s << d , d  << R. N turns of wire are wrapped tightly around 
the iron rod and a current Z is passed through the wire. The relative 
permeability of the iron is pr. Neglecting fringing, what is the magnetic 
field B in the gap? 

Solution: 
As s << d << R, magnetic leakage in the gap may be neglected. The 

magnetic field in the gap is then the same as that in the rod. From Amphe’s 
circuital law 

f H - dl = N I  

( M W  

we obtain 

2030 
The figure 2.21 shows the cross section of an infinitely long circular 

cylinder of radius 3a with an infinitely long cylindrical hole of radius a 
displaced so that its center is a t  a distance a from the center of the big 
cylinder. The solid part of the cylinder carries a current Z, distributed 
uniformly over the cross section, and out from the plane of the paper. 
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(a) Find the magnetic field at all points on the plane P containing the 

(b) Determine the magnetic field throughout the hole; it is of a partic- 

( VC, Berkeley) 

axes of the cylinders. 

ularly simple character. 

Fig. 2.21 

S o h  t ion: 
(a) According to the principle of superposition the field can be regarded 

as the difference of two fields H2 and HI, where H2 is the field produced 
by a solid (without the hote) cylinder of radius 3a and Hi is that produced 
by a cylinder of radius a at  the position of the hole. The current in each 
of these two cylinders is uniformly distributed over the cross section. The 
currents I1 and I2 in the small and large cylinders have current densities 
- j  and +j respectively. Then as I = I 2  - 11 = 9 m 2 j  - ua2j = 8ra2j, we 
have j = and 

I 
8 

11 = na2j = - ,  9 
8 I~ = 9ra2j = -I. 

Take the z-axis along the axis of the large cylinder with its positive direction 
in the direction of 12, which we assume to be upwards from the plane of 
the paper. Take the x-axis crossing the axis of the small cylinder as shown 
in Fig. 2.21. Then the plane P is the zz plane, i.e., 
Ampere’s law gives HI and Hz as follows (noting r 
d ( x  - a)2 + y2, being the distances of the field point from the cylinder 
and hole respectively): 

I Z  

16sa2 ’ Hiy = - 
9 I x  

( r  > 3a) 
16r(x2 + y2) ’ 8 H 2 y =  

919 
16?r(z2 + y2) 

Hzl = - 
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I ( x  - a) 
H1, = 16m2 

I ( .  - a) 
( f l  > a) * 1 6 r [ ( ~  - + 41 H1, = ZY H i ,  = - 

16r[ ( t  - a)’ + v2] 
On the plane PI H2, = HI, = 0. Hence H ,  = 0, H, = H2, - HI,. w e  
therefore have the following: 

( 1 )  Inside the hole (0 < x < 2a), 

(2) Inside the solid part (2a 5 x 5 3a or -3a 5 x 5 0), 

Z(X’ - ax - 2) =-- z x  Z ( X  -a)  - Hv 16ra2 lSr[ (x  - a)2 + y2] - 16ra2(x - a) * 

(3) Outside the cylinder (1x1 > 3a), 

(82 - 9a)Z - I (+ - a) - 912 H, = 16r(x2 + y2) 16r[(x - + $1 - 16rx(z - a) 

(b) The magnetic field at all points inside the hole (rl 5 a) is 

ZY +--0, ZY HE = -- 
16ra2 16ra2 
Zx Z(x-a) - Z 

16m2 16ra2 16ra 
H , , = - -  -- 

This field is uniform inside the hole and is dong the positive y-direction. 

2031 
(a) A sphere of radius r is at a potential V and is immersed in a 

conducting medium of conductivity Q. Calculate the current flowing from 
the sphere to infinity. 

(b) Two spheres, with potentials +V and 0, have their centers at po- 
sitions x = fd, where d > r. For points equidistant from the two spheres 
(i.e., on the yz plane) and far away (> d )  calculate the current density J. 

(c) For the same geometry as in (b), calculate the magnetic field on 
the yx plane for distant points. 

(UC, Berkefeg) 
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Solution: 
(a) If the sphere carries charge Q ,  the potential on its surface ie 

i.e., Q = 4 x e o r V .  When the sphere is immersed in a conducting medium 
of conductivity (I, the current that starts to flow out from the sphere is 

Q I = 1 J . dS = ~1 E . d S  = (I- = 4 m r V  , 

where S is the spherical surface and we have assumed the medium to be 
Ohmic. If the potential V is maintained, the current I is steady. 

(b) As d > r ,  we can regard the spheres as point charges. Suppose the 
sphere with potential V carries a net charge +Q and that with potential 
0, -Q. Take the line joining the two spherical centers as the x-axis and 
the mid-point of this line as the origin. Then the potential of an arbitrary 
point x on the line is 

€ 0  

The potential difference between the two spherical surfaces is then 

Q 4 ( d - r )  Q 
~ A E O  r (2d-  r )  27rsor 

- - .  - M- 

as d >> r .  Hence 
Q = 27reorV, 

On the yz plane the points which are equidistant from the two spheres 
will constitute a circle with center at the origin, By symmetry the magni- 
tudes of the electric and magnetic fields a t  these points are the same, so we 
need only calculate them for a point, say the intersection of the circle and 
the z-axis (see Fig. 2.22). Let R be the radius of the circle, El and Ea be 
the electric fields produced by +Q and -Q respectively. The resultant of 
these fields is along the -z direction: 

Qd 
2reo(R2 + d 2 ) Y 2  es ' 

cosee, = - 2Q 
4xeo(R2 + d z )  

E = -  
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Fig. 2.22 

The current density at this point is then 

As the choice of z-axis is arbitrary, the above results apply to all points of 
the circle. 

(c) Using a circle of radius R as the loop L, in Ampkre's circuital law 

we have 

V r d  2% 

2nRB = -" 1 de' 1 (+2 + d2)3/2 dr' 

For distant points, R >> d and we obtain to good approximation 

Note B is tangential to the circle R and is clockwise when viewed from the 
side of positive x .  

2032 
Consider a thin spherical shell of dielectric which has a radius R and 

rotates with an angular velocity w .  A constant surface charge of density u 
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is placed on the sphere, and this produces a uniform magnetic field which 
is proportional to w. Suppose that the mass of the shell is negligible. 

(a) Find the magnetic field inside and outside the rotating shell. 
(b) A constant torque N is applied parallel to w. How long doea it 

(UC, Berkeley) 
take for the shell to stop? 

Solution: 
Use coordinates with the z-axis along the rotating axis and the origin 

at the center of the sphere (Fig. 2.23). The surface current density on the 
spherical shell in spherical coordinates is 

a = R a w  sin Be, 

or, expressed as a volume current density, 

J = ab(r  - R) 

Fig. 2.23 

The magnetic dipole moment of the sphere is then 

m = !, Jr'  x JdV' = se ,  J J r . Raw sin 86(r - R )  
2 

+ 27rr sin 8 - rd8 dr . sin 8 
= e , ~ R ~ u w ~ ~ s i n ~ B d 8  = 47r -R4uwez. 

3 
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Note that for any pair of symmetrical points on a ring as shown in Fig. 2.23 
the total contribution to m is the x direction. Hence the extra sine in the 
integral above. 

The magnetization of the sphere ia 

Since there is no free current inside and outside the sphere, we can apply the 
method of the magnetic scalar potential. The inside and outside potentids 
satisfy Laplace's equation: 

V2p1 = v'pp, = 0 .  

We require that pllo is finite and p21m 3 0. By separating the variables 
we obtain the solutions 

On the spherical surface the following conditions apply: 

These give 
U P W  b1 = - O R w  

a1 = - 
3 '  3 '  

all other coefficients being zero. The magnetic scalar potentials are then 

1 1 r 
p1= -UP@ - - p1 = -a& - r ,  3 3 9' 

Hence the magnetic fields inside and outside the sphere are 

1 
3 HI  = -Vpl= --aRwe, , 

BI = p o ( H ~ +  M) = p o R w e s ,  (r 5 R) 
2 
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Before the application of the constant torque N, the total magnetic 
energy of the system is 

where Kn and Vout refer respectively to the space inside and outside the 
sphere. Noting 

we have 
4= 2 2 5  Wm = - / ~ o u  w R 9 

Suppose the rotation stops after time 1 due to the action of the constant 
torque N. Conservation of energy requires 

d Wm - = N w .  
dt 

With N constant we get 

2033 
A thin spherical shell of radius R carries a uniform surface charge 

density u. The shell is rotated at  constant angular velocity w about a 
diameter. 

(a) Write down the boundary conditions which relate the magnetic 
field just inside the shell to that just outside the shell. 
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(b) The magnetic field which satisfies these conditions is uniform inside 
the shell and of dipole form outside the shell. Determine the magnitude of 
the inside magnetic field. 

(CUSPEA) 
Solution: 

(a) Call the inside of the shell region 1, the outside region 2. Take the 
rotating axis as the z-axis. The current density on the spherical shell is 

a = uRusinBe,. 

The boundary relations on the spherical surface are as follows: 

In the tangential direction: B1r = B2rl , 

In the normal direction: e, x (z - 5) I 
or 

r=R 

= a, po r=R 

B2e - Ble = pouw Rsin 8 .  

(b) Referring to Problem 2032, we see that the magnetic fields inside 
and outside the shell are 

where w = we,. Note that the magnetic field inside the sphere is a uniform 
field. Also as the magnetic field produced by a magnetic dipole of moment 
m can be expressed as E [ v  - Eq. (2) shows that the magnetic 
field outside the shell is that of a dipole of moment 

in = -uR4we, 47r 
3 

horn e, = cosBe,. - sin 8ee1 we can rewrite Eqs. (1) and (2) + 
2 
3 B1 = -pouw R(cos Be, - sin Oee) 

po~w R4 
3r3 B2 = - ( 2  cos Be, + sin Bee) 

Clearly, these expressions satisfy the boundary conditions stated in (a). 
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2034 
Consider a spherical volume of radius R within which it is desired to 

have a uniform magnetic field B. What current distribution on the surface 
of the sphere is required to generate this field? 

(UC, Berkeley) 

Solution: 
By analogy with a uniform polarized sphere, we deduce that the mag- 

netic field inside a uniform magnetized sphere is uniform. Let M be the 
magnetization, then the surface current density is QS = --n x M. Take the 
z-axis along M so that M = Me,. In spherical coordinates 

e, = cos Be, - sin Bee (n = e,) , 

80 that 
as = -e, x M(cos Be, - sin Bes) = M sin Be, . 

Then making use of the ma netic scalar potential, we find the magnetic 
field inside the sphere: B = *M f (refer to Problem 2033.) Hence 

3 8  
21rO 

as = - sin Be,. 

2035 
As in Fig. 2.24, a thin spherical shell of radius R has a fixed charge +q 

distributed uniformly over its surface. 
(a) A small circular section (radius r R) of charge is removed fiom 

the surface. Find the electric fields just inside and just  outside the sphere 
at  the hole. 
The cut section is replaced and the sphere is set in motion rotating with 
constant angular velocity w = wo about the z-axis. 

(b) Calculate the line integral of the electric field along the z-axis fiom 
--oo to +oo. 

(c) Calculate the line integral of the magnetic field along the same 
path. 
Now the sphere's angular velocity increases linearly with time: 

w = wo + kt . 
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(d) Calculate the line integral of the electric field around the circular 
path P (shown in Fig. 2.25) located at the center of the sphere. Assume 
that the normal to the plane containing the path is along the +r axie and 
that its radius is rp < R.  

(Chicago) 

Fig. 2.24 Fig. 2.25 

Solution: 
(a) Before the small circular section of charge is removed, the electric 

field inside the sphere is zero, while the field outside the sphere is E = 
+. Referring to Problem 1021, the electric field produced by this 
small circular section is = &$. Therefore, after the small section 
is removed the electric fie188 just inside and just outside the sphere at the 
hole are both &$. 

(b) By symmetry, J-", Edz = 0. 
( c )  Ampbre's law gives 

f B .dl = 1: Bdz = p o l .  

As the electric current is I = p, we have 

(d) Consider a ring of width Rdi? as shown in Fig. 2.25. The surface 
current density on the ring is & - wRsin8. The contributions of a pair 
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of symmetrical points on the ring to the magnetic field at  the center of 
the sphere will sum up to a resultant in the z-direction. Thus the total 
contribution of the ring to the magnetic field is given by the Biot-Savart 
law as 

R 
R3 

' wRsinO. -sinORdO. RsinOdp 

=- sin3 Ode. 
8 r R  

Hence 

As r,, << R, the magnetic induction can be taken to  be uniform in the 
circular loop P. The magnetic flux crossing P is then 

Hence 

2036 
An isolated conducting sphere of radius R is charged to potential V 

(a) Find the magnetic induction B a t  the center of the sphere. 
(b) What is the magnetic dipole moment of the rotating sphere? 

and rotated about a diameter at  angular speed w .  

(UC, Berkeley) 

Solution: 
(a) Using the answer to Problem 2035, the magnetic field a t  the spher- 

ical center is 
POWQ 

6nR ez ' 
B = -  

where Q is the total charge of the sphere and e, is a unit vector along the 
axis of rotation. Rom V = A, we get Q = 4TEoRV. Hence 
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(b) Referring to Problem 2032, the magnetic dipole moment of the 
sphere is 

4x  
3 

m = --‘mez, 

where u is the surface charge density 

Hence 
4 
3 m = -naoR3wVe,. 

2037 

A charge Q is uniformly distributed over the surface of a sphere of 
radius ro, The material inside and outside the sphere has the properties of 
the vacuum. 

(a) Calculate the electrostatic energy in all space. 
(b) Calculate the force per unit area on the surface of the sphere due 

to the presence of the charge. For Q = 1 coulomb and ro = 1 cm, give a 
numerical answer. 

(c) The sphere rotates around an axis through a diameter with constant 
angular velocity w .  Calculate the magnetic field at the center of the sphere. 

(UC, Berkeley) 

Solution: 

(b) The surface charge density is o = &$ and the electric field outside 

4xEor; er 

Q2 

the sphere is 
E=- Q 

Using the answer to Problem 1021, the electric force per unit area on the 
outer surface is 



With the given data, we have 

f = 3.6 x 10" N/cm2. 

(c) Using the answer to Problem 2035, we have 
POPW e, B=- 
6rro 

where e, is a unit vector along the axis of rotation. 

2038 
A long hollow right circular cylinder made of iron of permeability p 

is placed with its axis perpendicular to an initially uniform magnetic flux 
density B. Assume that Bo is small enough so that it does not saturate 
the iron, and that the permeability p is a constant in the field range of our 
interest. 

(a) Sketch the magnetic fieId lines in the entire region before and after 
the cylinder is placed in the field. 

(b) Let the inner and outer radii of the cylinder be b and a respec- 
tively. Derive an expression for B inside the cylinder. Note: In cylindric$ 
coordinates we have 

(Columbia) 
Soh t ion: 

(a) The magnetic field is uniform before the cylinder is introduced and 
the field lines are as shown in Fig. 2.26. After the cylinder is placed in the 
field, the magnetic field will be distorted and the field lines are BS shown in 
Fig. 2.27. 

:jii$ - - 80 - 
Fig. 2.20 Fig. 2.27 
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(b) We introduce a magnetic scalar potential 4 which satisfies H = 
-V#. As there is no free current we have V2# = 0. In cylindrical c e  
ordinates ( r , 8 , z ) ,  where the z-axis is along the axis of the cylinder, the 
potential satisfies 

Because of axial symmetry we have 3 = 0. Let 

d(r, i )  = R(r )S(e ) .  

The equation can be written as 

- constant = m2 , . L ( r ' q + r G )  =---- 1 d2S 
R dr  dr S do2 

say, since varying r does not affect the expression involving S. This leads 
to the general solution 

m 

4 = C (cmrm + dmr-m)(gm cos me + hm sin me). (2) 
m= 1 

By symmetry d(r , e )  = +(PI -0)1 so that the sine functions are to be elim- 
inated by putting hm = 0. Divide the space into three parts as shown in 
Fig. 2.28 and write the general solutions for them as 

m 

~ $ i  = ~ ( c i m r m + d i m r - m ) c o s m 8 ,  ( i =  1,2,3) 
m= 1 

80 

Fig. 2.28 

At large distances from the cylinder, = Ho,  or 93 = -HOZ = 
- L r  cos 0. Comparing the coefficients of cos me we have 

CO 

, C3m = d 3 m  = O  ( m #  1). C31 = -- Bo 
PO 
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Hence 

We also require 41 to be finite for r -+ 0. Hence dl, = 0 for all m and 

m 

41 = C ilmrm cosmd. 
m= 1 

Next consider the boundary conditions at r = a and b. We have 

- = -  ad' 
ae ae I r = b '  

These together give clrn = cZm = dZm = 0 for m # 1 and the simultaneous 
equations 

Solving for c11 we have 

47rU2Bo 
b 2 ( p  - j r o ) z  - a2(p + p ~ ) ~  ' c11 = 

giving 
& = cllrcose.  

The magnetic field intensity inside the cylinder is 

= -cl (cos Be, - sin Bee) 
= -clle, 

4pu2 
a y p +  Po)2 - b2(P - ' O Y  

Bo * 
- - 
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If p >> po, the magnetic field becomes 

Obviously, the greater the value of p, the stronger is the magnetic shielding. 

2. ELECTROMAGNETIC INDUCTION (2039-2063) 

2039 
A uniform cylindrical coil in vacuum has rl = 1 m, 11 = 1 m and 100 

turns. Coaxial and at the center of this coil is a smaller coil of r2 = 10 cm, 
12 = 10 cm and 10 turns. Calculate the mutual inductance of the two coils. 

Solution: 

induction produced by it is 

( Columbia) 

Suppose current I1 passes through the outer coil, then the magnetic 

‘1 

As r2 << rl , 12 << 11,  we may consider the magnetic field B1 as uniform 
across the inner coil. Thus the magnetic flux crossing the inner coil is 

‘1 

which gives the mutual inductance of the two coils as 

2040 
A circular wire loop of radius R is rotating uniformly with angular 

velocity w about a diameter PQ as shown in Fig. 2.29. At its center, and 
lying along this diameter, is a small magnet of total magnetic moment M. 
What is the induced emf between the point P (or Q )  and a point on the 
loop mid-way between P and Q? 

(Columbia) 
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V 

C 6 Fig. 2.29 

Solution: 
At a point distance r from the spherical center the magnetic field ee- 

tablished by the small magnet is 

M = Me,.  B = - [  PO 3(M.r )r  
47r t5 

h h 

Let C be the mid-point of arc P Q .  The velocity of a point on arc PC is 
v = wRsinBe,. The induced emf between the points P and C along arc 
PQ is given by 
A 

EPC = J, (v x B) dl, with dl = RdOee 

As e,  = cos Be, - sin 8ee , eW x e, = ee l  e, x ee = -e, , we have 

pow R M  sin 8 
4rR3 

v x B =  (2 cos Bee + sin Be,) 

and 

2041 
Two infinite parallel wires separated by a distance d carry equal cur- 

rents I in opposite directions, with I increasing at the rate %. A square 
loop of wire of length d on a side lies in the plane of the wires at a distance 
d from one of the parallel wires, 8s illustrated in Fig. 2.30. 
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(a) Find the emf induced in the square loop. 
(b) Is the induced current clockwise or counterclockwise? Justify your 

( Wisconsin) 
answer. 

Idl 
Fig. 2.30 

Soh t ion: 
(a) The magnetic field produced by an infinite straight wire carrying 

current I at a point distance r from the wire is given by Ampbre's circuital 
law as 

B = -  POI 
2rr ' 

ita direction being perpendicular to the wire. Thus the magnetic flux cr- 
ing the loop due to the wire farther away from the loop is 

directing into the page. The other wire, which is nearer the loop, gives rise 
to the magnetic flux 

pointing out from the page. Hence the total flux is 

pointing out from the page. The emf induced in the square loop is therefore 

6 = -- = -$ In (--) z. d(b 4 dl 
dt 
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(b) The magnetic field produced by the induced current tends to oppose 
the change of the magnetic flux, so that this field will direct into the page. 
Then by the right-hand rule the induced current is clockwise as seen from 
the above. 

2042 
In Fig. 2.31 two conductors of infinite length carry a current I. They 

are parallel and separated by a distance 2a. A circular conducting ring 
of radius a in the plane of the parallel wires lies between the two straight 
conductors and is insulated from them. Find the coefficient of mutual 
inductance between the circular conductor and the two straight conductors. 

(UC, Berkeley) 

Fig. 2.31 

Solution: 

r from one conductor is 
The magnetic field at  a point between the two conductors at distance 

B(r) = w(i 2 r  r + '> 2 a - r  ee * 

So the magnetic flux crossing the area of the ring is given by 

q5 = / B  . dS = 2 

Let x = a - r and integrate: 
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Hence the coefficient of mutual inductance is 

M = - = P p o a .  6 
I 

2043 

As shown in Fig. 2.32, an infinite wire carries a current I in the +a 
direction. A rectangular loop of wire of side 1 is conneted to a voltmeter 
and moves with velocity u radially away from the wire. Indicate which 
terminal (a or b) of the voltmeter is positive. Calculate the reading on the 
voltmeter in terms of the distances rl, r 2  and 1. 

( Wisconsin) 

Solution: 
The magnetic field at  a point of radial distance r is 

and its direction is perpendicular to and pointing into the paper. The 
induced emf in the rectangular loop (i.e. reading of the voltmeter) is 

if we integrate in the clockwise sense. Note that u x B is in the +a direction. 
As V > 0, terminal a is positive. 
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2044 
A long uniform but laminated cylindrical iron core of radius = 0.1 m 

is uniformly wound with wire which excites a uniform flux density in it d 
magnitude B(1) = 3 sin(4OOt) Wb/m2. 

(a) What is the voltage per turn on the wire coil? 
(b) What is the vector potential due to this core, A(r), at points where 

(c) What is B(r, 1 )  due to this core for points where r > 0.1 m? 
(d) What is A(r,t) due to this core for r < 0.1 m? 

r > 0.1 m? 

( Wisconsin) 

Solution: 

emf, i.e., 
(a) The voltage per turn on the wire coil must just balance the induced 

= 400R2 cos(40Ot) = 4 cos(4001) V . 

(b) Consider a circular path C of radius r > 0.1 m with axis along the 
axis of the iron core. By symmetry we see that the magnitude of A(r) is 
the same everywhere on the circle and its direction is always tangential (in 
the same direction as the current). Using V x A = B in Stokes’ theorem 
we have 

h A . d l = l B . d S .  

As B vanishes outside a long solenoid and is uniform inside, the right-hand 
side is 

r 

B . dS = B * ?rR2 = 0.01 sin(4OOt). J, 
Stokes’ theorem then reduces to 2xrA(r, t )  = 0.01 sin(400t), giving 

A ( t , r )  = - sin(400t) Wb/m. 
200rr 

(c) The magnetic field due to the core is zero for r > 0.1 m. (Strictly 
speaking, there is a very small magnetic field outside the solenoid tangential 
to the circle in (b) of magnitude g, Z being the current in the core. Thb 
is however usually negligible.) 
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(d) For r < 0.1 m, Stokes' theorem 

1 2rrA(r, i) = rr'B = rr2 . - sin(4OOt) 
x 

gives 
r 

2r 
A(r, 1 )  = - sin(400t) Wb/m . 

2045 
An iron ring of radius 10 cm and of croes sectional area 12 cmz ia 

evenly wound with 1200 turns of insulated wire. There is an air gap in the 
ring of length 1 mm. The permeability of the iron is 700 and is assumed 
independent of the field; the phenomenon of hysteresis is ignored. 

(a) Calculate the magnetic field in the gap when a current of 1 amp 
passes through the coil. 

(b) Calculate the self-inductance of the coil (with this core). 
(VC, Berkeley) 

Solution: 
Using the results of Problem 2029 we have 

- 1.14 H. BAN 
I 

(b) L = - - 

2046 
Two single-turn circular loops are mounted as shown in Fig. 2.33. Find 

( Wisconsin) 
the mutual inductance between the two coils assuming b Q: a. 

Solution: 
As b < a, the magnetic field at  the small loop created by the large 

loop can be considered approximately as the magnetic field on the axis of 
the large loop, namely 

Poa'l 
2(al+ C 2 ) W  ' B =  
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where Z is the current in the large loop. Hence the magnetic flu crossing 
the small loop is 

POa2' 
$12 = 2($ + c2)3/2 

and the mutual inductance is 

Fig. 2.33 

2047 

A closely wound search coil has an area of 4 cm2, 160 turns and a resie- 
tance of 50 R.  It is connected to  a ballistic galvanometer whose resistance 
is 30 R. When the coil rotates quickly from a position parallel t o  a uniform 
magnetic field to  one perpendicular, the galvanometer indicates a charge of 
4 x C. What is the flux density of the magnetic field? 

( Wisconsin) 

Solution: 
Suppose the coil rotates from a position parallel to the uniform mag- 

netic field to one perpendicular in time At. Since At is very short, we 
have 

Ad 
At 

c = - = i ( R + r ) .  

As q = iAt, the increase of the magnetic flux is 

A+ = q(R + r )  = BAN , 
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since the coil is now perpendicular to the field. Hence the magnetic flux 
density is 

( R  + r)q - (50 + 30) x (4 x lo-') 
A N  - 4 x 10-4 x 160 

B =  

= 0.05 T = 50 Gs. 

2048 
Two coaxial circular turns of wire of radii a and b are separated by a 

(a) What is the mutual inductance? 
(b) What is the force between the currents? 

distance z and carry currents ia and i b  respectively. Assume a > b. 

( Wisconsin) 
Solution: 

(a) As in Problem 2046, the mutual inductance is 

(b) Consider the small coil b as a magnetic dipole of moment ma = 
rb2ia. The force on it is given by 

aB, rpoa2b2iaib 32 
2 (a2 + b2)s/2 ' 

F = m a l K l =  

If the currents in the two coils are in the same direction, the force will be 
an attraction. If the directions of the currents are opposite, the force will 
be a repulsion. 

2049 
A d.c. electromagnet is to be constructed by winding a coil of N turns 

tightly on an iron yoke shaped like a doughnut with a small slab sliced out 
to form the gap as in Fig. 2.34. The radii for the doughnut are a and b and 
the width of the gap is W. The permeability p for the iron can be assumed 



constant and large. A wire of radius t and resistivity p is to be used for 
the coil. The completed magnet will be operated by placing the coil scrolls 

a d.c. power supply of voltage V. For simplicity, assume that b/a > 1 and 
a/r > 1. Derive expressions for the following quantities: 

(a) The steady state value for the magnetic field in the gap. 
(b) The steady state value for the power consumed in the coil. 
(c) The time constant governing the response of the current in the mil 

( UC, Berkeley) 
to an abrupt change in V. 

Fig. 2.34 

Solution: 
(a) In the steady state, as V . B = 0 and the cross section of the iron 

yoke'is the same everywhere, B must be a constant in the yoke. Applying 
f H . dl = NI to the doughnut, we have 

B B -(2~6 - W )  + --W = NZ, 
P PO 

As 

the steady state value for the magnetic field in the gap is 

B = popvr2 
2ap(2*bp0 + W p )  * 

(b) The steady state value for the power consumed in the coil b 

Vzrz p = z v = -  
2apN * 
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(c) The self-inductance of the coil is 

NBTa’ N’popsa’ L=-- - 
I po27d + pW 

so the time constant governing the response of the current in the coil to an 
abrupt change in V is 

Npoparr2 -- r = - =  L N2popra2 l p N 2 r a  - 
R p02rb  + pW rr2 2p(p02sb + p W )  

2050 
A very long solenoid of n turns per unit length carries a current which 

(a) Calculate the magnetic field inside the solenoid at  time t (neglect 

(b) Calculate the electric field inside the solenoid. 
(c) Consider a cylinder of length 1 and radius equal to that of the 

solenoid and coaxial with the solenoid. Find the rate at which energy 
flows into the volume enclosed by this cylinder and show that it is equal to 
$( i lL i3 ) ,  where L is the self-inductance per unit length of the solenoid. 

(UC, Berkeley) 
Solution: 

Use cylindrical coordinates (r, 8,  z )  with the z-axis along the axis of 
the solenoid. 

(a) Applying Amphe’s circuital law f H .a= i to a rectangle with the 
long sides parallel to the z-axis, one inside and one outside the solenoid, we 
obtain H = ni, or 

B = ponKte,  . 

increases uniformly with time, i = K t .  

retardation). 

(b) Maxwell’s equation V x E = -B gives 

Noting that by symmetry E does not depend on 8 and integrating, we have 
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(c) The Poynting vector is 

So energy flows into the cylinder along the radial directions. The energy 
flowing in per unit time is then 

- 2 d N  = poVn2K2t , dW 
dt 
-- 

where V is the volume of the cylinder. The self-inductance per unit length 
of the solenoid is 

L = - = ponar . n B m 2  2 
I 

Hence 

2051 
Consider a rectangular loop of wire, of width a and length b, rotating 

with an angular velocity w about the axis PQ and lying in a uniform, time 
dependent magnetic field B = Bo sin wt perpendicular to the plane of the 
loop at t = 0 (see Fig. 2.35). Find the emf induced in the loop, and show 
that it alternates at twice the frequency f = g. 

( Columbia) 

Fig. 2.35 

Solution: 
The magnetic flux crossing the loop is 

1 
2 

(b = B . S = Boabsin(wt) cos(wt) = -Boabsin(Zwt) 
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So the induced emf is 

E = - -  " = -B,-,abw cos(2wt). 
dt 

Its alternating frequency is k = 2 . w 2n = 2 f .  

2052 

A rectangular coil of dimensions a and b and resistance R moves with 
constant velocity v into a magnetic field B as shown in Fig. 2.36. Derive an 
expression for the vector force on the coil in terms of the given parameters. 

( Wisconsin) 

l---b+ 

x x x  x y x  x x x  

Fig. 2.36 

Soh t ion: 

the coil of magnitude 
As it starts to cut across the magnetic field lines, an emf is induced in 

and produces a current of 

The minus sign indicates that the current flows counterclockwise. The force 
on the coil is 

vb2B2 
R 

The direction of this force is opposite to v. That is, the force opposes the 
motion which tends to increase the cutting of the magnetic field lines. 
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2053 
A constant force F is applied to a sliding wire of mass m. The wire 

starts from rest. The wire moves through a region of constant magnetic 
field B. Assume that the sliding contacts are frictionless and that the 
self-inductance of the loop can be ignored. 

(a) Calculate the velocity of the wire as a function of time. 
(b) Calculate the current through the resistor R as a function of time. 

What is the direction of the current? 
( Wisconsin) 

Solution: 
(a) As the wire moves through the uniform magnetic field an emf e = 

Blu will be induced in it, where 1 is the length of the wire in the field 
and u is its speed. This cause8 a current to flow in the wire of magnitude 
I = E / R ,  R being the resistance of the wire, because of which a magnetic 
force l Z d l  x BI = ZlB acts on the wire. This force opposes the motion of 
the wire. Thus the equation of the motion of the wire is 

du B212 m - = F - -  
dt R U .  

Solving it we have 

RF 
B212 u ( t )  = - + Cexp 

As u = 0 at t = 0, we find C = -#&. Hence 

F R  
B212 mR u(t) = - [ 1 - exp ( - " t ) ]  . 

(b) The current is 

R 

2054 
A rectangle of perfectly conducting wire having sides (I and b, maw 

M, and self-inductance L, moves with an initial velocity uo in its plane, 
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directed along its longest side, from a region of zero magnetic field into a 
region with a field Bo which is uniform and perpendicular to the plane of 
the rectangle. Describe the motion of the rectangle as a function of time. 

(Columbia) 

Solution: 

the motion is 
Taking b > a, the rectangle will move along side b and the equation of 

dv 
dt 

m- = -BoaI, 

where I is the current induced in the conducting wire given by 

d l  
dt 

L- = Boav. 

The above two differential equations combine to give 

d% - + W 2 V  = 0 
dt2 

with w = -&. Solving this equation, we obtain the velocity of the rect- 
angle 

v=C1sinwt+Czcoswt. 

As u = vo at t = 0 we get Cz = VO; and as I = 0 at t = 0, we get Cl = 0. 
Hence 

1) = vo coswt . 
The displacement of the rectangle of wire (with s = 0 at t = 0) is 

VO s =  -sinwt. 
W 

2055 
A rectangular loop of wire with dimensions 1 and w is released at t = 0 

from rest just above a region in which the magnetic field is Bo as shown 
in Fig. 2.37. The loop has resistance R, self-inductance L, and mass m. 
Consider the loop during the time that it has its upper edge in the zero 
field region. 

(a) Assume that the self-inductance can be ignored but not the resie- 
tance, and find the current and velocity of the loop as functions of time. 
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(b) Assume that the resistance can be ignored but not the aelf- 
inductance, and find the current and velocity of the loop as functions of 
time. 

(MITI 

E = O  
x Xb[X x x l x  x x 
x x  x x x x x x  
x x x x x x x Y  

1 9 5  Bo 

Fig. 2.37 

J, 

Solution: 
During the time stated above, we have 

E = Blv , 
€ - L - =  dl dt IR, 

dv 
dt F = mg - BIl = m- . 

(a) Using the results of Problem 2053, we have 

v = 9 [I - exp (- z t ) ]  B212 , B212 
B212 

I = -  1-exp -- mg[ Bl ( mRt)]* 

(b) R = 0. We have L$ = mlv and the equation of the motion is 

dv 
m- dt = mg- B I l .  

These give 
d2 v 
dt - +w2v = 0 ,  

where w2 = s. The general solution is 

u = c1 coswt + c2 sin wt . 



Magnetostatic Field and Quasi-Sfaiionary Electromagnetic Field 209 

As v = 0, I = 0 at t = 0, we find c1 = 0, c2 = 5 .  Hence 

9 u = -sinwt , 
w 
mg I = -(1- Bl coswt), 

BI m* with w = 

2056 

As in Fig. 2.38 a long straight wire painting in the y direction lies in 
a uniform magnetic field Be,.  The mass per unit length and resistance 
per unit length of the wire are p and X respectively. The wire may be 
considered to extend to  the edges of the field, where the ends are connected 
to one another by a massless perfect conductor which lies outside the field. 
Fringing effects can be neglected. If the wire is allowed to fall under the 
influence of gravity ( g  = -Sea), what is its terminal velocity as it falls 
through the magnetic field? 

W T )  

Fig. 2.38 

Solution: 
As the wire cuts across the lines of induction an emf is induced and 

produces current. Suppose the length of the wire is 1 and the terminal 
velocity is v = -ve,. The current so induced is given by 

Thus 
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flowing in the -y direction. The magnetic force acting on the wire is 

uB21 F = i d  x B = iBle,  = T e ,  . J 
When the terminal velocity is reached this force is in equilibrium with the 
gravitation. Hence the terminal velocity of the wire is given by 

vB21 
x 

-- - P i g )  

1.e.. 

or 

2057 
As in Fig. 2.39, what is the direction of the current in the resistor r 

(from A to B or from B to A )  when the following operations are performed? 
In each case give a brief explanation of your reasoning? 

(a) The switch S is closed. 
(b) Coil 2 is moved closer to coil 1. 
(c) The resistance R is decreased. 

(Wisconsin) 

Bn Y S  

Fig. 2.39 

Solution: 
In all the three cases the magnetic field produced by coil 1 a t  coil 2 is 

increased. Lenz's law requires the magnetic field produced by the induced 
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current in coil 2 to be such that as to prevent the increase of the magnetic 
field crossing coil 2. Applying the right-hand rule we see that the direction 
of the current in resistor r is from B to A. 

2058 

A piece of copper foil is bent into the shape as illustrated in Fig. 2.40. 
Assume R = 2 cm, 1 = 10 cm, a = 2 em, d = 0.4 cm. Estimate the lowest 
resonant frequency of this structure and the inductance measured between 
points A and B, when the inductance is measured at a frequency much 
lower than the resonant frequency. 

(UC, Berkeley) 

Fig. 2.40 

Solution: 
Consider the current in the copper foil. As d < R, we can consider 

the currents in two sides of the cylinder to have same phase. That is t o  say, 
the current enters from one side and leaves from the other with the same 
magnitude. Accordingly, the maximum wavelength is 2rR. Along the axial 
direction, the current densities are zero at both ends of the cylinder 80 that 
the maximum half-wavelength is I ,  or the maximum wavelength is 21. As 
21 > 2rR, the maximum wavelength is 21 = 20 cm, or the lowest resonant 
frequency is 

= 1.5 x lo9 Hz. c 3 x 1o'O 
21 20 

f o = - =  

When the frequency is much lower than fo, we can consider the current 
as uniformly distributed over the cylindrical surface and varying slowly with 
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time. As a result, we are essentially dealing with a static situation. ignoring 
edge effects, the magnetic induction inside the structure is 

. P o l  B = pot = - 
I ‘  

The magnetic flux crossing a cross section of the structure is 

PO I 4 = BS = -(7rR2 + ad) ,  
1 

giving an inductance 

4 - Po L = - - -(7rR2 +ad) I 1  
47r x x (7r x 0.02’ + 0.02 x 0.004) = 1.68 

lo-s H .  - - 
0.1 

2059 

A magnetized uncharged spherical conductor of radius R has an inter- 
nal magnetic field given by 

B(r) = A r i K ,  

where A is a constant, K is a constant unit vector through the center of 
the sphere and rI  is the distance of the point r to the K axis. (In a 
Cartesian coordinate system as in Fig. 2.41, K is in the z-direction, the 
sphere’s center is at  the origin, and r: = r2 + y2.) The sphere is now spun 
(non-relativistically) about its z-axis with angular frequency w .  

(a) What electric field (in the “laboratory frame’’) exists in the interior 
of the spinning sphere? 

(b) What is the electric charge distribution? (Do not calculate any 
surface charge.) 

(c) What potential drop is measured by a stationary voltmeter 
(Fig. 2.42), one of whose ends is a t  the pole of the spinning sphere and 
whose other end brushes the sphere’s moving equator? 

(CUSPEA) 
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p) R I  

I 
I I 

Fig. 2.41 Fig. 2.42 

Solution: 

The velocity of P is 
v = w x r = we, x r .  

For a free charge q to remain stationary inside the sphere, the total force 
on it, f = q(E + v x B), must vanish. Thus the electric field intensity at 
P is 

(a) At the point P of radius vector r the magnetic field is B = Arie,. 

E(r) = -v x B = -Awr;(e, x r) x e, 
= -Aw(z2 + y2)(te, + ye,). 

(b) By V - E = $, we can get the volume charge density inside the 
sphere, 

where E is the permittivity of the conductor. 
(c) To find V we integrate from N to M along a great circle of radius 

R (see Fig. 2.42): 

V = - J ,  Eedl. 

In spherical coordinates dl = Rdeee, and for a point ( t , y , z ) , r ~  = rs in8,  
teo + ye, = rl(sintle, + costlee). Thus the electric field on the surface is 

E = -AwR3 sin3 B(sin Be, + costlee) , 

giving 
f Aw R3 v = AWP 1 sin3 e cosede = - 

4 .  
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2060 

Consider a square loop of wire, of side length I, lying in the 2, y plane 
as shown in Fig. 2.43. Suppose a particle of charge q is moving with a 
constant velocity u,  where u < c,  in the zz-plane a t  a constant distance 
xo from the zy-plane. (Assume the particle is moving in the positive z 
direction.) Suppose the particle crosses the z-axis a t  t = 0. Give the 
induced emf in the loop as a function of time. 

(Columbia) 

z 
t 

X 

Fig. 2.43 

Solution: 

At time t ,  the position of q is ( u t , O ,  20). The radius vector r from q to 
a field point ( z ,y , z )  is (z - u t , y ,  zo). As u << c, the electromagnetic field 
due to the uniformly moving charge is 

E(r, t )  = 

B(r, t )  = 

with 

r = [(z - ut12 + y2 + ( z  - Z O ) ~ ] ~  . 

The induced emf in the loop is given by the integral 



where S is the area of the loop and dS = dzdgk. Thus 

= -L!!?E! 1' d 2 i  [ 1 
4 r  J(2 - ut)' + (2 - 20)2  

I 
1 

1 - 
J(2 - uf)' + I' + ( 2  - 2o)f  

POP2 

[(z - ut)2 + I' + ( 2  - 20)']3/' 

2 - ut I =-7i;-l. "[[(.-uf)'+(z-Z~)'J~/' 

2 - ut - 

1 - = --{ YO!7U2 1 
4r JuZt'+(z- 2 0 ) 2  J ( I  - ut)' + (2  - to)$ 

>. 1 + 1 - 
J(1- ut)' + 12 + (z - 20)2' U'P + I2 + (2  - 20)5 

2061 
A very long insulating cylinder (dielectric constant E )  of length L and 

radius R(L > R) has a charge Q uniformly distributed over its outside 
surface. An external uniform electric field is applied perpendicular to the 
cylinder's axis: E = Eoe, (see Fig. 2.44). Ignore edge effects. 

(a) Calculate the electric potential everywhere (i.e. inside and outside 
the cylinder). 
Now the electric field EO is removed and the cylinder is made to rotate with 
angular velocity w . 

(b) Find the magnetic field (magnitude and direction) inside the cylin- 
der . 

(c) A single-turn coil of radius 2R and resistance p is wrapped around 
the cylinder as shown in Fig. 2.45, and the rotation of the cylinder is slowed 
down linearly (w( t )  = wO(1 - t / to ) )  as a function of time. What b the 
magnitude of the induced current in the coil? In what direction doea the 
current flow? 
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(d) instead of the coil of part (c), a oneturn coil is placed through the 
cylinder as shown in Fig. 2.46, and the cylinder is slowed down as before. 
How much current will now flow? 

(Princeton) 

S o h  tion: 
(a) By the superposition principle the electric potential can be treated 

as the superposition of the potentials due to Q and E. The potential due 
to Q is 

Here the potential is taken to be zero at the cylinder's center. 

X 

Fig. 2.44 

Let pa be the potential due to the uniform field E. Then V292 = 0 
( r  # R), or in cylindrical coordinates 

We separate the variables and obtain the general solution 

C[r"(a,cosnB + b, sin nd) + +(cn cosnd + d, sin nfl)], 

C[r"(e, cos no + fn sin no) + $(gn cos no + hn sin no)] , 

r < R 
r > R .  v 2 = {  

From the boundary condition cp2 = -EorcosB for r -+ 00 we get el = 
-Eo,  fl = 0, en = f, = 0 for n # 1. From the condition (p2 = 0 for r -t 0 
we get c, = d, = 0 for all n. For r = R, we have boundary conditions 
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which give the simultaneous equations 

These have the solution 

(C - c ~ ) R ~ E ~  
C + Eo 

' b l = h l = O ,  9 91 = 2 Eo a1 = -- 
e+co 

Hence the total electric potential is 

r < R  

-%ins- E o r c o s B + ~ + c o s 8 ,  r >  R .  
( P = I p 1 + ' p 2 =  

(b) With E removed and the cylinder rotating about its axis with an- 
gular velocity w ,  a surface current of density & - w R = & is generated. 
By AmpBre's circuital law we find 

POQW B = -  
2rL ez 

for the interior of the cylinder. 

Fig. 2.45 is 
(c) The magnetic flux passing through the single-turn coil shown in 

poQwR2 
2L ' 4 = XR*B = 

as there is no flux outside the cylinder. The induced emf is therefore 
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and the induced current is 

. E ~loQR'wo 
P 2PLtO 

1 = - =  

By Lends law the direction of i is that of rotation. 

no current is induced in the coil. 
(d) There is no magnetic flux crossing the coil shown in Fig. 2.46, 110 

CEO 
Fig. 2.45 Fig. 2.48 

2062 
Consider a closed circuit of wire formed into a coil of N turns with 

radius a, resistance R, and self-inductance L. The coil rotates in a uniform 
magnetic field B about a diameter perpendicular to the field. 

(a) Find the current in the coil as a function of B for rotation at a 
constant angular velocity w .  Here d ( t )  = wt  is the angle between the plane 
of the coil and B. 

(b) Find the externally applied torque required to maintain this uni- 
form rotation. (In both parts you should assume that all transient effecta 
have died away.) 

(CUSPEA) 
Solution: 

(a) The emf induced in the coil is given by 

Noting that, as the vector dS is normal to the plane of the coil, B a dS = 
Bcoe(f - B)dS, we have, with 8 = wt ,  

d 
B sin(wl)dS = - - [ ra2NB sin(wl)] 

dt 
c = - 



The current in the circuit is given by 
dI 

L;i l+ IR = C .  

Let I = I0 exp(iwt). The above gives 

,-i(3+*) , -ra2wNB razwNB - - 
iwL + R d w 2  La + Ra 

I0 = 

where 'p = arctan(*). 

@: Fig. 2.47 

Thus we have 
na2wNB 

d w 2  La + R2 I ( t )  = c0s (wt - 'p- 5) 
sin (wt - p) . naaw N B 

d w 2  La + R2 
- - 

(b) The magnetic dipole moment of the coil is 

m = Iraz N n  , 
where n is a unit vector normal to the coil. At time t the external torque 
on the coil 7 = m x B has magnitude 

coe(wt) sin(wt - 9). ( *a3 N B)2w ( f - ') = dRa + L2wf 
r = Im x BJ = Ina2NBsin 

2063 
You are equipped with current sources and a machine shop for con- 

structing simple linear electric components such as coils, inductors, capac- 
itors, and resistors. You have instruments to measure mechanical forcea 



but no electrical meters. Devise an experiment to measure the ampere 
given the above equipment and your knowledge of the basic equations of 
electricity and magnetism. 

(Chicago) 
Solution: 

Make two identical circular coils and arrange them co-axially under a 
pan of a balance to construct an AmpBre’s balance, as shown schematically 
in Fig. 2.48. The mutual inductance between the coils is M12(z). The coils 
are connected to  the same current source. With standard weights on the 
pans the force F12 between the two coils can be measured. The mutual 
inductance part of the magnetic energy stored in the two coils is 

88 the coils are connected to the same source. Hence the interacting force 
w12 = M121112 = M12Z2, 

is 

Fig. 2.48 

Using the value of the force measured with the Ampkre’s balance and cal- 
culating w, Z can be determined. 

Using the MKSA unit system the value of the current so determined 
is in amperes. 

3, ACTION OF ELECTROMAGNETIC FIELD ON CURRENT- 
CARRYING CONDUCTORS AND CHARGED 
PARTICLES (2064-2090) 

2064 
Two parallel wires carry currents il and i 2  going in the same direction. 
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The wires: 
(a) attract each other 
(b) repel each other 
(c) have no force on each other. 

Soh t ion: 
The answer is (a). 

2065 
Two matually perpendicular long wires are separated a distance a and 

carry currents ZI and Z2. Consider a symmetrically located segment (-h,&) 
of Z2 of length 1 < a as shown in Fig. 2.49. 

(a) What are the net force and net torque on this segment? 
(b) If the wires are free to rotate about the connecting line a, what 

configuration will they assume? Does this correspond to a maximum or a 
minimum in the energy stored in the magnetic field? 

( Wisconsin) 

Solution: 
(a) The magnetic field at a point (0, a, z )  produced by Z1 is 

80 that a small current element ( z ,  z + dz) on I2 will experience a force 

Fig. 2.48 
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Thus the force acting on the small segment (- 6 , 4) is 
112 

dF2l = 0 
Fzl = I,,, 

aa the integrand is an odd function of z ,  and the torque on it is 

We can conclude from this that if the current 12 is free to rotate about the 
connecting line a then it will finally settle in parallel with the current 11 
such that the directions of both currents ZI and 12 are the same. Obviously, 
this position corresponds to a minimum energy stored in the magnetic field. 

2066 
A uniform sheet of surface current of strength A (ampkres per meter 

in the y direction) flows eastward (in 2 direction) on a horizontal plane 
(I = 0), as shown in Fig. 2.50. What are the magnitude and direction of 
the force on: 

(a) A horizontal segment of a wire of length I ,  above the sheet by a 
distance R, carrying a current i (amperes) in a northward direction? 

Fig. 2.50 

(b) The same segment but oriented so as to carry a current in the 

(c) A loop of wire of radius r, with center above the sheet by a distance 

(d) The same loop but with its magnetic moment northward? 

westward direction? 

R(r  < R), carrying a current i whose magnetic moment is eastward? 
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(e) The same loop but with its magnetic moment upward? 
State briefly the reason for each of your answers. 

( Wisconsin) 

Solution: 
The sheet of surface current can be divided into narrow strips of width 

dy and each strip regarded aa a current d l  = Ady. Consider a point P 
at (0 ,0 ,R) .  According to AmpBre’s circuital law two current strips dl l  
and dI2 located symmetrically on two sides of the point 0 will give rise to 
magnetic inductions dB1 and d B z  which combine to a resultant dJ3 in the 
--y direction (see Fig. 2.51): 

$57 where cos0 = 

Fig. 2.51 

Let 2L be the width of the current sheet. The total magnetic field at  the 
point P is 

(a) The current element at P is id = iley so the force on it is 

F = ile, x B = 0 .  

(b) The current element id = 4 e 2  and the force on it is 

arctan (g) e, . F=- arctan ( g ) e 2  x ey = - poilA I o l i A  
7r % 
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(c) The  loop of wire carrying current i has magnetic dipole moment 
m = nr2ie,. The force exerted by the magnetic field B on the loop is 

F = V(m - B) = V(mBe, .ey) = 0 .  

(d) m = rr2iey, and the force acting on it is 

poAr2iR2 
F = V(m * B) = -poAr2i- arctan - e, = - 

a R  ( k) R2+L2 e a '  

(e) m = nr'ie, and the force acting on it is 

F = V(mBe, -eY)  = 0 

2067 
A circular wire of radius R carries a current i electromagnetic units. 

A sphere of radius a (a << R) made of paramagnetic material with perme- 
ability p is placed with its center at  the center of the circuit (see Fig. 2.52). 
Determine the magnetic dipole moment of the sphere resulting from the 
magnetic field of the current. Determine the force per unit area on the 
sphere. 

(UC, Berkeley) 

Fig. 2.52 

Solution: 
Take the center of the circular wire as the origin and its axis as the 

z-axis. The magnetic field a t  the origin generated by a current i in the wire 
is 
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As the radius of the small sphere a R, we may think of the sphere as 
being in a uniform magnetic field Bo and make use of the magnetic scalar 
potential p. Let pp1 and (02 be the potentials outside and inside the sphere 
respectively. They satisfy the equations V2pl = V2p2 = 0 since the inside 
and outside magnetizations are both uniform. We require 

BO 
PO 

p1 ~3 po = --r~csO 

for r -, 03 and p 2  finite for r -+ 0. Furthermore, at r = R we have the 
boundary conditions 

Solving the Laplace's equations by separation of variables and following the 
procedure for solving Problem 1062 we are led to 

380 
Q2 = -- 

p + 2po cos a 

The magnetic induction inside the sphere is then 

Let the magnetization of the small sphere be M. Then as B = po (H+M) = 
p H  by definition we have 

The magnetic dipole moment of the sphere is then 

The surface current density on the sphere is given by the boundary condi- 
tion 

a, = n x (Hz - H I ) .  

AS 
Ba B1 Hi = - 

PO c12 
, H z = - - M ,  n x ( B P - B l ) = O  
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we have 

Finally, the force per unit area on the sphere is 

2068 

A current loop has magnetic moment m. The torque N in a magnetic 

( a ) N = m x B , ( b ) N = m - B , ( c ) N = O .  
field B is given by: 

(CCT) 
Solution: 

The answer is (a). 

2069 

A bar magnet in the earth's field will 
(a) move toward the North pole 
(b) move toward the South pole 
(c) experience a torque. 

Solution: 
The answer is (c). 

2070 
A copper penny is placed on edge in a vertical magnetic field B = 20 

kGs. It is given a slight push to  start it falling. Estimate how long it takes 
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to fall. (Hint: The conductivity and density of Cu are 6 x 105Qcm-' and 

(Princeton) 
9 gcm-3.) 

Solution: 
Because Cu is a good conductor, the potential energy of the copper 

penny will be converted mainly into heat when it is falling in such a strong 
magnetic field. We may assume that in the falling process the magnetic 
torque is always in equilibrium with the gravitational torque. Let 8 be the 
angle between the plane of the copper penny and the vertical axis. When 
we are considering a ring of radii r and r + dr, the magnetic flux crossing 
the area of the ring is d(O) = nr2B sin 8. The induced emf in the ring is 

and the induced current is 

where R is the resistance of the ring. Let h be the thickness of the penny. 
We then have 

Thus 

2 r r  
ahdr 

R = - .  

Bre cog Oahdr 
2 

di = 

The magnetic moment of the ring is 

rr3Bd cog Oahdr 
2 

dm = rr'di = 1 

and the magnetic torque is 

nr2 Bzd cm2 Bahdr 
2 

drm = Idm x BI = 

Let the radius of the penny be ro, then the magnetic torque on the whole 
copper penny is 

B26 emz 8uh 
8 

r'dr = 'O rB2b cosZ @ah 
= Jdrm = 1 2 
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The gravitational torque on the other hand is 

rg = mgro sin e = rriphg sin 8 . 

From r,,, = rg ,  we get 

B2roo cm28 
8gp sin8 

d t = - . -  d 8 .  

Suppose the penny starts falling at 8 = 80,  then the falling time will 
be 

Using the given data and taking ro = 0.01 m, 80 = 0.1 rad., we have the 
estimate 

T x 6 . 8 ~ .  

We can conclude from this that the potential energy converts mainly into 
heat since the time required for falling in a stong magnetic field is much 
longer than that when no magnetic field is present. 

2071 
Suppose that inside a material the following equations are valid: 

CV x A j  = -H , (A constant) 
a - (Aj)  = E l  
a t  

rather than Ohm’s law j = aE. (These are known as London’s equations.) 
Consider an infinite slab of this material of thickness 2d( -d  < z < d) 
outside of which is a constant magnetic field parallel to the surface, H ,  = 
H ,  = O , H ,  = H I  for z < -d and H ,  = H2 for z > d with E = D = 0 
everywhere, as shown in Fig. 2.53. Assume that no surface currents or 
surface charges are present. 

(a) Find H inside the slab. 



Magncioriaiie Field and Quari-sf olionary Elcciromagnciie Field 229 

(b) Find j inside the slab. 
(c) Find the force per unit area on the surface of the slab. 

(Princeton) 

Y 
I 

Fig. 2.53 

Solution: 
We use Gaussian units for this problem. In superconducting electre 

dynamics there are two descriptive methods. Here we shall take the current 
approach, rather than treating the material as a magnetic medium. The 
relevant Maxwell’s equations are 

4r. V x H = - - j 1  V . H = O .  

Since E = 0 , j  is a constant current and the magnetic field is stationary. 
The first Maxwell’s equation gives 

417 
V x (V x H) = -V x j, 

C 

i.e., 
4n V(V . H )  - V’H = -V x j .  

Using V - H = 0 and London’s equations in the above we find for the 
material 

4n V’H - -H = 0 .  
AC2 

Rom the symmetry we can assume that H = H(z) and has only 9- 
component, i.e., H = H,(z)e , .  The above then becomes 

C 

d2Hy  4s 
dz2 Ac2 
-- - H ,  = o  
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The general solution is H, = 
conditions we have 

+ Be". Using the given boundary 

H,(d)  = Ae-kd + Bekd = H 2 ,  { Hy(-d) = Aekd + Be-kd = H I  , 
giving 

Hiekd - H2e-kd H2ekd - Hle-kd  , B =  e 2 k d  - e - 2 k d  e 2 k d - e - 2 k d  
A =  

(a) Inside the slab only the y-component is present. It is 

ffy(z) = Ae-'" + Bekz 
- Hzsinh[k(z + d)] - H I  sinh[k(z - d)]  - 

sinh(2kd) 

(b) horn Maxwell's equation j = &V x H and H = Hy(t)% we have 
j = jze, with 

= _-. c jz = --- k ( H 2  cosh[k(z + d)] - Hi COgh(k(t. - 41) 
4 r  az 4ir sinh( 2kd) 

(c) The force on the slab is 

F = -  j x H d V  
C ' I  

Hence the force per unit area on the surface is 

2072 
A long thin wire carrying a current I lies parallel to and at a distance 

d from a semi-infinite slab of iron, as shown in Fig. 2.54. Assuming the 



iron to have infinite permeability, determine the magnitude and direction 
of the force per unit length on the wire. 

(UC, Berkeley) 

~#& d d  

Fig. 2.54 

Soh t ion: 

and opposite in direction to Z with magnitude 
Use the method of images. The image current is I', located at t = -d 

With p + 00, I' = I. The magnetic field at  the position z = d produced 
by I' is given by AmpBre's circuital law as B = S e , .  Therefore the force 
per unit length on the wire is 

P0Z2 

4rd e= a 

F = id x B = ZBe, x e, = - 

2073 

An uncharged metal block has the form of a rectangular parallelepiped 
with sides a,b,c. The block moves with velocity U in a magnetic field of 
intensity H as shown in Fig. 2.55. What is the electric field intensity in the 
block and what is the electric charge density in and on the block? 

( Wisconsin) 
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H 
t 

Fig. 2.55 

Solution: 

-eE - ev x B = 0. Hence 
In equilibrium no force acts on the electrons of the metal block, i.e., 

E = -v x B = -pov x H = - p o u H e l .  

In the block the charge density is 

Hence there is no charge inside the block. The surface charge density u is 
given by the boundary condition 

u = fD, = feoE,. 

As E is in the y-direction, u occurs only for the surfaces formed by the 
sides a, b and has the magnitude 

u = f&oE = fEopoVH, 

and the sign as shown in Fig. 2.55. 

2074 

In Fig. 2.56 an iron needle 1 cm long and 0.1 cm in diameter is placed 
in a uniform magnetic field of Ho = 1000 Gs with its long axis along the 
field direction. Give an approximate formula for H(r) valid for distances 
r > 1 cm. Here r is measured from the center of the needle as origin. 

(Chicago) 
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yi m V 

X 

Fig. 2.56 

(Note: the saturation value of B in iron is approximately 2000 Gs.) 

Solution: 
For distances r > 1 cm the iron needle can be treated as a magnetic 

dipole with moment m. Take the z-axis along the axis of the needle. Write 

Hext = Hoet , m = met 

In Gaussian units the magnetic field at position r is approximately 

r5 ' 

As the magnetic field due to the iron needle is much weaker than 
the external field Ho,m/r3 < Ho. As the tangential component of H is 
continuous at the boundary, the magnetic field within the iron needle may 
be taken as approximately 

Hi, = Ho . 
The magnetization of the needle is then 

With the volume of the needle equal to 

V = (0.05)2?r cm3 , 

Bin = 2 x lo4 Gs, Hi, Ho = lo3 Gs, the magnetic moment of the needle 



In polar coordinates the magnetic field at distances r > 1 cm has compe 
nents 

Hr = HocosB+2m- = ( 1000+ - 2 ~ ) ~ ~ 8 G s ,  + 
H# = - H ~  case + - mpe - - ( - l O O O + E ) s i n e G s  t.3 

2075 

A charged metal sphere of ma88 5 kg, radius 10 cm is moving in vacuum 
at 2400 m/sec. You would like to alter the direction of motion by acting 
on the sphere either electrostatically or magnetically within a region 1 m 
x 1 m x 100 m. 

(a) If limited by the total stored energy (electric or magnetic) in the 
volume of 100 mal will you obtain a greater force by acting on the sphere 
with a magnetic field B or an electric field E? 

(b) For a maximum electric iield (due to its charge) of 10 kV/cm at 
the sphere’s surface find the transverse velocity of the sphere at the end of 
the 100 m flight path as a function of the applied field (B or E)? 

(Princeton) 

Solution: 
(a) The electric energy density is we = ~ E O E ~ ,  and the magnetic energy 

density is wm = G. To estimate order of magnitude, we may assume the 
field intensity to be the same everywhere in the region under consideration. 
For the same energy density, ~ E O E ’  = El we have 

Ba 

1 = -J-- = c and 
POCO 

This shows that the force exerted on the metal sphere by an electric field 
is much greater than that by a magnetic field for the same stored energy. 

(b) The maximum electric field on the metal sphere’s surfaces of EIJ = 
10 kV/cm limits the maximum charge Qm carried by the sphere as well as 
the magnitude of the applied field (E or B). If an external electric field E 
is applied the surface charge density is (see Problem 1065) 

u = UO+ 3eoEcosB 
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where the polar axis has been taken along the direction of E, and uo ie the 
surface charge density due to the charge Q carried by the sphere, i.e., 

r being the radius of the sphere. The electric field on the sphere’s surface 
is given by E = $ and the maximum electric field, Eo, occurs at 0 = 0. 
Hence 

a0 E o = - + + E ,  
&O 

and the total charge of the sphere is 

Q = 4rr2Uo = 4nsor2(Eo - 3 E ) ,  E < -Eo . ( : >  
The time taken for the sphere to travel a distance 1 is At = b. The 
transverse acceleration is 9 if we assume EL = E. Then the transverse 
velocity at the end of At is 

If an external magnetic field is applied instead, the above needs to be mod- 
ified only by substituting VOB for E ,  the result being 

If E >_ $Eo or B 2 2, the charge of the metal sphere is zero and the 
transverse velocity is also zero. From the above results we can also show 
that the transverse velocity is maximum for E = Eo/9 or B = E0/9Vo, as 
the case may be. It follows that 

8 ~ ~ o r ~ E i l  8% x x 0.12 x 106X2  x 100 - - 
27mv0 27 x 5 x 2400 Ulrn  = 

= 6.86 x m/s 

and the maximum transverse displacement of the sphere is 

which is negligible in comparison with the transverse size (1 m) of the space. 
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2076 
Show that the force between two magnetic dipoles varies as the inverse 

fourth power of the distance between their centers, whatever their relative 
orientation in space is. Assume that the dipoles are small compared with 
the separation between them. 

(Columbia) 

Solution: 
Let the magnetic moments of the two dipoles be ml and ma. The 

potential produced by m2 at the location of ml is 

1 m 2 . r  
4 x  r3 ' 

Qm = -- 

where r is directed from m2 to ml. Because the magnetic field is B = 
-poVp,, the force on ml , is 

F m  = V(m1. B) = Vim1 + (-poV~m)] 

As both terms in the expression for the gradient are proportional to 3, F 
will be proportional to 5 .  

2077 
A magnetic dipole III is moved from infinitely far away to a point on the 

axis of a fixed perfectly conducting (zero resistance) circular loop of radius 
b and self-inductance L. In its final position the dipole is oriented along 
the loop axis and is at a distance L from the center of the loop. Initially, 
when the dipole is very far away, the current in the loop is zero (Fig. 2.57). 

(a) Calculate the current in the loop when the dipole is in its final 
position. 

(b) Calculate for the same positions the force between the dipole and 
the loop. 

(OC, Berkeley) 
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Fig. 2.57 

Soh tion: 
(a) The induced emf of the loop is given by 

Integrating over time we have 

L[Z(f) - Z(i)] = [B(f) - B ( i ) ] .  dS J 
Initially, when the dipole is far away, 

Z(i) = 0, B(i)  = 0. 

Writing for the final position I = Z ( f ) ,  B = B(f),  we have 

Consider a point P in the plane of the loop. Use cylindrical coordinates 
(p ,  8, z )  such that P has radius vector pe,. Then the radius vector from m 
to P is r = pe, - ze,. The magnetic induction at P due to m is 

where m = me,. As dS = p d p d k ,  we have 

3(m. r)(r e,) - - )pdpd8 ma e, 
/ B . d S = ' " / J (  4T f 6  r3 

- El!.? [ (b2 + z2)-*  - .z2(b2 + z2 ) - * ]  , 
- 2  
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and the induced current in the loop is 

Z = - Pam [(b 2 + z2)-h - z2(b2 + z2)-4] . 
2L 

By Lenz's law the direction of flow is clockwise when looking from the 
location of m positioned as shown in Fig. 2.57. 

(b) For the loop, with the current I as above, the magnetic field at a 
point on its axis is 

&m b4 
4L (b2  + 2 9 3  e* ' e, = -- Pol  b2 B' = -- 

2 (b2 + 22)3/2 
The energy of the magnetic dipole m in the field B' is 

W =m-B'  

and the force between the dipole and the loop is 

F = - - = -  aw 3p,2rn2b42 

at. 2 q b 2  + t2)4 * 

2078 
The force on a small electric current loop of magnetic moment p in a 

magnetic field B(r) is given by 

F = ( p  x 0) x B . 

On the other hand, the force on a magnetic charge dipole fi  is given by 

(a) Using vector analysis and expanding the expression for the force 
on a current loop, discuss in terms of local sources of the magnetic field the 
conditions under which the forces would be different. 

(b) Propose an experiment using external electric or magnetic fields 
that could in principle determine whether the magnetic moment of a nucleus 
arises from electric current or from magnetic charge. 

( UC, Berkeley) 
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Solution: 
(a) We expand the expression for the force on a current loop: 

F = ( / A X  V) x B = V ( p * B )  - p ( V * B ) .  

The external magnetic field B(r) satisfies V B = 0 so the above equation 
can be written as 

F = V ( p * B )  = (p;V)B + p  x (V x B ) .  

Compared with the expression for the force on a magnetic dipole, it has 
an additional term p x (V x B). Thus the two forces are different unless 
V x B = 0 in the loop case which would mean J = D = 0 in the region of 
the loop. 

(b) Take the z-axis along the direction of the magnetic moment of the 
nucleus and apply a magnetic field B = B(z)ez in this direction. According 
to F = ( p  x V) x B, the magnetic force is zero. But according to F = 
( p  - V)B, the force is not zero. So whether the magnetic moment arises 
from magnetic charge or from electric current depends on whether or not 
the nucleus suffers a magnetic force. 

2079 
A particle with charge q is traveling with velocity v parallel to a wire 

with a uniform linear charge distribution A per unit length. The wire also 
carries a current I as shown in Fig. 2.58. What must the velocity be for the 
particle to travel in a straight line parallel to the wire, a distance r away? 

( Wisconsin) 

Fig. 2.58 
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Solution: 
Consider a long cylinder of radius r with the axis along the wire. De 

note its curved surface for unit length by S and the periphery of its cross 
section by C. Using Gauss’ flux theorem and Amphe’s circuital law 

by the axial symmetry we find 

x POI E(r) = - e r  B(r) = -eg 2n~or 2nr 

in cylindrical coordinates (r, 8 ,  z )  with origin 0 a t  the wire. 
The total force acting on the particle which has velocity v = ue, is 

F = F, + F, = qE + qv x B 
QPO 

217.50r 2nr er + -u(-er). - - 

For the particle to  maintain the motion along the z direction, this radial 
force must vanish, i.e., 

giving 

2080 

The Lorentz force law for a particle of mass m and charge q is 

(a) Show that if the particle moves in a time-independent electric field 
E = -Vd(z, y, z )  and any magnetic field, then the energy imv2 + qp is a 
constant. 
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(b) Suppose the particle moves along the x-axis in the electric field 
E = Ae-*/'e,, where A and T are both constants. Suppose the magnetic 
field is zero along x axis and z(0) = z(0) = 0. Find x(t). 

(c) In (b) is $mv2 - qxAe-'/' a constant (indicate briefly your rea- 
soning)? 

(UC, Berkeley) 

Solution: 

(4 As 
F = m i  = q ( E  + y )  

we have 
v x B  

(mv-qE)=qT.  

It follows that 
P v . ( m i  - qE) = v .  (v x B)- = 0 .  
C 

Consider 

= m v - i r + q - = m v . v + q v . V +  d4 
dt 

where we have made use of 

Hence 
1 
-mv2 + q# = Const. 
2 

(b) The magnetic force F, = q? is perpendicular to v so that if 
the particle moves in the x direction the magnetic force will not affect the 
t-component of the motion. With E in the x direction the particle's motion 
will be confined in that direction. Newton's second law gives 

i.e., 
mdv = qAe-'/'dt , 
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with 
v(0) = 0 ,  mu = -qAre-'/' + qAr  , 

or 
dt 
m 

dx  = gAr( 1 - e-'/') - . 
With z(0) = 0, this gives 

t qAr2 qAr2 
z(t)  = gAr,  + -e-'IT - - 

m m 

= &[(t - r )  + r e - ' q  . 
m 

AS 

- q A m [ ( t  9-47 - r )  + re-*/']e-'/' . 

- d 1  ( -mv2 - gzAe-'/') # 0 
d t 2  

the expression is not a constant. 

2081 
A point particle of m a s  m and magnetic dipole moment M moves in 

a circular orbit of radius R about a fixed magnetic dipole, moment Mo, 
located at the center of the circle. The vectors Mo and M are antiparallel 
to each other and perpendicular to the plane of the orbit. 

(a) Compute the velocity u of the orbiting dipole. 
(b) Is the orbit stable against small perturbations? Explain. (Consider 

(CUSPEA) 
only the motion in the plane.) 

Solution: 

center of the circle by the dipole of moment Mo is 
(a) The magnetic field produced at a point of radius vector r from the 

.=-[ PO ~ ( M o  .r)r 
4u r6 
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This exerts a force on the particle moving in the circular orbit of 

F = V(M * B ) l r = ~ .  

Noting M - Mo = -M&, Mo . r = M - r = 0, we have 

F = -  ~ P o M M o -  
4*R4 

This force acts towards the center and givea rise to the circular motion of 
the particle. Balancing the force with the centrifugal force, 

V 2  3poMMo m- = 
R 4uR4 ’ 

givea the particle velocity as 

(b) The energy of the particle is 

with 
PoMMo L2 V(r) = -- + - 

4rr3 2mr2’ 
where L is the conserved angular momentum and the first term is the 
potential energy of M in the magnetic field B, -M B, for a circular orbit 
of radius r. We note that ( F ) r = R  = 0 and ( g ) r = R  < 0, so that U(R) is 
a maximum and the orbit is not stable against small perturbations in r. 

2082 

A long solenoid of radius b and length 1 is wound so that the axial 
magnetic field is 

A particle of charge q is emitted with velocity v perpendicular to a centrd 
rod of radius a (see Fig. 2.59). The electric force on the particle is given 
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by qE = f(r)e,, where e, - e, = 0.  We assume v is sufficiently large so 
that the particle passes out of the solenoid and does so without hitting the 
solenoid. 

(a) Find the angular momentum of the particle about the axis of the 
solenoid, for r > b. 

(b) If the electric field inside the solenoid is zero before the particle 
leaves the rod and after the particle has gone far way, it becomes 

calculate the electromagnetic field angular momentum and discuss the final 
state of the solenoid if the solenoid can rotate freely about its axis. Neglect 
end effects. 

( Wisconsin) 

V 

b 
I 

Fig. 2.59 

Solution: 
(a) As v is very large, we can consider any deviation from a straight 

line path to  be quite small in the emitting process. Let VI be the transverse 
velocity of the particle. We have 

dVl 
dt 

m - = q v x B .  

4 u l ( b )  = / Z B o d r  = -&(b - a) I 

m m 

b 

At r = b the angular momentum of the particle about the axis of the 
solenoid has magnitude 
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and direction -ez. Thus the angular momentum is 

Jp = -qBob(b - a)e, 

For r > b,B = 0 and J, is considered. So J, is the angular momentum of 
the particle about the axis for r > b. 

(b) After the particle has gone far away from the solenoid, the mo- 
mentum density of the electromagnetic field a t  a point within the solenoid 
is 

-EoExB,  g=-- E x H  
C' 

and the angular momentum density is 

j = r  x g =€or x (EX B) = - Boqe, , 
2*1 

which is uniform. As there is no field outside the solenoid and inside the 
central rod the total angular momentum of the electromagnetic field is 

Initially, E = 0, VI = 0 and the solenoid is at rest, so the total angular mo- 
mentum of the system is zero. The final angular momentum of the solenoid 
can be obtained from the conservation of the total angular momentum: 

Js = -JEM - J, = T ( 8  QBO - a)'e, . 

This signifies that the solenoid in the final state rotates with a constant 
angular speed about its central axis, the sense of rotation being related to 
the direction e, by the right-hand screw rule. 

2083 
Suppose a bending magnet with poles at z = f z o  has a field in the 

median plane that depends only on z ,  B, = B,(t), where the origin is 
chosen at the center of the magnet gap. What component must exist outside 
the median plane? If a particle with charge e and momentum P is incident 
down the z-axis in the median plane, derive integral expressions for the 
bending angle 8 and the displacement y as afunction o f t  within the magnet. 
Do not evaluate the integrals. 

( WisconsIR) 
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Solution: 
Since there is no current between the magnet poles, V x B = 0, or 

aB,  8Bz - = 0 .  -- at. aZ 
This implies that as B, depends on z ,  B, # 0, i.e. there is a z-component 
outside the median plane. 

The kinetic energy of a charged particle moving in a magnetic field is 
conserved. Hence the magnitude of its velocity is a constant. Let 8 be the 
bending angle, then 

ug = usini?, uz = ucosi?. 

The equation of the motion of the particle in the y direction, since v, = 0, 
is 

dull m- = eBBvz , dt 
or 

d 
dt mu-(sinO) = eB,ucosB. 

This gives 
eB, eB, dz .- do = -dt = - 
m m vcos8 '  

or e 
P 

Suppose at t = 0 the particle is at  the origin and its velocity is along 

cos dd8 = - B,dt. . 

the +z direction. Then 8(z)lz,o = 0 and we have 

or 

I9 1 c a s i ? d i ? = $ ~ z  B, dz ' , 

6 = sin-' [Sl' B,dt.'] . 

The displacement y is given by 
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2084 

An infinitely long wire lies along the z-axis (i.e., at t = 0,y = 0) 
and carries a current i in the +z direction. A beam of hydrogen atoms ia 
iqjected at  the point t = 0, y = b, z = 0 with a velocity v = uoe,. The 
hydrogen atoms were polarized such that their magnetic moments p~ are 
all pointing in the +t direction, i.e., p = pHe,. 

(a) What are the force and torque on these hydrogen atoms due tathe 
magnetic field of the wire? 

(b) How would your answer change if the hydrogen atoms were polar- 
ized in such a way that initially their magnetic moments point in the +r 
direction, i.e. p = pHer. 

(c) In which of the above two cases do the hydrogen atoms undergo 
Larmor precession? Describe the direction of the precession and calculate 
the precession frequency. 

(Columbia) 

Solution: 
The hydrogen atoms are moving in the ye plane. In this plane the 

magnetic field produced by the infinitely long wire at a point distance y 
from the wire is 

(a) With p = pHe,, the energy of such a hydrogen atom in the field 
Bis 

Thus the magnetic force on the atom is 

and the torque on the atom is 

L = p x B = O .  

(b) With p = pHe,, the energy is W = p.B  = 0. So the force exerted 
is F = 0 and the torque is 
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(c) In case (b), because the atom is exerted by a torque, Larmor pre- 
cession will take place. The angular momentum of the atom, M, and its 
magnetic moment are related by 

where g is the Land6 factor. The rate of change of the angular momentum 
is equal to the torque acting on the atom, 

= L. dM 
dt 
- 

The magnitude of M does not change, but L will give rise to a precession 
of M about B, called the Larmor precession, of frequency w given by 

or 
L p o w i  e w o i  
M 27rbM 4rbm' 

w=-=-=- 

The precession is anti-clockwise if viewed from the side of positive 2. 

2085 

A uniformly magnetized iron sphere of radius R is suspended from the 
ceiling of a large evacuated metal chamber by an insulating thread. The 
north pole of the magnet is up and south pole is down. The sphere is 
charged to a potential of 3,000 volts relative to the walls of the chamber. 

(a) Does this static system have angular momentum? 

(b) Electrons are injected radially into the chamber along a polar axis 
and partially neutralize the charge on the sphere. What happens to the 
sphere? 

(VC, Berkeley) 

Solution: 

Use coordinates as shown in Fig. 2.60. 
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(a) This system has an angular momentum. 

Fig. 2.60 

(b) Let m be the magnetic moment of the sphere. The magnetic field 
at a point r outside the sphere is 

Suppose the sphere carries a charge Q. As the sphere is a conductor, the 
electric field inside is zero and the electric field outside is 

r .  E=- 
4 ?rho r3 
Q 

Therefore the electromagnetic momentum density in the space outside the 
sphere, as m = me, = m(cosBe, - sin Bee) in spherical coordinates, is 

and the angular momentum density is 

pomQ sin B 
1 6r2 r4 j = r x g = -  eo * 

Because of symmetry the total angular momentum hss only the z- 
component, which is obtained by the integration of the z component 
of j: 

where V is the voltage of the sphere. As the electrons are being injected 
radially on the sphere, the charge Q decreases, causing the electromagnetic 
angular momentum to decrease also. However, because of the conservation 
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of total. angular momentum, the sphere will rotate about the polar axis, 
with the sense of rotation determined by the right-handed screw rule. 

The rotating angular velocity is 

where I is the rotational inertia of the sphere about the polar axis, and 
AQ, AV are the changes of its charge and potential respectively, which are 
both negative. 

2086 

A cylinder of length L and radius R carries a uniform current Z parallel 
to its axis, as in Fig. 2.61. 

P 
particle beam 

T 

k~--l 
Fig. 2.61 

(a) Find the direction and magnitude of the magnetic field everywhere 
inside the cylinder. (Ignore end effects.) 

(b) A beam of particles, each with momentum P parallel to the cylinder 
axis and each with positive charge q,  impinges on its end from the left. Show 
that after passing through the cylinder the particle beam is focused to a 
point. (Make a “thin lens” approximation by assuming that the cylinder is 
much shorter than the focal length. Neglect the slowing down and scattering 
of the beam particles by the material of the cylinder.) Compute the focal 
length. 

(CUSPEA) 

Solution: 
(a) Use cylindrical coordinates (r, 9, z) with the z-axis along the cylin- 

drical axis. The magnetic field at a point distance r from the axis is given 
by Ampbe’s circuital law to be 
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(b) The magnetic force acting on a particle of the beam is 

On account of this force the particle will receive a radial momentum towards 
the axis after traversing the cylinder of 

If we neglect the slowing down of the beam particles through the cylinder 
and use thin lens approximation, the axial momentum of a beam particle 
is still P after it comes out of the cylinder. The combination of P and Pr 
will make the particle cross the cylindrical axis at a point M, as shown in 
Fig. 2.62. From the diagram we find the relation 

Pr r 
P - d '  
- - -  

P 

Fig. 2.62 

Thus the focal length is 

P r  2nRaP 
Pr poeIL 

d = - = -  

and is independent of r. Hence all the particles will be focused at the point 
M. 

2087 
A dipole electromagnet has rectangular pole faces in horizontal planes 

with length 1 and width tu. The main component of the magnetic field B 
ie vertical. A parallel beam of particles, each with velocity u, mass rn, and 
charge q,  enters the magnet with the velocity u parallel to the horizontal 
plane but at an angle 9 with the center line of the magnet. The vertical size 
of the beam is comparable to the gap of the magnet. The particlee leave 
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the magnet a t  an angle -(p with the center line of the magnet, having been 
bent an angle of 2p (see Fig. 2.63 and Fig. 2.64). Show that the fringe field 
of the magnet will have a vertically focusing effect on the beam. Calculate 
the approximate focal length. 

Solution: 
As the pole area of the dipole electromagnet is limited, the magnetic 

field has fringe lines as shown in Fig. 2.63. If the y-component of the fringe 
field is neglected, the fringe field will only have z- and z-components. Etom 
V x B = 0, we have 

8B= 8B, 

(Columbia) 

-- - - 
8.2 dz * 

Side View 

Top View U 
Z 

W 
X 

Fig. 2.64 

n 
Fig. 2.63 

Suppose the extent of the fringe field is b. At the entrance of the elec- 
tromagnet B, increases from 0 to B in a distance b. To first approxi- 
mation the above relation gives Bx,in = $ z .  Whereas, at the exit B, 
decreases from B to 0 and one has = -9%. The velocities of the 
particles at the entrance and the exit are v = vcos(peo + vsin'pe, and 
v = v cos 'pe, - v sin (pe, respectively. Thus at both the entrance and the 
exit the particles will be acted on by a force, which is along the z direction 
and near the center line of the magnet, of 

qv Bz sin (p 

b 
F, = - 

This force gives a vertical momentum to the particles. The time taken for 
the particles to pass through the fringe width b is 

6 At = - 
v cos cp 

Hence, the vertical momentum is approximately 

P.  = -F,At = -qBx t a n p  
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As P, is negative for f r  and positive for - z ,  it will have a vertical focusing 
effect on the particles. The momentum of the particles in the zy plane is 
P = mu. Letting the focal length be f (from the extrance), we have 

giving 

The equation of the motion of a particle between the poles of the magnet 
is 

dv, m- = qv,B 
dt 

or 

as v, = v coscg = u,  vy = v sin p = vcg. If the deflecting angle p is small, we 
can take the time elapse in traversing the distance 4 to be 

I 
2 

t = - / v ,  

and have approximately 

Substituting it in the expression for focal length and taking tan cg = p, we 
have 

m2v2 f = -  
q2B21 * 

2088 

A dipole magnet with rectangular pole faces, magnetic field BO and 
dimensions as shown in Fig. 2.65 and 2.66 has been constructed. We in- 
troduce a coordinate system with z-axis parallel to the magnetic field and 
y- and z-axes parallel to the edges of the pole faces. Choose the z = 0 
plane so that it lies midway between the pole faces. Suppose that a par- 
ticle of charge q and momentum P parallel to the z-axis is projected into 
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the magnet, entering the region between the pole faces at a height x above 
the x = 0 mid-plane. 

(a) What is the approximate angular deflection 6, in the yz plane after 
passing through the magnet? (Assume P > qBL.) 

(b) Show that the angular deflection in the x z  plane after passing 
tbrough the magnet is given approximately by 0, % 0 i x / L ,  where 6, is the 
deflection found in (a). (Hint: This deflection is caused by the fringe field 
acting on the particle as it exits the magnet.) 

(c) Is the effect found in (b) to focus or defocus off-axis particles? 
(Columbia) 

lop View 

Fig. 2.65 Fig. 2.66 

Solution: 
The magnetic force acting on the particle has components 

F Z  = -q(UVBj - U Z B y )  

Fy = - q ( V z B =  - V Z B J )  9 

F Z  = - ~ ( V , B ,  - u ~ B = ) .  
Note that as indicated in Figs. 2.65 and 2.66, a left-handed coordinate 
system is used here. 

(a) As B = Boe, and is uniform between the pole faces, the equation 
of the transverse motion of the particle is 

Since the speed u does not change in a magnetic field, we have u,, = 
-usinO1,vz = ucos81, where 81 is the deflecting angle in yz plane. A8 
v8 N -&I, uJ = u ,  and P = mu =constant, the above becomes 

dot quBo 
dt 
7- -7, 
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or 

i.e., 

Integrating 
QBO L 

cosBld81 = 1 p d z  

we find 

Aa P > qB& we have approximately 

QBO L 8, w - P *  

(b) To take account of the fringe effect, we can assume B, w 0 and 8 

small B, in addition to the main field Bee,. The equation of the vertical 
motion of the particle is 

Aa vv w -tdY, v= w -v&, v, m v, dz w vdt ,  the above equation becomes 

d92 qvI9 - = -$BJ. 
dt 

From (a) we have P w y. Thus 

and the angular deflection in 2% plane is 

19, = lo" d8z = 

At the exit of the magnet, B, w Bo. We choose the closed path ABCD 
shown in Fig. 2.65 for the integral 
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Integrating segment by segment: 

[ B,dr = 1; B,dr , 1' B,dx R 0 , 

l D B , d r = O ,  LA B,dz = zB0 .  

Note that we have taken the points B, C a t  infinity and used the fact that 
B, = 0 for the mid-plane. Hence, 

B,dZ = -zBo , 

and 
0: e, = -z. 
L 

(c) As 8, 2 0 for 2 2 0, the particle will always deflect to the middle 
of the magnet. Hence the effect found in (b) focuses the particles, the focal 
length being 

f= lr s l  8, 8; q2B,?L. 
X L  P2 u -  = - = - = -  

2089 
When a dilute suspension of diamagnetically anisotropic cylindrical 

particles is placed on a uniform magnetic field H, it is observed that the 
particles align with their long axes parallel to the field lines. The particles 
are cylindrically symmetric and they have magnetic susceptibility tensor 
components characterized by 

Xr = x v  < x z  < 0. 
Assume that the suspending fluid has a negligible magnetic susceptibility. 

(a) The z-axis of the particle initially makes an angle off? with the 
magnetic field. What is the magnetic energy of orientation? 

(b) What is the torque on the particle in part (a)? 
(c) The tendency toward alignment will be counteracted by Brownian 

motion. When the particle rotates in the fluid it experiences a viscous 
torque of magnitude <e where 

c = lo-'' gcm'sec-' . 
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The moment of inertia of a particle is I = 10-15gcm2. If the particles are 
initially aIigned by the magnetic field, estimate the root-mean-square angle 
A&,, by which the molecular axes will have deviated from the alignment 
direction in a time t = lOsec after the magnetic field has been turned off. 
The temperature of the suspension is T = 300 K. 

(Princeion) 

Solution: 

magnetic field can be expressed as 
(a) In the Cartesian coordinates (2 ,  y, z) attached to a particle, the 

B = B sin f? cos pez + B sin f? sin 'pey + B cos Be, . 
As IxzII lxvi and Ixz I are generally much smaller than 1, the magnetic field 
inside the particle (a small cylinder) may be taken to  be B also. The 
magnetization is given by 

Let the volume of the small cylinder be V ,  then the energy of orientation 
is 

V 
PO 

= -[xz B2 sin' 8 + zz B2 cos2 B] . 

(b) The torque on the particle is 
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(c) The rotation of the particle satisfies the equation 

where F ( t )  is the random force acting on the particle. Noting that 

d2e2 - = 2e2 + 2ee, 
d t 2  

we have 

or 

Averaging over the particles, 8 F ( t )  = 0, and we have 

l l d 2 F  1 F - 
2 dt2 2 dt + -{- - r e 2  = 0. - -  

The principle of equipartition of energy gives 

1 -  1 -re2 = -kT, 
2 2 

80 the above becomes 

d2@ { d p  2kT - +-- - - = o .  
dt2 I dt I 

This has solution - 
02 = 2kT + Ce-+, c 

where C is a constant to be determined. Note that, as 8 is not restricted 
to the zone [ 0 , 4  we must take the number of turns rotated by the particle 
about the magnetic field into consideration. 

To estimate AO,,, let O2 = 0 at  t = 0, then C = 0. Hence 82 = a t  
a t  time t .  Numerically 

- - 
c 

- 2 x 1.38 x x 300 
e2 = 10 = 8.28 x 

1047 
or 

AOrms E @ = 0.091 rad. = 5.2 deg . 
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2090 
An electron is introduced in a region of uniform electric and magnetic 

fields at right angles to each other (let us say E = Ee,,B = B e , ) .  

(a) For what initial velocity will the electron move with constant ve- 
locity (both the direction and the magnitude of velocity are constant)? 

(b) Consider a beam of electrons of arbitrary velocity distribution si- 
multaneously injected into a plane normal to the electric field. Is there a 
time at which all the electrons are in this plane again? 

(Columbia) 
Solution: 

(a) If the electron moves with constant velocity, the total force acting 
on it must be zero, i.e., 

Fg = -FE = -eEe, . 
As Fg = -ev x B = -eBv x e,, we have 

(b) Suppose all electrons are in the Y O 2  plane at t = 0. Consider an 
electron with initial position (O,yo, Z O )  and initial velocity ( u o s , u ~ ,  ~ 0 ~ ) .  

The equations of its motion are then 

dv, 

dv 

m- dt = -e(E + Bv,) , 

mY dt = eu,B, 

dv, 
dt 

m- = O .  

Let u+ = us + ivy, then Eqs. (1) and (2) combine to give 

m- dv+ = -eE + ieBv+ 
dt 

with solution 
.E 
B 

v+ = cewi - 2- 

where w = s. The intial conditions give 

(3) 

c = voI + i voy + - . ( 3 
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E 
a+ = uoI cos wt - (uoy + sin ut] [ 

from which we obtain 

uz( t )=v~,coswt-  

uy (t) = voz sin wt + 
% ( t )  = u 0 r .  

Integrating the above expressions we have 

W 

VOO 1 
t ( t )  = -s inwt+-  

y(t) = -- coswt + 
W W 

E U O ~  Zt + ; + Y O ,  
VOO 

w W 

% ( t )  = zo + u o z t .  

For z ( t )  = 0 we require that t = % ( n  = 1,2, .  . .). Hence all the electrons 
will be in the Y O 2  plane again at  times 5. 

4. MISCELLANEOUS APPLICATIONS (2091-2119) 

2091 
Figure 2.67 shows a simplified electron lens consisting of a circular loop 

(of radius a )  of wire carrying current I. For p << a the vector potential is 
approximately given by 

nIa2p 
(a2 + z 2 ) 3 / 2  

Ad = 

(a) Write down the Lagrangian in cylindrical coordinates (p ,  8, z )  and 
the Hamiltonian for a particle of charge q moving in this field. 
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(b) Show that the canonical momentum pe vanishes for the orbit shown 
and find an expression for 8.  

In parts (c) and (d) it is useful to make a simplifying approximation 
that the magnetic force is most important when the particle is in the vicinity 
of the lens (impulse approximation). Since p is small we can m u m e  that 
p w b and E M u are nearly constant in the interaction region. 

(c) Calculate the impulsive change in the radial momentum as the 
particle passes through the lens. Then show that the loop acts like a thin 
lens 

1 1 1  - + - - -  
lo l i  - f ' 

where 
2 8a mue 

f = &) * 

(d) Show that the image rotates by an angle B = - 4 f i  in passing 

( Wisconsin) 
through the lens. 

Fig. 2.67 

Solution: 
(a) The Lagrangian of a charge g in an electromagnetic field is 

where v is the velocity of the charge of mass m, 'p is the scalar potential, 
and A is the vector potential. As 

v = pep + pBee + ie, , 
I n d p  

A =  (a2 + 9 ) 3 / 2  ee ' 'p = 
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Hence the components of the canonical momentum: 

a L  , 

Bi. P, = - = mz. 

The Hamiltonian is then 

(b) Using Hamilton’s canonical equation P O  = -#, we obtain fI = 0, 
1.e.. 

Initially when the particle was far away from the lens it was traveling along 
the axis of the circular loop ( p  = 0) with = 0. Since Pe is a constant of 
the motion, we have Po = 0, giving 

(c) Another Hamilton’s canonical equation kP = -%, with Po = 0, 
give8 

I T a q P  2 2 4 2  
Pp = - m t ( d  + x2)3 ’ 

or 

Since p N b and 2 N u are nearly constant in the interaction region, the 
change in the radial momentum is 
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Consider the orbit shown in Fig. 2.67. We have 4 = t at the object point 
and -e = at the image point of the lens. Hence 

6 6 ' 1  - + - = - (Po  - bi) = 
1, li u 

which can be written as 
1 1 1  - + - = -  
lo 4 f 

with 
2 f=-(-) 8a muc . 

3 r  zqr  

(d) The expression for 0 can be written a~ 

Xxa2qdz 

mc(a2 + z 2 ) W i  
d8 = - 

Hence passing through the lens the image will have rotated with respect to 
the object by an angle 

2092 

In Fig. 2.68 a block of semiconductor (conductivity = u) has its bottom 
face ( z  = 0) attached to a metal plate (its conductivity u -+ 00) which b 
held at potential 6 = 0. A wire carrying current J is attached to the center 
of the top face ( z  = c). The sides (z = 0, z = a, y = 0, y = 6) are insulated 
and the top is insulated except for the wire. Assume that the charge density 
is p = 0 and E = p = 1 inside the block. 

(a) Write down the equations satisfied by the potential inside the box 
and the general solution for the potential. 

(b) Write down the boundary conditions for all faces and express the 
arbitrary constants in the solution from (a) in terms of the given quantities. 

(Princeton) 
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Fig. 2 5 8  

Solution: 
(a) Inside the box g5(z,y, z) satisfies Laplace’s equation 

V2+, y, 2) = 0 .  

d(c, YI z) = +)Y(Y)Z(Z) + 

Separate the variables by writing 

Laplace’s equations then becomes 

I d2X 1 d2Y 1 d2Z -- + --+ -- = o .  
X d x 2  Y dy2 Z dz2 

Each of the three terms on the left-hand side depends on one variable only 
and must thus be equal to a constant: 

(2) 

-a2. 
1 d2X 

X dx2 
--= 

1 d2Y 
-P2 I 

--= 
Y dy2 
1 d2Z 
Z dz2 -’ ’ 2 

where y2 = a2 + D2. The solutions of these equations are 

X = A c o s a z +  B s i n a c ,  
Y = Ccosflpy+ Dsinpy,  
Z = Eevz + F e - v z ,  



Magneioslaiic Field and Quasi-Siaiionaty Eleciromagneiic Field 266 

where A, B, C, D, E, F are constants. Hence 

4(z,y,z) = (Acosaz  + Bsinaz) (Ccospy+ Dsinpy) 

. [E exp( d m z )  + F exp( - d m - z ) ]  , 

(b) The boundary condition Ei = 0 for the four vertical surfaces gives 

(1) 

For the top face ( z  = c) ,  Ohm’s law gives 

The bottom face ( z  = 0) has zero potential, thus 

4(z, Y, 0) = 0. (3) 
The conditions (1) require 

B = D = O ,  

where m, n are positive integers. (Negative integers only repeat the solu- 
tion). Equation (3) requires F = -E. Thus for a given set of integers m, n 
we have 

4mn(Z, Y, z )  = Amn cos(arnz) cos(Pny)sinh(rmnt.) - 
Hence the general solution is 

00 

4(zi Y, z )  = C dmn(Z, ~i 2 )  
m,n=l 

= 2 Am, cW(amZ) cos(pny)sinh(rmnz). 
m,n=l 

Substituting this in (2) we have 
m 

C Amn cw(amZ) cos(Pny)rmn Cosh(ymnc) 
m,n=l  

2 .  b ,  
= --6(z- J 5 , y -  a - 

U 
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Mukiplying both sides by ccxr(y,z) cos(p,y) and integrating over the top 
surface we have 

* Cos(am2) ca(PnY)dat 
mr nir 

cos-cco8- 45 - - 
2 .  abuyrnn cosh(7mnc) 2 

Note that Am, # 0 only for m and n both being positive even numbers. 

2093 
A magnetic dipole of moment m is placed in a magnetic lens whose 

field components are given by 

B, = (Y(Z 2 - y2) , B, = -2axy, Bz = 0 ,  

where z is the axis of the lens and a is a constant. (This is called asextupole 
field .) 

(a) What are the components of the force on the dipole? 
(b) Could one or more such lenses be used to focus a beam of neutral 

particles possesing a magnetic dipole moment? Give the reasons for your 
answer. 

(UC, Berkeley) 

Solution: 

netic field on m is 

Thus we have 

(a) As m is a constant vector, the force exerted by the external mag- 

F = V ( m . B ) .  

F, = 2a(m,z - m,y), 

F, = -2a(m,y + my.), 
Fz = 0 ,  

where we have written m = m,e, + mYeY + mze,. 
(b) If m = me,, we have 

F, = -2amy, F,, = -2amz. 
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This force is opposite to the displacement of the dipole from the axis. Hence 
we can use the sextupole lens to focus a beam of neutral particles with 
magnetic moment. If m = me,, we have 

F, = Pamx , F, = -2amy. 

Then the lens is diverging in x-direction but converging in ydirection. 
Hence to focus the beam, we need a pair of sextupole lenses, with the 
phase angles of the sextupole fields differing by x ,  i.e., the field of the 
second sextupole is 

2 B, = -a(x - y2) , B, = 2axy. 

The force exerted by the second sextupole is 

F, = -2amx , Fy = Sarny, 

80 that a converging power is obtained in x-direction as well. 

2094 
A charged particle enters a uniform static magnetic field B moving 

with a nonrelativistic velocity vo which is inclined at an angle a to the 
direction of B. 

(a) What is the rate of emission of radiation? 
(b) What is the condition on vo that the radiation be domipantly of 

(c) If a uniform static electric field E is added parallel to B, how large 

( Wisconsin) 

(a) The radiation emitted per unit time by an accelerating nonrela- 

one multipolarity? 

must it be to double the previous rate of radiation? 

Solution: 

tivistic particle of charge q with velocity v < c is approximately 

in Gaussian units. The equation of the motion of the particle in the mag- 

4 
netic field B is 

movo = -(VO x B) , 
C 
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giving - 

where a is the angle between Y O  and B. The rate of emission of radiation 
is then 

P = -  2q4 B2v: sin2 a erg/s . 
3mgc5 

(b) The radiation emitted by a charged particle moving in a magnetic 
field B is known as cyclotron radiation and has the form of the radiation of 
a Hertzian dipole. The particle executes Larmor precession perpendicular 
to  B with angular frequency wo = @-. Actually there are also weaker 
radiations of higher harmonic frequencies 2w0,3wo,. . . . However, if vo < c 
is satisfied, the dipole radiation is the main component and the others may 
be neglected. 

(c) When a uniform static field E is added parallel to  B, the equation 
of the particle’s motion becomes 

mPC 

9 mov = -(VO x B) + qE, 
C 

or 

v l  and v,, being components of the particle’s acceleration perpendicular 
and parallel to the electric field respectively. To double the radiation power 
in (a) u2 is to be doubled. Writing the above equation as 

q2 2 
v 2  = v 2  I + u i  = &viB2s in2a+  7 E 2  

nio c m0 

since as E is parallel to B,  E is perpendicular to  vo x B, we see that to 
obtain u2 = 21;; we require 

uo 
C 

E = - B s i n a .  

2095 

A circular loop of wire, radius r ,  weighing m kilograms, carries asteady 
current I amperes. It is constrained to have its axis perpendicular to a large 
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planar sheet of a perfect conductor. It is free to move vertically, and its 
inetantaneous height is t meters. It is moving at a speed u in the y direction 
with v a: c. 

(a) What is the boundary condition on the magnetic field B at the 
planar conducting sheet? 

(b) Draw and describe algebraically a single image current that, com- 
bined with the real current, exactly reproduces the magnetic field in the 
region above the plane. 

(c) Find the approximate equilibrium height z and frequency of small 
vertical oscillations for a value of the current such that t < r.  

( Pn'n ce ion) 

Solution: 
(a) The normal component of B, which is continuous across a bound- 

ary, is zero on the conducting surface: I?, = 0. 
(b) As shown in Fig. 2.69, the image of the current is a current loop 

symmetric with respect to the surface of the conducting plane, but with an 
opposite direction of flow. The magnetic field above the planar conductor 
is the superposition of the magnetic fields produced by the two currents 
which satisfies the boundary condition B, = 0. 

(c) Consider a current element Id1 of the real current loop. As t < r ,  
we may consider the image current as an infinite straight line current. Then 
the current element Id1 will experience an upward force of magnitude 

The force on the entire current loop is 
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At the equilibrium height this force equals the downward gravity: 

giving 

Suppose the loop is displaced a small distance 6 vertically from the equi- 
librium height 2, i.e., z .-, 2 + 6, 6 < 2. The equation of the motion of the 
loop in the vertical direction is 

p0Z2r 
mg - &I (1 f )  . 22 

-m6 = mg - - 
2(2 + 6) 

Noting that mg = &$, we get 

This shows that the vertical motion is harmonic with angular frequency 

2096 

We assume the existence of magnetic charge related to the magnetic 
field by the local reaction 

(a) Using the divergence theorem, obtain the magnetic field of a point 

(b) In the absence of magnetic charge, the curl of the electric field is 
magnetic charge at the origin. 

given. by Faraday’s law 
aB V x E = - -  
8t * 
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Show that this law is incompatible with a magnetic charge density that is 
a function of time. 

(c) Assuming that magnetic charge is conserved, derive the local re- 
lation between the magnetic charge current density Jm and the magnetic 
density pm. 

(d) Modify Faraday’s law as given in part (b) to obtain a law consistent 
with the presence of a magnetic charge density that ia a function of position 
and time. Demonstrate the consistepy of the modified law. 

( CrC, Berkeley) 

Solution: 

pop,,, the divergence theorem gives 
(a) Consider a spherical surface S of radius r at the origin. As V - B  = 

V . BdV = B . dS = 4nr2B(r) = poqm. i 
Hence 

since V - (V x E) = 0 identically. On the other hand, 

Thus Faraday’s law is incompatible with a time-varying magnetic charge 
density. 

(c) The conservation of magnetic charge can be expressed as 

As V is arbitrary we must have 

8Pm - + v . J, = 0 .  8t 

This b the continuity equation for magnetic charge. 
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(d) If we modify Faraday’s law to 

8B V x E = -poJm - - at 

and take divergence on both sides, we shall obtain 

Hence 

consistent with the second equation of (b). 

2097 

(a) Suppase that isolated magnetic charges (magnetic monopoles) ex- 
ist. Rewrite Maxwell’s equations including contributions from a magnetic 
charge density pm and a magnetic current density j,. Assume that, except 
for the sources, the fields are in vacuum. 

(b) Alvarez and colleagues looked for magnetic monopoles in matter 
by making pieces of matter go a number of successive times through a coil 
of n turns. If the coil has a resistance R, and we assume that the magnetic 
charges are moved slowly enough to make the effect of its inductance small, 
calculate how much charge Q flows through the coil after N circuits of a 
monopole qm.  

(c) Suppose that the coil is made superconducting so that its resistance 
is zero, and only its inductance L limits the current induced in it. Assuming 
that initially the current in the coil is zero, calculate how much current i t  
carries after N circuits of the monopole. 

(CUSPEA) 

Solution: 

(a) Use the analysis of Problem 2096. When electric charge density p ,  
electric current density j, magnetic charge density p,, and magnetic current 
density j, are all present in vacuum, Maxwell’s equations (in Gaussian 
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units) are 
V * E  = 4 ~ p ,  

V ' B  = 4rpmj 

V x E  = -$% - Fj,, 
V x B  = ;g + y,  

where c is the velocity of light in vacuum. 
(b) As shown in Fig. 2.70, we take one of the turns as the closed loop 

1 in Stokes' theorem and let the area surrounded by 1 be S. Then, using 
Stokes' theorem and the third equation above, we have 

j, . d S .  f E dl = J, V x E dS  = - - - B - dS - 4" 1 1 6  
c Bt C 

Fig. 2.70 

Letting I ,  be the magnetic current in the coil, we have 

I,,,= j , . d S .  

Letting V be the potential across the coil and I the electric current flowing 
through it , we have 

J ,  

~ ' E . ~ = v = I R .  

The magnetic flux crossing the coil is qi = ss B d S ,  and the induced emf 
in the coil is 

184 
c at * 

& = --- 

Combining the above we have the circuit equation 
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If the inductance can be neglected, E: = 0 and 

4 r  ZR = ---Im. 
C 

Integrating leads to 

After qm goes N times through the coil of n turns, the total charge flowing 
through the coil is 

4 r N n q ,  
RC * 

q = -  

(c) If the resistance is negligible, i.e., R = 0, while the inductance L is 
not, we have E: = -Lg. The circuit equation now gives 

d l  4* dqm -L- = - N n - .  
dt c dt 

Integrating we get 
4rNnqm 
LC I = -  

2098 

In Fig. 2.71, the cylindrical cavity is symmetric about its long axis. 
For the purposes of this problem, it can be approximated as a coaxial cable 
(which has inductance and capacitance) shorted at one end and connected 
to a parallel plate disk capacitor at the other. 

(a) Derive an expression for the lowest resonant frequency of the cavity. 
Neglect end and edge effects (h >> r2 ,d  < rl). 

(b) Find the direction and radial-dependence of the Poynting vector 
N in the regions near points A and 8.  

( Prince io  n) 
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Fig. 2.71 

Solution: 
(a) To find the inductance and capacitance per unit length of the coax- 

ial cable, we suppose that the inside and outside conductors respectively 
carry currents Z and - I  and uniform linear charges A and -A. Use cylin- 
drical coordinates ( r , e , e )  with the z-axis along the axis of the cable. Let 
the direction of flow of the current in the inner conductor be along the +z- 
direction. From Problem 2022 the inductance and capacitance per unit 
length of the coaxial cable are 

The capacitance of the parallel-plate condenser connected to the coaxial 
cable is 

reor: co = - d '  
Hence the lowest resonant angular frequency of the cavity is 

1 - 2dc' 
L(C + Co) - h(2dh + r: In 2) 

(b) At point A,rl < r < ra,E(r) - P,B(r)  - 9, 80 N - hez. At 

WO = 

point B ,  0 < r < rl,E(r) - -ez,B(r) - re@, so N - re,. 

2099 
An electromagnetic wave can propagate between two long parallel 

metal plates with E and B perpendicular to each other and to the direc- 
tion of propagation. Show that the characteristic impedance 20 = 
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is f i e  $, where L and C are the inductance and capacitance per unit 
lenith, s is the plate separation, and w is the plate width. Use the long 
wavelength approximation. 

( Wisconsin) 

Soh t ion: 
In the long wavelength approximation, A >> w,A > s, and we can 

consider the electric and magnetic fields between the two metal plates as 
approximately stationary. Use the coordinate system as shown in Fig. 2.72 
with the z-axis along the direction of propagation. Since the electric and 
magnetic fields are perpendicular to the z-axis and are zero in the metal 
plates, the continuity of Ei gives E, = 0, while the continuity of B, gives 
B, = 0. 

Fig. 2.72 

Suppose the two plates carry currents +i and - i .  The magnetic field 
between the plates is given by the boundary condition n x H = It, where 
11 is the current per unit width of the conductor, to be 

The inductance per unit length of the plates is obtained by considering the 
flux crossing a rectangle of unit length and width s parallel to the z-axis to 
be 

Let the surface charge density of the two metal plates be u and -u. 
The electric field between the plates is 

and the potential difference between the plates is 
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Hence the capacitance per unit length is 
uw &OW 

V S  
c=-=----. 

Therefore the characteristic impedance per unit length of the plates is 

2100 
Reluctance in a magnetic circuit is analogous to: 
(a) resistance in a direct current circuit 
(b) volume of water in a hydraulic circuit 
(c) voltage in an alternating current circuit. 

Solution: 
The answer is (a). 

2101 
The permeability of a paramagnetic substance is: 
(a) slightly less than that of vacuum 
(b) slightly more than that of vacuum 
(c) much more than that of vacuum 

Solution: 
The answer is (b). 

2102 
Magnetic field is increasing through a copper plate. The eddy currents: 
(a) help the field increase 
(b) slow down the increase 
(c) do nothing 

(CCT) 
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Solution: 
The answer is (b). 

2103 
A golden ring is placed on edge between the poles of a large magnet. 

The bottom of the ring is prevented from slipping by two fixed pins. It ie 
disturbed from the vertical by 0.1 rad and begins tofall over. The magnetic 
field is lo4 gauss, the major and minor radii of the ring are 1 cm and 1 mm 
respectively (see Fig. 2.73), the conductivity of gold is 4 x lo" s-l and the 
density of gold is 19.3 g/cm3. 

(a) Does the potential energy released by the fall go mainly into kinetic 
energy or into raising the temperature of the ring? Show your reasoning 
(order of magnitude analysis only for this part). 

(b) Neglecting the smaller effect calculate the time of the fall. (Hint: 
J: cosa@d6 = 2.00) 

(MITI 
0.1 sin 6 

,,,, /,j,q/ 1 mm 

Fig. 2.73 

Solution: 
(a) Let the time of the fall be T. In the process of falling, potential 

energy is converted into thermal energy Wt and kinetic energy Wk given 
by an order of magnitude analysis to be roughly (in Gaussian units) 

2 B2(rr?)' 
c2RT wt - PRT (A) RT = 
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where 
rl, t-2 = major and minor radii of the ring respectively, 
4 = magnetic flux crossing the ring w Br$, 
p = density of gold, 
u = conductivity of gold, 
R = resistance of the ring = $, 
m = mate of the ring = p2rrl - ur& 
c = velocity of light in vacuum, 
w = angular velocity of fall = +. 

Putting 

TI = c= & = 3 . 2 x  lO-'s, 

4pc' 4 x 19.3 x 9 x 10" = 1.74 
8 ,  T B = - -  

U B ~  - 4 x .lo17 x 108 

we can write the above as 

The energy balance givea 

or 

Solving for T we have 
r 1 

Wr - mgrl , Wk - mgrl . - 3r2 ("> - a mgrl . 
16 TI 

It follows that the potential energy released by the fall goes mainly into 
rJling the temperature of the ring. 
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(b) We neglect the kinetic energy of the ring. That is, we assume 
that the potential energy is changed entirely into thermal energy. Then 
the gravitational torque and magnetic torque on the ring approximately 
balance each other. 

The magnetic flux crossing the ring is 

The induced emf is 

E = 'JdQl = -Brr fcos89 ,  1 
c dt c 

giving the induced electric current as 

€ i 
i = - = Brr:cosB. - 

R cR 

and the magnetic moment of the ring as 

irr? - B(rrt)' cosee m = - -  
C c2R 

Thus the magnetic torque on the ring is 

( B r r t  cOs e y e  
c2R 

rm = Im x B I = 

The gravitational torque on the ring is r9 = mgrl sin 0. Therefore 

or 

giving 

Integrating we find 

aB2rl cos2 Ode 
dl = 

4pgc2 sin 8 ' 
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2104 
A particle with given charge, mass and angular momentum move8 in 

a circular orbit. 
(a) Starting from the fundamental laws of electrodynamics, find the 

static part of the magnetic field generated at distances large compared 
with the size of the loop. 

(b) What magnetic charge distribution would generate the same field? 
(UC, Berkeley) 

Solution: 
(a) Let the charge, mass and angular momentum of the particle be 

q ,  m, L respectively. Use cylindrical coordinates (R, 8,  z) with the z-axis 
along the axis of the circular orbit and the origin at its center. As we are 
interested in the steady component of the field, we can consider the charge 
orbiting the circle as a steady current loop. The vector potential at  a point 
of radius vector R from the origin is 

where r = 1R - .‘I. For large distances take the approximation r = R(1- w )  and write J(r‘)dV‘ = Id# .  Then 

integrating over the circular orbit. Write 

1 ( R e  r‘)dr’ = $(R. r’)dr’ - (Re dr’)r’] 

1 + s[(R + r’)dr’ + ( R .  dr‘)r’] . 

The symmetric part gives rise to an electric quadrupole field and will not 
be considered. The antisymmetric part can be written as 

1 
-(r‘ x dr‘) x R. 
2 
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Hence, considering only the magnetic dipole field we have 

A(R) = !!E [ i f r’ x dr’] x ~3 R , 
4% 2 

4s R3 4r R3 ’ 
PO R Po R = -IrrZez x - = -M x - 

where M = I d e s  is the magnetic dipole moment of the loop. Fkom 
B = V x A we have 

where we have used 
dq dqd l  qv I = - = - - -  -- 
dt dl dt 2nr 

and 

(b) A magnetic dipole layer can generate the same field if we consider 
distances far away from the source. Let the magnetic dipole moment be 
pmr then the scalar magnetic potential far away is 

giving 

which is the same as the expression for B in (a) with pm = M. 

2105 

A conducting loop of area A and total resistance R is suspended by 
a torsion spring of constant t in a uniform magnetic field B = B q .  The 
loop is in the yz plane at equilibrium and can rotate about the z-axis with 
moment of inertia I as shown in Fig. 2.74(a). The loop is displaced by 8 
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small angle 0 from equilibrium and relemed. Assume the torsion spring is 
non-conducting and neglect self-inductance of the loop. 

(a) What is the equation of motion for the loop in terms of the given 
parameters? 

(b) Sketch the motion and label all relevant time scales for the case 
when R is large. 

(MITI  

Fig. 2.74(e) 

Solution: 
(a) when the angle between the plane of the loop and the magnetic 

field is a, the magnetic flux passing through the loop is q5 = BA sin a. The 
induced emf and current are given by 

The magnetic moment of the loop is 

Thus the magnetic torque on the loop is 

B ~ A ~ C O S ~ ~ .  
R a. ~j,, = Im x BI = - 

Besides, the torsion spring also provides a twisting torque ka. Both torques 
will resist the rotation of the loop. Thus one has 

b+ka = O .  
B2 A2 cos2 a 

R Z& + 
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As (Y << 8 and 8 is itself small, we have cos2 a x 1 and 

Problems €4 Solutions on Electtomagneiism 

& + k a = O .  
B ~ A ~  

I & +  - R 

Let LY = ecr and obtain the characteristic equation 

C+k=O. B ~ A ~  
IC2 + R 

The solution is 

Defining 

we have two solutions 

C , = - P + j y ,  C Z = - P - j y .  

The general solution of the equation of motion is therefore 

a = e-@(Al cosyl + Azsin yt] . 

Since = 8,  irli,,-, = 0, we find 

Hence the rotational oscillation of the loop is described by 

Note that for the motion to  be oscillatory, we require that k > P21,  which 
WBB assumed to be the case. 
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(b) If R is large, P << y and we have 

The motion is harmonic with exponentially attenuating amplitude, aa 
shown in Fig. 2.74(b). 

a 

Fig. 2.74(b) 

2106 
Figure 2.75 shows two long parallel wires carrying equal and opposite 

steady currents I and separated by a distance 2a. 

(a) Find an expression for the magnetic field strength at a point in the 
median plane (i.e. zz plane in Fig. 2.75) lying a distance z from the plane 
containing the wires. 

(b) Find the ratio of the field gradient dB, /dz  to the field strength B. 
(c) Show qualitatively that the above “two-wire field” may be produced 

by cylindrical pole pieces of circular cross sections which coincide with 
the appropriate equipotentials. Further, give arguments to show that the 
analogous electric field and field gradient may be produced by equivalent 
circular pipes with the current I being replaced by q,  the charge per unit 
length on the pipes. 

(d) Consult the diagram 2.76 which gives specific dimensions and which 
represents two long pipes of circular cross section carrying equal and o p  
posite charges q (per cm). Given that the field is E = 8000 V/cm at the 
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position z = a = 0.5 cm, calculate the value of q and the potential difference 
between the two pipes. 

(UC, Berkeley) 

Y 

Y 

t 
-0  

- X  

Fig. 2.75 Fig. 2.76 

Solution: 
(a) Suppose the long wires carrying currents +I and -I cross the y 

axis a t  +a and --a respectively. Consider an arbitrary point P and without 
loss of generality we can take the y r  plane to  contain P. Let the distances 
of P from the y- and z-axes be z and y respectively, and its distances from 
the wires be rl and rp as shown in Fig. 2.77. Ampkre's circuital law gives 
the magnetic inductions B1 and Bz at P due to +I and -I respectively 
with magnitudes 

where r1 = [ ~ ~ + ( a - y ) ~ ] ?  and r2 = [ ~ ~ + ( a + y ) ~ ] t ,  and directions as shown 
in Fig. 2.77. The total induction at P, B = B1 + Bz, then has components 

B, = 0 ,  
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Y 
6 

Fig. 2.77 

For a point in the zz plane and distance z from the yaxis, i.e., at 
coordinates (0, 0, z), the above reduces to 

(b) Equation (1) gives 

Hence 
22 = -- 

dz t 2  + a2 - 
(c) The magnetic lines of force are parallel to the yz plane and are 

given by 
dy dz - = -  
By Bz * 

They have mirror symmetry with respect to the zz plane, as shown by the 
dashed curves in Fig. 2.78. If we define the scalar magnetic potential 4,,, 
by H = -VI#J,, then the equipotentials are cylindrical surfaces everywhere 
perpendicular to the lines of force, Their intercepts in the yz plane are 
shown as solid curves in the figure. Hence if the two wires carrying currents 
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were replaced by a cylindrical permanent magnet piece with the two side 
surfaces (+z and -2) coinciding with the equipotential surfaces, the same 
magnetic lines of force would be obtained, since for an iron magnet of 
p 4 00 the magnetic lines of force are approximately perpendicular to the 
surface of the magnetic poles. 

Y 
1 

Fig. 2.78 

Carrying the idea of magnetic charges further, we have 

where pm is the magnetic charge density. Then applying the divergence 
theorem we have 

H * dS = J, V * HdV = qm 

where qm is the magnetic charge enclosed by S, showing that H is analogous 
to D in electrostatics. Applying the integral to a uniform cylinder, we have 

H ,dl = Am , 

where C is the circumference of a cross section of the cylinder and Am is 
the magnetic charge per unit length. Comparing with Ampkre’s circuital 
law, fC H . dl = I, we have the equivalence 

Ii-+Xm. 

Proceeding further the analogy between electric and magnetic fields we 
suppose that a metal pipe of the same cross section is used, instead of the 
cylindrical magnet piece, with charges fX per length on the side surfaces 
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~ z .  Then an electrostatic field distribution is produced similar to the lines 
of force of B above. With the substitution H + D, I -+ A, the relations in 
(a) and (b) are still valid. 

(d) By analogy, Eq. (1) gives 
!l a E, = -- 

4r.50 (2' -k a') * 

With a = a = 5 x 10-3m, E, = 8 x lo6 V/m, we have 

q = 8.90 x 10-7 c. 
The potential difference between the two cylindrical sides carrying opposite 
charges q per unit length is 

da arctan (:) (I' = 2.7 x lo3 V 
31 

with z1 = 4 x m, 22 = 8 x m. 

2107 
In a measurement of e/m for electron using a Thomson type apparatus, 

i.e., crossed electric and magnetic fields in a cathode-ray tube, it is noted 
that if the accelerating potential difference is sufficiently large, the ratio e/m 
becomes one-half as large as the accepted value. Take e/mo = 1.8 x 10" 

(a) Draw a simple sketch of the apparatus used and give a brief expla- 

(b) Find the accelerating potential difference V which causes e/m to 

(SUNY, Buflalo) 

(a) A Thomson type apparatus is shown schematically in Fig. 2.79, 

C/kg* 

nation of how it is supposed to function. 

be one-half its accepted value. Take c = 3 x loa m/sec. 

Solution: 

where V1 is the accelerating voltage and VZ is the deflecting voltage. 
I, 

Fig. 2.79 
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With the addition of a magnetic field B as shown, the electromagnetic field 
has the action of a velocity-filter. With given values of V1 and Va, we adjuet 
the magnitude of B 80 that the electrons strike the center 0 of the screen. 
A t  this time the velocity of the electron is u = E / B  (since e E  = evB). 
Afterward the magnetic field B is turned off and the displacement 1 2  of the 
electrons on the screen is measured, The ratio e/m is calculated as followe: 

giving 
VZYZ 

dB2($ + LD) ' 
e/m = 

(b) When the accelerating voltage is very large, relativistic effects must 
be considered. horn energy conversation 

eV1 + mOcZ = mc2 , 
we find 

As = I C  the accelerating voltage is m 2 m o t  

2108 
The betatron accelerates particles through the emf induced by an in- 

creasing magnetic field within the particle's orbit. Let 81 be the average 
field within the particle orbit of radius R, and let B2 be the field at the 
orbit (see Fig. 2.80). 

(a) What must be the relationship between 81 and B2 if the particle 
is to remain in the orbit at radius R independent of its energy? 

(b) Does the above relationship hold at relativistic energies? Explain. 
P I T )  
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Fig. 2.80 

Solution: 
(a) Suppose the magnetic field is oriented in the z direction, i.e., Bz = 

> 0, we see that the electric field is 8 8  Bze,. From V x E = -=, where 
along the -e@ direction and has axial symmetry. Then from 

we have 
2 r R E =  - z / B 1  at . d S .  

The average magnetic field is 

Hence 

If the effect of radiation damping is negligible the equation of the motion 
of the particle is 

-- d(mv) - qE + qv x B2. 
dt 

In cylindrical coordinates, this is equivalent to two equations: 

mu2 - = qv& 
R 

in e, direction, 

in ee direction. pRdB1 do = -qE = -- 
dt 2 dt 

The last equation can be integrated to give mv = iqRB1 assuming u = 
O,& = 0 at t = 0. Thus Bz = El & = %. Hence we require BZ = &/2. 
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(b) For the relativistic case, the equation of motion for the particle is 

) = q E + q v x B .  

By a similar analysis, we again get the relationship Bz = B1/2. 

2109 
(a) Calculate the electric polarization vector P and also the surface 

and volume bound charge densities in a long dielectric cylinder spinning at 
an angular velocity w about its axis in a uniform magnetic field B which is 
parallel to the axis. 

(b) A doughnut-shaped solenoid winding has dimensions R = 1 meter, 
diameter of the loop = 10 cm, and the number of windings = 1000. If a 
current of 10 amperes runs through the wire, what is the magnitude and 
the direction of the force on one loop? 

(c) Find the radiation pressure on a mirror 1 meter away from a 70 
watt bulb. Assume normal incidence. 

(d) A plane electromagnetic wave is normally incident on a perfect 
conductor (superconductor). Find the reflected E and B fields, the surface 
charge and current densities in t e r m  of the incoming fields. 

(e) Two charges q and -q  are brought from infinity to a distance d 
from a conducting plane and a distance r from each other. Find the work 
done in the process by the external force which moved the charges. Give 
both magnitude and sign. 

(UC, Berkeley) 

Solution: 

moving with velocity v in a magnetic field B is 
(a) The constitutive equation for electric fields in a dielectric medium 

D = LEOE + E O ( ~  - 1 ) ~  x B , 
where k is its relative dielectric constant. For a point distance r from the 
axis of rotation, v = w x r and v x B = (w B)r - (r 9 B)w = wBr as r 
is perpendicular to B. As there are no free charges, Gauss’ flux theorem 
f D  . d S  = 0 gives D = 0. Then from D = EoE+P we get 

P = - E o E = E o  1 - -  w B r .  ( 3 
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Hence the volume bound charge density is 

and the surface bound charge density is 

( :> u ‘ = P p = & o  1 - -  w B a ,  

as r = a for the cylinder’s surface. 

magnetic induction in a doughnut-shaped solenoid: 
(b) By symmetry and using Ampkre’s circuital law, we obtain the 

where r is the distance from the center of the doughnut. Consider a small 
section of length dl of the solenoid. This section contains &dl turns of the 
winding, where R is the radius of the doughnut. Take as current element 
a segment of this section which subtends an angle d8 at the axis of the 
solenoid: 

NZdl 
2nR AI = -pd8 ,  

where 8 is the angle made by the radius from the axis to the segment and 
the line from the axis to center of the doughnut and p is the radius of a 
loop of winding. The magnetic force on the current element is in the radial 
direction and has magnitude 

B N Z p  
2 41rR d F  = AI - = -Bdddl 

where B / 2  is used, instead of B, because the magnetic field established by 
the current element itself has to be taken out from the total field. Note that 
dF is perpendicular to the surface of the solenoid and only its component 
dF - cos 8 along the line from the axis to the center of the doughnut is not 
canceled out with another element a t  27r - 0. As 

r = R + p c o s 8 ,  
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we have the total 

F =  

Problcmr EI Soluiionr o n  Elcctromegnciirm 

force on the doughnut 

Hence, the force on one loop is 

F 0.079 
N 1000 
- = -- = -7.9 x loa6 N 

and points to the center of the doughnut. 
(c) The electromagnetic field momentum incident on the mirror per 

unit time per unit area is &, where W is the wattage of the bulb and 
d is the distance of the mirror from the bulb. Supporre the mirror reflects 
totally. The change of momentum occurring on the mirror per unit time 
per unit area is the pressure 

= 3.7 x lo-" N/m2. 2 x 70 
4r x 12 x 3 x 108 

- 2w 
4+8c  

p =  - - 

(d) Let Eo and BO be incoming electromagnetic field vectors and let 
E' and B' be the reflected fields. Applying the boundary relation n x 
(Ez - El) = 0 to the surface of the conductor we obtain E' + EO = 0, or 
E' = -Eo, since Eo and E' are both tangential to the boundary. For a 
plane electromagnetic wave we have 
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For the conductor the surface charge density is u = 0 and the surface 
current density is 

(e) The work done by the external force can be considered in three 
steps: 

1. Point charge q is brought from infinity to a distance d from the 
conducting plane. When the distance between q and the conducting plane 
is zl the (attractive) force on q is given by the method of images to be 

In this step the external force does work 

q2 
d 

wl = - Fdz = -- 
l 6 r ~ o d  ' 

Note that the first minus sign applies because F and dz are in opposite 
directions. 

2. Point charge -q is brought from infinity to a distance d from the 
conducting plane, but far away from charge q. The work done in this 
process by the external force is exactly the same as in step 1: 

3. The charge -q is moved to a distance r from q keeping its distance 
from the conducting plane constant at  d. When the charge -q is at distance 
z from q1 the horizontal component of the (attractive) force on -q is given 
by the method of images to be 

In this step the work done by the external force is 
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Hence the total work done by the external force is 

w = Wl + wz + w3 
- - 

We can also solve the problem by considering the electrostatic energy of 
the system. The potential a t  the position of q is 

1 1  
v1=- - - -  -+ 4:~, ( r 2d ,/- 

and that at -q  is 

again using the method of images. The electrostatic energy of the system 
is given by We = 3Eqp. Taking the potential on the conducting surface to 
be zero, we find the work done by the external force to be 

2110 
A Hall probe with dimensions as shown in Fig. 2.81 has conductivity cr 

and carries charge density p.  The probe is placed in an unknown magnetic 
field B oriented along the +y direction. An external potential Vex, is applied 
to two ends producing an electric field in the +z direction. Between which 
pair of ends is the equilibrium Hall voltage V ~ ~ l l  observed? Derive an 
expression for B in terms of V ~ d l ’  Vertl u, p and the dimensions of the probe. 

( Wisconrrir) 
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S o h  t ion: 

rium we have 
The Hall voltage is between the planes t = 0 and t = h. For equilib- 

QEHall = qBv .  

As 

the above gives 
VHdl (7 K x t  - = B - . -  

h P 1 '  
or 

2111 
A uniform magnetic field is applied perpendicular to the flow of a 

current in a conductor as shown in Fig. 2.82. The Lorentz force on the 
charged carriers will deflect the carriers across the sample to develop a 
potential, the Hall voltage, which is perpendicular to both the directions of 
the current I, and magnetic field B,. Thus the total electric field can be 
expressed as 

E = - + R H j x B ,  j 
l7 

where RH is the Hall coefficient, u the conductivity, and j the current 
density. 

(a) For the case of a single type of carrier, show that RH gives the sign 
of the charge of the carrier and the carrier density. 

(b) Describe an experimental method determining RH for a sample at  
room temperature. Draw a diagram based on Fig. 2.82 which shows all the 
electrical connections (and contacts with the sample) which are required, 
including circuits and measuring instruments to determine the true Hall 
voltage (its magnitude and polarity). 

(c) Prepare a table of all the parameters which must be measured with 
the B-field on or off. State the units in which each parameter is measured. 

(d) How do you compensate experimentally for rectifying effects which 
may exist at the electrical contacts with the sample? 
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(e) The sample (a  semiconductor) is found to have a negative value for 
RH at room temperature. Describe the charged carriers. 

(f) At liquid nitrogen temperature the RH of this sample reverses to 
become positive. How do you explain the results for room and low temper- 
atures under the simplifying assumptions that: (I) all the charged carriers 
of one type have the same drift velocity, and (2) we neglect the fact that 
most semiconductors have two distinct overlapping bands? 

(Chicago) 

Fig. 2.82 

Solution: 

equilibrium 
(a) Let the charge of a carrier be q and its drift velocity be v, then in 

qEL + Q V  x B = 0. 

As j = nqv, n being the carrier density, we have 

But we also have 
E ~ = R H ~ x B ,  

hence 
1 RH = -- 

9" a 

Thurr RH gives the sign of the charge and the charge density of the carriers. 
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(b) An experimental arrangement for determining RH is shown in 
Fig. 2.82. The magnitude and polarity of the Hall voltage V can be mea- 
sured using a voltmeter with high internal resistance. The Hall electric field 
ie given by E l  = V/w.  Accordingly 

Iu can be measured with an ammeter, B, can be determined using a sample 
of known Hall coefficient. 

(c) All the parameters to be measured are listed below: 

Parameter : B, 1, t V 
Unit: T A m V 

(d).Repeat the experiment for two different sets of Zy and B,. We have 

where VO is the contact potential difference caused by rectifying effects and 
can be determined from the above expressions to be 

Once V ,  is determined, it can be compensated for. 
(e) As RH is negative the carriers of the sample have positive charge. 

Hence the sample is a p type semiconductor. 
(f) At liquid nitrogen temperature the concentration of the holes re- 

lating to the main atoms is greatly reduced mainly because of the eigen 
electrons and holes. The concentrations of the eigen electrons and holes are 
equal, but because of the greater mobility of the electrons their Hall effect 
exceeds that of the holes. As a result, the RH of the sample reverses sign 
to become positive. 

2112 
The Hall effect has to do with: 
(a) the deflections of equipotential lines in a material carrying a current 

in a magnetic field, 
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(b) rotation of the plane of polarization of light going through a trans- 

(c) the space charge in electron flow in a vacuum. 
parent solid, 

(CCT) 
S o h  t ion: 

The answer is (a) 

2113 
(a) Prove that in a stationary plasma of ohmic conductivity u and 

permeability p = 1 the magnetic field B satisfies the equation 

- aB = D V ~ B  , 
at 

where D = c2/4?ro. 

equation is replaced by 
(b) If the plasma is in motion with velocity v, prove that the above 

OB - = v x (V x B ) +  D V B .  at 

(c) At  1 = 0 a stationary plasma contains a magnetic field 

B = B(t)er  , 

where Bo is a constant. Determine the time evolution of the field assuming 
that the plasma remains stationary. 

(d) The average conductivity of the earth is roughly equal to  that of 
copper, i.e., B - 10'5s''. Can the earth's magnetic field be a primordial 
field which has survived since the formation of the solar system, about 
5 x lo9 years? 

(MITI 
Solution: 

(a) If a plasma is stationary and its displacement current can be ne- 
glected, the electromagnetic field inside the plasma satisfies the following 
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Maxwell's equations (on Gaussian units) 

1aB 
c at I 

V * D = 4npj , V x E --- 
47r 

V . B = O ,  V x B = -j, , 
C 

and if the plasma is ohmic we have also 

Thus 

4n V x B = -uE, 
C 

47r 4x0 8B 
c c2 at ' v x  (V x B) = v(v.B)-  V ~ B  = - V ~ B  = -,,v x E = --- 

or 
-- aB - D V ~ B  
at 

with D = &. The equation (1) is a diffusion equation. 
(b) If the velocity of the plasma is not zero, we have 

j , = a  E + - v x B  . C )  
In the nonrelativistic approximation u << c, use of the above Maxwell's 
equation gives 

V X B = -  4ro (E + :v x B) . 
C 

Taking curl of both sides gives 

(2) 
8B 
- = D V ~ B + V X ( V X B ) .  
at 

(c) For a stationary plasma the magnetic field is determined by (1). 
From the initial condition we see that (1) can be reduced to the one-dimen- 
sional diffusion equation 
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We separate the variables by letting B,(z , t )  = X ( z ) T ( t )  and obtain 

- -wz 1 dT 1 d2X 
DT dt X dxZ  
-- - -- - - 

with solutions 
T(1) = A e - W a D 1 ,  X ( z )  = CeiWE . 

Hence 
B, (x ,  t , w )  = A(w)e-W'D1eiWt . 

Aa w is arbitrary the general solution is 

For t = 0, the above reduces to 
oo 

B,(z) = lw A(w)eiwzdw, 

and by Fourier transform we obtain 

where the definite integral inside the brackets can be evaluated, 

and B(<) is given by the initial condition 

Therefore, the time evolution of the field is given by 

B , ( z , t )  = - rn Bo - f  



Mapnctortaiic Field and Quari-Sioiiona+y Elcdromapneiic Field 303 

(d) It is not possible that the earth's magnetic field is a primordial field 
which has survived the formation of the solar system, about 5 x lo9 years 
ago, aa BO would have fast disappeared by diffusion. A semi-quantitative 
proof is given below. 

As the conductivity of the earth is approximately t7 a lOI6 s-l, the 
diffusion coefficient of the earth's magnetic field is 

C2 

4ra , 
D = - w lo5 cm2/s 

and Dt w 
the earth is L N lo9 cm. Thus the exponent in (3) is approximately 

for t = 5 x lo9 years = 1.5 x 10"s. The linear dimension of 

giving 
e-(t.--C"fl4Dt 1 

and 

Hence 
BL(l't) = - LBo w 1 0 - 4 ~ ~ .  rn 

This shows that the present earth's magnetic field would be only 10-4Bo 
if it has arisen from the primordial field Bo. With the present earth's mag- 
netic field of - 1 Gs, the primordial field would have been Bo % lo4 Gs. 
This value is much higher than the magnetic fields in the plasmas of the 
various celestial bodies. 

2114 
A model for an electron consists of a shell of charge distributed uni- 

formly on the surface of a sphere of radius a. The electron moves with 
velocity u < c (see Fig. 2.83). 

(a) What are E and B at a point (.,/I) outside the sphere? 
(b) Find the value of a such that the total momentum carried by the 

field is just equal to the mechanical momentum mu,u being the electron's 
speed. 
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(c) Use the value of a to calculate the energy in the field of the moving 

(Wisconsin) 
charge and compare it with the rest-mass energy and kinetic energy. 

1 

Fig. 2.83 

Solution: 

point of radius vector r‘ from it is, in Gaussian units, 
(a) In the rest frame C’ of the electron, the electromagnetic field at a 

e r‘ 
E‘ = - ,.I3 ’ B’=O. 

In the laboratory frame C, by Lorentz transformation (with u << c )  the 
field is 

V 

C 
V V 

C C 

E = E‘ - - x B‘ = El, 

B = B ’ + - x E ’ = - x E ’ .  

The field point has coordinates (.,ti’) in C as shown in Fig. 2.83. As v << c, 
we have t’e r and 

with magnitudes - 
e ev sin 0 
r2 cr2 

E = - ,  B=-. 

(b) The momentam density of the field is 

N 1  
c2 4lrc 

g = - =  -(E x B ) .  

Substituting in E and B yields 

e2 r x (v x r) e2 
41rc2 r6 4lrc r 

g = -  -- - ,(vr - urcosfl). 
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Hence the momentum of the electromagnetic field of the electron is 

2e2v 2e2 = -e, = - 
3c2a 3c2a 

Note that in the integrand above the component of g perpendicular to v 
will cancel out on integration; only the component parallel to v needs to 
be considered. 

If the electromagnetic field momentum of the electron is equal to its 
mechanical momentum, mv, i.e., &v = mv, then 

2e2 2 
3mc2 3 

a = - -  - - x 2.82 x IO-'A = 1.88 x IO-'A 

(c) The energy of the field of the electron is 

It follows that for u << c, 3mu2 << W 6 mc2 

2115 
A beam of N a  atoms (ground state 2S1/2), polarized in the +z direc- 

tion, is sent in the z direction through a region in which there is a magnetic 
field in the +y direction. Describe the form of the beam downstream from 
the magnetic field region (both its spatial structure and polarization), as- 
suming the field has a large gradient in the y-direction. 

( Wisconsin) 

Solution: 
N a  atoms polarized in the +z direction have the probabilities of one- 

half in eigenstate s,, = +! and one-half in eigenstate s,, = -5. Under 
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the action of a magnetic field B = Be,, with > 0, the N a  a t o m  of 
S,, = +$ will deflect to the -y direction, while those of S,, = -$ will 
deflect to the +y direction. Thus, going through the magnetic field, the Na 
atoms will split into two beame with directions of polarization -y  and +y. 
(Since A E  = -m - B = - z ( - S ) .  mc B = $SUB, and $f > 0, Na a t o m  of 
S, = deflect to the -y direction and Na atoms of S, = -$ deflect to the 
+y direction.) 

2116 
In a frame S there is a uniform electromagnetic field 

E = 3Aes ,  B = 5Ae, 

(in Gaussian units). An ion of rest ma89 mo and charge g is released from 
rest at  ( O , b , O ) .  What time elapses before it returns to the y-axis? 

(SUN Y, Buflolo) 

Solution: 
The Lorentz force equation 

m r = q  E + - r x B  ( : )  
has component equations 

moz = 3Ap + TG, (1) 

C (2) moG = -!AI~, { moz = 0 .  (3) 

Integrating (3) and noting zld=o = 0, z l t , ~  = 0, we have z = 0. Integrating 
(2) and using z)*=O = 0, ylr=o = 0, we find 

. 5Ag y = - - 2 .  
m0c 

Use of (4) in (1) gives 

(4) 
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3moca 
25Aq = = -(1- coswt), 

where 

Note that x = 0 at t = e. Let n = 1, then 

2r 2rmoc 
w 5Aq 

t = - -  --, 

This is the time that elapses before the ion returns to the pa&. 

2117 
A magnetic field can suppress the flow of current in a diode. Consider 

a uniform magnetic field B = (0, 0, Bo) filling the gap between two infinite 
conductors in the yz plane. The cathode is located at x = 0 and the anode 
at x = d. A positive potential VO is applied to the anode. 

Electrons leave the cathode with zero initial velocity and their charge 
density causee the electric field to be non-uniform: 

(a) Under steady state conditions what quantities are constants of the 

(b) Determine the strength of the magnetic field required to reflect the 
electron’s motion? 

electrons before they reach the anode. 

Solution: 

(aseuming u < c) 

(MIT) 

When gravity is neglected, the motion of an electron is described by 
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(a) Integrating (3) we have 

v z ( t )  = u,(t = 0) = 0, 
~ ( t )  = z(t  = 0) = const. 

Hence the coordinate and speed of the electron in the E direction are the 
constants of the motion, in particular uz = 0. 

(b) The work done by the electric field in moving an electron from 
cathode to anode is 

since the magnetic field does no work. When the electron reaches the anode, 
the magnitude of its velocity v I  = u,,i + u l y j  can be obtained by equating 
the kinetic energy of the electron to the work done by the electric field: 

1 2  -muj = eVo , 2 

giving 

,,, = JZ. 
m 

If the electrons are not to reach the anode, we require that 

V j Z  = 0, v j y  = E. 
Writing (2) as 

and integrating both sides, noting uy = 0,z = 0, at t = 0 we obtain 

giving 

Therefore the induction of the magnetic field must be greater than @ 
for the electrons to reflect back before reaching the anode. 
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2118 
Specialized bacteria can be found living in quite unattractive places, 

such as oil and sewage disposal plants. A bacterium that lives in an abeo- 
lutely dark and essentially homogeneous soup faces a serious navigational 
problem if he must sometimes rise for oxygen and then descend for an 
important part of his dinner. Which way is up? 

One class of bacteria has solved the problem by incorporating an iron 
oxide magnet inside its cell. Discuss the following questions quantitatively 
making clear the nature of the necessarily rough approximations used. 

(a) Why not sense the pressure gradient in the fluid instead of using a 
magnet? 

(b) Estimate the minimum magnetic moment that could be used to 
line up the bacterium. 

(c) Asssuming cm for the length of the magnetic needle, estimate 
its minimum diameter. 

(d) Why is a needle better than a spherical magnet? 
( Pn’n ce to n) 

Solution: 
(a) The pressure gradient in a fluid (buoyancy) can cause a baterium 

to rise or descend, depending on its specific weight relative to the fluid. On 
the other hand, a magnet inside a bacterium can cause it to rise or fall, 
depending on the relative orientation between the magnetic moment and 
geomagnetic field. Because of the random thermal motion (Brownian move- 
ment) this relative orientation is randomly changed so that a bacterium can 
both rise for oxygen and descend for food, Actually such small magnets of 
the bacteria string together to form large magnets of moment m. In the 
inhomogeneous geomagnetic field the force causing such a magnet to rise 
or fall is given by 

BB F a = m . -  
B J  ’ 

where B is the earth’s magnetic induction. If we represent the height above 
the earth’s surface by J ,  then &;IBI is negative as we go up. Fa can be 
pointing up or down depending on the orientation of m relative to g. 

(b) In Gaussian units the interaction energy between two magnetic 
dipoles of moments ml and mn is 

where r is the radius vector from mz to ml. 
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For the magnets inside two a4aeent bacteria which line up end to end, 
ml = ma = m, mI//m3, r = d = lo-' cm, and the interaction energy is 

The energy of the Brownian movement of bacteria ie - AT, where k ie 
Boltzmann's constant and T is the absolute temperature. This movement 
tends to destroy the ordering arrangement of the bacteria. Hence for the 
linear arrangement of the magnets of the bacteria to be possible we require 
that 

2ma - > kT, a -  
giving the minimum magnetic moment inside a bacterium as 

(c) Let r, M and d be the radius of the cross-section, the magnetization 
and the length of the magnetic needle respectively, then its magnetic dipole 
moment is 

m = r r a d M .  

Combining with the result in (b), we get 

Take T to be the room temperature, T - 300 K. The saturation magne- 
tization of a ferromagnet at this temperature is M - 1.7 x lo3 Gs. The 
above equation then gives 

r N 0.6 x cm. 

(d) Needleshaped magnets are better than spherical ones because they 
can be more easily lined up. 

2119 
As a model to describe the electrodynamical properties of a pulsar we 

consider a sphere of radius R which rotates like a ridid body with angular 



velocity w about a fixed axis. The charge and current distributions are 
thus symmetric with respect to this axis (and with respect to the normal 
midplane of the pulsar). The net charge of the sphere is zero. In the vacuum 
outside the pulsar the magnetic field is that of a magnetic dipole m parallel 
to the axis of rotation. The magnetic field in the inside is consistent with 
the outside field, but otherwise arbitrary. 

(a) The magnitudes of the electric and magnetic forces on charged 
particlea inside the pulsar are very iarge compared with ail other forcea. 
Since the charged particlea are assumed to share in the rotational motion 
of the pulsar it follows that, to a good approximation, E = -Y x B, where 
v = w x r is the local velocity, everywhere inside the pulsar. Imposing this 
condition at points just inside the surface of the pulsar, show that at such 
mints 

p o w  sin e COB e 
2rR2 E# = - I 

where 8 is the polar angle with respect to the axis. 

everywhere outside the sphere. 

outside the pulsar. 

Solution: 

sphere (r k R), the magnetic field generated by the dipole m is 

(b) On the basis of the above result, find the electrostatic potential 

(c) Show that the equation E = -(a xr) x B does not hold immediately 

( UC, Berkeley) 

(a) As shown in Fig. 2.84, at a point P just inside the surface of the 

So the electric field at the point P b 

with the 4-component 
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m 

Fig. 2.84 

(b) Taking the potential on the equator as reference level the induced 
potential at a point of latitude a = - 6 is 

V = -[-a EeRdB 

BpwR' 
(COSZ, - 1) = - (cos2a - 1), - pomw -- 

4TR 2 
where Bp = is the induction of the magnetic dipole at the north pole. 

(c) The equation E = -v x B does not hold outside the sphere. The 
reason is as follows. This equation follows from the transformation of the 
electromagnetic field (with u << c), 

E' = E+ v x B ,  

where E and B are the fields at a point just inside the surface of the pulsar 
as measured by an observer in the rest reference frame K fixed at a distant 
star, E' is the electric field observed in the moving frame K' fixed with 
respect to the surface of the pulsar, and v = w x R is the velocity of K' 
with respect to K. Since in K' the surface layer of the pulsar is equivalent 
to a stationary conductor, E' = 0 (otherwise j' = aE' # 0, i.e., the observer 
in K' would see a current). Thus we have E = -v x B = -(w x R) x B. 
But at points just outside the surface of the pulsar the requirement E' = 0 
is not needed. Also the charge density on the surface is generally not zero, 
so that the boundary condition would not give E' = 0 on pointsjust outside 
the surface; hence E # -v x B outside the sphere. 
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CIRCUIT ANALYSIS 





1. BASIC CIRCUIT ANALYSIS (3001-3026) 

3001 
Suppose the input voltages h, Vz, and V3 in the circuit of Fig. 3.1 can 

amume values of either 0 or 1 (0 means ground). There are thus 8 possible 
combinations of input voltage. Compute Vout for each of these possibilities. 

(UC, Berkeiep) 

- 
Fig. 3.1 

Solution: 
The circuit in Fig. 3.1 can be redrawn as that in Fig. 3.2. 

2R - 
i 

"' I 

+ Vout 

2R 

I- 
Fig. 3.2 

Let the currents flowing in the component circuits be as shown. By 
Kirchhoff's laws we have 

V, = [2(i3 - iz) + P(i3 - i 4 j ] ~ ,  
VJ - V3 = [2(i2 - i l )  + (i2 - i,) + 2(iz - i3)]R,  

31 5 
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VI - V2 = [2i1 + ( i l  - i 4 )  + 2(il - i2)]R, 
0 = 2(i4 - i3) + ( i 4  - i z )  + (i4 - il) + 2i4 . 

After solving for i4 we obtain 

Vl v2 v3 Vout = 2i4R = - + - + - 
3 6 12 

VOut for various values of Vl, VZ, and V, are shown in the table below. 

3002 
The current-voltage characteristic of the output terminals A,  B 

(Fig. 3.3) is the same as that of a battery of emf €0 and internal resistance 
r .  Find E O  and r and the short-circuit current provided by the battery. 

( Wisconsin) 

Fig. 3.3 

Solution: 

across AB when the output current is zero, Le., the open-circuit voltage: 
According to Thkvenin’s theorem, the equivalent emf is the potential 

~ 1 5 = 3 V .  6 
EO = V*B = - 

24 + 6 



Circuit Analyrir 317 

The equivalent internal resistance is the resistance when the battery is 
shorted, i.e., the parallel combination of the resistances: 

r = - -  24 - 4.8 R 
6 + 24 

Then the short-circuit current provided by the battery is 

I = - =  -- - 0.625 A .  
r 4.8 R 

3003 
Any linear dc network (a  load R is connected between the two arbitrary 

points A and B of the network) is equivalent to a series circuit consisting 
of a battery of emf V and a resistance r ,  as shown in Fig. 3.4. 

(a) Calculate V and r of the circuit in Fig. 3.5. 

,-L I 

Fig. 3.4 

2R R 

Fig. 3.5 

2R R R R 

Fig. 3.6 Fig. 3.7 

(b) Calculate V and r of the circuit in Fig. 3.6. 
(c) Calculate V and r of the circuit in Fig. 3.7. 
(Hint: Use mathematical induction) 

(Chicago) 
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Solution: 
(a) We find by Thdvenin's theorem that 

1 2R 
2 R + 2 R  2 
2 R x 2 R  
2R+2R 

-vn=-v , ,  V =  

r =  = R .  

(b) Using the result of (a) for the circuit in Fig. 3.6, we obtain a simpler 
circuit shown in Fig. 3.8. Thdvenin's theorem then gives 

= R .  2R x 2R 
2 R + 2 R  r =  

Fig. 3.8 

(c) By induction we have 

n- 1 

= 2 - 9 5  + 2-2v, + * * 1 + 2-"Vn, 
r = R .  

3004 
Four one-microfarad capacitors are connected in parallel, charged to 

200 volts and discharged through a 5 mm length of fine copper wire. Thie 
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wire haa a resistance of 4 ohms per meter and a mass of about 0.045 gram 
per meter. Would you expect the wire to melt? Why? 

( Columbia) 

Solution: 
The relevant data are 
total capacitance C = 4 x 1 = 4 pF, 
energy stored in the capacitance 

1 I E = - CV' = - x 4 x 
2 2 

X 200' = 0.08 J , 

resistance of copper wire R = 4 x 5 x 
mass of copper wire m = 0.045 x 5 x 
melting point of copper t = 1356OC, 
specific heat of copper c = 0.091 cal/g.OC. 
If the copper wire is initially at room temperature (t = 25OC), the heat 

= 0.02 St, 
= 0.225 mg, 

needed to bring it to melting point is 

Q = cmAt = 0.091 x 0.225 x 
= 0.027 cal = 0.11 J . 

x (1356 - 25) 

As Q > E the copper wire will not melt. 

3005 
As in Fig. 3.9, switch S is closed and a steady dc current Z = V/R is 

established in a simple LR series circuit. Now switch S is suddenly opened. 
What happens to the energy 4 L1' which was stored in the circuit when 
the current I was present? 

( Wisconsin) 

Fig. 3.9 
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Solution: 

in the form of electromagnetic waves. 
When switch S is suddenly opened, the energy f L I Z  will be radiated 

3006 
(a) The capacitor in the circuit in Fig. 3.10 is made from two flat square 

metal plates of length L on a side and separated by a distance d .  What is 
the capacitance? 

(b) Show that if any electrical energy is stored in C, it is entirely 
dissipated in R after the switch is closed. 

( Wisconsin) 

TTl 
Fig. 3.10 

Solution: 
(a) The capacitor has capacitance C = 4. As E = €0 for air, C = 

(b) Let VO be the voltage across the plates of the capacitor initially. 
CV:. After the switch is closed at 1 = 0, 

EoL2/d. 

The energy stored is then Wc = 
one has 

- t /RC Vc( t )  = Voe > 

The energy dissipated in the resistance is 

Hence 
WR = WC j 

which implies that the energy stored in the capacitor is entirely dissipated 
in the resistance R. 
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3007 
(a) Given the following infinite network (Fig. 3.11): 

R1 R1 Rl R1 

A .mi- 
-- 0 

Fig. 3.11 

Find the input resistance, i.e., the equivalent resistance between terminals 
A and B. 

(b) Figure 3.12 shows two resistors in parallel, with values R1 and Ra. 
The current Zo divides somehow between them. Show that the condition 
10 = Zl + I2 together with the requirement of minimum power dissipation 
leads to the same current values that we would calculate by ordinary circuit 
formulae. 

. 

(SUNY,  Bufialo) 

+--J-- 
Fig. 3.12 

Solution: 
(a) Let the total resistance of the infinite network be R. After removing 

the resistances of the first section, the remaining circuit is still an infinite 
network which is equivalent to the original one. Its equivalent circuit is 
shown in Fig. 3.13 and has total resistance 

This gives a quadratic equation in R 

R2 - RiR - RlRz = 0 . 
The positive root 

R - - L  Ri J- 

gives the equivalent resistance. 
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(b) As 10 = ZI + Zz, the power dissipation is 

P = 1;Ri + 1ZR2 = Z:Ri +(lo - Z I ) ~ R ~  , 

Fig. 3.13 

To minimize, put = 0, which gives 211R1 - ~ ( Z O  - Z1)Rz = 0 ,  or dIi 

This is the formula one usually uses. 

3008 
The frequency response of a single low-pass filter (RC-circuit) can be 

(a) exactly only by an infinite series of RC-filters 
(b) exactly only by using LC-filters 
(c) exactly by a single high-pass (RC) filter. 

compensated ideally: 

Solution: 
The answer is (c). 

3009 
A square voltage pulse (Fig. 3.15) is applied to terminal A in the circuit 

( Wisconsin) 
shown in Fig. 3.14. What signal appears a t  B? 

Fig. 3.14 
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Solution: 
The time constant of this circuit is 

= RC = 1 x lo3 x 1 x = 1 0 - ~  s = 1 w . 

Fig. 3.15 

The voltages at A and B are 

where t is in 1118. The time curve of VB is shown in Fig. 3.16. 

Fig. 3.10 

3010 
Calculate the energy in the 3 pF capacitor in Fig. 3.17. 

( Wisconsin) 

Solution: 
The voltage across the two ends of the capacitors in series is 

* 4 - 2  =0.8V. I (1.51 I 11 
1.4+ (1.5111) 
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Fig. 3.17 

The voltage across the two ends of the 3 pF capacitor is & x 0.8 = 
0.53 V. So the energy stored in the 3 pF capacitor is 

1 E = - x 3 x 
2 

x 0.532 = 0.42 x J . 

3011 
The diagram 3.18 shows a circuit of 2 capacitors and 2 ideal diodes 

driven by a voltage generator. The generator produces a steady square 
wave of amplitude V ,  symmetrical around zero potential, shown a t  point a 
in the circuit. Sketch the waveforms and assign values to the voltage levels 
at points b and c in the circuit. 

( Wisconsin) 

-m 
Fig. 3.18 

Solution: 
The resistance of an ideal diode is 0 in the positive direction and 00 in 

the negative direction. Figure 3.19 gives the equivalent circuits correspond- 
ing to  the positive and negative voltages a t  point a. We shall assume that 
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the voltage generator is always working and the circuit has already entered 
a steady state. 

Fig. 3.19 

Suppose that during a negative pulse the voltage drops across C1 and 
Cz are Vl and V2 respectively with the directions as shown in Fig. 3.19(b). 

The points a, b and c have potentials 

V , = - V = - V 1 - V z ,  
v,=vc=-v2. 

Now the potential a t  a jumps to +V. The voltage drop across Ca 
remains a t  Vz as it is unable to discharge (see Fig. 3.19(a)), while that 
across C1 is changed to +V. We have 

va = v,  vb = 0, vc = -v2 

Then the potential a t  a jumps again to -V. We have 

V * = - V = V - V z ,  

v2 = 2 v ,  v1= - v ,  
giving 

and 

Combining the above we have 
v b  = vc = -v2 = - 2 v  . 

V 1 = - V ,  v 2 = 2 v ,  

when V, = V 
v b = {  

-2V when V, = - V  
V, = -2V a t  all times. 
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The waveforms at points a, b and c are shown in Fig. 3.20. 

'b 

-2v 

-2v  

Fig. 3.20 

3012 
In the circuit shown in Fig. 3.21, the capacitors are initially charged 

to a voltage VO. At t = 0 the switch is closed. Derive an expression for the 
voltage at point A at a later time t .  

(UC, Berkeley) 

Fig. 3.21 

Solution: 
Suppose at time t the voltage drops across the two capacitors are V,, 

V2 and the currents in the three branches are i l l  i 2 ,  i3 as shown in Fig. 3.21. 
By Kirchhoff's laws and the capacitor equation we have 



Equations (2) and (5) give 

di 
dt is  = R C L  . 

This and Eqs. (3) and (4) give 

dVi dil 
dt dt i l +  C- + RC- = 0 .  

From Eqs. (1)  and (4) one has 

Substituting it into (6), we obtain 

d2V2 3 dV2 1 - +- - + - v 2 = 0 .  dt2 RC dt  R2C2 

Solving this equation we have 

and hence 

dV2 V l = i l R = V z + R C -  dt 

Using the initial condition that at t = 0 
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3013 
A network is composed of two loops and three branches. The first 

branch contains a battery (of emf E and internal resistance R1) and an  
open switch S. The second branch contains a resistor of resistance R2 and 
an uncharged capacitor of capacitance C. The third branch is only a resistor 
of resistance R3 (see Fig. 3.22). 

(a) The switch is closed at  t = 0. Calculate the charge p on C as a 
function of time t ,  for t 2 0. 

(b) Repeat the above, but with an initial charge QO on C. 
(S UNY, Buflalo) 

Solution: 
Let the currents in the three branches be Z ,  Z I ,  and I 2  as shown in 

Fig. 3.22 and the charge on C be q a t  a time t > 0. We have by Kirchhoff’s 
laws 

I = I1 + I2  

Fig. 3.22 

As 3 = 1 2 ,  the above give 

dP 
dt 
- = -Aq + B , 

where 
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Solving for q we have 

with d to be determined by the initial conditions. 
(a) If q(0) = 0, then d = - f ,  and 

(b) If q(0) = Qo, then d = QO - 9, and 

R1+ R2 
(R1R2 + R2R3 + R3Ri)C 

6R3 ) exp { - 
RI + R2 

- - ER3 + (QO- 
R1+ R2 

3014 
In the circuit shown in Fig. 3.23, the resistance of L is negligible and 

initially the switch is open and the current is zero. Find the quantity of 
heat dissipated in the resistance R2 when the switch is closed and remains 
closed for a long time. Also, find the heat dissipated in R2 when the switch, 
after being closed for a long time, is opened and remains open for a Iong 
time. (Notice the circuit diagram and the list of values for V, R1, R2, and 

(UC, Berkeley) 
Lo .) 

Fig. 3.23 



330 Problcmr El Solutionr on Elctiromogndinn 

Solution: 
Consider a resistance R and an inductance L in series with a battery 

of emf E .  We have 

or 

dZ 
dt E -  L- = ZR,  

-RdI dt 
E -  ZR L 
- = -R- 

Integrating we have 

t 
In [E - I ( t )R]  = -- + K , 

7 

where T = k and K is a constant. Let I = I ( 0 )  a t  t = 0 and I = I ( - )  for 
t -+ 00. Then 

E 
= In [E - I(O)R] , I(w) = - R '  

and the solution can be written as 

Now consider the circuit in Fig. 3.23. 
(1) When the switch is just closed, we have 

After it remains closed for a long time, we have 

I R a ( W )  = 0 > 

since in the steady state the entire current will pass through L which has 
negligible resistance. 

As the time constant of the circuit is 

we have 



m 00 

w R a  = 1 ~ i , ( t ) ~ ~ d t  = 1 0.912e-1."2' x lOOdt 

= 45.5 J . 
(2) When the switch is just  opened, we have 

V 
ZL(O) = - = 10 A . 

R1 
The energy stored in the inductance L at this time will be totally dkip8ted  
in the resistance R2. Thus the heat dissipated in R2 is 

1 1 
WR? - - 5 LZi(0)  = 5 x 10 x 100 = 500 J . 

3015 
The switch S in Fig. 3.24 has been opened for a long time. At time 

t = 0, S is closed. Calculate the current ZL through the inductor as a 
function of the time. 

( Wisconsin) 

Solution: 

t=m, 
Assume the inductor has negligible resistance. Then at t = 0 and 

I L ( 0 )  = 0 9 

10 
ZL(CXI) = - = 0.05 A . 200 

The equivalent resistance as seen from the ends of L is 
R = 20011200 = 100 fl , 
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giving the time constant as 

L 10-5 
7 z - z  - = 

R 100 
A t  time t ,  the current passing through L is 

z L ( ~ )  = ZL(CO) t ( I L ( o )  - I L ( m ) ) e - +  

= 0.05( 1 - e-lO’t) A . 

3016 
Refer to Fig. 3.25. 
(a) The switch has been in position A for a long time. The emf’s are 

dc. What are the currents (magnitude and direction) in €1’ R1, Rz and L? 
(b) The switch is suddenly moved to position B. Just after the switch- 

ing, what are currents in ~ 2 ,  R1, R2 and L? 
(c) After a long time in position B, what are the currents in E Z ,  Rt ,  

Rz and L? 
( Wisconsin) 

S 

Fig. 3.25 

Solution: 

sponds to a shorting. Then one finds that 
(a) After the switch has Been in position A for a long time, L corre- 

IRa = 0 ,  
E l  5 I,, = - = - = 0.5 mA, leftward ; R~ 104 

Zc, = ZR, = 0.5 mA, upward; 
ZL = Z,, = 0.5 mA, downward. 
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(b) When the switch is suddenly moved to position B, ZL holds con- 
stant instantaneously, namely, 1~ = 0.5 mA and flows downward. Let the 
currents through R1 and R2 be Z R ~  and Z R ~  and their directions be right- 
ward and upward respectively. Now we have 

{ ZR, R1 4- Z R ~ R ~  = ( I R ~  + 1 ~ ~ )  X lo4 = €2  = 10. 
zR, + 0.5 x 10-3 = z R 2 ,  

Solving these equations we have 
ZR, = 0.25 mA, rightward ; 
It> = 0.25 mA, downward ; 

Z R ~  = 0.75 mA, upward ; 
IL = 0.5 mA, downward. 

(c) Using the results of (a) but replacing E = 5 V by E = -10 V,  we 
have 

E2 Z R ~  = - = 1 mA, rightward; Z R ~  = 0 ;  

Z c 2  = 1 mA, downward. 
R1 

ZL = 1 mA, upward ; 

3017 
As shown in Fig. 3.26, the switch has been in position A for a long time. 

At t = 0 it is suddenly moved to position B. Immediately after contact with 
B: 

(a) What is the current through the inductor L? 
(b) What is the time rate of change of the current through R? 
(c) What is the potential of point B (with respect to ground)? 
(d) What is the time rate of change of the potential difference across 

(e) Between t = 0 and t = 0.1 s ,  what total energy is dissipated in R? 
L? 

( Wisconsin) 



334 Problems €4 Solutions on Elcctromagnciirm 

Solution: 

denly, we still have 
(a) Because the current through an inductor cannot be changed sud- 

1 
iL(0) = - = 1 A . 1 

(b) As -L $f = iLR, 

(c) ~ g ( 0 )  = -iL(O)R = -1 x lo4 = -lo4 V .  
(d) As V L  = UB = iLR, 

(e) As WL = L i i ( t ) ,  

i L ( t )  = iL(0)e-g: = e-10': A , 

the total energy dissipated in R from t = 0 to t = 0.1 s is 

1 1 
W ,  = -Lii(O) - - L ~ ~ ( o . I )  

2 2 
1 1 
2 2 

= - x 1 x (1)' - - x 1 x e-2x10'x0.1 = 0.5 J . 

3018 
The pulsed voltage source in the circuit shown in Fig. 3.27 has negligi- 

ble impedance. I t  outputs a one-volt pulse whose duration is seconds. 
The resistance in the circuit is changed from lo3 ohms to lo4 ohms and 
to lo5 ohms. You can assume the scope input is properly compensated 80 

that it does not load the circuit being inspected. Sketch the oscilloscope 
waveforms when R = lo3 ohms, lo4 ohms, and los ohms. 

( Wisconsin) 
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pulse 

Fig. 3.27 

Solution: 
The output of the pulsed voltage source is u(t)  - u(1- 1)  V, where t 

is in p. The step-response of the CR circuit is u(t)e-*iRC with RC in ps. 
SO the output of the CR circuit is 

vo = u(t)e-'/RC - u(t - l)e-('- lYRC v . 
The oscilloscope waveforms are as sketched in Fig. 3.28 and Fig. 3.29. 

Fig. 3.28 

v, [V) 

-1 



In all the above 1 is in cis. 

3019 

Switch S is thrown to position A as shown in Fig. 3.30. 
(a) Find the magnitude and direction (“up” or “down” along page) of 

the currents in R1, Rz, and R3, after the switch has been in position A for 
several seconds. 
Now the switch is thrown to position B (open position). 

(b) What are the magnitude and direction of the currents in R1, Rz, 
and R3 just  after the switch is thrown to position B? 

(c) What are the magnitude and direction of the currents in R1, Rz, 
and R3 one-half second after the switch is thrown from A to B? 
One second after the switch is thrown from A to B, it is finally thrown from 
B to C. 

(d) What are the magnitude and direction of the currents in Rz, R3, 
R4, and R5 just after the switch is thrown from B to C? 

( Wisconsin) 

0 

Fig. 3.30 

Solii t ion: 
Let the currents in R1, Rz, R3 be i l ,  i z ,  i3 respectively. 
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(a) When the switch is thrown to position A, we have instantaneously 

-- - 0.4 A ,  
2 - - 2 

il(0) = & ( O )  = 
R l + R 2  3 + 2  

After the switch is in A for some t i h e ,  we have 

iz(oo) = R3 il(oo) = 0.12 A , 
R2 + R3 

i3(oo) = Rz il(m) = 0.47 A . 
Rz + R3 

As seep from the ends of L1 the resistance in the circuit is 

and the time constant is 

Using i ( t )  = i(m) + [ i (o )  - i ( c ~ ) ] e - ~ / ~ ,  (see Problem 3014), we have 

i l ( t )  = 0.59 - 0.19e-0.34f A ,  the direction is upward, 

i 2 ( t )  = 0.12 + 0.28e-0.34' A, the direction is downward, 

i3(t) = 0.47( 1 - e-0.34t) A, the direction is downward. 

(b) After the switch has been in A for several seconds, we can consider 
horn the rule that the current in an inductor cannot be e-0.34t x 0. 

changed abruptly, a t  the instant the switch is thrown to B we have 

i S ( 0 )  = 0.47 A, downward , 

and so 

il(0) = 0, 
i 2 ( 0 )  = 0.47 A, upward . 
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(c) As the circuit is open, 

i l (O.5)  = 0 . 

For the inductor part, the time constant is 

5 - - L 
7 =  

R 2 +  R3 2 + 0 . 5  
= 2 s .  

Using i(0) obtained in (b) and 

we have 
iZ(t) = 0.47e-0.5L A, upward ; 

i3 ( t )  = 0.47e-0.5' A, downward. 

iz(0.5) = 0.37 A, upward ; 

is(0.5) = 0.37 A, downward. 

Hence for t = 0.5 s 

(d) We denote by If the instants just after and before t = 1 s. We 
have i3( I-) = 0.47e-0.5 = 0.29 A, flowing downward. As the current in an 
inductor cannot be changed suddenly, we have 

For the rest of the circuit, we have 

iz( 1+) + i4( 1 + )  = 0.29 A ,  
2i2(1+) = 2i4(1+) . 

Hence i z ( l + )  = i4(l+) = 0.145 A,  upward. 

3020 
A source of current iosinwt, with io a constant, is connected to  the 

circuit shown in Fig. 3.31. The frequency w is controllable. The inductances 
L1 and Lz and capacitances CI and CZ are all lossless. A lossless voltmeter 



reading peak sine-wave voltage is connected between A and B. The product 

(a) Find an approximate value for the reading V on the voltmeter when 

(b) The same, for w very large but not infinite. 
(c) Sketch qualitatively the entire curve of voltmeter reading versus w ,  

(d) Find an expression for the voltmeter reading valid for the entire 

( Prince ion) 

L2C2 > L l C l .  

w is very small but not zero. 

identifying and explaining each distinctive feature. 

range of w .  

Fig. 3.31 

Solution: 
(a) The impedance of an inductor is j w L  and the impedance of a capac- 

itor is &. For w very small, the currents passing through the capacitors 
may be neglected and the equivalent circuit is as shown in Fig. 3.32. 

Fig. 3.32 

We thus have 
VB/BA = I2 = jwLl  I , 

where I = ioej"'. As ac meters usually read the rms values, we have 

(b) For w very large, neglect the currents passing through the inductors 
and the equivalent circuit is as shown in Fig. 3.33. We have 



340 

and 

Problems €4 Soluiiona on Electromagneiiam 

Fig. 3.33 

(c) Let w1 = A, w2 = ,*. As L2C2 > LICI, w1 > w2. The 
voltmeter reading versus w is as shown in Fig. 3.34. The system is net 
inductive when w is in the region (0, w2) ,  and net capacitive when w is in the 
region (w1, 00). Resonance occurs a t  the characteristic angular frequencies 
w1 and w2. 

V 

I I 
I I 
I I u w2 W1 W 

Fig. 3.34 

(d) The total impedance L is the combination of two impedances L1, 

21 2 2  

2 1  + 2 2  

LZ in parallel: 
z=-, 

where 

Thus 
i 

- - w c 1 +  . 
z= 

wL1 

Hence the voltmeter reading is 

Note that this reduces to the results in (a) and (b) for w very small and 
very large. 
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3021 
For the circuit shown in Fig. 3.35, the coupling coefficient of mutual 

inductance for the two coils L1 and Lz is unity. 

R 

Fig. 3.35 

(a) Find the instantaneous current i ( t )  the oscillator must deliver as a 
function of its frequency. 

(b) What is the average power supplied by the oscillator as a function 
of frequency? 

(c) What is the current when the oscillator frequency equals the r e se  
nant frequency of the secondary circuit? 

(d) What is the phase angle of the input current with respect t o  the 
driving voltage as the oscillator frequency approaches the resonant fre- 
quency of the secondary circuit? 

(UC, Berkeley) 

Solution: 

12 respectively. We have 
(a) Let the currents of the prirnary and secondary circuits be 11 and 

12 
C 0 = L2Z2  + Mj; + - . 

Solving for 11 - exp(jwl), we have 
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where 

is the phase angle of the input current with respect to the driving voltage. 
Applying the given conditions L1 = L2 = M = L ,  say, we have 

w L I R  
l - w = L C  q = a r c t a n  ( ) 

or, taking the real part, 

VO 
z & ( t )  = - cos(wt - y) , 

with 

(b) 
v6” p( t )  = V( t ) i l ( t )  = - cos(wt - $7) coswt . z 

Averaging over one cycle we have 

P = P =  -cm(wt-$7)c06wt= vd” -cmp v6” 
z 22 

R 2 -  RVt /2  - 
2 ‘  - -  

2z2 vo - R 2  + ( . h e )  

(c) When w = \/Lc, Z = +m, and i l ( t )  = 0. 

(d) When w + m, t a n p  = 00, and $7 = 2. 

3022 
In the electrical circuit shown in Fig. 3.36, w ,  R1 , R2 and L are fixed; 

C and M (the mutual inductance between the identical inductors L) can 



be varied. Find values of M and C which maximize the power dissipated 
in resistor Rz. What is the maximum power? 

You may assume, if needed, RZ > R1, wL/Rz  > 10. 
(Princeton) 

Q3rnR* 
Fig. 3.36 

Solution: 

Fig. 3.36, we have the circuit equations 
Assuming that the primary and secondary currents are directed as in 

0 = I2R2 + j w L i Z  + jwMI1 . 

The above simultaneous equations have solution 

jwMCVo 
C[wZ(Lz - M z )  - R1 R2] - L + j [e - w L C ( R 1 +  Rz)]  

I2 = 

As Pz = !jllzlzRz, when 1121 is maximized 9 is maximized also. We have 

As the numerator is fked and the denominator is the square root of the 
burn of two squared terms, when the two squared terms are minimum at 
the same time 1121 will achieve its maximum. The minimum of the second 
rquared term is zero, for which we require 

R2 
w2 L( Ri + Rz) ' C =  
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giving 
w vo I r 2 1  = w 2 M  + R,Ra+Rh~aLa/Ra 

Minimizing the above denominator, we require 

Hence, for 

P2 is maximum, having the value 

Supposing wLfR2 > 10, we obtaiii 

as the maximiim power dissipated in R2. 

3023 
In Fig. 3.37 the capacitor is originally charged to a potential difference 

V .  The transformer is ideal: no winding resistance, no losses. At t = 0 the 
switch is closed. Assume that the inductive impedances of the windings are 
very large compared with Rp and R,. Calculate: 

(a) The initial primary current. 
(b) The initial secontlary current. 

Rn 

Fig. 3.37 
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(c) The time for the voltage V to fall to  e-l of its original value. 
(d) The total energy which is finally dissipated in R,. 

( Wisconsin) 

Solution: 
As the transformer is ideal, 

(a) The equivalent resistance in the primary circuit due to  the resis- 
tance R, in the secondary circuit is 

2 
Ri = (g) Rs . 

Hence the time constant of the primary circuit is 

T = ( & + R : ) C ,  

and the voltage drop across C is 

The primary current is then 

Initially, the primary current is 

V - - V 
i P ( O )  = 

RP + R: R P +  (%)2R* 
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(c) For Vc to fall to Vc = e-’V,  the time required is 

t = 7 = [.p + ( 2 ) 2 R 4 ] c .  

3024 

Show that for a given frequency the circuit in Fig. 3.38 can be made 
to “fake” the circuit in Fig. 3.39 to any desired accuracy by an appropriate 
choice of R and C .  (“Fake” means that if Vo = ZZR in one circuit and 
VO = ZZL in the other, then Z L  can be chosen such that ZL/ZR = eie with 
8 arbitrarily small.) Calculate values of R and C that would fake 8 mutual 
inductance M = 1 mH at 200 Hz with B < 0.01. 

(UC, Berkeley) 

Fig. 3.38 
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Fig. 3.39 

Solution: 
For the circuit in Fig. 3.38, we have 

R2 Larctan (1/2uRC) . R2 = z .  2R+&=’,/= 

For the circuit in Fig. 3.39, we have 

VO = j w M i  = iMwLr/2  . 
For the former to “fake” the latter, we require 

* = M u ,  

5 - arctan (&) = e . 
Equation ( 2 )  gives wRC = 
(1) then gives 

tan 8. With 6 = 0.01, wRC = 0.005. Equation 

and hence 

= 1.6 x F = 0.016 pF . 0.005 0.005 c=-= 
w R  2n x 200 x 251 

3025 
A two-terminal “black box” is known to contain a loasIeas inductor L, a 

loesless capacitor C, and a resistor R. When a 1.5 volt battery is connected 
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to the box, a current of 1.5 milliamperes flows. When an ac voltage of 1.0 
volt (rms) a t  a frequency of 60 Hz is connected, a current of 0.01 ampere 
(rms) flows. As the ac frequency is increased while the applied voltage 
is maintained constant, the current is found to  go through a maximum 
exceeding 100 amperes at  f = 1000 Hz. What is the circuit inside the box, 
and what are the values of R, L, and C? 

( Prince ton) 

Solution: 
When a dc voltage is connected to the box a finite current flows. Since 

both C and L are lossless, this shows that R must be in parallel with C or 
with both L,  C. A t  resonance a large current of 100 A is observed for an 
ac rms voltage of 1 V.  This large resonance is not possible if L and C are 
in parallel, whatever the connection of R. The only possible circuit is then 
the one shown in Fig. 3.40 with L, C in series. Since a dc voltage of 1.5 V 
gives rise to a current of 1.5 mA, we have 

1.5 - = lo3 R . V R =  - -  
I 1.5 x 10-3 

The impedance for the circuit in Fig. 3.40 is 
1 - 1 

1 - 1  1 z =  

giving 
1 

where w l  = &. 

Fig. 3.40 

The resonance occurs a t  wo = 20007r rad/s. At w = 120r rad/s, 
V,,, = 1 V gives I,,, = A,  corresponding to 
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at 

Hence 
6o 27r x 100 = 0.95 mH , W 

(1000 x 2n)2 L % - 121 = 4 

3026 
In Fig. 3.41 a box contains linear resistances, copper wires and dry 

cells connected in an unspecified way, with two wires as output terminals 
A, B. If a resistance R = 10 R is connected to A ,  B, it is found to dissipate 
2.5 watts. If a resistance R = 90 $2 is connected to A, B, it is found to 
dissipate 0.9 wat t .  

Fig. 3.41 

(a) What power will be dissipated in a 30 R resistor connected to A, 

(b) What power will be dissipated in a resistance R1 = 10 R in series 
B (Fig. 3.42a)? 

with a 5 Volt dry cell when connected to A ,  B (Fig. 3.428)? 

Fig. 3.42 

(c) Is your answer to (b) unique? Explain. 
(UC, Berkeley) 

Solution: 
Using Thkvinin’s theorem, we can treat the box as what is shown in 

Fig. 3.43. When R = 10 R, P = % = 2.5 W, giving V, = 5 V. When 



350 Problems EI Solution8 on Electromognctirm 

R = 90 52, P = 0.9 W, giving VR = 9 V. Therefore we have 

E = 1 0 V ,  
R, = I0  R .  

&.A- 

9 ,  6 . 9 0  = 
10+R, - ' 9 giving 
9 0 t R .  

I V A  
6 

Fig. 3.43 

(a) When R = 30 R, we have 

x 10 = 7.5 v, p = g, 30 
30 + 10 

VR = ___ 

RS R+ 

R = 1.875 W . 

Fig. 3.44 

(b) If the resistance R = 10 12 is in series with a dry cell of E' = 5 V, 
we will have 

2.5 v { 7.5 v, VR = - lo ( E  f &') = 
10 + 10 

0.625 W , 
5.625 W .  

P =  V i / R =  { 
(c) AS two polarities are possible for the connection of the 5 Volt dry 

cell, two different answers are obtained. 

2. ELECTlUC AND MAGNETIC CIRCUITS (3027-3044) 

3027 
A solenoid having 100 uniformly spaced windings is 2 cm in diameter 

and 10 cm in length. Find the inductance of the coil. 

fL0 = 4a x lo-? - 
A "> 

( Wisconsin) 
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Solution: 
Neglecting edge effects, the magnetic field in the solenoid is uniform 

everywhere. From Ampbe's circuital law $B . dl = poZ, we find the 
magnetic field induction inside the solenoid as B = p o d ,  where n = is 
the turn density of the solenoid. The total magnetic flux crossing the coil 
is $ = N B A .  The inductance of the coil is given by the definition 

II - NpoNZA - N2poA 
I I I  - 1 '  

L = - -  

m2, we have With A = ?r x 

L =  1002 x 4s x 10-7 x x 10-4 = 3.95 x lo-' H . 
0.1 

3028 
A circuit contains a ring solenoid (torus) of 20 em radius, 5 cm2 crces- 

section and lo4 turns. It encloses iron of permeability 1000 and has a 
resistance of 10 R.  Find the time for the current to decay to e-l  of its 
initial value if the circuit is abruptly shorted. 

(CJC, Berkeley) 

I R t 

C V n n l  
Fig. 3.45 

Solution: 
The equivalent circuit is shown in Fig. 3.45, for which 

d l  
V = IR+ L ; i l ,  

with 

Thus for t 2 0 
Vlt<O = vo = IoR,  Vltzo = 0 

dt dI 
7 -  I '  

_-- -  
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where 7 = k. Hence 

The self-inductance of the torus is 

N2A 
L = ppo- 27rR 

x 4?r x lo-' x lo3 x 5 x 
27 x 20 x 10-2 

= 50 H - - 

For I = Joe-' ,  1 = 7 = 4 R - m = 5 s .  - 50 

3029 
A circular loop of wire is placed between the pole faces of an electro- 

magnet with its plane parallel to the pole faces. The loop has radius a, 
total resistance R, and self-inductance L. If the magnet is then turned on, 
producing a B field uniform across the area of the loop, what is the total 
electric charge q that flows past any point on the loop? 

( Wisconsin) 

Solution: 
When the magnetic flux crossing the circular loop changes an emf E 

will be induced producing an induced current i, Besides, a self-inductance 
emf L 2 is produced as well. Thus we have 

The circuit equations can be written as 

Integrating over t from 0 to 00 then gives 
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as hi = 0. Hence 
Aq5 B r a 2  q = - = -  
R R *  

This shows that L has no effect on the value of q. ." only leads to  a slower 
decay of i .  

3040 
A solenoid has an air core of length 0.5 m, cross section 1 cm2, and 

1000 turns. Neglecting end effects, what is the self-inductance? A sec- 
ondary winding wrapped around the center of the solenoid has 100 turns. 
What is the mutual inductance? A constant current of 1 A flows in the 
secondary winding and the solenoid is connected to  a load of lo3 ohms. 
The constant current is suddenly stopped. How much charge flows through 
the resistance? 

( Wisco n 9 in) 

Solution: 
Let the current in the winding of the solenoid be i .  The magnetic 

induction inside the solenoid is then B = poni with direction along the 
axis, n being the number of turns per unit length of the winding. 

The total magnetic flux linkage is 

Hence the self-induc t ance is 

= 2.513 x H . 10002 4n 10-7 10-4 
1 /2 

x 

The total magnetic flux linkage in the secondary winding produced by the 
currrent i is $' = N'd ,  giving the mutual inductance as 

Because of the magnetic flux iirikage $' = Mi, i being the current in 
the secondary, an emf will be induced in the solenoid when the constant 
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current I in the secondary is suddenly stopped. Kirchhoff's law gives for 
the induced current i in the solenoid 

or 
-d$' = Ridt + Ldi = Rdq + Ldi . 

Integrating over t from t = OAto t = 00 gives -A+' = Rq, since i (0) = 
i(co) = 0. Thus the total charge passing through the resistance is 

= 2.76 x lo-' c . -A+' MI 2.513 x x 1 - - - -  
103 

q = - -  
R R 

3031 

As in Fig. 3.46, G is a ballistic galvanometer (i.e., one whose deflection 
B is proportional to the charge Q which quickly flows through it). The coil 
L as shown is initially in a magnetic field BO = 0. Switch S is then closed, 
current I = 1 amp flows, and G deflects O1 = 0.5 radian and returns to rest. 
Then the coil is quickly moved into a magnetic field B2, and G is observed 
to deflect 8 2  = 1 radian. What is the field B2 (in any specified units)? 

(UC, Berkeley) 

R2 Rt 

0 

M = I H  7 7 0 2 
Fig. 3.46 

Solution: 
The direction of B2 is illustrated in Fig. 3.47. 
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or 

Bg 
Fig. 3.47 

Let the self-inductance of the coil L be L1, then 

di2 dil 
dl € 1  = -+ L l X  , 

with 
i z (0 )  = 0 , iz(c0) = 1 A , i l ( 0 )  = il(o0) = 0 

Integrating the circuit equation we obtain 

When the coil is moved into the magnetic field B2, its induced emfis  

with 

Thus 

giving 

As g oc 8, we have 

N Ezra2 
R1 

92 = 



356 Problems €4 Solutions on  Electsomagnctirm 

3032 
Two perfectly conducting disks of radius a are separated by a distance 

h (h << u) .  A solid cylinder of raditls 6, length h and volume resistivity p 
fills the center portion of the gap between the disks (see Fig. 3.48). The 
disks have been connected to a battery for an infinite time. 

(a) Calculate the electric field everywhere in the gap as a function of 
time after the battery has  been disconnected from the capacitor. Neglect 
edge effects and inductance. 

(b) Calculate B everywhere within the gap as a function of time and 
distance r from the axis of the disks. 

(c) Calculate the Poynting vector in the space between the plates. 
Explain qualitatively its direction at r = a and at r = b. 

(d) Show, by a detailed calculation for the special case a = b, that 
the conservation of energy theorem (Poynting’s theorem) is satisfied in the 
volume bounded by the plates and P = u. 

(UC, Berkeley) 

Solution: 
(a) Let the upper plate carry charge +Q and the lower plate carry 

charge -& a t  time t .  Due to the continuity of the tangential component of 
electric intensity across an interface, we have 
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For r 5 b ,  j = u E ,  where u = b, giving 

Thus 

I = j r b 2  = uEsb2 . 

or 
Q = Qoe-'/' , 

where r = w. Hence 

(b) Applying Amphre's circuital law f B . dl = P O I  to a coaxial circle 
of radius r < b on a cross section of the solid cylinder: 

one has 
Be 21rr = p o j d  , 

or 

where ee is a unit vector tangential to  the circle. For b < r < a, the circuital 
law 

B 4 dr = jnb2po f 
gives 

ee * 
B = - e - t / 7  Porno 

2rph 

(c) For 0 < r < b and between the conducting plates, the Poynting vec- 
tor s = E ~ H  = ExB ro = ?e V -t17.r.&e-t17(ez x e e )  = - ~ ( h ) z e - z t l ~  2~ h er 

For b < r < a, we have 
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The directions of S a t  r = a and r = b are both given by -er, i.e., 
the electromagnetic energy flows radially inwards into the solid cylinder 
between the plates (in the ideal case). This energy provides for the loss of 
energy due to Joule heating in the solid cylinder where a current flows. This 
can be seen as follows. For b < r < a the inward energy flow per unit time 
is 1 !ki 2.2?rrhe-2t/r = A(Vob)2e-2L/r ,  independent of r .  But for r < b, 
the power in-flow is $( +)2 2?rrhe-2t/r = $-(Vor)2e-2t/r,  decreasing as 
r decreases. 

2rp( h Ph 

(d) For a Z= 6 the power flowing into the cylinder is 

The loss of power due to Joule 

?r 
I d~ = - -(voa)2e-2'/r , 

heating in the cylinder is 

PI1 

= -(Votr)2e-2L/r . 
dl 

Thus Pi + P2 = 0, and the conservation law of energy is satisfied. 

3033 

In the diagram 3.49, the two coils are wound on iron cores in the same 
direction. Indicate whether the current flow in resistor r is to the right, or 
to the left, and give a reason for your answer in each of the following cases: 

(a) Switch S is opened. 
(b) Resistor R is decreased. 
(c) An iron bar is placed alongside the two coils. 
(d) Coil A is pulled away from coil B. 

( Wisconsin) 

Solution: 
The direction of the current in coil A with the switch S closed is shown 

in Fig. 3.49. According to the right-handed screw rule, the magnetic field 
produced points to the left. If the current is steady, there is no current in r. 



Fig. 3.49 

(a) When the switch S is opened, the magnetic field pointing to the 
left decreases. Lenz's law requires that a magnetic field pointing to the left 
is induced in coil B. Hence the induced current in the resistance r flows 
from right to left. 

(b) If R is decreased, the current flowing through coil A is increased. 
Then the magnetic flux, which points to the left, piercing B will also in- 
crease. Lenz's law requires the induced current in the resistance r to flow 
from left to right. 

(c) An iron bar placed alongside the coils will increase the original 
field. So the current in r is from left to right. 

(d) When coil A is pulled away from coil B, the magnetic flux piercing 
B will decrease, so that the induced current in r will flow from right to left. 

3034 
A solenoid is designed to generate a magnetic field over a large volume. 

Its dimensions are as follows: length = 2 meters, radius = 0.1 meter, number 
of turns = 1000. (Edge effects should be neglected.) 

(a) Calculate the self-inductance of the solenoid in Henrys. 
(b) What is the magnetic field (in Webers/m2) produced on the axis 

of the solenoid by a current of 2000 Amperes? 
(c) What is the stored energy when the solenoid is operated with this 

current? 
(d) The total resistance of the solenoid is 0.1 ohm. Derive the equation 

describing the transient current as a function of time immediately after con- 
necting the solenoid to a 20 Volt power supply. What is the time constant 
of the circuit? 

(Princeton) 
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Soh  tion: 

inside it is 
(a) Suppose the solenoid carries a current I .  The magnetic induction 

B = p o t t l  = p o N I f 1 ,  

and the magnetic flux linkage is 

Hence the self-inductance is 

+ L = - =  - 
I 1 

p o V r r 2  - 4r x 1 0 - ~  x 1000~  x ?r x 0.1' 
2 

= 1.97 x H . 

p o N I  47r x x 1000 x 2000 = 1.26 Wb,m2. 
2 

B = - -  - 
1 

1.97 x lo-? x 2000' 
2 

= 3.94 x lo4 J . L 
2 

w, = - 1 2  = 

(d) The circuit equation is 

E = iR+ L -  di 
dt 

giving 
E i = -(I - e - * / r )  = i ( o o ) ( l  - e--L/') , 
R 

where T = = 0.197 s is the time constant of the circuit, As 

E = 20 V R = 0.1 R L = 1.97 x 10" H 

we have 
i(l) = 200(1 - e-")  A . 
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3035 
The electrical circuit shown in Fig. 3.50 consists of two large parallel 

plates. Plate B is grounded except for a small section (the detector). A 
sinueoidal voltage of frequency w is applied to plate A. 

(a) For what value of w is VO (the amplitude of cut) a maximum? 
(b) With w fixed, plate A is moved left and right. Make a sketch of VO 

88 a function of position. Indicate the points at which the edge of plate A 
paaees the detector. 

(c) Suppose A is held at a fixed potential. How is the resulting elec- 
trostatic field related to the function sketched in part (b)? Explain. 

( Wisconsin) 

Fig. 3.50 

Soh t ion: 
(a) Resonance will take place when 

= lo5 rad/s . 1 1 w = - -  m - 410-2 x lo-" 
At this time .the equivalent impedance for the parallel circuit is maximum. 
Hence Vo will also be maximum. 

"0 

Fig. 3.51 
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(b) Vo as a function of position is shown in Fig. 3.51, where 2 ia the 
horizontal distance of the middle of A from the middle of the detector, and 
21 and 2 2  correspond to the right edge and the left edge respectively of A 
passing by the middle of the detector. 

(c) The variation of the electrostatic field with 2 is similar to that of 
the function sketched in part (b). The field intensity decreases near the 
edges of the plate A. 

Since the magnitiude of VO reflects the amount of charge carried by 
plate A and the detector through Q = CVo, the electrostatic field intensity 
is large where VO is large. The plate B is larger than A 80 that the movement 
of the latter can be ignored. 

3036 
In the circuit shown in Fig. 3.52, the capacitor has circular plates of 

radius ro separated by a distance d.  Between the plates there is a vacuum, 
At t = 0, when there is a charge &O on the capacitor, the switch is closed. 

- X  

Fig. 3.52 

(a) For t 2 0, the electric field between the plates is approximately 
E(t) = Eoe-'/'i. Find EO and T (if you cannot find them, take them as 
given constants and go on to part (b)). 

(b) Mention some approximations and idealizations made when deriv- 
ing the form of E given in (a). 

(c) Find the magnetic field between the plates for t > 0. You may use 
idealizations and approximations similar to those in (b). 

(d) What is the electromagnetic energy density in the vacuum region 
between the plates? 

(e) Consider a small cylindrical portion of the vacuum region between 
the plates (see Fig. 3.53). Suppose it has radius rl, length 1 and is centered. 
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Using (a), (c),. and the Poynting vector compute the total energy which 
flows through the surface of the small cylinder during the time 0 < t < 00. 

(VC, Berkeley) 

q-) 

Fig. 3.53 

Soh tion: 
(a) Since 3 = i R  = -%R, we have Q = Qoe-'/' with r = RC. As 

E = Q  we have E = &e-t/T.  Comparing this with E = Eoe-if', we 
find 

ca ' 
&orr,2 , r = R C = -  Q Eo = - 

m 2 E g  d *  

(b) To find E for case (a), we have assumed that the charge Q is 
uniformly distributed over the plates at any time and the edge effects may 
be neglected. These approximations are good if d < ro. 

(c) By symmetry and Maxwell's integral equation 

where 
D = E o E  , 

we find 

taking approximations similar to those stated in (b). 
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(e). The Poynting vector of the electromagnetic field is 

Thus during the time 1 = 0 to  00 the energy flowing through the cylinder's 
surface is 

3037 
A resonant circuit consists of a parallel-plate capacitor C and an in- 

ductor of N turns wound on a toroid. All linear dimensions of the capacitor 
and inductor are reduced by a factor 10, while the number of turns on the 
toroid remains constant. 

(a) By what factor is the capacitance changed? 
(b) By what factor is the inductance changed? 
(c) By what factor is the resonant frequency of the resonant circuit 

( Wisconsin) 
changed? 

S o h  t ion: 
(a) The capacitance is C a 9, then Cr = &Ci. 
(b) The inductance is L a N 2 S / I ,  hence LC = &Li. 
(c) The resonant frequency is w a \/Lc, hence wf = 10wi. 1 

3038 
You have n storage cells, each with internal resistance Ri and output 

voltage V. The cells are grouped in sets of k series-connected cells each. 
The n / k  sets are connected in parallel to a load-resistance R. Find the k 
which maximizes the power in R. How much is the power? 

( Wisconsin) 
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Solution: 
For each set the voltage is AV and internal resistance is k&. After the 

n/k sets are connected in parallel, the total voltage is still kV, but the total 
internal resistance becomes 3 = F. The power in R will be maximum 
when the load-resistance R matches the internal resistance, i.e., R = e. 
Hence k = fi for maximum power, which has the value 

k2V2 n V 2  
Pmax = (g) R = 4~ = 1 ~ ,  . 

3039 

When a capacitor is being discharged: 
'(a) the energy originally stored in the capacitor can be completely 

(b) the original charge decreases exponentially with time; 
(c) an inductor must be used. 

transferred to another capacitor; 

(CCT ) 
Solution: 

The answer is (b). 

3040 

If L = inductance and R t resistance, what units does 6 have? 
(a) sec (b) sec-l (c) amperes 

Solution: 
The answer is (a). 

3041 
Two inductances L1 and L.2 are placed in parallel far apart. The 
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Solution: 
The answer is (b). 

3042 

An alternating current generator with a resistance of 10 ohms and no 
reactance is coupled to a load of 1000 ohms by an ideal transformer. To 
deliver maximum power to the load, what turn ratio should the transformer 
have? 

(a) 10 (b) 100 (c) 1000 

Solution: 
The answer is (a). 

3043 

An electrical circuit made up of a capacitor and an inductor in series 

(a) there is always resistance in the wires; 
(b) voltage and current are out of phase with each other; 

can act a8 an oscillator because: 

(c) voltage and current are in phase with each other. 

Solution: 
The answer is (b). 

3044 

The force in the $-direction between two coils carrying currents i l  and 
i a  in t e r m  of the mutual inductance M is given by 

(a) i l%M (b) i l i 2 s  (c) z l i z F .  * * daM 

(CCT ) 
Solution: 

The answer is (b). 



Circuit Analyrir 367 

3. ANALOG CIRCUITS (3045-3057) 

3045 
In order to obtain the Zener effect, the Zener diode has to be: 
(a) reverse biased (b) forward biased (c) connected to ac. 

(CCT) 
Solution: 

The answer is (a). 

3046 
A transistor amplifier in a “grounded base” configuration has the fol- 

(a) low input impedance 
(b) high current gain 
(c) low output impedance. 

lowing characteristics: 

(CCT) 
Solution: 

For a transistor amplifier in a grounded base configuration we have 
input impedance ri = Rcll$, which is small, 

output impedance ro * R,, 
current gain Ai = L R .  * Rm<RL < 1, 

where Re, R, and RL are the resistances of the ejector, collector and load 
respectively. Hence answer (a) is correct. 

3047 

It is possible to measure the impedance C. a coaxial ca 
(a) with an ohmmeter acrcss the cable 

e 

(b) making use of the reflection properties of terminations 
(c) by measuring the attenuation of signals through the cable. 

(CCT) 
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Solution: 
When the impedances of the terminals of the cable match, no reflection 

occurs. This method may be used to  measure the impedance of a coaxial 
cable. Hence answer (b) is correct. 

3048 

The transmission of high frequencies in a coaxial cable is determined 

(a) the impedance 
(b) -&, with L and C the distributed inductance and capacitance 

(c) dielectric losses and skin-effect. 

by : 

( CCT ) 
Solution: 

The answer is (b). 

3049 

The high frequency limit of a transistor is determined by 
(a) the increase of noise figure with frequency 
(b) type of circuit (grounded base/emitter/collector) 
(c) mechanical dimensions of active zones and drift velocity of charge 

carriers. 
( C c r  1 

Solution: 
The answer is (c). 

3050 

A Si transistor with p = 100 is used in the amplifier circuit shown in 
Fig. 3.54. Fill in the information requested. You may assume that for the 
frequencies involved 5 is negligible and that the emf source providing I(,, 
has a negligible internal impedance. 
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p -100 
“out-2 

Ikn 

Fig. 3.54 

Sign of 10 V supply = 
Ri, = 
Small signal gain at output 1 = 
Small signal gain at outpiit 2 = 
Rout1 = Rout2 = 

( Wisconsin) 

Solution: 
The values are calculated below: 

x 1 0 = 5 V ,  
5 

5 t 5  
VB = - 

VE = 5 - 0.6 = 4.4 V 

VE IE = - = 1 mA,  
RE 

Ic = - I E  = 0.99 mA, 

Ig = - I E  ~ ~ 0 . 0 1  m A ,  

1 + P  

1 t P  

Vc = 10 - IC * 3.2 k f l  = 10 - 0.99 x 3.2 x 6.8 V , 
Ri, = 5kl]5kll (rbe + (1 + p) .400] FS 2.4 kR , 
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% -7.4, PRC 
r b e  + ( 1  + P ) .  400 

small signal gain a t  output 1 = - 

small signal gain a t  output 2 = (1 + P )  *400 
~ 0.93, 

rbe + (1 + 8) 

3051 
Calculate AF = Vo/V;:, the amplification of the circuit with feedback 

shown in Fig. 3.55. A0 = Vo/V, the amplification without feedback, is 
large and negative. The input resistance to A0 is much greater than R1 
and R2 and the output resistance is much less than Rl and R2. Discuss 
the dependence of AF on Ao. 

( Wisconsin) 

Fig. 3.55 

Solution: 
As A0 is large and the input resistance is much greater than R1 and R2, 

while the output resistance is much less than R1 and R2, we can consider 
the circuit with feedback as an ideal amplifier. 

Taking il = - i z ,  then 

- v  = --(VO Ri - V )  , 
R2 

or 
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Putting 

the above becomes 

AF = Vo/K, Ao = Vo/V 

1 - 
AF R2 

giving 
i 

As A0 is large, AF x -%. It follows that AF is independent of A0 
but is determined by R1/R2. Hence the amplification is stable. 

3052 

The amplifier in the circuit shown in Fig. 3.56 is an operational ampli- 
fier with a large gain (say gain = 50,000). The input signal K,, is sinusoidal 
with an angular frequency w in the middle of the amplifier's bandwidth. 
Find an expression for the phase angle t j  between the input and output volt- 
ages as measured with respect to ground. Assume that the values of R1 and 
Rz are within an order of magnitude of each other. Note the non-inverting 
input to the amplifier is grounded. 

( Wisconsin) 

% I +cG vout 1 

Fig. 3.5G 

Solution: 

"virtually grounded" inverting input. Then 
The amplifier may be considered as an ideal operational amplifier with 

vi, - 0 0 - Vout -- 
Rz ' 1 -  

R1+ jwc 
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or 
R2 -- - - vou t 

vi” R l + &  * 

The phase difference between the input and output voltages is 

4 = T -  arctan 

3053 

A very high-gain differential input amplifier is connected in the nega- 
tive feedback op-amp configuration shown in the digrarn 3.57. 

The output impedance may be considered negligibly small. The open- 
loop gain A may be considered “infinitely large” in this application, but 
the amplifier saturates abruptly when Vout reaches f10 volts. 

(a) Write the ideal operational expression relating Vout(t) t9 Vin(t). 

(b) What is the input impedance a t  terminals (51, Jz)? 

(c) A two-volt step input is applied for K,, as shown in the first graph. 
Copy the second graph on your answer sheet and sketch in the output 
response. 

( Wisconsin) 

CI = 0.0015 F 

t (L) 
0 2 I 6  8 1012% 

t ( 5 )  

Fig. 3.57 
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Solution: 

ideal amplifier. We have 
(a) The circuit is that of an opposite-phase integrator made up of an 

If Vo(0) = 0 at the initial time, then 

(b) If the input voltage a t  terminals (51, 52) is sinusoidal with fre- 

(c) If a two-volt step input is applied for g, and Vaut = 0 at the initial 

quency w ,  the input impedance across the terminals is R + &. 

time, we have 

AS the amplifier saturates abruptly at Vout = f10 V, the saturated time is 

10 
vi I, 2 RCj = - x 1000 x 0.0015 = 7.5 s . t = -  - VO" t 

Hence 
t 5 0 ,  
0 < t 5 7.5 s ,  

t > 7.5 s . 

voutIf) 

4l!:!f--- -8 

-6 
- I  
-2 t =25 I 

0 2 I 6  8101214 
t (SJ 

Fig. 3.58 

The output response is shown in Fig. 3.58. 
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3054 

Consider the operational amplifier circuit shown in Fig. 3.59. 
(a) Is this an example of positive or negative feedback? 
(b) Show that the circuit functions as an operational integrator. (State 

(c) Indicate a circuit using the same components which will perform 

( Wisconsin) 

any assumptions necessary.) 

operational differentiation. 

m 

Fig. 3.59 

Solution: 
(a) Negative feedback. 
(b) From Fig. 3.59, we find 

i = C v ,  { Ri = -xn,  
giving 

Vout = -- ic 1' Kndt + VO 1 

Thus the circuit is an operational integrator. 
The above calculation is based on the following assumptions: 

(1) the open-loop input impedance is infinite, 
(2) the open-loop voltage gain is infinite. 
(c) The corresponding operational differentiating circuit is shown in 

Fig. 3.60. 
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3055 
The circuit shown in Fig. 3.61 is a relaxation oscillator built from an 

ideal (infinite open-loop gain, infinite input impedance) differential ampli- 
fier. The amplifier saturates at  an output of f10 V. 

(a) Calculate the frequency of oscillation for the component values 
given. 

(b) Sketch the waveforms at the inverting input (A), the non-inverting 
input (B) and the output (C). 

( wis co nsin) 

R=10 kn Yp. 
RZ=Skf l  

Fig. 3.61 

Solution: 
(a) This is a relaxation oscillator having positive feedback shunted 

by R1 and R2 and discharged through an RC circuit. When stabiliity 
is reached, the output is a rectangular wave with amplitude equal to the 
saturated voltage. Let Vc = +10 V. The potential at point B is VB = 
R+- x Vc = 2 V. The capacitor C is charged through R, and VA will 
increase from -2 V to +2 V. When VA is higher than Vg, Vc will decrease to 
-10 V and C will discharge through R. When VA is lower than the potential 
at B, which is now x+, x (-10) = -2 V,  VC will again increase to +10 V. 
So following each charging the circuit relaxes back to the starting point, 
i.e., relaxation oscillation occurs. The charging of the capacitor follows 

I+  a 

I +  3 

V = VO [l - exp(-t/RC)J , or = RCIn (L) . 
vo - v 

The charging time T from fi to VJ is 

va - VI 

vo - v2 T =  RC In - . 

The charging time is given by V, = 10 V, Vt = -2 V, & = 2 V, i.e., 
TI = RCIn # = 8.1 ms; the discharging time is given by Vo = -10 V, 
V, = 2 V, V, = -2 V, i.e., Tz = RCIn - = 8.1 m. 
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Hence the oscillation frequency is & = 61.6 Hz. 

(b) The waveforms of VA, VB, and Vc are shown in Fig. 3.62. 

"A 

Fig. 3.62 

3056 

An analog computer circuit, as shown in Fig. 3.63, is made using high 
gain operational amplifiers. What differential equation does the analog 
computer solve? If the analog computation is started by simultaneously 
opening switches S1 and S2, what are the initial conditions appropriate for 
the solution to the differential equation? 

( Wisconsin) 

Solution: 

considered ideal, we have the following equations: 
Let the output voltage be VO. As the operational amplifiers can be 

V1 dv2 - = -C- 
R dt at point 1: 
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dv0 
dt 

v2 - -c-, at point 2: - - 
R 

uo v2 V l  w + - = -- 
- 3R R '  

at point 3: 
2 

2 ~ 0  C dvo ~1 - - - - = -- 
R 3 dt R '  (2) and (3) give 

377 

(2) 

(3) 

(4) 

(5) 

Then (4) and (5) give 

d2vo 1 dvo 
dt2 3 dt 

4- 2vo = 0, -- -- 

taking RC = 1. This is the differential equation that can be solved by the 
analog computer. 

output 

Fig. 3.63 

Initially when S1 and S 2  are just opened we have 

vo(0 )  = - 3  v , 
V l ( 0 )  = vz (0 )  = 0, 

80 the initial conditions are 
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3057 
Design an analog computer circuit using operational amplifiers that 

will produce in the steady state a voltage V(1)  that is a solution to the 
equation 

d2 V - + 10 dt2 dt - kV = 6sin wt  . 

(Wisconsin) 

Solution: 
The equation can be written as 

d2v dv 1 - = -10- + - v  + 6sin wt . 
d12 dl 3 

The block diagram of the. design is shown in Fig. 3.64 and the circuit dia- 
gram in Fig. 3.65. 

I 

1 - addometer 
2 ,3  - integrator 
1,s - ratiometer 

Fig. 3.64 

R C = l  

Fig. 3.65 
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Note when switches S1 and S2 are closed at the initial time, the voltage 
of the source is 't, = sin w t .  

4. DIGITAL CIRCUITS (3058-3065) 

3058 
What is the direct application in standard NIM electronics of the De 

(a) "kansformation of an "OR' unit into an "AND" unit 
Morgan relation A n B = X U  B? 

(b) Inversion of signals 
(c) Realization of an "EXCLUSIVE OR". 

Solution: 
The answer is (c). The truth table of this problem is given below: 

A B output 

1 1 0  
1 0 1  
0 1  1 
0 0 1  

3059 
A digital system can be completely fabricated using: 
(a) AND and OR gates only 
(b) all NOR gates or all NAND gates 
(c) neither of the above. 

(CCT) 
Solution: 

The answer is (b). A NOR or a NAND gate can be used 85 a NON 
gate. Ueing the De Morgan law, we can translate an OR into an AND, 
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and an AND into an OR. Therefore, NOR gates or NAND gates alone are 
sufficient to fabricate a complete digital system. 

3060 

In Fig. 3.66 the 4 basic logic gate symbols are shown. 
(a) Match them to the negative logic equivalents on the right. 
(b) Write the truth table for each. 
(c) Name the logic function. 

( Wisconsin) 

Fig. 3.66 

Solution: 

gates are given below: 
(a) Refer to Fig. 3.66 and denote the output by Q .  The output$ of the 

gate output 

It is seen that the equivalences are: 1 and 7, 2 and 6, 3 and 5, 4 and 8. 
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(b) The truth table for each pair of gates is given below: 

2and6 l a n d 7  

3and5 

0 

L I 

4and8 

L I 

1 I 

(c) The logic function for eac.. gate is given below: 

1 .  Q = A * B ,  “AND” ; 
2 .  Q = x+ s, “NOR”; 
3 .  Q = A + B ,  “OW; 
4. Q = A . B ;  “NAND” ; 
5 .  Q = A +  B, “AND”; 
6. Q = x+ B, “NOR”; 

8.  Q = X . B ,  “NAND” . 

- -  

7 .  Q = A . B ,  NAND> . 
9 

3061 
Inside of the programming counter in a microprocessor there is: 
(a) the address of the instruction 
(b) the address of the data 
(c) the sentence’s number of the program. 

( Wisconsin) 
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Solution: 
The answer is (a). 

3062 
A Schmitt trigger has a dead time 
(a) smaller than the pulse width 
(b) about equal to the pulse width 
(c) larger than the pulse width. 

Solution: 
The answer is (b). 

3063 
Refer to Fig. 3.67. 
(a) Is QZ saturated? Justify your answer. 
(b) What is the base-emitter voltage of Ql? 
(c) When this monostable circuit is triggered how long will Q2 be of?'? 

(d) How can this circuit be triggered? Show the triggering circuit and 

( Wisconsin) 
the waveform. 

Fig. 3.67 

Solution: 

circuit /3 is always much larger than 20, Q2 is saturated. 
(a) In the circuit for QZ, Q = k = = 20. Since in a practical 
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(b) As 9 2  is saturated, Vc(Q2) = -0.3 V. Hence 

x 25 = 3.9 V . vb(Q1) = 6 - - 6 + 0.3 
25 + 50 

Thus the baseemitter voltage of Q1 is 3.9 V. 
(c) The monostable pulse width is 

At = RCln2 = 100 x lo3 x 100 x 
= 7 x 

x 0.7 
s = 7 ps , 

during which Q 2  is off. 

shown in Fig. 3.69. 
(d) The triggering circuit is shown in Fig. 3.68 and the waveforms are 

+ 6 V  

Fig. 3.68 

Fig. 3.69 
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3064 

In Fig. 3.70 the circuit is a “typical” TTL totom pole output circuit. 
You should assume that all the solid state devices are silicon unless you 
specifically state otherwise. Give the voltages requested within 0.1 volt for 
the two cases below. 

Case 1: VA = 4iOtvolts) give VB, Vc, and VE. 
Case 2: VA = 0.2’volts, give VB, Vc, VD, and VE. 

( Wisconsin) 

Fig. 3.70 

Solution: 
As all the solid state devices are silicon, the saturation voltages are 

Case 1: VA = 4.0 V ,  so 7’1 is sattirated. Then T3 is also saturated, so that 
VB = 0.7 V, VE = 0.3 V, and Vc = VB + 0.3 = 1.0 V.  
Case 2: As  Vt, = 0.2 V, TI is in a cutoff state, so VB = 0 and T3 is also in 
a cutoff state. For Tz, p = ,b - - 1400 = 14 so that T2 is saturated. Thus 

3065 

A register in a microprocessor is used to 
(a) store a group of related binary digits 
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(b) provide random access data memory 
(c) store a single bit of binary information. 

Solution: 
The answer is (a). 

5. NUCLEAR ELECTRONICS (3066-3082) 

3066 
A coaxial transmission line has an impedance of 50 R which changes 

suddenly to 100 R.  What is the sign of the pulse that returns from an 
initial positive pulse? 

(a) none (b) positive (c) negative. 

Solution: 
The answer is (b). 

3067 
A positive pulse is sent into a transmission line which is short-circuited 

(a) does not exist(= 0) 
(b) is positive 
(c) is negative. 

at the other end. The pulse reflected back: 

Solution: 
The answer is (c). 

3068 
What is the mechanism of discharge propagation in a self-quenched 

(a) Emission of secondary electrons from the cathode by UV-quanta. 
Geiger counter? 
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(b) Ionization of the  gas near the anode by UV-quanta. 
(c) Production of metastable states and subsequent deexcitation. 

( CCT 1 
Solution: 

The answer is (c). 

3069 

For low noise charge-sensitive amplifier, FET-imput stages are pre- 

(a) they have negligible parallel noise 
(b) they are faster 
(c) they have negligible series noise. 

ferred over bipolar transistors because: 

Solution: 
The answer is (a). 

3070 
Using comparable technology, which ADC-type has the lowest value 

for the conversion time divided by the range, tc /A,  with 1, = conversion 
time and A = 2” with 11 = number of bits? 

(a) flash ADC 
(b) successive approximation converter 
(c) Wilkinson converter. 

Solution: 
The answer is (a). 

3071 
A “derandomizer” is a circuit which consists of 
(a) trigger circuit 



(b) FIFO memories 
(c) phase locked loop. 

Circuit Analysis 

Solution: 
The answer is (c). 

3072 
A discriminator with a tunnel diode can be built with a threshold as 

low as: 
(a) 1 mV (b) 10 mV (c) 100 mV. 

Solution: 
The answer is (c). 

3073 
Pulses with subnanosecond rise time and a few hundred volts amplitude 

can be produced using: 
(a) avalance transistor 
(b) thyratrons 
(c) mechanical switches. 

Soh tion: 
The answer is (a). 

3074 
The square-box in Fig. 3.71 represents an unknown linear lumped- 

constant passive network. The source of emf at  the left is assumed to have 
zero internal impedance. 

It is known that if the input emf ei(l) is a step function, i.e., 
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then the open-circuit (no-load) output voltage e o ( t )  is of the form 

where the constant r has the value r = 1.2 x 

given by 

s. 
Find the open-circuit (no load) output voltage eo( t )  when the input ie 

e ; ( t )  = 4 cos(wt) volts , 
where w corresponds to the frequency 1500 cycles/sec. 

( UC, Berkeley) ap: 
Fig. 3.71 

Solution: 
We first use the Laplace transform to find the transmission function 

H ( s )  of the network in the frequency domain. The Laplace transform of the 
equation ei(t) = A - v(t) is Ei(s) = A / S .  Similarly, the Laplace transform 
of the output e o ( t )  is 

Eo(s) = - A  - - - 
2 " s S+l / r  1 .  

Hence the transmission function is 

The Laplace transform of the new input e i ( t )  = 4 cos (wt) is 

4s 
Ei(s) = - 

w2 + s2 ' 
giving the output as 
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where w r  = 2n x 1500 x 1.2 x x 1. The reverse transformation of 
Eo(s) gives the open-circuit output voltage 

1 1 5 cos(wt) + w sin(wt) 
e- f  + Vdt) = ; 2 [  w2 f -'? ( 9 2  w 2  + ( : I 2  

3075 
To describe the propagation of a signal down a coaxial cable, we can 

think of the cable as a series of inductors, resistors and capacitors, as in 
Fig. 3.72(a). Thus, the cable is assigned an inductance, capacitance and 
resistance per unit length called L ,  C and R respectively. Radiation can 
be neglected. 

(a) Show that the current in the cable, I ( z , t ) ,  obeys 
a2r a 2 z  a L  - = LC-+ R C -  . 
8 x 2  at2 at 

(b) Derive analogous equations for the voltage V ( z ,  t )  and charge per 
unit length p ( x , t ) .  

(c) What is the energy density (energy per unit length) on the cable? 
What is the energy flux? What is the rate of energy dissipation per unit 
length? 

(d) Suppose that a semi-infinite length ( x  2 0) of this cable is coupled 
at z = 0 to  an oscillator with frequency w > 0 so that 

V ( 0 ,  t )  = Re(Vbeiw') . 
After the transients have decayed find the current Z(z, t ) .  In the limit 
RILw << 1 find the attenuation length and propagation speed of the signal. 

WIT) 

Fig. 3.72 
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Solution: 
(a) From Fig. 3.72b, we have 

V ( x , t )  = V(Z + d x , t )  + R I ( t , x ) d x  + Ldx 
aV t+d+,i I ( x , t )  = ( at k d x  + I ( x  4- d x , t )  , 

;; = I R  + L % ,  
or 

8V 

Eliminating V we have 

- a 2  I = -c&) a av = -c&) a av 
a x 2  dX 

a I  a21 = RC- + L C -  dt at2 * 

(b) Similarly, eliminating I we have 

av d2 V 
dt  at 2 

= RC- + LC- . 

As 
pdx = Cdx . v , v = p/c , 

the above then gives 

a 2 P  8P a2 P - = RC- + L C -  I 

a x 2  at at2 

(c) The energy and rate of energy dissipation per unit length are re- 
spect ively 

1 1 w = - L I ~  + -cvz, 
2 2 P = I ~ R  



Circuit Analyru 

The energy flux is 
S = ZVe, . 

(d) As the wave is sinusoidal, let 

V = VO exp[i(kz - wt)] . 

Substitution in the differential equation for V gives 

k2 = LCw2 + iRCw . 

Since A is complex, putting k = K+iA and equating the real and imaginary 
parts separately we have 

Solving these we obtain 

A2 = A ( d L 2 C 2 w 4  + R2C2w2 - LCw2)  . 
2 

As V is sinusoidal, so is I .  Hence the equation -g = Cg gives 

w c  
k z = -V = Zoe-” exp [ ~ ( K z  - wt + 970)) , 

where 
‘po = arctan (:) . 

lo = Jml 
c w  vo 

Actually Z(z,t)  = R e I  = Ioe-x.t‘cos(Kz-wt+cpo). In thelimit R/Lw < 1 

R2C K 2  = L C w 2 ,  A2 = - 
4 L  . 

So the attenuation length is 
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and the propagation speed is 

3076 
A pulse generator of negligible internal impedance sends a pulse for 

which V = 0 at t < 0 and 1 > 5 p s ,  and V = 1 volt for 0 < t < 5 p s  into a 
lossless coaxial cable of characteristic impedance 20 ohms. The cable h a  
a length equivalent to  a delay of 1 p s  and the end opposite the generator 
is open-circuited. Calculate (taking into account reflections a t  both ends 
of the cable) the form of the voltage-pulse at the open-circuited end of the 
cable for the time interval 1 = 0 to t = 12 11s. How much energy is supplied 
by the generator to the cable? 

( Colurn baa) 

Solution: 
The reflection coefficient p is given by p = w, where 2 0  = 20 $2. 

At the generator end, 21 = 0 and 

-20 
Pi = 20 = -l * 

At the open-circuit end, 21 = 00 and 

00 - 20 
00 + 20 P I = - -  - + 1 .  

Let the voltages a t  time 2 at the generator and open-circuit ends be ui and 
respectively. Then 

where 

win = 0 for t < 0 and 1 > 5 p s  

= l v  for t = l - 5 p .  
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Hence we have 

1 0 1 2 3 4 5 6  7 8 9 1 0  11 1 2 1 3 1 4 . . .  

Vt(V)I 0 2 2 0 0 2 0 -2 t 2 0 -2 0 2 0 ... 

gwerotor open-circuit 
end end 

2-ps ; 

output v vs t 

V 

t t r s l  

- 2  P+ 
(b) 

Fig. 3.73 
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The corresponding waveforms along the line are given in Fig. 3.73(8) 
for times just before each second and the output voltage as a function of 
time is given in Fig. 3.73(b). 

3077 

The emitter follower shown in Fig. 3.74 is used to  drive fast negative 
pulses down a 50 $2 coaxial cable. If the emitter is biased at +3 volts, Vout 
is observed to saturate a t  -0.15 volt pulse amplitude. Why? 

( Wisconsin) 

3 
Fig. 3.74 

Solution: 

As the characteristic impedance of the transmission line, 50 0, is 
matched by the impedance at  the output end, the impedance of point B 
with respect to earth is RB = 50 R. 

When a negative pulse is input, the transistor is turned off and the 
capacitor will be discharged through point A. The maximum discharge 
current is 

3 
1000 

IA= - = 3 mA . 

Because of impedance matching, there is no reflection at the far end of the 
transmission line. Hence 

and Vout = -3 mA x 50 52 = -0.15 V a t  saturation. 



3078 
A coaxial transmission line has a characteristic impedance of 100 ohms. 

(a) What is the capacitance per meter and the inductance per meter? 
(b) A voltage pulse of 15 V magnitude and s duration is propa- 

gating on the cable. What is the current in the pulse? 
(c) What is the energy carried in the pulse? 
(d) If the pulse encounters another pulse of the opposite voltage mag- 

nitude but going in the opposite direction, what happens to the energy at 
the moment the two pulses cross so that the voltage everywhere is zero? 

( Wisconsin) 

Solution: 

A wave travels with a velocity of 2.5 x lod m/s on the transmission line. 

As v = h1 2, = m, we have 

= 4 x 10'" F/m = 40 pF/m I 
2.5 x loa x 100 

- 1 
vZ, 

c=--- 

= 0.4 mH/m . L,z., 100 
u 2.5 x loa 

(b) The magnitude of the current in the pulse is 

v 15 
z, 100 

I0 = - = - = 0.15 A I 

(c) The energy carried in the pulse is distributed over the coaxial trans- 
mission line in the form of electric and magnetic fields. The line length is 

1 = vt = 2.5 x loa x = 2.5 m 

so the field energies are 

1 1 We = H(CJ). V 2  = 5(4 x lo-" x 2.5) x 152 = 1.125 x 

1 1 W, = -(L1)Z2 = - x 4 x 2 2 

J , 

x 2.5 x 0.15' = 1.125 x lo-" J 

giving 
W = We + W,  = 2.25 J . 
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(d). When the two pulses encounter each other, their voltages cancel 
out and the currents add up, giving V' = 0, I' = 21 = 0.3 A. Where there 
is no encounter, V = 15 V, I = 0.15 A. Where the pulses encounter electric 
energy is converted into magnetic energy. The more encounters occur, the 
more conversion of energy will take place. 

3079 
A lossless coaxial electrical cable transmission line is fed a step function 

voltage V = 0 for t < 0, V = 1 volt for t > 0. The far end of the line is an 
open circuit and a signal takes 10 jrs to traverse the line. 

(a) Calculate the voltage vs time for t = 0 to 100 ps at the open circuit 
end. 

(b) Repeat for an  input pulse V = 1 volt for 0 5 t 5 40 ps, V = 0 
otherwise. 

(Columbia) 

Solution: 
Suppose the input end is matched, then the coefficient of reflection is 

0 at input end, 
1 at open circuit end. 

f< = { 
At the open circuit end, 

V ( t )  = q t  - 10) + fi'Vi(t - 10) 
= 2 K ( t  - 10) . 

( 4  As 

Vi(t - 10) = 0 for t < 10 ps ,  

t > 10 ps , = I V for 

V(t) is as shown in Fig. 3.75(a). 

(b) As 

& ( t  - 10) = 0 for t < 10 p s ,  
= 1 V for 10 5 15 50 ps,  

= 0 for t > 50 p s ,  

V ( t )  is as shown in Fig. 3.75(b). 
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3080 
In Fig. 3.76(a) the transistor at  A is normally ON so that the potential 

at A is normally very close to 0 V. Descibe and explain what you would see 
on an oscilloscope at points A and B if the transistor is turned OFF within 
a time < 1 ns. (Assume that the 5 volt supply has a low ac impedance to 
ground.) 

( Wisconsin) 

Solution: 
The arrangements in Figs. 3.76(a) and @)are equivalent so that at the 

input end Z, = 80 R ,  V, = 4 V. The reflection coefficients at the two ends 
are 

80 - 240 = -0.5, 
80 + 240 

Z H  - Zo 0 - 2 4 0  
Z H + &  0 + 2 4 0  

=-- - - 1 ,  KA ON = 

- - 00 - 240 
00 + 240 K A  OFF = 1 .  

Take t = 0 at the instant the transistor is turned off. When the transistor 
is ON, the voltage a t  B due to the source is 

= 3 v .  
240 

240 + 80 
4 x  

Because of reflection at A,  
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We also have VA(O-) = 0. The waveform at 1 < 0 is as shown in Fig. 3.76(c). 

V V 

Fig. 3.76 

When 1 > 0, the transistor is turned off and the circuit is open at 
point A. At that instant K A ~ F F  = 1, VB(O+) = 3 V. This is equivalent 
to a jump pulse of 3 V being input through point B at  t = 0. Thereafter 
the voltage waveforms are as given in Figs. (d)-(f), where a single-pass 
transmission is taken to be 4 /IS, the dotted lines denote reflected waves 
and the solid lines denote the sum of forward and reflected waves. Hence 
the voltage waveforms at  points A and B as seen on an oscilloscope are as 
shown in Figs. (g) and (h). 



Circvii Analyru 3m 

3081 
(a) In order to make a "charge sensitive amplifier", one can connect a 

capacitance across an ideal inverting amplifier as indicated by Fig. 3.77(a). 
The triangular symbol represents an ideal inverting amplifier with the 

characteristica: input impedance > 1, output impedance < 1, gain > 1, 
and output voltage V,,t = -(gainG) x (input voltage q,,). Compute the 
output voltage ~ E J  a function of the input charge. 

(b) It is common practice when interconnecting electronic equipment 
for handling short-pulsed electrical signals to use coaxial cable terminated 
in its characteristic impedance. For what reason might one terminate the 
input end, the output end or both ends of such a coaxial cable? 

(c) The following circuit (Fig. 3.77(b)) is used to generate a short, 
high-voitage pulse. How does it work? What is the shape, amplitude and 
duration of the output pulse? 

(Princeton) 

.. 

(a I ( b )  

Fig. 3.77 

Solution: 
(4 As 

we have 
G Q  Q vo = -- . - 

l + G  C C '  
_ _  

since C > I. 

tively. The reflection coefficient is 
(b) Let 20 and 21 be the characteristic and load impedances respec- 
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Thus reflection normally takes place at the end of the delay line unless 
p = 0, i.e., 20 = 21, and the line is said to be matched. In order that 
the signal is not disturbed by the reflection, the ends of the line must be 
matched. 

(c) When a positive pulse is applied tb the input end K,,, the thyratron 
conducts and the potential at point A will be the same as at point B 80 that 
a potential drop of 2000 V is produced, generating a negative high-voltage 
pulse at the output end Vo. The width of the pulse is determined by the 
upper delay line in the open circuit to be 

2 x 10 x 30.48 
3 x 10’0 

i?, = 27 = = 20 ps . 
The amplitude of the output pulse is given by the voltage drop across the 
matching resistance of the lower delay line to be 

2ooo 
50 = 1000 v . 

50 + 50 

3082 
The pions that are produced when protons strike the target at Fer- 

milab are not all moving parallel to the initial proton beam. A focusing 
device, called a “horn”, (actually two of them are used as a pair) is used 
to deflect the pions so as to cause them to move more closely towards the 
proton beam direction. This device (Fig. 3.78(a)) consists of an inner cylin- 
drical conductor along which a current flows in one direction and an outer 
cylindrical conductor along which the current returns. Between these two 
surfaces there is produced a toroidal magnetic field that deflects the mesons 
that pass through this region. 

(a) At first, calculate the approximate inductance of this horn using the 
dimensions shown in the figure. The current of charged pions and protons 
is negligible compared with the current in the conductors. 

(b) The current is provided by a capacitor bank (C = 2400 pF),  that 
is discharged (at an appropriate time before the pulse of protons strikes 
the target) into a transmission line that connects the two horns. The total 
inductance of both horns and the transmission line is 3.8 x henries 
as in Fig. 3.78(b). In the circuit the charged voltage of the capacitor is 
Vo = 14 kV and the resistance is R = 8.5 x ohm. How many seconds 
after the switch is thrown does it take for the current to reach its maximum 
value? 
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( b l  

Fig. 3.78 

(c) What is the maximum current in amps? 
(d) At this time, what is the value of the magnetic field at a distance 

(e) By what angle would a 100 GeV/c meson be deflected if it traversed 

(UC, Berkeley) 

(a) The magnetic induction at  a point between the cylinders distance 

of 15 cm from the axis? 

2 meters of one horn's magnetic field at very nearly this radius of 15 cm? 

Solution: 

r from the axis is in the e g  direction and has magnitude 

I being the current in the inner conductor. The magnetic flux crossing a 
longitudinal cross section of a unit length of the horn is 

Hence the inductance is approximately 
4 
I 

(b) Let the current of the RCL loop be i(2). We have 

L = - x 8.3 x H . 

uc + U L  + U R  = 0 
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i.e., 
d2UC d u c  + RC- + U C  = 0 , LC- 

dt dt2 
and the initial condition 

uc(0)  = vo . 
To solve the equation for UC, let uc = u o e ' i w f .  Substituting, we have 

w = - i c r f w d  , 

where W d  = d G  with 

1 
w o  = - rn'  

Thus 

R 
2L 

ff=- 

- a t f i w r  f u c  = u o e  , 

- o t i i w r  t 
or 

I = c u o ( - a  f iwd)e 

With the data given, we have 

R 
2L a = - = 1.118 x lo3 s-l , 

w o = - -  1.047 x lo5 s-l , m- 
80 that wo > a and wd e W O .  Hence the current in the loop is 

For maximum I(tl, . ,. 
dl(t) = o ,  

dt 
i.e., 

WO 

ff 
tan(wot) e w o t  = - , 
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giving 
1 

t = - .  
(Y 

Therefore the current is maximum at t = 8.94 x s. 

(4 
Zmax = 3.52 x 106e-1118x8.94x10-' sin(1.047 x lo5 x 8.94 x 

= 1.29 x lo6 A . 

(d) At r = 15 cm, we have 

poi 417 x 10-7 x 1.29 x 106 B = - =  = 1.72 wbm-2 . 2rr 2a x 0.15 

(e) As p = -p = 100 GeV/c, we have 
1- 5 

movc = 10" eV >> nioc2 = 1.4 x los eV JG 
for the meson so that we can take its speed to be 

V M C  

The deflecting force is 

F = eBu = 1.6 x lo-'' x 0.41 x 3 x lo8 = 2.0 x lo-" N , 

so the deflected transverse distance is 

1 2.0 x 10-11 4 
2 loo x 109 x 1.6 x 10-19p c2 

- - = 0.0025 m - - - x  

= 2.5 mm . 
The angle of deflection is 

B = arctan ( -i-) 0.0025 = 0.0013 rad . 



404 Problem3 €4 Solutions on Elcctromagnctirm 

6. MISCELLANEOUS PROBLEMS (3083-3090) 

3083 
Consider the circuit shown in Fig. 3.79(a). 
(a) When K n  = Re{ VOeiW1}, find an expression for the complex Vout. 
(b) Under what condition is the ratio Vout/Kn independent of w? (It 

may be useful to recall Thkvenin’s thereom.) 
(c) If K n  consists of a single “rectangular” pulse as shown in 

Fig. 3.79(b), sketch Vout (as a function o f t )  when the condition mentioned 
in (b) is satisfied. 

“in 

(a  1 

Fig. 3.79 

(d) For a “rectangular” pulse Kn in (c), qualitatively sketch Vout(t) 
when the condition mentioned in (b) is not satisfied. 

(CUSPEA) 
Solution: 

(a) According to Thkvenin’s theorem, we can use two equivalent cir- 
cuits to replace the capacitive and resistance networks as shown in 
Figs. 3.80(a) and (b). Connecting their output ends together we obtain 
the total equivalent circuit shown in Fig. 3.80(c) or Fig. 3.80(d). 

For the circuit Fig. 3.80(d), using Kirchhoff’s law we have 

giving 

v in  
~ w [ R ~ ( C I  + Cz) - CI(RI + Rz)] I =  

RI + R2 + j w ( C t  + C Z ) R I R Z  
The output voltage is 
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Fig. 3.80 

(b) In the equivalent circuit Fig. 3.80(d), if the two sources of voltage 
are the same, there will be no current flowing, i.e. I = 0, giving 

R2 - c1 - 
Ri +R2 Ci +C2 

or R1C1 = R2C2. Then 
c1 - R2 

Hence RIC1 = R2C2 is the necessary 

(c) When RlCl = R2C2 is satisfied, Vbut = c.c2 Kn for all frequen- 

---_ - V0"t 
Kn C1 +C2 R1 + R z  

This ratio is independent of w .  
condition for Vout/F,, to be independent of w .  

cies. This is shown in Fig. 3.81. 

voui 

Fig. 3.81 
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(d) When the condition mentioned in (b) is not satisfied, -& - 
+= C'R1-C2Ra First consider the case RlCl > R2C2. The at- 
tenuation in the capacitive voltage divider is less than in the resistive volt- 
age divider. Hence when the rectangular pulse passes through the circuit, 
the former takes priority immediately; thereafter the output relaxes to  that 
given by the latter. The variation of V,,t with t is shown in Fig. 3.82(a). 
For the case RICI < R2C2, a similar analysis gives the curve shown in 
Fig. 3.82(b). 

i t Ra (Ci +Ca)( Ri t Jh) 

vout !out 

( a  1 ( b )  
Fig. 3.82 

3084 
An electric circuit consists of two resistors (resistances R1 and &), 

a single condenser (capacitor C) and a variable voltage source V joined 
together as shown in Fig. 3.83. 

(a) When V ( t )  = Vo coswt, what is the amplitude of the voltage drop 
across R1? 

(b) When V ( t )  is a very sharp pulse at t =.O, we approximate V ( t )  = 
A6(t) .  What is the tirne history of the potential drop across Rl? 

(CUSPEA) 

Fig. 3.83 
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Solution: 
(a) Let the complex voltage be 

Kirchhoff's equations for loops 1 and 2 are respectively 

1 
o = j 2 R z + - ( J 1 + j z ) .  twC 

Eq. (2) gives 
( R 2 - - & ) j z = G I I .  I -  

Its substitution in (1)  gives 

The voltage drop through resistance R1 is 

80 the real voltage drop through R1 is 

where 

(b) When V ( t )  = A6(t) ,  we use the relation 
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and write the voltage drop through R1 as 

where w1 = im, The integrand has a singular point at w = w1. Using 
the residue theorem we find the solution V1 oc exp(iw1t) = e x p ( - m t ) .  
Hence Vl is zero for t < 0 and 

for I! > 0. 

3085 
A semi-infinite electrical network is formed from condensers C and 

inductances L, as shown in Fig. 3.84. The network starts from the left at 
the terminals A and B; it continues infinitely to the right. An alternating 
voltage VO cos wl  is applied across the terminals A and B and this causes a 
current to flow through the network. Compute the power P ,  averaged over a 
cycle, that is fed thereby into the circuit. The answer will be quantitatively 
different in the regimes w > wo, w < WO, where wo is a certain critical 
frequency formed out of C ant1 L. 

(CUSPEA) 

Fig. 3.84 

Solution: 
As the applied voltage is sinusoitlal, the complex voltage and current 

are respectively - v = V O e i W * ,  r'= I O e ' W *  . 
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The average power in a period is 

where the star * denotes - the complex conjugate and 2 is the impedance 
of the circuit, 2 = f .  Let 21 = A, 2 2  = iwL ,  and assume any mutual 
inductance to be negligible. If L is the total impedance of the network, 
consider the equivalent circuit shown in Fig. 3.85 whose total impedance is 
still 2. Thus 

1 2 2 2  2 = 21 + = 21 + - , z;+z 2 + 2 2  

or 
22-21z-z,Z~=o. 

Fig. 3.85 

As 2 > 0, this equation has only one solution 

With = W O  the solution becomes 

2= ,c ( l+ / l - f ) .  1 

- 
For w < wo, ,/- is a real number so that Re(*) = 0, Le., P = 0. 

For w > wo, Re(*) = 4- and 

1 .  -- p=yb\lul 4wL wf 
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308s 
In the circuit shown in Fig. 3.86, L1, L2, and M are the self-inductancea 

and mutual inductance of the windings of a transformer, R1 and R2 are the 
winding resistances, S is a switch and R is a resistive load in the secondary 
circuit. The input voltage is V = Vo sinwl. 

(a) Calculate the amplitude of the current in the primary winding when 
the switch S is open. 

(b) Calculate the amplitude of the steady-state current through R 
when S is closed. 

(c) For an ideal transformer R1 = R2 = 0, and M I  L1, L2 are simply 
related to N1, Nz, the numbers of turns in the primary and secondary 
windings of the transformer. Putting these relations into (b), show that 
the results of (b) reduces to that expected from the turns ratio N2/N1 of 
the transformer. 

(CUSPEA) 

V -  mR 
S 

M 

Fig. 3.86 

Solution: 
(a) When S is opened, we have 

(b) With S closed we have the circuit equations 
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The circuit equations become 

411 

Defining 

we have 

and 

(c) If the transformer is ideal, R1 = RZ = 0, M 2  = L I L ~ ,  and we have 

uMVo MVo 1 2 = - -  - - 
wL1R L I R  ' 

Then as M - NzN1, L - N:, we obtain 

This is just what is expected, namely the ideal transformer changes voltage 
~0 into R v ~ .  

3087 
Consider the circuit shown in Fig. 3.87. 
(a) Find the impedance to a voitage V of frequency w applied to the 

terminals. 
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(b) If one varies the  frequency but not the amplitude of V, what is 
the maximum current that can flow? The minimum current? At what 
frequency will the minimum current be observed. 

(UC, Berkeley) 

Fig. 3.87 

Solution: 
(a) The impedance is given by 

1 jwL1 
3 w c  -w2Llcl 

= R+ j w L  + - + 

(b) The complex current is 

V V I = - =  W L  z R + j ( w L  - & + l - w a ~ , C ,  1 
So its amplitude is 

VO 
I0 = 

[R2 + ( W L  - & + *)211/2 ’ 

where VO is the amplitude of the input voltage. Inspection shows that 

When 10 is minimum, i.e., 1, = 0, 

= m .  1 W L 1  
W L - - +  

w c  l-w2L1C1 
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‘m. 1 Dis- The solutions of this eqiration are w = 0, w = 00, and w = 
carding the first two solutions, we have w = & for the observation of 
the minimum current. 

I 1  

3088 

In Fig. 3.88 a single-wire transmission (telegraph) line carries a current 
of angular frequency w .  The earth, assumed to be a perfect conductor, 
serves as the return wire. If the wire has resistance per unit length r ,  self- 
inductance per unit length I ,  and capacitance to ground per unit length C, 
find the voltage and current as functions of the length of the line. 

( UC, Berkeley) 

1 I 
X X i &  

Fig. 3.88 

Solution: 

Take the origin a t  the starting point of the wire and its direction 88 

the z direction and suppose the voltage amplitude a t  the starting point is 
Vo. Consider a segment z to z + (12. By Kirchhoff’s law we have 

di( t ,  Z) 
u(t,  Z) = U(t, t  + dz)  + ldz  - at + r i ( t , z ) d x  , 

i.e. 
-6u a i  -8i a U  

ax  at O X  
-- - 1 - + r i ,  - = e x  
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Assuming solution of the form e - j ( w c - K z ) ,  then 

a - - j K  , a - - - j w ,  at a2 

and the above equations become 

i(r - j w l )  + j K u  = 0,  
i ( j K )  - j w C u  = 0 . 

The condition that this system of equations has non-zero solutions is 

- j w C  = - j w C ( r  - j w t )  +- K~ = 0 , 
j I C  I r - j w t  I j I c  

giving 
K = J w z t c +  j w c r  

Let K = a + j p ,  then 

and we have 

where we have made use of the fact that u = VO when x = t = 0, and p is 
given by 

t a n p =  - . P 
ff 

The expressions can be simplified if 

for we then have 
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3089 

Consider two parallel perfect conductors of arbitrary but constant cross 
section (Fig, 3.89). A current Aows down one conductor and returns via 
the other. Show that the product of the inductance per unit length, L, and 
the capacitance per unit length, C, is (in CGS units) 

where p and E are the permeability and dielectric constant of the medium 
surrounding the conductors and c is the velocity of light in vacuum. 

(Columbia) 

I- 

Fig. 3.89 

Solution: 

circuit shown in Fig. 3.90. 
The conductors form a transmission line, which is equivalent to the 
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Qn-1 Qn 

:: CO =,-GI :: "".;;;> -: co 
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Consider the n-th segment of the circuit. The following 
apply: 

din Qn Qn-1 -Lo-  = - - - 
dt Co Co ' 

from which we obtain 

tions 

or 

Let In = A0 cos(Kna - w t ) ,  where I( = we, then the above gives 

LOCOW2 + 2 = -2cos (Ka)  , 

or 

In the low frequency limit of a - 0, sin( Ka/2) - and we have 

LOCOW2 = K2a2 

As $ = 2 9 = 5. In this equation Lola  and Cola denote the in- 
ductance and capacitance per unit length, respectively, of the transmission 
line. Replacing these by L and C, we obtain 

P C  ' 

LC = pe/c2 . 
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3090 

Two circuits each contains a circular solenoid of length I ,  radius p 
( p  < I), with N total turns. The solenoids are on the same axis, at distance 
d apart (d > I). The resistance of each circuit is R. Inductive eflfects other 
than those associated with the solenoids are negligible. 

(a) Calculate the self and mutual inductances of the circuits. Specify 
the appropriate units. 

(b) Use L and M for the values found in (a). Calculate the magnitude 
and phase of the current which flows in the second circuit if an alternating 
emf of amplitude V, angular frequency w is applied to the first. Assume w 
is not too large. 

(c) What is the order of magnitude to which w can be increased before 
your calculation in (b) becomes invalid? 

(VC, Berkefey) 

Solution: 
(a) As I >> p,  the magnetic induction inside the solenoid has 

N I  
1 

B =/.lo- 

and is along the axis of the solenoid. The magnetic flux linkage for the 

so the self-inductance is 

As d % I, the magnetic field produced by one solenoid at the location 
of the other can be approximated by that of a magnetic dipole. As the two 
solenoids are coaxial, this field may be expressed as BM = 9 with 
m =  NIT^^, i.e., 

P 0 N b 2  B M  = - 
2d3 * 

Hence 
P o N b 2  2 - 1 r o ~ 2 p 2 + p 2  I 'Erju = N B M S  = N -  

2d3 - 2d3 1 
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giving the mutual inductance as 

The units of L and M are H = A .  s/V. 
(b) Let the emf in the first circuit be E = V coswt = Re (Vejwt ) .  Then .~ 

we have for the two circuits 

dll  dl2 L-+M-++,R=VP, dl dt 

dI2 dIl - + M - + I2R = 0 , 
dt dt 

AS Z 1 ,  12 - e jwt ,  we have --* j w  and the above equations 

j w L I l  + j w M I 2  + I I R =  V d w r  , 
jwLIz  + j w M I 1  + I2R = 0 . 

(1 )  f (2) give 

become 

e jw t  
- " I  I 2  ="  V 

2 j w ( L  + M )  + R j w ( L  - M )  + R 
- j w  M Ve ju t  

[ j w ( L  + M )  + R] I jw(L - M )  + R] 
- - 

- - jwMVejWt  
- R2 - w 2 ( L 2  - M 2 )  + 2 j w L R  * 

Writing Re 1 2  = I20 cos(wt + PO), we have 

w M V  
d [ R 2  - w 2 ( L 2  - M2)I2  + 4w2L2R2 ' 120 = 

2 w L R  cpo = x - arctan 
h? - w2(L2 - M 2 )  ' 
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Using the given data and noting that L > M ,  we get 

90 = T - arctan 

= 7r - arctan 

2wLR 
R2 - W’ L2 

(c) The calculation in (b) is valid only under quasistationary condi- 
tions. This requires 

277c d a A = -  
w ’  

or 
27rd 

W K - .  
C 





PART 4 

ELECTROMAGNETIC WAVES 





1. PLANE ELECTROMAGNETIC WAVES (40014009) 

4001 
The electric field of an electromagnetic wave in vacuum is given by 

E , = O ,  

where E is in volts/meter, t in seconds, and z in meters. 
Determine 

(a) the frequency f ,  
(b) the wavelength A, 
(c) the direction of propagation of the wave, 

(d) the direction of the magnetic field. 
( Wisconsin) 

Solution: 

2a 
3 

k = - m m - ' ,  w = 2 r x 1 O ' s s - ' .  

W (a) f = - = lo8 Hz 
211 
2 a  (b) A = - = 3 m .  k 

(c) The wave is propagating along the positive z direction. 
(a) As E, B, and k form a right-hand set, B is parallel to k x E. As 

k and E are respectively in the z and y directions the magnetic field is in 
the z direction. 

4002 

The velocity of light c,  and eo and po are related by 

(a) c = p; (b) c = p; (c) c = F. 
PO €0 eopo 

423 
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Solution: 
The answer is (c). 

4003 

Consider electromagnetic waves in free space of the form 

i k t  - i d  E(z,y,U) = Eo(z,y)e I 

B(z, y, Z ,  t )  = B ~ ( z ,  y)e'""-iW' , 
where Eo and Bo are in the zy plane. 

(a) Find the relation between k and w ,  as well as the relation between 
Eo(z,y) and Bo(z,y). Show that Eo(z,y) and Bo(z,y) satisfy the equa- 
tions for electrostatics and magnetostatics in free space. 

(b) What are the boundary conditions for E and B on the surface of 
a perfect conductor? 

(c) Consider a wave of the above type propagating along the trans- 
mission line shown in Fig. 4.1. Assume the central cylinder and the outer 
sheath are perfect conductors. Sketch the electromagnetic field pattern 
for a particular cross section. Indicate the signs of the charges and the 
directions of the currents in the conductors. 

(d) Derive expressions for E and B in terms of the charge per unit 

(S UNY, Bufialo) 
length A and the current i in the central conductor. 

Fig. 4.1 



E/eciromagnefic Waver 

Solution: 

(4 

425 

A similar expression is obtained for V x B. Hence Maxwell’s equations 

1 BE V X B = - -  
c2 at 

8B V x E = - -  
dt ’ 

can be written respectively as 

i ke ,  x Eo(z, y) = i w B o ( z ,  y) - V x ED,  

i ke ,  x Bo(r, y) = -i- Eo(z, y) - V x Bo . 
C 2  

Noting that V x Eo and V x Bo have only z-components while e, x Eo and 
e, x Bo are in the zy plane, we require 

W 

(2) 

(3) 

W 
so that 

e, x EO(Z, Y) = Bo(z, Y) I 

w 
e, x Bo(z,y) = -- k.2 Eo(zF,y) * 

Taking the vector product of e, and (2), we obtain 

w Eo = - -e ,  x Bo. k 

Its substitution in (3) gives 
W 2  

k2c2 1 ,  -= 

or 
W 

C 
k = - .  
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Equations ( 2 )  and (3) relate Eo and Bo and show that Eo, Bo, and e, 
are mutually perpendicular forming a right-hand set. Furthermore, their 
amplitudes are related by 

P O ( 2 ,  Y)l = ; IBo(2, Y)l = c IBO(Zl Y)l . 
Maxwell’s equations V + E = 0, V B = 0 give 

V * E o  = 0 ,  V . B o  = 0. (4) 

Equations (1) and (4) show that Eo(z,y) and Bo(z,y) satisfy the equations 
for electrostatics and magnetostatics in free space. 

(b) The boundary conditions for the surface of a perfect conductor are 

n x E = O ,  n . D = O ,  

i i x H = I ~ ,  n . B = O ,  

where n is the outward normal unit vector at the conductor surface and 
If is the linear current density (current per unit width) on the conductor 
surface. 

(c) For a particular cross section at z = zo and at a particular instant 
t = to’  the electric field is Eo(t, y) exp[i(kzo -wto ) ] .  Since Eo(z, y) satisfies 
the electrostatic equations the electric field is the same as that between 
oppositely charged coaxial cylindrical surfaces. Thus the lines of Eo(c, y) 
are radial. The magnetic induction satisfies (2), i.e. 

1 
Bo(.,y) = ;ex x Eo(Z,Y) I 

so that magnetic lines of force will form concentric circles around the cylin- 
drical axis. Suppose at ( Z O ,  to)  the central cylinder carries positive charge 
and the outer sheath carries negative charge then E and B have directions 
ae shown in Fig. 4.1. The linear current density on the surface of the central 
conductor is given by 11 = n x H. As 11 is radially outwards, the current in 
the central cylinder is along the +z  direction while that in the outer sheath 
is along the -z  direction. 

Using Maxwell’s integral equations (Gauss’ flux theorem and Amphre’s 
circuital law) we have 
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which give the charge per unit length A and current I carried by the central 
conductor. The relation between E and B gives I = cA. 

4004 

Consider a possible solution to Maxwell's equations given by 

where A is the vector potential and 6, is the scalar potential. h r the r  
suppose Ao, K and w are constants in space-time. Give, and interpret, the 
constraints on Ao, K and w imposed by each of the Maxwell's equations 
given below. 

(a) V . B  = 0 ;  

(c) V * E = O ;  

1 8B 
(b) V x E + - - = 0 ; 

c 8t 

= 0 .  1 8E 
(d) V x B - - - 

c 6t 

(Columbia) 

Solution: 
The Maxwell's equations given in this problem are in Gaussian units, 

which will also be used below. As A = A0 exp[i(l(,+ + K,y  + & Z  - d)], 
we have 6 = i(I<,z - K,y), 6 = i(l<,z - &z) ,  & = i (K,y  - K,z), or 
Vx = iKx .  Hence the electromagnetic field can be represented by 

(a) Since V , B  = -K.(K x AO)ei(K'X-W*) 0 identically, no constraint 

(b) As V x E+ tg = iK x E- %B = -TK x A+:K x A z 0, 

(c) As V . E = 

is imposed by V . B = 0. 

no constraint is imposed by the equation. 

V . A = F K  A = 0, we require K . A = 0. 
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(d) AS V x B - 
‘$A = (I(’ - $)A 
constraints imposed 

~ ‘ e  c 81 = -K x (K x A)+ g~ = - ( K . A ) K + K ~ A -  
= 0 we require I(’ = $ or K = f:. Therefore the 

by Maxwell’s equations are 

I ( = w / c ,  and K * A = O .  

The second constraint means that K is perpendicular to  A. Hence K 
is perpendicular to E. As K is also perpendicular to B, this constraint 
shows that the solution is a transverse wave. The first constraint gives 

= K = 1, showing that the wave is a plane electromagnetic wave. The 
f signs correspond to fx directions of propagation. 

5 

4005 

Consider a plane wave with vector potential A, (x )  = a,ei(K’x-wt), 
where a, is a constant four-vector. Further suppose that K = Ke, and 
choose a (non-orthogonal) set of basis vectors for a,: 

d 1 ) P  = (0, 1, 0, O), 
@)P = (0, 0, 1, 0) , 

where cfl = ( E ’ ,  c ) .  Write 

a,, = alE(1)p + azE(2)p + ~ L , E ( ~ ) P  + . 
What constraints, if any, does one get on 01, az, aL, ag from 

(a) V + B = 0, 
1 dB 

1 dE 
c at 

(b) V x E +  ;at = 0, 

(c) V x B - - - = 0, 

( d ) V . E = O ?  
(e) Which of the parameters a l ,  uz, U L ,  ag are gauge dependent? 
(f) Give the average energy density in terms of a l ,  a2, Q L ,  ag after 

(Columbia) 
imposing (a)-( d). 
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Solution: 
We are given the four-vectors 

K' = (u /c ,  0, 0, I ( ) ,  A ,  = ((PI As,  A y ,  A z )  . 

With K = K e , ,  K - x = K t .  For plane waves we also have K = y .  Then 
for p = 1, we have 

Similarly for p = 2,3,4,  we have 

i ( K t - w t )  A = [ale,  + aze, + (aL - as)e , )e  

Hence 

B = V x A = i K e ,  x A = iK(-aze, + aley)ei(Kz-wt)  , 

- - iK(aL + as)e ,e i (K*-wt)  + i K A  
1 aA 
c at 

E = -Vp - - _. - 
= i K ( a l e ,  + a2ey - 2ose,)e  i ( K z - w f )  

(a) As V B = V . (V x A )  2 0 identically, it imposes no constraint. 
(b) As V x E+ $ %  = -V x V(P- $&(V x A ) + $ & ( .  x A )  ~0 

identically, it does not lead to any constraint. 

(c) As 

V x B = i K e ,  x B = K 2 ( a l e ,  + a2ey)e i (Kz-wf) ,  

1 aE - - = -iKE = K 2 ( a l e ,  + a2ey - 2age,)ei(Kz-wt)  , 
c at 

- 0  V X  B - -  -- 1 d E  
at 
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(e) Since a1 and a2 are not involved in the gauge equation V . A = 0 
= 0 for the Lorentz gauge, (11, a3 for the Coulomb gauge and V . A + 

are gauge-independent. 
(f) The average energy density is 

4006 

A plane wave of angular frequency w and wave number IKI propagates 
in a neutral, homogeneous, anisotropic, non-conducting medium with p = 
1. 

(a) Show that H is orthogonal to E, D and K, and also that D and 
H are transverse but E is not. 

(b) Let Dk = x:=l &k(EI, where &k( is a real symmetric tensor. Choose 
the principal axes of 61.1 as a coordinate system (Dk = ekEk; k = 1,2,3). 
Define K = KS, where the components of the unit vector $ along the 
principal axes are 5'1, 5'2, and S3. If V = w / K  and vj = c/&, show that 
the components of E satisfy 

Write down the equation for the phase velocity V in terms of S and 5. 
Show that this equation has two finite roots for V 2 ,  corresponding to two 
distinct modes of propagation in the direction 3. 

( Wisconsin) 

Solution: 
Use the Gaussian system of units. 
(a) Maxwell's equations for the given medium are 

1 aB 
c a t '  

1 aD V x B = - -  
c at ' 

V x E= -- - 
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V * B = O ,  

V * D = O .  

The plane wave can be represented by - ei (K 'x-wt ) ,  so that Vx E iKx ,  
V. E i K . ,  = -iw and the above equations reduce to 

W 

C 
K x E = - H ,  

W 

C 
K x H = - -D , 

K * B = K * D = O ,  

as p = 1.  F'rom these we have 

C C 

W W 
D * H  = --(K x H ) . H  E 0 ,  K - H  = - K * K  x E E O .  

Hence K,  D, and H are mutually perpendicular, i.e., D and H are trans- 
verse to K. However, as K x (K x E) = :K x H, 

='[-(:)'D+Ii2E] Ir' + O  

unless K2 = (:)2, E need not be transverse to K. 
(b) F'rom the above we have 

W 2  

C2 
K( K . E) - E = - - D . 

As 

The j-th component of the equation is 
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s:+$-1 s1 s2 s1 s3 

s2s1 s;+$-1 s2s3 

s3 s1 s3 s2 S32+6-1 

Putting w 2 / K 2  = V 2  and c 2 / c j  = %2, it becomes 

= 0 .  

V 2  + (s; - 1) * - v;” v: 
v4 V 2  

v 2  [ v,2vz”v,2 + cs: - 1) - v.2 v,z 
+ (Si - 1) * - v2 + ( $ + % + ” ) ] = 0 ,  

v: vz” v2 v,2 
which can be solved to find two finite roots for V 2  if V 2  # 0. 

From V 2  = w 2 / K 2  we can find two values of K 2  corresponding to 
the two roots of V2. This shows that there are two distinct modes of 
propagation. 

4007 

Four identical coherent monochromatic wave sources A, B, C, D, aa 
shown in Fig. 4.2 produce waves of the same wavelength A. Two receivers 
R1 and Rz are at great (but equal) distances from B. 
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(a) Which receiver picks up the greater signal? 
(b) Which receiver, if any, picks up the greater signal if source B is 

(c) if source D is turned off? 
(d) Which receiver can tell which source, B or D, has been turned off? 

( Wisconsin) 

turned off? 

D 

riz 
Fig. 4.2 

Solution: 
(a) Let r be the distance of R1 and R2 from B. We are given r > A. 

Suppose the amplitude of the electric vector of the electromagnetic waves 
emitted by each source is Eo. The total amplitudes of the electric field at 
the receivers are 

R1: El0 = Eoexp +EoeiX'+Eoexp 

+ Eoexp iK r2 + 7 , TI 
R2: E20 = EoeiKr +Eoexp iK r +  - +2Eo exp iK r2 + - . [ ( 91 [ C] 

As KA = + = 27r, e x p [ f i y ]  = efir = -1. With r > A, JG R r. 
Thus 

Eoexp iIC r2 + - M EOeiKr, [ C] 
and we have 

Eio 0 ,  E2o  % 2EoeiKr . 
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The intensity of a signal I a lEI2, so the intensities received by R1 and R2 
are respectively 

I0 = 0, I2 - 4 E i  . 

Hence R2 picks up greater signal. 
(b) If source B is turned off, then 

Elo  x -EoeiKr , EzO x EOeiKr. 

Thus 11 = 12 - ETo, that is, the two receivers pick up signals of the same 
intensity. 

(c) If source D is turned off, one has 

and 
I1 - E:o, 12 - 9 E i .  

Hence R2 picks up greater signal. 
(d) From the above, we can see that I1 remains the same whether the 

sources B and D are on or off. Hence R1 cannot determine the on-off state 
of B and D. On the other hand, the intensity of 12 differs for the three cases 
above so the strength of the signal received by R2 can determine the on-off 
state of the sources B and D. 

4008 

(a) Write down Maxwell's equations assuming that no dielectrics or 
magnetic materials are present. State your system of units. In all of the 
following you must justify your answer. 

(b) If the signs of all the source charges are reversed, what happens to 
the electric and magnetic fields E and B? 

(c) If the system is space inverted, i.e., x -+ x' = -x, what happens 
to the charge density and current density, p and j, and to E and B? 

(d) If the system is time reversed, i.e., t + t' = -1 ,  what happens to 
p, j, E and B? 

(SUNY, Buffalo) 
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Solution: 
Use the MKSA system of units. 
(a) In the absence of dielectric or magnetic materials Maxwell's equa- 

tions are 
V . E =  JL V x E = - % ,  

1 BE { V . B  = y,' V x B = p d  + 7 x. 
(b) Under charge conjugation e +. -e, we have V -, V' = V, 6 + 

a, 8t,  - E, 8 p + p! = -p ,  j + j' = -j. Under this transformation Maxwell's 
equations remain the same: 

A comparison of the first equations in (a) and (b), we see that, as p' = -p, 

E'(r, t )  = -E(r, t )  . 

Substituting this in the fourth equation in (a), we see that 

Hence 
B'(r, 1) = -B(r, t) 

(c) Under space inversion 

e + e' = e . a a a  
at at! at ' 
- + - = -  

Then 
p(r, t )  -+ p'(r, t )  = p ,  j -+ j' = p'u' = -pu = -j, 

u being the velocity of the charges in an elementary volume. 

have 
As Maxwell's equations remain the same under this transformation we 

E'(r, t )  = -E(r, t )  , B'(r, t )  = B(r, t ) .  
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(d) Under time reversal, 

Then p' = p, j' = -pu = -j, and we have from the covariance of Maxwell's 
equations that 

E'(r, t )  = E(r, t )  , B'(r, t )  = -B(r, 1 ) .  

4009 

Let A,, tp,, J, and p, be the temporal Fourier transforms of the vector 
potential, scalar potential, current density and charge density respectively. 

How is the law of charge-current conservation expressed in terms of pw 
and j,? In the far zone (r + co) find the expressions for the magnetic 
and electric fields B,(r) and E,(r). Find these fields for a current density 

( Wisconsin) 
J d r )  = rf(r). 

Solution: 
If we express the current density J(r, t )  as the Fourier integral 

Do 

J(r, t )  = J,(r)e-'"'dw, L 
the retarded vector potential can be rewritten: 

po J J(r', 1 - v) 
4s Ir - .'I A(r, t )  = - d3 r' 
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where the volume integral is over all space. Thus the Fourier transform of 
the vector potential is 

Similarly the Fourier transform of the scalar potential +(r, t) is 

The continuity equation that expresses charge-current conservation, $f + 
V * J = 0, is written in terms of Fourier integrals as 

or 
00 / [-iupu(r) + V . J,(r)]e-'w'dw = 0 .  

J-00 

Hence 
0 - J ,  - iwp ,  = 0 .  

In the far zone r + 00, we make the approximation 

Then 

Consider 
V' * (z'J,) = Just + z'V J, . 

V' (x'J,)d3r' = x'J, . dS' = 0 J f 
As 
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for a finite current distribution, 

1 J,d3r' = - I r'V' . J,d3r' 

Also 
1 1 
2 
1 1 
2 

J,(r - r') = -[Jw(r r') - (r - Jw)r'] + ;[Jw(r - r') + (r Ju)r'] 

= -(r' x J,) x r + ;[Jw(r. r') + (r - Jw)r']. 

The second term on the right-hand side would give rise to an electric 
quadrupole field. I t  is neglected as we are interested only in the lowest 
multipole field. Hence 

eiKr 
A,(r) - - - rwp, - - i K m ,  x z , ix r )  , 

r-- 417 r r (2) 

where 
p, = 1 rtpw(rt)&r', 

are the electric and magnetic dipole moments of the sources. To find E,(r) 
in the far zone, we use Maxwell's equation 

in, = J r' x J,(r')d3rt 
2 

assuming the source to be finite. In terms of Fourier transforms, the above 
becomes 

V x /B,(r)e-"'& = - c2 - at a /E,(r)e-iw'dw , 
or 

giving 
ic2 

E,(r) = -V x B, 
W 

Similarly, from B = V x A we have 

B,(r) = V x A,(r) . 
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For a current density Jw(r) = rf(r), we have 

m, = 1 /rl x rlf(rl)&rl = o . 
2 

A h ,  
1 pw = r'p,,,(r')&r' = / J,(r')d3r' = i 1 r'f (r')&r' , 

W W 

using (1) and assuming the current distribution to be finite. 
Hence, using (Z), 

Then 
B,(r) = V x A,(r) a ipo K eiKr i x /r'f(r')d3r1 , 

4nr 

ic2 
E,(r) = -V W x B,(r) 

where i = f ,  terms of higher orders in 4 having been neglected. 

2. REFLECTION AND REFRACTION OF 
ELECTROMAGNETIC WAVES ON INTERFACE 
BETWEEN TWO MEDIA (40104024) 

4010 
(a) Write down Maxwell's equations in a non-conducting medium with 

constant permeability and susceptibility ( p  = j = 0). Show that E and 
B each satisfies the wave equation, and find an expression for the wave 
velocity. Write down the plane wave solutions for E and B and show how 
E and B are related. 

(b) Discuss the reflection and refraction of electromagnetic waves at a 
plane interface between the dielectrics and derive the relationships between 
the angles of incidence, reflection and refraction. 

(S VNY, Bufalo) 
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Solution: 
(a) Maxwell's equations in a source-free, homogeneous non-conducting 

medium are 

V x E = - % ,  
v x n = % ,  
V * D  = 0 ,  
V * B = O ,  

where D = EE, B = pH, E ,  p being constants. As 

V x (V x E) = V(V .E)  - v ~ E =  - V ~ E  

and Eq. (2) can be written as 

Eq. (1) gives 

Similarly, one finds 
a2B V 2 B - p ~ - = 0 .  
at 2 

Thus each of the field vectors E and B satisfies the wave equation. A 
comparison with the standard wave equation V2E- & 9 = 0 shows that 
the wave velocity is 

1 
v = -  

Solutions corresponding to plane electromagnetic waves of angular fre- 
quency w are 

E(r, t )  = Eoei(k"-wt), 

B(r, t )  = Bgei(k"-wt) , 

where the wave vector k and the amplitudes Eo and Bo form an orthogonal 
right-hand set. Furthermore w = z ,  and E, B are related by 

k 
k B = J j l Z - x E  
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(b) The boundary condition that the tangential component of El 
n x E = Et, n being a unit normal to the interface, is continuous a c r w  the 
interface requires that in general there will be a reflected and a refracted 
wave in addition to the incident wave at the interface. Furthermore ex- 
periments show that if the incident electromagnetic wave is a plane wave, 
E(r, t )  = Eoei(k'r-W1), the reflected and refracted waves are also plane 
waves, which are represented respectively by 

El = Eoei(k'.X-W't) 1 

El! = Ep&i(k".X-W"t) 

The boundary condition at the interface then giyes 

n x [Eoei(k"-wt) + Ebei(k"r-'"'t)] = n x Eoe I /  i(k".r--w"t) 

This means that all the exponents in the equation must be the same, i.e., 

Thus frequency is not changed by reflection and refraction. 

Fig. 4.3 

Choose the origin on the interface so that the position vector r of the 
point where the incident wave strikes the interface is perpendicular to k. 
We then have 

k . r  = k' . r  = k" . r  = n .  r = 0. (5) 

This means that k, k', k" and xi are coplanar. Hence reflection and re- 
fraction occur in the vertical plane containing the incident wave, called the 
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plane of incidence. Now choose a coordinate system with the origin at an 
arbitrary point 0 on the interface, the z-axis parallel to the incidence plane, 
i.e. the plane of k and n, the z-axis parallel to the normal n, and let B, 
8' and 8" respectively be the angles of incidence, reflection and refraction, 
measured from the normal, as shown in Fig. 4.3. Then 

r =  (Z ,Y ,O) ,  

k = w f i  (sin 8, 0, cos 8) . 
k' = 

k" = w 

(sin B', 0, - cos Of) . 
(sin 8" , 0, cos 8") . 

Equation (5) gives for arbitrary t and w 

fi sin 8 = a sin 8' = sin eft . 
Hence 

e = e ' ,  
i.e., the angle of incidence is equal to that of reflection. This is called the 
law of reflection. We also have 

where n a &ji is called the index of refraction of a medium and n21 is 
the index of refraction of medium 2 relative to medium 1. This relation is 
known as the law of refraction. 

4011 
A plane electromagnetic wave of intensity I falls upon a glass plate 

with index of refraction n. The wave vector is a t  right angles to  the surface 
(normal incidence). 

(a) Show that the coefficient of reflection (of the intensity) a t  normal 
incidence is given by R = 

(b) Neglecting any interference effects calculate the radiation pressure 
acting on the plate in terms of Z and n. 

for a single interface. 

(Chicago) 



Elec!romagnc!ic Waver 443 

Solution: 
The directions of the wave vectors of the incident, reflected and r e  

fracted waves are shown in Fig. 4.4. For normal incidence, 8 = 8' = 8" = 0. 
Let the incident, reflected and refracted electromagnetic waves be repre 
sented respectively by 

E - - E O e i ( k . x - W t )  
I 

E I  = Eidei(k'.X-W1) , E f /  = E : e i ( k " . X - W t )  

As the permeability of glass is very nearly equal to that of vacuum, i.e., p = 
PO, the index of refraction of glass is n = GI E being its permittivity. 

Z 

t 

Fig. 4.4 

(a) A plane electromagnetic wave can be decomposed into two polar- 
ized components with mutually perpendicular planes of polarization. In the 
interface we take an arbitrary direction as the z direction, and the direction 
perpendicular to it as the y direction, and decompose the incident wave into 
two polarized components with E parallel to these two directions. We also 
decompose the reflected and refracted waves in a similar manner. As E, H 
and k form a right-hand set, we have for the two polarizations: 

2-polarization y-polarization 

E E ,  H, -Hz 
EL, -Hk  E:, H: 

E l l  = I  HI/ Y E;, -HZ 

The boundary condition that Et and Ht  are continuous across the 
interface gives for the r-polarization 
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H ,  - HL = H I ' .  (2) 

For a plane wave we have JFlHl = ,/Z IEI. With p = ,ti,, and &= n, 
(2) becomes 

E, -EL = n E l .  (3) 
( 1 )  and ( 3 )  give 

E: = ( - )Ez .  1 - n  
l + n  

Since for normal incidence, the plane of incidence is arbitrary, the same 
result holds for y-polarization. Hence for normal incidence, we have 

1 - n  
El= (-) E .  

The intensity of a wave is given by the magnitude of the Poynting 
vector N over one period. We have 

1 N =  R e E x  RRH= ;(E x H + E '  x H' + E X  H * + E '  x H ) .  

As the first two terms in the last expression contain the time factor e*2iwt, 
they vanish on taking average over one period. Hence the intensity is 

Eo being the amplittide of the E field. 
Therefore the coefficient of reflection is 

2 1 - n  

(b) The average momentum density of a wave is given by G = 9 = 
5 .  So the average momentum impinging normally on a unit area per unit 
time is Gv. The radiation pressure exerted on the glass plate is therefore 

P = GC - ( -CC) - G"v 

= Gc (1 + c - - - 
G c  

I' 
C V I  



Eleciromagnetic Waves 445 

(1) + (3) gives 

or 

El' 2 0- -- 
EO l + n '  

2 
With f = (e) also, we have 

= 2 -  I (-) 1 - n  . 
c l + n  

4012 

(a) On the basis of Maxwell's equations, and taking into account the 
appropriate boundary conditions for an air-dielectric interface, show that 
the reflecting power of glass of index of refraction n for electromagnetic 
waves at normal incidence is R = w. 

(b) Also show that there is no reflected wave if the incident light is 
polarized as shown in Fig. 4.5 (i.e., with the electric vector in the plane of 
incidence) and if tan81 = n, where 81 is the angle of incidence. You can 
regard it as well-known that Fresnel's law holds. 

( UC, Berkeley) 

I 

air 

Fig. 4.5 
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Solution: 
(a) Same as for (a) of Problem 4011. 
(b) For waves with the electric vector in the plane of incidence, the 

following Resnel’s formula applies, 

When O3 + 81 = 5,  Ez = 0, i.e., the reflected wave vanishes. Snell’s law 
gives 

sin 01 = n sin 0, = n cos 01 , 

tan O1 = n . 
or 

Hence no reflection occurs if the incidence angle is 81 = arctan n. 

4013 

Calculate the reflection coefficient for an electromagnetic wave which 
is incident normally on an interface between vacuum and an insulator. (Let 
the permeability of the insulator be 1 and the dielectric constant be 6. Have 
the wave incident from the vacuum side.) 

( Wisconsin) 

Solution: 
Referring to Problem 4011, the reflection coefficient is 

4014 

A plane polarized electromagnetic wave travelling in a dielectric 
medium of refractive index ti is reflected a t  normal incidence from the 
surface of a conductor. Find the phase change undergone by its electric 
vector if the refractive index of the conductor is n2 = n(l  + ip).  

(SUNY, Bufalo) 
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Solution: 

take the electric vector as in the plane of the diagram in Fig. 4.6. 
For normal incidence the plane of incidence is arbitrary. So we can 

i k3 

conductor, n2 I ’  
dielectric, n 

Fig. 4.6 

The incident wave is represented by 

the reflected wave by 
EZ 
B2 

Bzo = 

and the transmitted wave by 

W 

C C 
- I  k2 3 - n ;  n Ezo 

The boundary condition at  the interface is that Et and Hi are continuous. 
Thus 

El0 - E Z O  = E30 7 (1) 
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(2) 
P BIO + B ~ o  = - B30 M B30 j 

P2 

assuming the media to be non-ferromagnetic so that p x pz 55: po. Equation 
(2) can be written as 

(3) 
11 2 

El0 + E20 = - E30. 
l* 

(1) and (3) give 

with n 
L t a n 9  = - .  
P 

The phase shift of the electric vector of the reflected wave with respect to 
that of the incident wave is therefore 

'p = arctan (:) . 

4015 

In a region of empty space, the magnetic field (in Gaussian units) is 
described by 

B = Boeari?, s inw,  

where w = k y  - w t .  

(a) Calculate E. 
(b) Find the speed of propagation u of this field. 
(c) Is it possible to generate such a field? If so, how? 

( S U N Y ,  Buffalo) 

Solution: 
Express B as Im (Bo e"' ei"')ez. 

(8) Using Maxwell's equation 

1 aE V X B = - -  
c at 



Electromagnetic Waver 449 

and the definition k = for empty space, we obtain 

where = 0 as B does not depend on z .  
Hence 

= -Boea2 sin w , 

E, = O .  

(b) If the wave form remains unchanged during propagation, we have 

or $f = f = c. Hence the wave propagates along the y direction with a 
speed u = c. 

(c) Such an electromagnetic wave can be generated by means of total 
reflection. Consider the plane interface between a dielectric of refractive 
index n(> 1) and empty space. Let this be the yz plane and take the +z 
direction aa away from the dielectric. A plane wave poiarized with B in 
the I direction travels in the dielectric and strikes the interface at incidence 
angle 8. The incident and refracted waves may be represented by 

B, = Bo exp[i(xk cos8 + yk sin 8 - wt ) ]  , 

BY = Bt exp[i(tk" cos 8" + yk" sin 8" - wl) ]  , 
where k = f = f n ,  k" = W 

that Ift is continuous requires that 

C '  

At the interface, x = 0 and y is arbitrary. The boundary condition 

or 

k sin 8 = k" sin 6'' , 

1 1 
n n 

sin 6 = - sin 8" 5 - , 
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As n > 1, if 8 > arcsin(:) total reflection occurs. 
Under total reflection, 

sin 8" = n sin d , 

Then 

. 

As c increases with increasing penetration into the empty space, - sign is 
to  be used. This field has exactly the given form. 

4016 

A harmonic plane wave of frequency v is incident normally on an in- 
terface between two dielectric media of indices of refraction nl and n ~ .  A 
fraction p of the energy is reflected and forms a standing wave when corn 
bined with the incoming wave. Recall that on reflection the electric field 
changes phase by ?r for n2 > n l .  

(a) Find an expression for the total electric field as a function of the 
distance d from the interface. Determine the positions of the maxima and 
minima of ( E'). 

(b) From the behavior of the electric field, determine the phase change 
on reflection of the magnetic field. Find B ( z , t )  and (B2). 

(c) When 0. Wiener did such an experiment using a photographic plate 
in 1890, a band of minimum darkening of the plate was  found for d = 0. 
Was the darkening caused by the electric or the magnetic field? 

( Columbia) 

Soh t ion: 
(a) With the coordinates shown in Fig. 4.7 and writing I for d,  the 

electric field of the incident wave is Eocos(kz - w t ) .  Because the electric 
field changes phase by ?r on reflection from the interface, the amplitude E$ 
of the reflected wave is opposite in direction to Eo. A fraction p of the 
energy is reflected. As energy is proportional to E t ,  we have 

Eh2 = p E i  . 
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Thus the electric field of the reflected wave is 

E' = - fi Eo COS( -kt. - ~ l )  . 
Hence the total electric field in  the first medium is 

E = Eo COS(~Z - ~ t )  - &Eo C O S ( ~ Z  + ~ t )  , 
giving 

E2 = E: cos2(kr - w t )  + p E i  cos2(kt + wl )  - & E ~ ~ [ c o s ( ~ ~ z )  + cos(2wt)l. 

Taking average over a period T = we have 

(' i- ' IEo'  - fi E i  cos(2kz). 
l T  (E') = T J E'dt = 2 0 

When kz = mn, or z = e, where m is an integer 0,1,2, .  . . , (E') will be 
minimum with the value 

When kz = v, m+l  r or z = w, where m = 0,1,2, .  . . , (E2) is maxi- 

mum with the value 

(b) As El B, and k form an orthogonal right-hand set, we see from 
Fig. 4.7 that the amplitude Bo of the magnetic field of the reflected wave 
is in the same direction as that of the incident wave Bo, hence no phase 
change occurs, The amplitudes of the magnetic fields are 

BO = n l E o ,  BA = nlEi  = &ntEo = f i B o .  

Fig. 4.7 
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The total magnetic field in the first medium is 

B(z, t )  = 130 COS(~ .Z  - ~ 1 )  + f iBo  COS(LZ + ~ t )  , 

giving 

B2 = n:E; cos2(kz - ut)  + pn:E; cos2(kz + ~ t )  

+ fin:E;[(COS(2k%) + cos(2ul)] , 

with the average value 

Hence (B2) will be maximum for kt = m?r and minimum for kz = A. 

(c) The above shows that ( B 2 )  is maximum for z = 0 and (E2) is 
minimum for z = 0. Hence the darkening of the photographic plate, which 
is minimum at z = 0, is caused by the electric field. 

4017 

Beams of electromagnetic radiation, e.g. radar beams, light beams, 
eventually spread because of diffraction. Recall that a beam which propa- 
gates through a circular aperture of diamater D spreads with a diffraction 
angle Bd = 9 A,. In many dielectric media the index of refraction in- 
creases in large electric fields and can be well represented by n = no+n2E2. 

Show that in such a nonlinear medium the diffraction of the beam can 
be counterbalanced by total internal reflection of the radiation to form a 
self-trapped beam. Calcuhte the threshold power for the existence of a 
self-trapped beam. 

( Prince ton) 

Solution: 

Consider a cylindrical surface of diameter D in the dielectric medium. 
Suppose that the electric field inside the cylinder is E and that outside is 
zero. As the index of refraction of the medium is n = no + n2E2, the index 
outside is no. 
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Consider a beam of radiation propagating along the axis of the cylinder. 
A ray making an angle 8 with the axis will be totally reflected at the 
cylindrical surface if 

1.e.. 

The diffraction spread e d  = 1.22An/D will be counterbalanced by the total 
internal reflection if n = no + n2E2 2 a. Hence we require an electric 
intensity greater than a critical value 

Assume the radiation to be plane electromagnetic waves we have 

Waves with the critical electric intensity have average Poynting vector 

Hence the threshold radiation power is 

As 

.~rceoD~ n f 1 - cos ed ( P )  = --. 
8 n2 COS2ed 

With t9d = l.22An/D << 1 ,  we have 
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Since no&, = X is the wavelength in vacuum, we obtain 

7rCEO 

l6n2 
( P )  = -(1.22X)2. 

4018 
Consider the propagation of a plane electromagnetic wave through a 

medium whose index of refraction depends on the state of circular polar- 
ization. 

(a) Write down expressions for the right and left circularly polarized 

(b) Assume that the index of refraction in the medium is of the form 
plane waves. 

where n and /3 are real and the plus and minus signs refer to right and left 
circularly polarized plane waves respectively. Show that a linearly polarized 
plane wave incident on such a medium has its plane of polarization rotated 
as it travels through the medium. Find the angle through which the plane 
of polarizations is rotated as a function of the distance z into the medium. 

(c) Consider a tenuous electronic plasma of uniform density no with a 
strong static uniform magnetic induction Bo and transverse waves propa- 
gating parallel to  the direction of Bo. Assume that the amplitude of the 
electronic motion is small, that collisions are negligible, and that the am- 
plitude of the B field of the waves is small compared with Bo. Find the 
indices of refraction for circularly polarized waves, and show that for high 
frequencies the indices can be written in the form assumed in part (b). 
Specify what you mean by high frequencies. 

(SVNY,  Buflalo) 

Solution: 
Take the z-axis along the direction of propagation of the wave. 
(a) The electric vector of right circularly polarized light can be repre  

eented by the real part of 

E~(%, t )  = ( ~ ~ e ,  + Eoe-'ie,) e-wf+ik+a , 
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and that of the left circularly polarized light by the real part of 

EL(%, t )  = (Eoe, + Eoe'fe,)  e-iwt+ik-r , 
where 

W W 

C C 
k+ = -n+ , A- = -n, . 

(b) A linearly polarized light can be decomposed into right and left 
circularly polarized waves: 

E(x ,  i) = ER(z, t )  + EL(%, t )  
- - (Eoe ,  + Eoe-'fe Y )  e-iw'+i'+a + (Eoe, + Eoeifet,,)e-iWt+ik-z. 

At the point of incidence z = 0, E(0,t) = 2 E 0 e ' ~ ~ ~ e , ,  which represents a 
wave with E polarized in the e, direction. At a distance x into the medium, 
we have 

~ ( z , t )  = ~ ~ [ ( e i ( k + - h - ) g  + 1)e, + (&*+-*-k-'+ + e'f l ey l e- iwr+ik-r I 

and thus 

E cos [(k+ - k - ) r  - $1 sin[(k+ - ~ ) z ]  (a+ - c-)% L= - - = t a n [  1 .  
Hence on traversing a distance z in the medium the plane of the electric 
vector has rotated by an angle 

E, 1 + cos[(k+ - k - ) ~ ]  1 + cos[(k+ - k-).~] 

k+ -k- 1 w 
2 c  

z = - - -(n+ - n-)z .  c p =  2 

As n+ > n- (assuming p > O), (p > 0. That is, the rotation of the plane of 
polarization is anti-clockwise looking against the direction of propagation. 

(c) The Lorentz force on an electron in the electromagnetic field of a 
plane electromagnetic wave is -e(E + v x B), where v is the velocity of the 
electron. As f i  IEI = fi !HI, or 1BI = 1El/c, we have 

Hence the magnetic force exerted by the wave on the electron may be 
neglected. The equation of the motion of an electron in Bo and the elec- 
tromagnetic field of the wave, neglecting collisions, is 

mr = -eE - ev x Bo , 
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where E is the sum of ER and EL in (a). Consider an electron at an 
arbitrary point z .  Then the solution of the equation of motion has the 
form 

r = roe-'w'. 

Substitution gives 

-mw2r = -eE - e(-iw)r x Bo . 
The electron, oscillating in the field of the wave, acts BS an oscillating dipole, 
the dipole moment per unit volume being P = --noer. The above equation 
then gives 

mw2P = -noe2E - iweP x Bo, 

or, using P = XEOE, 

mw2x~oE + noe2E = -iweXEoE x Bo . 
Defining 

and with Bo = Boez, 

or 

n0e2 nee 
mEo EO Bo 

w p  = - , W B = - l  

the above becomes 

(l)fix(2) gives 

Note that Ex - iEy = 0 and Ell: +iEy = 0 represent the right and left circu- 
larly polarized waves respectively. Hence for the right circularly polarized 
component, whose polarizability is denoted by x+ ,  Ex + iEy # 0 so that  

( ' + x t 4  w 2 ) + x + y g = o ,  W 
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or 

Similarly for the left polarization we have 

1 
wa w * 

x- = - 
q - w g  

The permittivity of a medium is given by c = (1 + X)EO so that the 
refractive index is n = E = - .  
Hence for the two polarizations we have the refractive indices 

where 

For frequencies sufficiently high so that w > w p ,  w W w h ,  we obtain 
approximately 

4019 

Linearly polarized light of the form E,(z,t) = Eoei(kz'W1) is incident 
normally onto a material which has index of refraction nR for right-hand 
circularly polarized light and nL for left-hand circularly polarized light. 
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Using Maxwell's equations calculate the intensity and polarization of the 
reflected light. 

( Wisconsin) 

Solution: 
Using Maxwell's equations $ E dr = - dS and f H - dr = (e + J) . dS, we find that a t  the boundary of two dielectric media the 

tangential components of E and H are each continuous. Then as El H 
and the direction of propagation of a plane electromagnetic wave form an 
orthogonal right-hand set, we have for normal incidence 

where the prime and double prime indicate the reflected and refracted com- 
ponents respectively. Also the following relation holds for plane wavm, 

Hence the H equation can be written as 

E - E" = nE' ,  

taking the first medium as air ( n  = 1). 
Eliminating El, we get 

E .  I1 1 - n  E =- 
I + 1 )  

For normal incidence, the plane of incidence is ai itrary and 1 -is relation 
holds irrespective of the polarization state. Hence 

The incident light can be decomposed into left-hand and right-hand circu- 
larly polarized components: 

E =  (7) = Eo (A) = +o (t> + f ~ o  ('i> , 
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( ' i )  where ( t> represents the left-hand circularly polarized light and 

the right-hand one. Hence the reflected amplitude is 

This shows that the reflected light is elliptically polarized and the ratio of 
intensities is 

I" 
Z 

1 +nL 1 + nL 

4020 

A dextrose solution is optically active and is characterized by a po- 
larization vector (electric dipole moment per unit volume): P = yV x E, 
where 7 is a real constant which depends on the dextrose concentration. 
The solution is non-conducting (jr,,, = 0) and non-magnetic (magnetization 
vector M = 0). Consider a plane etectromagnetic wave of (red) angular 
frequency w propagating in such a solution. For definiteneas, assume that 
the wave propagates in the +z  direction. (Also assume that < 1 so 
that square roots can be approximated by I/- = 1 + 4 A.) 

(a) Find the two possible indices of refraction for such a wave. For 
each possible index, find the corresponding electric field. 

(b) Suppose linearly polarized light is incident on the dextrose solution. 
After traveling a distance L through the solution, the light b still linearly 
polarized but the direction of polarization has been rotated by an angle Q 
(Faraday rotation). Find 4 in terms of L, 7, and w .  

( Cofumbia) 
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S o h  t ion: 
(a) D, E, P, B, H, M are related by 

With P = yV x E, M = 0, we have 

D = E O E + ~ V  x E ,  B = poH 

For a source-free medium, two of Maxwell’s equations are 

V x H = D ,  V . E = O .  

The first equation gives 

1 .  v x B = = 7~ + yp0v x E , 

while the second gives 

v x (V x E) = - v ~ E .  

Then from Maxwell’s equation 

V x E = - B ,  

we have 
V x ( V X  E) = -V x B ,  

or 
1 .. 

C2 
-V2E = - -E - 7pOV x E . 

For a plane electromagnetic wave 

E = ~ ~ e ~ ( ~ ~ - ~ ~ )  = E,ez + Eye,, 

the actions of the operators V and & result in (see Problem 4004) 

4 -aw. 
a 
at 
- V + i k e z  , 
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Equation (1) then becomes 

461 

W 2  

C2 
k 2 E  = -E + irpow'ke, x E , 

which has component equations 

( k2 - $) Er + i7p0w2kE, = 0 ,  

i y p ~ w ~ k E ,  - ( k ' -  $ ) E ,  = 0.  

These simultaneous equations have nonzero solutions if and only if 

P -  g i7pow2k I = - ( k 2 - ~ ) + r p o u k  W 2  2 2 4 2  = 0 ,  I i7pow k - (k2  - 7)  

i.e., 
W 2  

k2  - 7 = f 7 p o w 2 k  
c 

The top and bottom signs give 

Hence the wave is equivalent to two circularly polarized waves. For the 
right-hand circular polarization, Er + iEv # 0 and we have 

For the left-hand circular polarization, E,  - iE, # 0 and we have 

W L  

C2 
k: = - - 7pOw2k- .  

Solving the equation for k* 

W 2  

C2 
k i  Ypow2k* - - - - 0, 
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As ki has to  be positive we choose the positive sign in front of the square 
root. Hence 

To convert to  Gaussian units, we have to replace = % by 1. Thus 
7 is to  be replaced by 9, which is assumed to  be << 1. Therefore 

k* w 
(b) If the traversing light is linearly polarized, the different refractive 

indices of the circularly polarized components mean that the components 
will rotate by different angles. Recombining them, the plane of polariza- 
tion is seen to rotate as the medium is traversed. The angle rotated after 
traversing a distance L is (cf. Problem 4018) 

f +, and 715 = zk* e 1 f y. 

1 1 1 # = ,(#* + #2) = Z(k+ - L ) L  = p o w 2 L .  

4021 

Some isotropic dielectrics become birefringent (doubly refracting) when 
they are placed in a static external magnetic field. Such magnetically-biased 
materials are said to  be gyrotropic and are characterized by a permittivity 
6 and a constant “gyration vector” g. In general, g is proportional to 
the static magnetic field which is applied to the dielectric. Consider a 
monochromatic plane wave 

traveling through a gyrotropic material. w is the given angular frequency 
of the wave, and ii is the given direction of propagation. Eo, Bo, and K 
are constants to be determined. For a non-conducting (u = 0) and non- 
permeable ( p  = 1) gyrotropic material, the electric displacement D and the 
electric field E are related by 

D = E E  -t i ( E  x g) , 
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where the permittivity 6 is a positive real number and where the “gyration 
vector” g is a constant real vector. Consider plane waves which propagate 
in the direction of g,  with g pointing along the z-axis: 

g = g e ,  and n = e ,  a 

(a) Starting from Maxwell’s equations, find the possible values for the 
ICc/w. Express your answers in terms of the 

(b) For each possible value of N, find the corresponding polarization 

(Columbia) 

index of refraction N 
constants e and g. 

Eo . 

Soh t ion: 
In Gaussian units Maxwell’s equations for a source-free medium are 

1 dD 1 BB 
c at ’ c at V x B = - - .  V X  E =  -- - 

where we have used 11 = 1 and 13 = H. 
As the wave vector is K = Ke, and the electromagnetic wave is rep- 

resented by E = Egei(Kr--w*), the above equations become (see Problem 
4004) 

Thus 

or 

K . D = O ,  K * B = O ,  

K x E = - B ,  K x B = - - - D .  W W 

C C 

W W 2  

C C2 
K x (K x E) = K ( K . E ) - K ~ E =  -K x B = --D, 

W 2  

C2 
K ~ E  - -D - K(K . E) = 0.  

Making use of D = EE + i(E x g), we have 
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or, with N = el 
C2 

( N ~  - E)E - ?K(K . E )  - i ( ~  x g) = 0 .  
W 

As K = Ke, g = ge, N = the component equations are 

igE, + ( N 2  - &)Ey = 0, 

E E ,  = O .  

Eq. (3) shows that E, = 0. Hence the wave is transverse. For non-zero 
solutions of (1) and (2), we require 

giving 
( N 2  - E ) ~  = g 2 ,  

i.e., 
N = m .  

Thus the index of refraction h a s  two values, 

Substituting in (1) we obtain 

for N1: g(E,  - iE,) = 0, 

for N z :  g(Ez + i E y )  = 0. 

Since g # 0, N1 is the refractive index of the right circularly polarized 
components and N2 is that of the left circularly polarized component. Eo 
for the two components are respectively 
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4022 

A plane electromagnetic wave of angular frequency w is incident nor- 
mally on a slab of non-absorbing material. The surface lies in the t y  plane. 
The material is anisotropic with 

E,, = n2.0 Eyy = +o , 

etY = cY2 = E ~ ,  = 0 ,  n, # ny . 
(a) If the incident plane wave is linearly polarized with its electric field 

at 45' to the t and y axes, what will be the state of polarization of the 
reflected wave for an infinitely thick slab? 

(b) For a slab of thickness d ,  derive an equation for the relative ampli- 
tude and phase of the transmitted electric field vectors for polarization in 
the t and directions. 

(UC, Berkeley) 

Solution: 
Consider a plane electromagnetic wave incident from an anisotropic 

medium 1 into another anisotropic medium 2, and choose coordinate axes 
so that the incidence takes place in the zz plane, the interface being the 
t o y  plane, as shown in Fig. 4.8. The incident, reflected, and transmitted 
waves are represented as follows: 

incident wave: ei(K.r-w') , 
reflected wave: ei(K"r-w'f) , 
transmitted wave: ei(K"'r-w"t) . 

The boundary condition on the interface that the tangential components of 
E and H are continuous requires that 

I<, = I<: = I<; , 
I<, = I<; = I<: 
w = w' = W I I .  

From these follow the laws of reflection and refraction: 

I< (e) sin e = I<'( e l )  sin el , 
q e )  sin e = zP(el1)  sin e/' . 
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Fig. 4.8 

(a) As the medium 1 given is air or vacuum, we have K = K' = = C '  

For normal incidence 
e = el = elt = 0, 

so that  

K = Kn , K' = -Kn, K" = K"n. (n = e,) 

From Maxwell's equation V x H = D, we have (Problem 4004) 

K" x H" = -wD" . (1) 

As K" is parallel to  e,, D" and H" are in the t y  plane. Take the Bxes 
along the principal axes of the dielectric, then 

and 
El' = E:e, + E ! e y ,  Dy = E; = 0 .  

If the incident wave is linearly polarized with its electric field a t  45' t o  the 
z and y axes, we have 

E = E,e, + E y e , ,  

with E,+ E i  = E 2 ,  E, = Ey = 5. 
tangential component of the electric field across the interface gives 

Let the reflected wave be E' = ELe, + ELey. The continuity of the 

E, + EL = E ; ,  (2) 
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Ey + EI = E; . (3) 
Equation (1 )  also holds for the incident and reflected wave. As medium 1 
is isotropic with permittivity E O ,  we have 

W W 
n x H = -co-E = -EOK(E,e, + E y e y ) ,  

n x H' = 60-E' = E o z ( E : e ,  + ELe,),  

I< 
W W 

I< 
as well as 

W W n x HI' = --D" - - --(E=, EEe, + cyy E:ey ) .  
I<" If" 

The continuity of the tangential component of H across the interface, n x 
(H + HI) = 21 x HI', then gives 

Using E== = n;E.o, gyy = nyEOl 2 tZz = n,"Eo and I<" = 5 = %nz'= nzK, 
these equations become 

Combining equations (2) to ( 5 ) ,  we have 

Ae E i  $- E i  = E2 we have 

2 ($)+(?) = 1 ,  
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showing that the reflected wave is elliptically polarized with E parallel to 
the zy plane. 

(b) For a slab of thickness d, the transmitted wave Ett above becomes 
the wave incident on the plane z = d. Denote the three waves at the 
boundary by subscript I ,  as in Fig. 4.9. We then have for the incident wave 

W 
11 x HI = -- (~ . t tE i re t  + EvyEiyey) ;  

I( 1 

K', = -Ii'111, 
for the refracted wave 

E: = EiZe,  + E : y e y ,  

ii x H: = - (&,,E' I, e + E Y Y E : y e y )  ; 
W 

I( 1 

for the transmitted wave 
KY = K n ,  

Ell - Ett 
1 - 1, 'Z + EYyey , 

W 
11 x HY = - E ~ -  (ErZe ,  + EYyey).  

I( 
The boundary conditions for the interface z = d give 

E e i K l d  + ~t e - i K l d  - ~ t t  e i K d  
l Y  l Y  - l y  1 



Eleeisomagnetic Waves 469 

Fig. 4.9 

The last two equations can be rewritten as 

The simultaneous equations (6), (7), (8), (9) give the amplitude and phase 
of the three electromagnetic waves a t  the second interface. In fact, the 
reflected wave Ki again becomes the incident wave on the plane I = 0 
and reflection and transmission will again occur, and so on. Thus multi- 
reflection will occur between the upper and lower surfaces of the slab, with 
some energy transmitted out of the slab a t  each reflection. 

4023 

Consider an electromagnetic wave of angular frequency w in a medium 

(a) Find the current density induced by E (neglect interaction between 

(b) From Maxwell’s equations write the differential equations for the 

containing free electrons of density 11,. 

electrons). 

spatial dependence of a wave of frequency w in such a medium. 
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(c) Find from these equations the necessary and sufficient condition 

(Columbia) 
that  the electromagnetic waves propagate in this medium indefinitely. 

Solution: 
(a) The equation of motion of a n  electron in the field of an electromag- 

netic wave is 
dv m e T  = -eE, 

where we have neglected the action of the magnetic field, which is of mag- 
nitude v E l c ,  as v < c.  For a wave of angular frequency w ,  6 + -iw and 
the above gives 

e 
v = -i-E. 

mew 
Thus the current density is 

. neezE 
mew 

J = -neev = z-. 

(b) Maxwell’s equations are 

dB V X E = - -  
at I 

V * B = O ,  

Equations (2) and (4) give 

A as c = (poe0)- 3. 
We can take the medium to be charge free apart from the free electroM. 

Thus (1) gives V . E = 2 = 0. We can also write 
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Hence 

with 

Similarly, we obtain 

1 82E 
C2 

V2E- - (1 - $) 8tz = O  

The wave equations can be written in the form 

by putting E(r, t )  = Eo(r) exp(-iwt), giving the spatial dependence. 

giving 
(c) The solution of the last equation is of the form Eo(r) - exp(iK .r), 

K 2 C 2  = w2 - w; . 
The necessary and sufficient condition that the electromagnetic waves prop 
agate in this medium indefinitely is that K is real, i.e. w2 > w $ ,  or 

4024 

An electromagnetic wave with electric field given by 

E, = E, = 0 ,  E, = EO,$K'-W') , 

propagates in a uniform medium consisting of n free electrons per unit 
volume. All other charges in the medium are fwed and do not dect  the 
wave. 

(a) Write down Maxwell's equations for the fieids in the medium. 
(b) Show that they can be satisfied by the wave provided ua > 6. 
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(c) Find the magnetic field and the wavelength of the electromagnetic 
wave for a given (allowable) w .  Neglect the magnetic force on the electrons. 

( Wisconsin) 

Solution: 
(a) (b) Refer to Problem 4023 for the solution. 
(c) Using Maxwell's equation 

8B V x E = - -  
at 

as 
V x E = iKe, x Eye,  = - i K E , e ,  , 

8B - = -iwB , at 
we have 

B = -ff&,e'(K"-"l) W eL. * 

Note that we have used V X  = -iKx from Problem 4004. 

3. PROPAGATION OF ELECTROMAGNETIC WAVES 
IN A MEDIUM (40254045) 

4025 

What is the attenuation distance for a plane wave propagating in a 
good conductor? Express your answer in terms of the conductivity u, per- 
meability p ,  and frequency w .  

(Coulumbia) 

Solution: 

conductivity u, the general wave equation to be used is 
For a ohmic conducting medium of permittivity E ,  permeability p and 

V2E - ~ E E  - puE = 0 .  

For plane electromagnetic waves of angular frequency w ,  E(r,t) = 
Eo(r) e-""', the above becomes 

V2Eo + prw2( 1 + %)Eo = 0 .  
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Comparing this with the wave equation for a dielectric, we see that for the 
conductor we have to replace 

if we wish to use the results for a dielectric. 
Consider the plane wave as incident on the conductor along the inward 

normal, whose direction is taken to be the z-axis. Then in the conductor 
the electromagnetic wave can be represented as 

The wave vector has magnitude 

Let k = /3 + ia. We have 

1 
2 

p 2  - a2 = w2pe , cup = -wpa  

For a good conductor, i.e. for 5 >> 1, we have the solution 

In the conductor we then have 

By the definition of the wave vector, /3 has to take the positive sign. As the 
wave cannot amplify in the conductor, a has also to take the positive sign. 
The attenuation length 6 is the distance the wave travels for its amplitude 
to reduce to e-l of its initial value. Thus 

a 
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Given a plane polarized electric wave 

derive from Maxwell's equations the relations between El K and the H 
field. Obtain an expression for the index of refraction n in terms of w ,  E ,  

I ( ,  u (the conductivity). 
( Wisconsin) 

Solution: 
Maxwell's equations for a charge-free ohmic conducting medium are 

V x E = - = ,  BB 

V x H = J + F ,  
V * D = O ,  
V - B  = 0 ,  

with 
D = E E ,  B = p H ,  J = u E .  

For the given type of wave we have 2 -+ iw, V -+ - i y K  (cf. Problem 
4004). Equations (3) and (4) then give 

and (1) gives 
11w 

C 
i- K x E = iwpH , 

or n 

I'C 
H = - K x E .  

Taking curl of both sides of (1) and using (2) and (3) we have 

aE a2E 
V2E = pu- + p g  -, at a t 2  

or 
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which is the equation for a wave propagating with phase velocity v given 
bY 

Hence the index of refraction of the medium is 

Writing n = e ( p  - ia), we have 

U 
p2 - a2 = 1 ,  cup=-. 

2we 

Solving for cu and p,  we find 

4027 

A plane polarized electromagnetic wave E = EyOei(Kz-Wt) is incident 
normally on a semi-infinite material with permeability p, dielectric con- 
stants e,  and conductivity u. 

(a) From Maxwell's equations derive an expression for the electric field 
in the material when u is large and real as for a metal at low frequenciea. 

(b) Do the same for a dilute plasma where the conductivity is limited by 
the inertia rather than the scattering of the electrons and the conductivity 
is . tie2 

u=z- .  
niw 

(c) F'rom these solutions comment on the optical properties of metals 

( Wisconrir) 
in the ultraviolet. 
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Solution: 
Assume the medium to be ohmic and chargefree, then j = aE, p = 0 

and Maxwell's equations are 

BD 
at V x H = - +j ,  

BB V x E = - -  
at' 

Assume also that the medium is linear, isotropic and homogeneous 80 that 

D = e E ,  B = p H .  

For a sinusoidal electromagnetic wave 

E(r, 1 )  = E(r)e-""' B(r, t )  = B(r)e-iw' 

in the conducting medium Maxwell's equations become 

V x E(r) = iwpH(r), 
V x H(r) = -iwsE(r) + uE(r), 
V + E(r) = V . B(r) = 0 .  

Using these we obtain 

v x (V x E) = V(V . E) - V ~ E  = - V ~ E  
= iwpV x H = (w2&p + iwpa)E , 

i.e. 
V2E + (w2&p + iwpa)E = 0 .  

Putting 
U 

10'2 = w2p&)I' El' = & + i; , 

we can write Eq. (1) as 

V2E(r) + Ktt2E(r) = 0 .  

This is Helmholtz' equation with the plane wave solution 

E(r) = EgeiKff", 
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where the propagation vector K" has a complex magnitude 

p and cr ate given by the simultaneous equations 

which have solution 

The given incident wave is E = Eyoei(Ka-Wt) ,  so that K = K e z ,  
Eo = Eyoey, Ho = H,oe,.  Let the reflected and transmitted waves be 

As El B, K form a right-hand set and the incident wave is polarized with 
E in the y direction, the vectors are as shown in Fig. 4.10. To satisfy the 
boundary condition that the tangential component of E is continuous at all 
points of the interface, we require that the exponents involved should be 
the same, which in general gives rise to the laws of reflection and refraction, 
and that the amplitudes should satisfy the following: 
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As the waves are plane electromagnetic waves we have 

and (3) can be written as 

( Ego - EL,,) = - K" E;o 
1'0 W P  

Equations (2) and (4) give 

(a) If u is large and real as for a metal at low frequencies, we have 

and thus 

(4) 
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or 

Hence 

since, 88 p M PO, eo - E ,  4- - >> 1. Equation (5) then gives 

for the electric field in the conducting medium. 

(b) For a &lute plasma ~i M j i o ,  e M €0, with u = i g, (1)  becomes 

V2E + jioeo(w2 - w ~ ) E  = 0 ,  

where w g  = i d  is the (angular) plasma frequency of the medium. Thus 
mro 

If w p  < w ,  K" is real and ( 5 )  becomes 

giving 
E; = ~ ; ~ ~ i ( K " z - w t )  

eY 

If w$ > w 2 ,  K" is imaginary and 



480 Problemr €4 Solutions on EIectromagncfirm 

(c) The typical electron number density of metals is n M 1022/cm3. 
The corresponding plasma frequency is 

M 0.56 x 1OI6 s-l 

For ultraviolet light, the angular frequency isw > 1OI6 s - ' .  So the condition 
w p  < w is satisfied and ultraviolet light can generally propagate in metals. 

4028 

A plane electromagnetic wave of frequency w and wave number K 
propagates in the +z direction. For z < 0, the medium is air with t = € 0  

and conductivity u = 0. For t > 0, the medium is a lossy dielectric with 
t > € 0  and u > 0. Assume that p = po in both media. 

(a) Find the dispersion relation (i.e., the relationship between w and 
K) in the lossy medium. 

(b) Find the limiting values of K for a very good conductor and a very 
poor conductor. 

(c) Find the e-l penetration depth 6 for plane wave power in the lossy 
medium. 

(d) Find the power transmission coefficient T for transmission from 
z < 0 to  z > 0, assuming u << EW in the lossy medium. 

(e) Most microwave ovens operate at 2.45 GHz. A t  this frequency, 
beef may be described approximately by E / E O  = 49 and u = 2 mho m-l.  
Evaluate T and 6 for these quantities, using approximations where needed. 
Does your answer for 6 indicate an advantage of microwave heating over 
infrared heating (broiling)? 

W I T )  
Solution: 

(a) In a lossy medium, the wave number K' is complex, K' = (/?+ 
From Problem 4025, we see that K' is related to w by K t 2  = ia)e,. 

w 2 p ( t  + i t ) .  Thus 
p2 - a2 = w2pos , 
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1 ap = - W j l o U .  2 

Solving the simultaneous equations we have 

As refractive index is defined as n = 5 = 
the dispersion relation for the medium. 

( p  + ia)l these equations give 

(b) For a very good conductor, 5 >> 1, and we have 

For a very poor conductor, 5 << 1, and we have 

(c) The transmitted wave can be represented as E2 = E20e-a"ei(@S-W'). 
Thus the e-*  penetration depth is 

For a very good conductor: 6 x 

For a very poor conductor: 6 x - 

(d) The solution of Problem 4011 gives 

where n' is the index of refraction of the lossy medium. Here n' is complex 

C 

W 
n' = - (p  + ia) . 
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For u < EW, 

Problems d Solutions on E~cclromagnciirm 

where 
n =  6. 

The average energy incident on or leaving unit area of the interface in unit 
time is the magnitude of the average Poynting vector 3 (Problem 4011): - -  

1 For transmitted wave: 32 = ; FIEzo12 
2 110 

The power transmision coefficient is therefore 

411 - - 
( 1  + n)z + n Z a 2 / 4 ~ 2 ~ 2  ’ 

(e) To cook beef in the microwave oven given, we have 

t w = 4 9 x  - lo-’ x 27r x 2.45 x lo9 mho/m M 7 mho/m > 6. 
36n 

If beef can be treated as a poor conductor, the penetration depth and the 
power transmission coefficient are respectively 



Electromagnetic Waves 483 

The wavelength of infrared rays is approximately cm, so its fre- 
quency is - 3 x 1013 Hz. For beef in an infrared oven, 6w R yz:$: B 

lo5 mho/m B u, so it is still a poor conductor. Thus the penetration 
depth and power transmission coefficient of infrared rays in beef will be 
similar to those for the microwaves. Hence for cooking beef, the effects of 
the two types of wave are about the same as far as energy penetration and 
absorption are concerned. No advantage of microwave heating over infrared 
heating is indicated. 

4029 

(a) X-rays which strike a metal surface at an angle of incidence to the 
normal greater than a critical angle 80 are totally reflected. Assuming that 
a metal contains n free electrons per unit volume, calcuIate 80 as a function 
of the angular frequency w of the X-rays. 

(b) If w and 8 are such that total reflection does not occur, calculate 
what fraction of the incident wave is reflected. You may assume, for sim- 
plicity, that the polarization vector of the X-rays is perpendicular to the 
plane of incidence. 

(Princeton) 

Solution: 

is 
(a) The equation of the motion of an electron in the field of the X-rays 

nix = -eE = -eEoe-'"' . 
I t s  solution has the form x = xoe-'"'' . Substitution gives 

n w 2 x  = eE . 

Each electron acts as a Hertzian dipole, so the polarization vector of the 
metal is 

P = -nex = X E ~ E ,  

giving the polarizability as 
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Let w; = 5, then the index of refraction of the metal is 

Problems €4 Solutions on Elccltomagncliam 

and the critical angle is 

(b) As the X-rays are assumed to be polarized with E perpendicular to  
the plane of incidence, E is tangential to the metal surface. Letting a prime 
and a double-prime indicate the reflected and refracted rays respectively, 
we have 

E + E' = El' , ( 1 )  

H cos e - H I  c a  el = H I !  cos el1 . 
Note that El H and the direction of propagation form a right-hand set. As 

(2) 

(2) can be written as 

( 1 )  and ( 3 )  together give 

As 8 = 8' and the intensity is fi E:, the reflection coefficient is 

cos 8 - n cos elt 

cose + ncos8 
R =  (5)'~ ( 
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4030 

Consider a space which is partially filled with a material which has 
continuous but coordinate-dependent susceptibility x and conductivity u 
given by (x,, A, u, are positive constants): 

The space is infinite in the 2, y directions. Also p = 1 in all space. An 
s-polarized plane wave (i.e., E is perpendicular to the plane of incidence) 
traveling from minus to  plus infinity is incident on the surface at  z = 0 with 
an angle of incidence 0 (angle between the normal and ko), (koc = w ) :  

Ei(r, t )  = A exp[i(zko sin 0 + rko cos 0 - wt) ]ey  . 

The reflected wave is given by 

Er(r, 1 )  = Rexp[i(tko sin 8 - .zko cos 0 - ul)]ey , 

and the transmitted wave by 

E:(r, t)  = E ( z )  exp[i(zk’sin y - ut)]ey . 

A and R are the incident and reflected amplitudes. E ( z )  is a function which 
you are to determine. 7 is the angle between the normal and k‘. 

(a) Find expressions for the incident, reflected and transmitted rnag- 
netic fields in terms of the above parameters. 

(b) Match the boundary conditions a t  z = 0 for the components of the 
fields. (Hint: Remember Snell’s law!) 

(c) Use Maxwell’s equations and the relationships 

47ri 
D(r,t) = e(r)E(r, t )  , e(r) = 1 + 4 q ( r )  + 7 u(r) 

to find the wave equation for EF(r, t ) .  
(SUNY,  Bugdo)  
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Solution: 
(a) The incident and reflected wave vectors are respectively 

k' = (ko sin 8, 0, ko cce 0) , kR = (ko sin 0, 0, -ko co8 0).  

For sinusoidal plane electromagnetic waves, we have (Problem 4004) V 4 

ik, 6 -+ -iw. Maxwell's equation V x E = -$ then gives 

1 
ik x E = -- (-iw)B , 

C 

or 

Thus 

C 

W 
B = - k x  E. 

B'= -k C I  x E= (-e,cos8+e,sin8)Ey(r, t)  
W 

= (-e,cos8+ezsin8)Aexp[i(zkosin0+zkocos0 - wl)] ,  

B~ = (e, cos 0 + e, sin q R  exp [ i ( zko  sin 8 - zko cos 8 - ut)] . 
The magnetic field of the transmitted wave is 

(b) Et and H i  are continuous acrms the boundary, i.e., for z = 0 

E;(r,t) + EF(r,t) = E:(r,t) , 

[B'(r, t )  + BR(r, t ) ]  * e, = BT(r, t) - e, . 
8, is also continuous across the boundary: 

[B'(r, t )  + BR(r, t ) ]  . e, = BT(r, t )  e, . 

Also, Snell's law applies with z = 0: 

kosinf?= k'siny. 
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Combining the above we obtain 

A + R = E ( 0 )  , 

(c) Combining Maxwell's equations 

1 d D  4n 
at c at c V X H = - -  + - J ,  

1 BB V x E = - - -  

where 

we have 

As 

D = e(r)E, B = p H  = H I  J = aE, 

v x (V x E) = V(V . E ) - v ~ E  = - v ~ E ,  

for a charge-free medium, the above becomes 

V 2 E + c  C2 ( , + i ? ) E = O  

This is the wave equation for a charge-free conducting medium. Apply this 
to the transmitted wave. As 

E ( t )  exp[i(rk'sin 7 - wt)]e, 

by the definition of electric susceptibility, 

we have the equation for E(z ) :  

+-  w2 [ 1 + 4 ~  ( xm+- iLm) ( 1  - e-")I E(z )  - k" sin2 7 E(z )  = 0. 8 9  c2 
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4031 
A plane polarized electromagnetic wave is incident on a perfect con- 

ductor at an angle 8. The electric field is given by 

E = ED Re exp [i(k . r - wt ) ]  . 
E is in the plane of incidence as shown in Fig. 4.11. Starting with the 
boundary conditions imposed on an electromagnetic field by a conductor, 
derive the following properties of the reflected wave: direction of propaga- 
tion, amplitude, polarization and phase. 

( M W  

Fig. 4.11 

Solution: 
In a perfect conductor, E" = B" = 0. Since the normal component of 

B is continuous across the interface, the magnetic vector B' of the reflected 
wave has only tangential component, as shown in Fig. 4.11. As for a plane 
electromagnetic wave, E, B and k form an orthogonal right-hand set, E' 
and k' must then be in a plane containing k and perpendicular to the 
boundary (the plane of incidence). Also, because of the continuity of the 
tangential component of E across the interface, the electric vector E' of the 
reflected wave must have the direction shown in Fig. 4.11 and we thus have 

E sin 8 - E' sin 8' = 0 .  

In addition, for the boundary conditions to be satisfied, the exponents in 
the expressions for E and E' must be equal at  the boundary. This requires 
that 

k . r = k' . r ,  

or 
kcose = kicosel,  

taking r in the interface and in the plane incidence. 
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As k = k' = :, cos0 = co6B1, or 0 = 0', from which follows E = El. 
Therefore, the direction of propagation of the reflected wave, given by the 
vector k', makes the same angle with the surface of the conductor as that 
of the incident wave, given by k; both are in the plane of incidence. The 
magnitude E' of the electric field of the reflected wave is the same as that 
of the incident wave, and the reflected wave remains linearly polarized. 
However, as Et = -E{, a phase change of a occurs on reflection. 

4032 

(a) Consider a long straight cylindrical wire of electrical conductivity 
u and radius a carrying a uniform axial current of density J .  Calculate the 
magnitude and direction of the Poynting vector at the surface of the wire. 

(b) Consider a thick conducting slab (conductivity u) exposed to a 
plane EM wave with peak amplitudes Eo, Bo. Calculate the Poynting 
vector within the slab, averaged in time over a wave period. Consider u 
large, i.e. u >>  WE^. 

(c) In part (b), if u is infinite, what is the value of the average Poynting 
vector everywhere in space? 

( Wisconsin) 

Solution: 
(a) Use cylindrical coordinates (r, 0, z )  with the z-axis along the axis 

of the wire and let the current flow along the +I direction. Assume the 
conductor to be ohmic, i.e., J = aE. Then E = 5 = $ez inside the wire. 
Due to  the continuity of the tangential component of E across the interface, 
we also have E = $e, just outside the surface of the wire. Using Ampkre's 
circuital law f B . dl = POI we find the magnetic field near the surface of 
the wire as 

PO J*aZ PO J a  
eg = - ee * e g  = - B=- 

2 
POI 
2na 2aa 

Hence the Poynting vector a t  the surface of the wire is 

(b) For simplicity suppose that the normal to the surface of the slab is 
parallel to the direction of wave propagation, i.e., along the + z  direction. 
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Then the wave vector in the conductor is 

K = p + i a  = (/3 + ia)e, . 
As u is large, we have (Problem 4027) 

taking p w PO (nonferromagnetic). 
The electric field inside the conductor is 

and the magnetic field is 

1 1 
W P O  WPO 

% F e i f e ,  UP0 x E, 

H = - K x E = -(/3 + ia)e, x E 

80 the Poynting vector is 

as E - K = E - e, = 0 for a plane wave. 
Averaging over one period, we obtain (Problem 4042) 

(c) As Q --t 00, Q 3 00 and --t 0. That is, 3 inside the 
conducting slab becomes zero. In this case, the wave will be totally re 
flected at the surface of the slab. Moreover, outside the slab the incident 
and reflected waves will combine to form stationary waves. Hence B = 0 
everywhere. 
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4033 

A slowly varying magnetic field, B = Bocoswt, in the y direction 
induces eddy currents in a slab of material occupying the half plane o > 0. 
The slab has permeability p and conductivity u. Starting from the Maxwell 
equations, determine the attenuation of the eddy currents with depth into 
the slab and the phase relation between the currents and the inducing field. 

(UC, Berkeley) 

Solution: 
From Maxwell’s equations for a conductor of constants p ,  6, u 

€BE V .B = 0 ,  V x B = ~ u E  + I 

We find 
BB 8’ B v x (V x B) = - V ~ B  = -pa- -pa-  
Bt Bt ’ 

With the given geometry and magnetic field, we expect 

B’ = Bk exp[i(hr - wt)]ey 

in the conducting material and the above equation to reduce to 

B2B BB 82B - 8 % 2  - / ro-&- -pE, t ,=O,  

-k2 + ipuw + p w 2  = 0 * 

and further to 

Hence 

Since the given frequency is low we can take EW << U. Accordingly we 
have 

a + i p x  G =  E(l+i), 

or - 
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Therefore in the conducting material we have 

Thus the magnetic field will attenuate with increasing depth with attenu- 
ation coefficient p. The last Maxwell’s equation above gives 

V x B‘ = puE‘ - ipcwE‘ puE’ 

as u >> EW. Thus 

Hence the induced current density is 

Thus there is a phase difference of 4 between the current and the inducing 
magnetic field. 

4034 

Given a hollow copper box of dimensions shown in Fig. 4.12. 

(a) How many electromagnetic modes of wavelength X are there in the 
range (4/&) 5 A 5 ( 8 / a )  cm? 

(b) Find the wavelengths. 

(c) Identify the modes by sketches of the E field. 

(d) Approximately how many modes are there in the range (0.01) 5 

(UC, Berkeley) 
A 5 (0.011) cm? 
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Soh t ion: 

mode (m, n ,  p) is given by 
(a) For this cavity resonator the wavelength of the stationary wave 

For - & < X I  -, 8 $ 5  $ +  $ + p 2  5 5.  
As the integers m, n,  p must be either 0 or positive with rnn + np+prn # 0, 
we have 

However, each set of m, n, p corresponds to  a T E  and a TM mode. Hence 
in the wavelength range 5 5 X 5 -& cm there are eight resonant modes: 
2 for each (1, 3, 0), (2, 1, 0) ,  (1, 0, 1)  and (0, 1, 1). 

(b) The wavelengths of the four double modes are respectively 5,  -&, 
$g, -& em. However there are only two different resonant wavelengths. 

(c) The E field in the cavity has components 

E, = A1 cos(k,r) sin(k,y)sin(k,z) , 
E, = A2 sin(k,z) cos(k,g)sin(k,z), 
E, = A3 sin(kzz) sin(k,y) cos(k,z), 



494 

with 

Problems 8 Solutionr on Eleciromcrgnetism 

m7r nr I., = - k, = - b l  h = -  plr k,A1+ k,Az + k,As = 0.  
0 ,  c ,  

The four electric modes have E fields as follows: 

mode (1, 3, 0): E, = 0, E, = 0, Ez = Assin 

mode (2, 1, 0): E, = 0, Ey = 0, Ed = Assin(7rz)sin 

mode (1, 0, 1): E, = 0, E, = Azsin 

mode (0, 1, 1): Es = A1 sin 

sin(rz), Ez = O ;  

sin(rr), E, = 0, Ez = 0. 

< 0.01 1 cm , 2 0.01 cm _< 

we have 
m2 n2 

4 9  
181.82 5 - + - + p 2  5 2002. 

This corresponds to an ellipsoid shell in the rnnpspace where each unit cell 
with positive m, n, p represents two electromagnetic modes, one TE and 
one T M ,  with frequency less than or equal to 2($ + $ +p2)-i ,  of volume 

AV = V2 - Vl 

3 

3 

= %(2 x 200 x 3 x 200 x 200 - 2 x 181.8 x 3 x 181.8 x 181.8) 

= 4, x 2 x 3 x (2003 - 1 8 ~ 8 ~ )  w 5 x lo'. 

Hence in the given range of wavelengths there are 2 - 
modes, where the factor 
non- negative. 

AV = 1.25 x lo' 
is for the requirement that rn, n, p should all be 
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4035 

Estimate the number of distinct standing light which can exist between 

(UC, Berkeley) 
frequencies 1.0 x 10'' Hz and 1.2 x 10" Hz in a cavity of volume 1 em3. 

Solution: 

frequency f is given by 
Consider a cubical cavity resonator of sides of length a. The resonant 

n 

lr* 

pea' 
4r'f' = - (m' + n2 + p') , 

where m, n, p are positive integers. 
Each set of positive integers m, n, p with 

4a' fa 
m ' + n ' + p 2 ~ r ' =  - 

v' 
corresponds to a frequency 5 f ( r ) ,  where u = -!- fie 

For wavelengths short compared with a, we can consider an rn, n, p 
space where each,unit cell represents a set of m, n, p. Then the number of 
modes N with frequencies 5 f ( r )  is equal to the volume of of a sphere 
of radius r in this space: 

1 4  4lrf3V 
8 3  3v3 , N = - .  --r3 = - 

where V = a3 is the volume of the cavity. 

same frequency, one electric and one magnetic. Thus 
However, each set of m, n, p actually corresponds to two modes of the 

8r  f 3v N=- 
3v3 * 

Under the condition of short wavelengths, this formula can be applied to a 
cavity of any shape. 

For this problem, we have V = 1 cm3 and shall assume the dielectric 
of the cavity to be air. Then 

8rf3 N=- 
3 2  . 

Hence the number of modes between the two given frequencies is 

= 2.26 x 1 0 ' ~ .  
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4036 

Consider a rectangular waveguide, infinitely long in the 2-directions, 
with a width (y-direction) 2 cm and a height (2-direction) 1 cm. The walls 
are perfect conductor, as in Fig. 4.13. 

(a) What are the boundary conditions on the components of B and E 
at the walls? 

(b) Write the wave equation which describes the E and B fields of the 
lowest mode. (Hint: The lowest mode has the electric field in the z-direction 
only.) 

(c) For the lowest mode that can propagate, find the phase velocity 
and the group velocity. 

(d) The possible modes of propagation separate naturally into two 
classes. What are these two classes and how do they differ physically? 

(Princeton) 

Fig. 4.13 

Solution: 
(a) The boundary conditions are that the tangential component of 

E and the normal component of B are zero on the surface of a perfect 
conductor. In this case 

B, = 0, 

B, = 0, 
E, = E, = 0, for y = 0, 2 cm; 
E, = E, = 0, for z = 0, 1 cm. 

BE It follows from V . E = 0 that 3 = 0 for y = 0, 2 cm and 9 = 0 for 
z = 0, 1 cm also. 
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(b) For sinusoidal waves of angular frequency w ,  the wave equation 
reduces to Helmholtz's equation 

V2E + k2E = 0 

with 
W 2  k2 = - 
c2 

and Maxwell's equation 
613 V x E = - -  
a t  

reduces to 
1 

W 
B = --V x E. 

For the lowest mode, E, = Ey = 0 ,  E = E,. Thus it is a T E  wave, 
given by the wave equation V2E, + k2 E, = 0. The magnetic vector is then 
given by 

- i  aE, i 8E, B, = -- B y = - -  B, = 0 
w aY ax 

(c) For the lowest mode, the wave can be represented by 

Helmholtz's equation can then be separated into 

d2Z - + k i 2  = 0 ,  d2Y -+k:Y = 0 ,  
dY2 dz2 

with k: + kz = k2 - k'2. The solutions are 

Y = A1 cos(k1y) + Azsin(k1y) 
Z = B1 cos(k2t) + B~sin(k2z) .  

The boundary conditions that 

Ez = 0 for y = 0, 2 ,  

-- - 0 for z = 0, 1 at 
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give At = B2 = 0, k1 = fn, kz = nn,  m, n being 0 or positive integers. 
Hence 

Let the phase velocity in the waveguide be u. Then k' = t, or 

n can be allowed to have zero value without EL vanishing identically. Hence 
the lowest mode is TElo, whose phase velocity is 

W 

The group velocity is 

(d) Electromagnetic waves propagating in a waveguide can be clas- 
sified into two groups. One with the electric field purely transverse but 
the magnetic field having a longitudinal component (TE or M mode), the 
other with the magnetic field purely transverse but the electric field hav- 
ing a longitudinal component (TM or E mode). For the type of guiding 
system under consideration, it is not possible to propagate waves that are 
transverse in both electric and magnetic fields (TEM mode). 

4037 

As in Fig. 4.14 an electromagnetic wave is propagating in the T E  mode 
in the rectangular waveguide. The walls of the waveguide are conducting 
and the inside is vacuum. 
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(a) What is the cutoff frequency in this mode? 
(b) If the inside is filled with a material with dielectric constant E ,  how 

does the cutoff frequency change? 
(Columbia) 

Fig. 4.14 

Solution: 
In T E  modes E, = 0, H ,  # 0, using the coordinate system shown in 

Fig. 4.14. The transverse, i.e. x and y, component waves in the waveguide 
are standing waves, while the I component is a traveling wave. Let m and 
n denote the numbers of half-waves in the z and y directions respectively. 
The wave numbers of the standing waves are then 

m7r n7r 

b '  a 
while the wave number of the traveling wave is 

kz = k2  - (k: + k i )  , 

k ,  = - k ,  = -, 

where k 2  = pcw2. 

(a) If the inside of the waveguide is vacuum, we have 
2 k2 = ~ O E O U  , 

or 

k: = ~ O E O W ~  - [ (?)'+ ( F ) 2 ]  
If k: < 0, k, is purely imaginary and the traveling wave - eikss becomes 
exponentially attenuating, i.e., no propagation. Hence the cutoff frequency 
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(b) If the inside of the waveguide is filled with a dielectric, we can still 
use the results for vacuum with the substitution EO -+ E ,  po -+ p. Since 
p - po generally, the cutoff frequency is now given by 

4038 

(a) Give the wave equation and the boundary conditions satisfied by an 
electromagnetic wave propagating in the z direction in a waveguide with 
sides a and b. Assume that the waveguide is perfectly conducting with 
E = p = 1 inside. 

(b) Determine the lowest angular frequency w at which a transverse 
electric (TE) wave polarized in the z (vertical) direction can propagate in 
this waveguide. 

( Wisconsin) 

Solution: 
(a) Fkfer to Problem 4036. 

(b) From Problem 4037 we see that the TExo mode has the lowest 
frequency for a > b and that its cutoff angular frequency is W I O  = y .  

4039 

(a) Write out Maxwell’s equations for a non-conducting medium with 
permeability p and dielectric constant E ,  and derive a wave equation for 
the propagation of electromagnetic waves in this medium. Give the plane 
wave solutions for E and B. 

(b) Determine the electric and magnetic fields for the lowest TE mode 
of a square waveguide (side I) filled with the foregoing medium. State the 
boundary conditions which you use. 

(c) For what range of the frequencies w is the mode in (b) the only TE 
mode which can be excited? What happens to the other modes? 

( Wisconsin) 
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Solution: 
(a) Refer to Problem 4010. 
(b) Use the coordinate system shown in Fig. 4.15. The boundary con- 

ditions are given by the continuity of the tangential component of E across 
an interface and V - E = 0 as 

E, = E, = 0 ,  - = O f o r x = O , l ,  
a x  

a E  2 = O for y = 0, 1 .  
BY 

E, = E, = 0,  

Y 

Fig. 4.15 

The electromagnetic wave propagating inside the waveguide is a traveling 
wave along the r-direction, and can be represented as 

E ( z ,  y ,  I, t )  = E ( z ,  y)ei(ta'-wf) 

The wave equation then reduces to 

( ~ + ~ ) E ( x , y ) + ( k ' - k ~ ) E ( x , y )  a x 2  a y 2  = O ,  

where k2 = p&w2. 
Let u ( x ,  y )  be a component (z, or y) of E ( x ,  y). Taking U ( X ,  y) = X ( % ) Y ( y ) ,  
we have 

with 
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Hence 

The boundary conditions require that 

E, = Al cos(k,t)sin(kyy)ei(ka2-wf), 
Ey = A2 sin(k,t) cos(kl(y)ei(k*2d-W') , 
E, = A3 sin(k,c) sin(kyy)ei(k*""'''), 

mlr nn I 7 k ,=-  m,n=O, 1 , 2  , . . . .  
1 '  k, = - 

We thus have k, = p w 2  - (m2 + t i  2 )F ..I+ . For propagation we require k, [ 
to be real. Hence the lowest T E  modes are those for which m,n = 0, 1 or 
1, 0, i.e., the TEol or TElo mode. 

For the TElo mode the electric field is 

The magnetic field is obtained using H = -5 V x E to  be 

H , = O ,  

Similar results can be obtained for the TEol mode. 
(c) The cutoff (angular) frequency of the TElo or TEol mode is 

and the cutoff frequency of the TEll mode is 
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Hence if the TElo and TEol modes are to be the only propagating waves 
in the waveguide then we require that 

For the other modes, k, will become imaginary, k, = ik: ,  and the prop 
agating factor will become e-k:z. Such waves will attenuate rapidly and 
cannot be propagated in the waveguide. 

4040 

A waveguide is constructed so that the cross section of the guide forms 
a triangle with sides of length a, a, and f i a  (see Fig. 4.16). The walla 
are perfect conductors and L = € 0 ,  14 = /LO inside the guide. Determine the 
allowed modes for TE, T M  and TEM electromagnetic waves propagating in 
the guide. For allowed modes find E(z, y, z, f f I  B(t, y, z,f) and the cutoff 
frequencies. If some modes are not allowed, explain why not. 

(Prince f on) 

Y 
I 

X 

Fig. 4.16 

Solution: 
We first consider a square waveguide whose cross section has sidea of 

length a. The electric vector of the electromagnetic wave propagating along 
+r direction is given by 

Et = A1 cos(klz) sin(k2y)e'(ks'+'"''), 
E, = Azsin(k1z) cos(k~y)ei(ks'-Wi) 
E, = AS sin(klz) sin(k~y)ei(k~*-w'), 
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mz 
a 
nz 

k l = - ,  

k 2 = - .  
a 

The boundary conditions being satisfied are 

Ex = E, = 0 for y = 0 and Ey = E, = 0 for I = a .  

For the waveguide with triangular cross section, we have to choose from 
the above those that  satisfy additional boundary conditions on the y = 2 

plane: E, = 0, E, cos 4 + Ey sin $ = 0 for y = I. T h e  former condition 
gives A3 = 0, while the latter gives A1 = A2 and tan(k1z) = - tan(Azz), 
or A1 = -A2 and tan(k1z) = t a n ( k ~ z ) ,  i.e., either kl = 4 2 ,  A1 = A S ,  or 
k1 = k2, A1 = -A2. Thus for the waveguide under consideration we have 

E, = -A cos(klt)sin(kly)e i(L3.2 - w t )  I 

E, = Asin(k1z) ~ ~ ~ ( k ~ y ) e ~ ( ~ ~ ~ - ~ ~ ) ,  

E, = 0 ,  

with 

T h e  associated magnetic field can be found using V x E = - g, or k x E = 
wB as 

B, = --Ey k3 = - -As in (~ l~ )cos (k ly )e i (L~ ' -w' ) ,  k3 
W W 

B - A E ,  k = - - A c o s ( k l ~ ) s i n ( k ~ y ) e ' ( ~ ~ ~ - ~ ~ ) ,  k3 

B, = -(kl 1 Ey - IC2Ex) = -A[sin(klz) kl 

y -  w W 

cos(k1y) 
W W 

+ cos(k1z) ~ i n ( k l y ) ] e ~ ( ~ ~ ~ - ~ ~ )  

= -A k1 sinIk.1 (z + p)]ei(t32-wt) . 
W 
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Thus the allowed modes are TE,,-, or TE,,,, but not TM. The cutoff 
frequencies are 

nnc 
a 

w n  = di-. 

4041 

As in Fig. 4.17, two coaxial cylindrical conductors with rl and r2 form 
a waveguide. The region between the conductors is vacuum for z < 0 and 
is filled with a dielectric medium with dielectric constant E # 1 for z > 0. 

(a) Describe the TEM mode for L < 0 and z > 0. 
(b) If an electromagnetic wave in such a mode is incident from the left 

(c) What fraction of the incident energy is transmitted? What fraction 

(Columbia) 

on the interface, calculate the transmitted and reflected waves. 

is reflected? 

I -  

Fig. 4.17 

Solution: 

use SI units. 

waves 6 -+ -iw, and the wave equation becomes 

Interpret e as the relative dielectric constant (permittivity = €60) and 

(a) Consider first the region z > 0. Assume p = po. For sinusoidal 

where E is the relative dielectric constant of the medium, i.e. permittivity 
= CEO. Because of cylindrical symmetry, special solutions of the above 
equation are 

E'(r,t) = E ' ( ~ , y ) e ~ ( ~ ' ~ - ~ ~ ) ,  
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with 

B'(r, t )  = B'(z, y)e i ( k ' z  -wt ) 
> 

Let 
a2 v2 = 0; -k - 

822 ' 
V: being the transverse part of the Laplace operator V2. Decompoee the 
electromagnetic field into transverse and longitudinal components: 

E' = E: + E,e, B' = B: + Bger .  

For TEM waves B: = Ei = 0. Then Maxwell's equation for a chargefree 
medium V * E' = 0 reduces to 

Vt .Ei = 0. 

Also from Maxwell's equation V x E' = -% = iwB' we have 

VtxE:=O. 

These equations allow us to introduce a scalar function 4 such that 

E : = - V 4 ,  V 2 d = 0 .  

Furthermore, symmetry requires that 4 is a function of r only and the last 
equation reduces to 

- - ( r g ) = o ,  I d  
r 8r 

whose solution is 
4 = C In r + C 

C, C' being constants. 
Then the electric field is 

E{(r, t )  = c r ei(k'L-'"t) e r  I 

and the associated magnetic field is given by V x E' = -% with V + ik', 
& + - b a s  
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Therefore, in the z > 0 region which is filled with a medium of relative 
dielectric constant el the TEM waves can be represented as 

E'(t, t )  = c ei(k'z-"'t) e r  t r 

@ e m  C 4  ei(k'z-wt) B'(z,t) = - 
rc 

Similarly, for the z < 0 region, E = 1 and the TEM waves are given by 

A 
r 
A 

~ ( z ,  t )  = - e i (kz-wf)  ee rc 

E(q t )  = - ei(kz-"'*) e r  I 

where A and C are constants, and k = :. 
(b) Consider a TEM wave incident normally on the interface z = 0 from 

the vacuum side. Assuming that the transmitted and reflected waves both 
remain in the TEM mode, the incident and transmitted waves are given by 
E, B and El, B' respectively. Let the reflected wave be represented as 

E"(r,t) = - D e-i(kz+wf)er , 

B"(r,t) = -- Be. rc 
Note that the negative sign for BN is introduced so that E", B" and k" = 
-k form a right-hand set. 

The boundary conditions that Et and H t  are continuous a c r m  the 
interface give 

r 

D e-i(kz+wt) 

( E ,  + E:-  E:)lt=o = 0 1 

(Be + B i  - B i ) ( z = o  = 0 , 
and hence 

D = - .  2A c= - 
1 + & '  l + +  

(c) The coefficients of reflection and transmission are therefore respec- 
tively 
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As the incident, reflected and transmitted waves are all in the same 
direction, R and T respectively give the fractions of the incident energy 
that are reflected and transmitted. Note that R + T = 1 as required by 
energy conservation. 

4042 

A waveguide is made of two perfectly conducting coaxial cylinders 
with the radiation propagating in the space between them. Show that it 
is possible to have a mode in which both the electric and magnetic fields 
are perpendicular to the axis of the cylinders. Is there a cutoff frequency 
for this mode? Calculate the velocity of propagation of this mode and the 
time-averaged power flow along the line. 

(Columbia) 

Solution: 
Take a coordinate system with the z-axis along the axis of the cylinder 

and for simplicity take the region between the cylinders as free space. As 
was shown in the solution of Problem 4041, it is possible to obtain solu- 
tions of the wave equation which have Ed = 8, = 0 without the other 
components being identically zero. Hence it is possible to have TEM waves 
propagating in the space between the 
waves can be represented as 

cylinders. Furthermore, the TEM 

B = A e i ( k z - 4  ee , rc 

where A is a constant and k is a real number equal to y .  Thus there is no 
cutoff frequency for the TEM waves and the phase velocity of the wave8 is 
C. 

The Poynting vector averaged over one period is 

  EX b H ) =  z ( ( E + E ' ) x ( H + H ' ) )  1 

1 - ( ( E x H ) + ( E '  x H ' ) + ( E x H ' ) + ( E '  x H)) 
4 
1 1 
- E x H ' = - E x B ' ,  
2 2/40 



where we have used the fact that E x H and E' x H' vanish on averaging 
over one cycle. Thus 

(N)= 1 6 - e z .  €0 A2 
Z po r2 

The average power flow is then l (N)2nrdr = 6 n A ' l n  (:) 
where a and b (6 > a) are the radii of the two cylinders. 

4043 

A transmission line consists of two parallel conductors of arbitrary but 
constant cross-sections. Current flows down one conductor and returns by 
way of the other. The conductors are immersed in an insulating medium 
of dielectric constant E and permeability p,  as shown in Fig. 4.18. 

(a) Derive wave equations for the E and B fields in the medium for 
waves propagating in the z direction. 

(b) Obtain the speed of propagation of the waves. 
(c) Under what conditions can one define a voltage between the two 

conductors? (Note: to define a voltage all the points on a given plane 
I = constant on one conductor must be on an equipotential. Those on the 
other conductor may be on another equipotential.) 

(Princeton) 

Solution: 
(a) From Maxwell's equations for a source-free medium, 
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we obtain 
a 82 E 
81 a t 2  

V x (V x E) = - -V x B = - P E - .  

As 
v x (V x E) = V(V . E) - V ~ E  = -VE, 

we have 

The same wave equation applies to B. For a transmiasion line the 
waves can be taken to  be purely transverse (TEM). We can write 

The wave equation then becomes 

(b) The phase velocity u of the waves is obtained from the wave equa- 
tion: 

1 
? = P a ,  
V 

or 

(c) The required condition is X i> I ,  1 being the dimension of the 
transverse cross-section of the conductors. 

4044 

The spectral lines from an atom in a magnetic field.are split. In the 

(a) unpolarized, (b) linearly polarized, (c) circularly polarized. 
direction of the field the higher frequency light is: 

(CCT) 
Solution: 

The answer is (c). 
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4045 
To go through the ionosphere an electromagnetic wave should have a 

frequency of at  least 
10, 104, 107, 109 R ~ .  

(Columbia) 

Solution: 
To go through the ionosphere, the angular frquency w of a wave should 

be greater than the plasma frequency wp = $$. The maximum electron 

density of a typical layer is N - 1013 m-3. For an electron, 2 = 3 x 
lo3 m3s-2. Hence 

wp = I/- 1.7 x 10" s- ' .  

Thus the answer is lo7 Hz. 

4. ELECTROMAGNETIC RADIATION AND RADIATING 
SYSTEMS (4046-4067) 

4046 
A measuring device is disturbed by the following influences. How would 

(a) High frequency electric fields. 
(b) Low frequency electric fields. 
(c) High frequecy magnetic fields. 
(d) Low frequency magnetic fields. 
(e) D.C. magnetic fields. 

you separately protect the device from each one? 

( Wisconsin) 

Solution: 
(a), (c) High frequency electric and magnetic fields usually come t+ 

gether in the form of electromagnetic radiation. To protect a measuring 
device from it, the former is enclosed in a grounded shell made of a good 
conductor. 
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(b) The same protection as in (a) can be used. The thickness of the 

(d), (e) Enclose the device in a shell made of pmeta l  (a Ni-Fe alloy 
conductor should be a t  least a few times the depth of penetration. 

containing Mo, Cu, Si) or, even better, of a superconductor. 

4047 
(a) What is the rate of energy radiation per unit area from each side 

of a thin uniform alternating current sheet? 
(b) Show what effective radiation resistance in ohms is acting on a 

square area of this current sheet. 
(c) Find the force per unit area on each side of the current sheet (due 

to the radiation) for a surface current density of 1000 amperes per unit 
length. 

Soh tion: 
( Wisconsin) 

(a) Take the y-axis along the current and the z-axis perpendicular to 
the current sheet as shown in Fig. 4.19. Let the current per unit width be 
a = cre-iwl ey. Consider a unit square area with sides parallel to the z and 
y axes. A t  large distances from the current sheet, the current in the area 
may be considered as a Hertzian dipole of dipole moment p given by 

eY * 
1; = Lye-iwt 

I 

t 

X 

Fig. 4.19 

Hence the power radiated, averaged over one period, from unit area of the 
sheet is 
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As the thickness 6 is very small, the radiation is emitted mainly from the 
top and bottom surfaces of the area so that the power radiated per unit 
area from each side of the thin sheet is 

P a2w2 --- - 
2 24n&o$ * 

(b) The average power is related to the amplitude of the ac, I, by 

1 P = - P R ,  2 

where R is the resistance. Hence the effective radiation resistance per unit 
area 

2P w2 
0 2  6rsoc3 * 

(c) Electromagnetic radiation of energy density U carries a momentum 
5. Hence the loss of momentum per unit time per unit area of one surface 
of the sheet is g. Momentum conservation requires a pressure exerting on 
the sheet of the same amount: 

R = - = -  

P a2w2 F = - = -  

Taking the frequency of the alternating current as f = 50 Hz and with 
a = 1000 A, € 0  = 8.85 x 

2~ 2 4 ~ ~ 0 ~ ~ '  

F/m, we have 

4048 

Radio station WGBH-FM radiates a power of 100 kW at about 90 MHz 
from its antenna on Great Blue Hill, approximately 20 km from M.I.T. 
Obtain a rough estimate of the strength of its electric field at M.I.T. in 
volts per centimeter. 

W I T )  
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Solution: 
The intensity of electromagnetic radiation is given by (N), N being 

the magnitude of the Poynting vector. For plane electromagnetic waves, 
this becomes 

1 
2 

I = - & ~ E : c .  

The total power radiated is then P = 4?rR21 = 2x~ocR'Eg where R is 
the distance from the antenna. Hence the amplitude of the electric field at 
M.I.T. is 

P 105 
Eo = ( 2 1 r ~ ~ c R ' )  # = ( 2 x  x 8.85 x 1O-l2  x 3 x loa x (2 x 104)2 

= 1.2 x 1 0 - ~  V/m. 

4049 

An oscillating electric dipole P(t) develops radiation fields 

B(r,t) = -- 
E(r,t) = -ce, x B(r,t) , 

(a) A charge q at  the origin is driven by a linearly polarized electromag- 
netic wave of angular frequency w and electric field amplitude Eo. Obtain 
in vector form the radiated eletromagnetic fields. 

(b) Sketch the directions of E and B at a field position r. Describe the 
atate of polarization of the radiated fields. 

(c) Find the angular dependence of the radiation intensity in terms of 
the spherical angles B and 4, where the z-axis is the direction of propagation 
of the incident wave and the 1: axis is the direction of polarization of the 
incident wave. 

(UC, Berkeley) 

Solution: 
(a) For an oscillating charge of low speed we can neglect the influence 

of the magnetic field of the incident radiation. Then the equation of the 
motion of the charge q ,  of mass m, in the field of the incident wave is 

mz = qEoe-iW' . 
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The charge will oscillate with the same frequency: 2 = xoe-iwt.  Hence the 
displacement of the charge is 

This gives rise to an electric dipole of moment 

where k = we have 

e r  x EO 9 
h q 2  e i (kr-wt )  B(r,t) = -- 4anirc 
n 

e r  x (er x Eo) Iraq' e i (kr-wt )  E(r,t) = - 
4amr 

(b) The directions of E and B are as shown in Fig. 4.20, i.e., E is in 
the plane of P and rl  and B is perpendicular to it. Thus the radiation 
emitted is linearly polarized. 

X 

f 

Y 

Fig. 4.20 
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(c) As e, = (cos C$ cos 8, cos +sin 8, - sin 4) in spherical coordinates, 

e, x e, = cos 8 cos 4eb  - sin 4ee . 

The average Poynting vector is 

1 1 
2 2/10 

(N) = -Re(E* x H ) =  -Ele[-c(e, x B') x B]. 

AS e, B = 0, e r  x Eo = Eo(e, x ez), the average radiation intensity is 

4050 

A massive atom with an atomic polarizability a ( w )  is subjected to  an 
electromagnetic field (the atom being located at the origin) 

E = Eoei(C'-Ut) e2 

Find the asymptotic electric and magnetic fields radiated by the atom and 
calculate the energy radiated per unit solid angle. State any approximations 
used in this calculation, and state when (and why) they will break down as 
w is increased. 

( Wisconsin) 

Solution: 
The atom acts as a Hertzian dipole at the origin with dipole moment 

At a large distance r the asymptotic (radiation) electric and magnetic fields 
radiated by the atom are 

CY EOW 
4nsoc3r 

B(r,t) = -- sin Oe-'wteb , 

CUE OW^ 
E(r,t) = -- sin Oe-iwteg . 

4?reoc2r 



Elcctro magne f i e  Waver 517 

The energy radiated per unit solid angle is (Problem 4049) 

The approximation used is r > A >> I ,  where 1 is the linear dimension of 
the atom and X = 27rc/w. As w is increased, A will decrease and eventually 
become smaller than I ,  thus invalidating the approximation. 

4051 

A radially pulsating charged sphere 
(a) emits electromagnetic radiation 
(b) creates a static magnetic field 
(c) can set a nearby electrified particle into motion. 

Solution: 
The answer is (a). 

4052 

A charge radiates whenever 
(a) it is moving in whatever manner 
(b) it is being accelerated 
(c) it is bound in an atom. 

Solution: 
The answer is (b). 

4053 

Radiation emitted by an antenna has angular distribution characteris- 
tic of dipole radiation when 

(a) the wavelength is long compared with the antenna 
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(b) the wavelength is short compared with the antenna 
(c) the antenna has the appropriate shape. 

Solution: 
The answer is (a). 

4054 

The frequency of a television transmitter is 100 kHz, 1 MHz, 10 MHz, 

(Columbia) 
100 MHz. 

Solution: 
The answer is 100 M H z .  

4055 

A small circuit loop of wire of radius a carries a current i = iocoswt 
(see Fig. 4.21). The loop is located in the zy plane. 

X 

Fig. 4.21 

(a) Calculate the first non-zero multipole moment of the system. 
(b) Give the form of the vector potential for this system for r 4 00, 

calculate the asymptotic electric and magnetic fields, and determine the 
angular distribution of the outgoing radiation. 
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(c) Describe the main features of the radiation pattern. 
(d) Calculate the average power radiated. 

( Wieconsin) 

Solution: 

magnetic dipole moment 
(a) The first non-zero multipole moment of the small circuit loop is its 

m = m 2 i o  cos(wt)e, = na2io (e-iw')ez . 
(b) Use spherical coordinates with the origin at the center of the loop. 

The vector potential at  a point r = (r, 8 ,  4) for r -, 00 is 

ikpoe' kr 
A(r,t) = - e x m .  

4 s r  

where k = z, As e, = fcos8, -sin@, 0 )  we have 

whence the radiation field vectors are 

The average Poynting vector at r is (Problem 4042) 

1 C 
(N) = -Re(E' x H) = -Re{(B x e,) x B} 

2 2PO 
4 4.2 C = - I B I ~ ~ ,  = ''OW a '0 sin'oe, . 

2PO 32C3r2 

The average power radiated per unit solid angle is then 

(c) The radiated energy is distributed according to sin2&. In the plane 
0 = 90' the radiation is most strong, and there is no radiation along the 
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axis of the loop (0 = 0' or 180°), as illustrated in Fig. 4.22 where the 
length of a vector a t  8 is proportion4 to the radiation per unit solid angle 
per unit time in that direction. The actual angular distribution is given by 
the surface obtained by rotating the curve about the z-axis. 

Fig. 4.22 

(d) The average radiated power is 

4056 

As in Fig. 4.23, a current-fed antenna is operated in the A/4 mode 
(a = A/4). Find the pattern (angular distribution) of the radiated power. 

(Chicago) 

coaxial coble i 
Y 

Fig. 4.23 
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Soh t ion: 
As I - X the antenna cannot be treated as a dipole. In the X/4 mode, 

o = a and the current is in the form of a stationary wave with nodes at 
the ends of the antenna, i.e., 

Z ( z , t ' )  = locos (: - - , ) , - i w t I .  

The vector potential at a point r is given by 

At a large distance r, 
r x ro - Z' cose , 

where ro is the distance from the centre of the antenna. Then 

where k = %, and 

neglecting terms of order 4. Hence 
r D  

Using 
ear 

ea2cos(bx)dx = - [u cos(bt) + bsin(bc)] , J a2 + b2 
we have 
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In spherical coordinates we have 

e, = (cose, -sine,  0 ) ,  

80 that 
A = Ae, = AcosBer - Asinflee = Are ,  + Aeee, 

neglecting the second term which varies as rO2 as we are interested only in 
the radiation field which varies as r;'. Thus 

cos(; zOei(+wt) B = B 9 = i - .  
2n sine TO 

The intensity averaged over one cycle is then (Problem 4049) 

Hence the radiated power per unit solid angle is 

which has an angular distribution given by 

cos2( f cos e) 
sin2 e 

4057 

(a) What is the average power radiated by an electric current element 
of magnitude I l ,  where the length 1 of the element is very short compared 
with the wavelength of the radiation and I is varying as cos(wt)? 

(b) In Fig. 4.24 if we now identify the z y  plane with the surface of the 
earth (regarded as a perfect conductor a t  A), what is the average power 
radiated? 
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(c) What is the optimal height for maximum radiated power, and the 

(Princeton) 
corresponding gain in power radiated due to the ground plane? 

Soh t ion: 
(a) The system can be considered as a Hertzian dipole of moment 

= poe-iwt' such that p = -iwp - - Zoe'iWt' 1. The average radiated power 
is 

$f I 0 Y 

X 
P' 

Fig. 4.24 

(b) If the earth is regarded as a perfect conductor, the induced charges 
on the surface of the earth are such that their effect can be replaced by 
that of an image dipole p' as shown in Fig. 4.24 provided w is not too 
large, where p' = p.  The electromagnetic field at a large distance r is a 
coherent superposition of the fields of these two dipoles i.e., 

&oral = E + E' t Btotd = B + B' . 
The average Poynting vector at r, a distant point M ,  is (Problem 4042) 

1 
or - 

Stotal = S +  s' + - Re [E' x B' + E'* x B] , 

where S, S' are the Poynting vectors at the distant point M due to p and 
p' respectively. The radiation field vectors at r due to a dipole p at the 
origin are 

2PO 

( k X P ) X k  B =  Po wk x P E= 
4mor ' 4r r ' 
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where k has magnitude 2 and tGe direction of r, and 

p = poe -iw:' = poe- iw(t - f )  = poe i (Lr-Wr)  

As 1.1 >> h, we can make the approximation lrll = 1.21 GS 1.1 and write 

Using these we have 

Under the same approximation, r2-PI x 211 cosO. To calculate the radiated 
power we integrate over the half space above the ground: 

4 - 
P = 1 a gtotnl + 2srsin O + rd6 

- - * 1' sin3 0[1 + cos(2kh cos O)]dO 
8r~oC3 0 

Putting p = 2kh, z = COSO in the second term we get 

=A(?- P2 cosp). 

Hence the average power radiated by the system is 

- P = -  ~ i ~ w 2  (i ~ c2 lcsin(+, - cos (%)I}. 
8ss0c3 3 2h2w2 211~ 



Electromagnetic Waves 625 

(c) The optimal height A for maximum radiated power is given by 
dF = 0, or by 

$[,(,--P)] 1 sin/? = o ,  

giving 

or 

sin p 
P 

-3- + 3 c o s P +  PsinP = 0 ,  

(1) 
3P 

3 + 2 '  
t a n @ =  - 

This equation can be solved numerically to find P,  and hence the optimal 
height h = e. At optimal height we have 

3 - p2 

J P 4 + 3 P 2 + 9 '  
cosp = 

so that the maximiim radiated power is 

P m a x  = - 47reoc3 - 3 + (p' + 3p2 + 9)- f I " - 

with /3 given by Eq. (1). 
For megahertz waves, X - 

h g A, or P = % = 
and the average power radiated is 

= 300 m. So we can usually assume 
<< 1. For such waves, (1) is identically satisfied 

4058 

A thin linear antenna of length d is excited in such a way that the si- 
nusoidal current makes a full wavelength of oscillation as shown in Fig. 4.25 
(frequency w = S r c / d ) .  
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? 

t 

n 

Fig. 4.25 

(a) Calculate exactly the power radiated per unit solid angle and plot 

(b) Compare your result of (a) with those obtained from a multipole 
the angular distribution as a function of 0.  

expansion. 

Soh t ion: 
(MITI 

The retarded vector potential A(r, t )  is given by 

where r' = dr2 - 2rz'cos(j+ 212, k = 9 = 2it = g. 
As we are only interested in the radiation field, which varies as !, 

we shall ignore terms of orders higher than 5. Accordingly, we use the 
approximations 

A e  

J(r  - t' cos8)2 + zl2sinZ8 M r - zlco80 I 

1 1  
r' r 
- = -  
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and write 

(a) Integration yields (cf. Problem 4056) 

Defining k = ke, and with e, = (cos 8, - sin 8, 0) in spherical coordinates, 
we have 

From Maxwell's equation V x H = D, or 

k = i -E,  
C 

we find 
k 
k 

E = -c- x B = cB x er . 

Hence the average Poynting vector is (Problem 4042) 

and the power radiated per unit solid angle is 
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In the formula the factor d f i  is the characteristic impedance of elec- 
tromagnetic waves in vacuum. The curve of versus 0 is sketched in 
Fig. 4.26. 

Problems d Soluiions on Eleclromagnefirm 

dP 

Fig. 4.26 

(b) If we had used multipole expansion, we would have 

neglecting terms of order (5)’ and higher in the expansion of exp(ikz’ cos 0). 
Then 

B = -ik x A = !!!?!!ei(wt-kr) c o s a e , ,  2 r  
giving 

The vs. 0 curve is showii in Fig. 4.27. 

d!? dn 

t 

Fig. 4.27 
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Comparing the two figures we see that the multipole expansion method 
gives good approximation only in the neighborhood of i. 

4059 

Consider the situation shown in Fig. 4.28 where a perfectly conducting 
thin wire connects two small metallic balls. Suppose the charge density is 
given by 

p(x,  1 )  = [b(z - a) - 6 ( z  + a)]b(t)6(y)Q cos(wot). 

The current flows between the metallic balls through the thin wire. a, Q 
and wo are constants. 

(a) Calculate $, the average power emitted per unit solid angle in the 
dipole approximation. 

(b) When is the dipole approximation valid? 

(c) Calculate $ exactly. 
(Columbia) 

Fig. 4.28 

Solution: 
(a) The moment of the dipole is p = 2Qacos(wot)e,, or the real part 

of 2Qae-iwoie,. The average power per unit solid angle at R, as shown in 
Fig. 4.29, is 
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Fig. 4.29 

(b) The dipole approximation is valid if R >> X >> a. 

(c) A current flows through the wire connecting the two small metallic 
balls of density 

and produces a vector potential 

where 1' = t - %, r = x - x', and V is the region occupied by the current 
distribution. Thus 

where ko = y .  Let R = 1x1, then r2 = R2 - 2Rt'cosO + zt2, as shown in 
Fig. 4.29. Hence 

. lLoWOQe-~wot  a eiko\/R2+~'a-2Rr'cosB 
A ( x , t )  = --I dx'e, . 4?r La dR2 -+ zt2 - 2Rz' cost? 
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This is the exact solution. To find the integral analytically, we m u m e  R > 
a and use the approximation , d R 2  + 1'2 - 2 R 2  cos 8 w R - z' COB 8. 
Then 

w 

In spherical coordinates, e, = c o s e e ~  - sin8ee. We can then write A = 
A R ~ R  + Aces with AR, Ae independent of the angle 9. 

The magnetic field is given by 

As we are only interested in the radiation field which varies ae k, we can 
neglect the second differential on the right-hand side. Hence 

1 a( RAe) kOQei(kOR-W1) sin(ka cos 0) sin 8 B+ w -- = - 
R a R  ~ T E O C R  cos e , 

so that 

and finally 
- = wiQa sinZ8sina(kacos8) dF 

If the condition A > a is also satisfied, then sin(ka cos0) = ka case and the 
above expression reduces to that for the dipole approximation. 

-- 
ds2 R-' 8T2eoc cos2 e 

4060 

Two equal point charges +q oscillate along the z-axis with their posi- 
tions given by 
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The radiation field is observed a t  a position r with respect to the origin 
(Fig. 4.30). Assume that 1.1 >> X >> Z O ,  where A is the wavelength of the 
emitted radiation. 

(a) Find the electric field E and magnetic field B. 
(b) Compute the power radiated per unit solid angle in the direction 

(c) What is the total radiated power? How does the dependence on w 

of r. 

compare to that for dipole radiation? 
(MIT) 

Solution: 
(a) As 1.1 >> X >> z O ,  multipole expansion may be used to calculate 

the electromagnetic field. For the radiation field we need to consider only 
components which vary as b. The electric dipole moment of the system is 

Hence the dipole field is zero. 

t' 

Y 

X 

Fig. 4.30 

The vector potential of the electric quadrupole radiation field is given 
bY 

A(r, t )  = -E e-iW" /(k -r')r'pdV' , 4n 2r 

where 
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Hence the magnetic induction is 

Aa 
r = re, , r' = fto(e,  cos e - e g  sin 8) 

in spherical coordinates, we have 

Then using Maxwell's equations V x H = D or 

we find 

sin 8 c- ee'(kr-W') ee  . i lro w3r;q E=-- 
4r rc 

Actually E and B are given by the real parts of the above expressions. 
(b) The average Poynting vector is 

1 (N) = - Re(E x B') 
2P0 

80 the average power radiated per unit solid angle is 

(c) The total radiated power is 
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The total radiated power varies as w 6  for electric quadrupole radiation, and 
as w4 for electric dipole radiation. 

4061 

Two point charges of charge e are located at  the ends of a line of 
length 21 that rotates with a constant angular velocity w / 2  about an axie 
perpendicular to the line and through its center as shown in Fig. 4.31. 

(a) Find (1) the electric dipole moment, (2) the magnetic dipole m e  
ment, (3) the electric quadrupole moment. 

(b) What type of radiation is emitted by this system? What is the 
frequency? 

(c) Suppose the radiation is observed far from the charges at an angle 
8 relative to  the axis of rotation. What is the polarization for 0 = Oo, 90°, 

(Princeton) 
o e goo? 

Y 

V 

Fig. 4.31 

Solution: 
(a) (1) The electric dipole moment is 

P = er; + eri = 0 

(2) The magnetic dipole moment is 

which is constant. 
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(3) The position vectors of the two point charges are 

The electric quadrupole moment tensor has components given by 

where t" = Ir:12 = & I 2  = 1 2 .  
Thus the non-zero components are 

8 1 1  = e12[1 + 3 cos(wt')], 

Q12 = Q21 = 3e12 sin(wt') , 
Q22 = e12[1 - 3 cos(wt')] . 

(b) Because P = 0 and m is a constant vector, they will not produce 
radiation. Thus the emitted radiation is that of an electric quadrupole with 
frequency w .  

(c) At a point r(r, 0, 'p) far away from the charges the magnetic induc- 
tion of the radiation field is given by 

where k = :er, Q has components Qi = $5: Qijzj. Writing Qij as the 

real parts of 
3 

am er = r(sin cos (p, sin 0 sin p, cos0), we have 

with if = t - 5, or -wlf = kr - wt.  Note in calculating B, we omit term 
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in Qi which are constant in the retarded time t' as they do not contribute 
to emission of radiation. 

(1) For 0 = Oo, Q1 = QZ = 0 giving B = 0 so there is no radiation 
emitted at 8 = 0'. 

(2) For e = goo, - 3 e p e - i ( w t ' - v )  

Q~ cv 3 e / z i e - ' ( ~ t ' - ' ~ >  

e, = (coscp, sin p, 0) , 
80 that the radiation field is given by the real parts of the following: 

AS E: + Ei  = constant, the radiation is circularly polarized. 

e, x Q = - e , Q 2 c o s ~ + e v Q ~ c o s B + e ~ ( Q ~ c o s c p - Q 1 s i n ( p ) s i n ~ ,  so that 
the radiation field is the real parts of the following: 

(3) For 0" < e < goo, 

fj 1'0 w3el2 sin2 e e - i ( w t ' - 2 q )  

87r rc2 z -  

As all the three components of E and B are tirne-dependent, the radiation 
is not polarized. 

4062 
(a) Name the lowest electric rnultipole in the radiation field emitted 

by the following time-varying charge distributions. 
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(1) A uniform charged spherical shell whose radius varies as 

(2) Two identically charged particles moving about a common center 
with constant speed on the opposite sides of a circle. 

(b) A loop with one positive and two negative charges as shown in 
Fig. 4.32 rotates with angular velocity w about an axis through the cen- 
ter and perpendicular to the loop. What is the frequency of its electric 
quadrupole radiation? 

W I T )  

i 

Fig. 4.32 

Solution: 
(a) (1) For a uniformly charged spherical shell, on account of the spher- 

ical symmetry, 
P = D = O .  

Hence all the electric multipole moments are zero. 
(2) Take coordinates as shown in Fig. 4.33 and let the line joining the 

charged particles be rotating about the z-axis with angular speed w .  The 
radius vectors of the two particles are then 

r{ = Rcos(wt)e, + Rsin(wt)e,, , 
rk = -[Rcos(wt)e, + Rsin(wt)e,] , 
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Y 

t 

Fig. 4.33 

The electric dipole moment of the system is 

P = q(r{ + ri) = 0. 

The components of the electric quadrupole moment are given by 

where rI2 = R2 = x',~ + x';" + xL2. Thus 

Q1 = 2q R2[2 cos2(wt) - sin2(wt)] ) 
9 2 2  = 2qR2[2sin2(wt) - cos2(wt)], 

Q 3 3  = -2qR2 , 
Q12 = Q21 = 3qR2sin(2wt), 

9 1 3  = Q 3 1  = Q 2 3  = Q 3 2  = 0 * 

Hence the lowest electric multiyole is a quadrupole. 

vectors of the three point charges are as follows: 

q1 = q: ri = Rcos(wt)e, + Rsin(wt)ey 

92 = -9: 

(b) Take fixed coordinates as shown in Fig. 4.32. Then the position 

ri = Rcos 

( T) ( 3 qs= -9: r$ = Rcos wt+  - e, + Rsin w t +  - e,,. 
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To determine the frequency of the quadrupole radiation, we only have to 
find a component of the quadrupole moment of the charge system, for 
example 

qi cos(wt) sin(wt) + 42 cos 

+ q3 cos (wt + $) sin (wt  + F)] 
= 9 [ sin(2ot) - sin (2wt + $) - sin ( h t  + $) ] . 

2 
Thus the frequency of the quadrupole radiation is 2w. 

4063 
An electric dipole oscillates with a frequency w and amplitude Po. I t  

is placed at a distant a/2 from an infinite perfectly conducting plane and 
the dipole is parallel to the plane. Find the electromagnetic field and the 
time-averaged angular distribution of the emitted radiation for distances 
r > A .  

(Princeion) 

Solution: 
Use Cartesian coordinates as shown in Fig. 4.34. The action of the 

conducting plane on the t > 0 space is equivalent to that of an image 
dipole at (-+, 0, 0) of moment 

P' = -P = -poe-iw'e,. 

Fig. 4.34 
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The vector potential at a point r is 

As we are only interested in the radiation field which dominates at r > a, 
we use the approximation 

e,, ee, eV being the unit vectors in spherical coordinates. 
e, sin 8 cos cp + ee cos 0 cos cp - eV sin cp, we have 

As e, = 

a 
2 

2 

P I  = r -  - s in8cospl  

r2 x r +  -sinBcos(g, 
a 

and 

In spherical coordinates 

e, = er cos8 - ee sin 8 .  

To obtain B = V x A, we neglect terms of orders higher than and obtain 

ev 6 
r ar 

B(r, t )  rz - - ( r A e )  

i w 2  pOei (k r -wt )  - - 
27rcoc3r 
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The associated electric field intensity is 

E(r,t) = CB x er 
iw2p i(kr -wt)  

27r~oc2r 
0e 

7s 

The average Poynting vector is 

The angular distribution of the radiation is therefore given by 
- 

(:a sin o cos 'p 
dF S w4 PO2 sin2 6 sin2 
dfl - r-2 - W E ~ ~ ~  
---- 

If h > a, then sin( !a sin 0 cos 'p) sz $asin B cos Q and we have the approxi- 
mate expression 

dF w6 pia2 sin4 8 cos2 Q - 
dfl sz 32r2Eoc5 

4064 

A small electric dipole of dipole moment P and oscillating with fre- 
quency u is placed at  height h / 2  above an infinite perfectly conducting 
plane, as shown in Fig. 4.35, where h is the wavelength corresponding to 
the frequency u. The dipole points in the positive t-direction, which is 
normal to the plane, regarded as the zy-plane. The size of the dipole is 
assumed very small compared with A. Find expressions for the electric and 
magnetic fields, and for the flux of energy at distances r very large c o n  
pared with h as a function of r and the unit vector n in the direction from 
the origin to the point of observation. 

(UC, Berkeley) 

Solution: 
The effect of the conducting plane is equivalent to an image dipole of 

moment P' = -P = -Poe-iw* e, , where w = 2 w ,  at t = - 5 .  Consider a x 
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point of observation M of position vector r (r, 8, 'p) and let the Kitan- 
from P and P' to point M be rl and r2 respectively. For r > A we have 

rl xr- - cos8, 

r z x r + T c o s O .  

x 
2 
x 
2 

z 

Fig. 4.35 

Using the solution of Problem 4063 with 'p = 0, a = X and noting that 
k A  = 27r, we have 

iw2p i ( k r - a t )  
sin 8 sin(7r cos 8)e, , oe B(r,t)  = 

27rsoc3r 

E(r,t) = cB x 11 

jW2poei (kr-wt)  
M sin 8 sin( 7r cos 8)ee , 

27reoc2r 
and the average energy flux density (Problem 4011) 

where w = 27rv. 

4065 
Two electric dipole oscillators vibrate with the same frequency w , but 

their phases differ by 5.  The amplitudes of the dipole moments are both 



Electromagnetic Waver 543 

equal to Po, but the two vectors are at an angle $0 to each other, (let P1 be 
along the z-axis and P3 in the EY plane) as in Fig. 4.36. For an oscillating 
dipole P at the origin, the B-field in the radiation zone is given by 

Find (a) the average angular distribution, and (b) the average total intensity 
of the emitted radiation in the radiation zone. 

(S UNY, Bufulo) 

z 
t 

Fig. 4.3G 

Solution: 
The electric dipole moments of the two oscillators are 

The dipole moment of the whole system is 

P = P1 +P) 

and the magnetic field in Gaussian units is given by 

1 
r B = k2-eikr(er x P) . 

As 

e, = e, sin 8 cos p + ee cos B cos p - e,,, sinp , 
ey = e, sin Bsin 'p + eg cos8sin p + eq coa (p, 
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ei4 = j ,  

we have 

e, x p1 = Poe-iu'(e, cos B cos 'p + ee sin p) , 
er x PZ = ipoe-'"' [e9 c a ( p  - $0) cos 8 + ee sin(cp - $011 , 

80 that 
k2 Po 

r 
B = - {[sin 9 + isin(9 - $o)]ee 

(a) The average power per unit solid angle is then 

P;k4c 
8r 

- -- ( 2  - sin' q C d  p + cos2('p - t/)O)]} . 

(b) The average total power of the emitted radiation is 

1" dp 1% sin 6dB = -k 2 4  Po 2 c . dR 3 

4066 

A system of N atoms with electric polarizability a is located along the 
z-axis as shown in Fig. 4.37. The separation between the atoms is a. The 
system is illuminated with plane polarized light traveling in +z direction 
with the electric field along the z-axis, viz. 

E = (0, 0, &,ei(kz-Wtf ) *  

Fig. 4.37 
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(a) Calculate the angular distribution of the radiated power that would 
be measured by a detector located far from the atoms (r > A and r > Na). 
Express the result as a function of the polar and azimuth angles f? and 
shown in the figure. 

(b) Calculate and sketch the B dependence of the radiated power in 
the yz plane. Excluding the trivial case E = 0, find the conditions for no 
radiated power in the y r  plane. 

dependence of the radiated 
power in the xy plane and sketch the dependence for the case ka > 1. 

(c) Compute a general expression for the 

W I T )  
Solution: 

(a) The position of the rn-th atom is 

xm = (ma, 0, 0). 

Under the illumination of the plane wave, its dipole moment is 

The vector potential produced by the N atoms is 

For r >> A,  r >> N u ,  we approximate 

rm % r - masinflcosp, 

Then 



616 Problem. tY Solvtionr 0s E~cciromognctirm 

To find the radiation field we need to retain in B = V x A only terms - i. 
Hence, according to Problem 4063, we have 

l a  B(r, t )  = - - -(rA sin B)e, 
r ar 

Using the identity 

we find the average Poynting vector of the radiation as 

w4a2  Et  sin2 0 sin2[iNka( 1 - sin 0 COB cp)) 
32r2€09r2 sin2[ika( 1 - sin 0 cos cp) ]  

e r  - - - 

The angular distribution is given by the average power radiated per unit 
solid angle 

dF 
dfl 32r2€o$ sinz[ika( 1 - sin 0 cos cp)]  

w 4 a 2  Ei sin2 0 sin2[iNka( 1 - sin 8 COB p)] - =  

(b) In the yz plane cp = goo, coscp = 0, the angular distribution of the 
radiation is given by 

sin2[3Nka] 
sin2( gka) 

- sin2 8,  dF - dQ O( sin2 e 

which is shown in Fig. 4.38. 

Fig. 4.38 
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- 
For 
in the y r  plane is 

= 0, we require sin( 4Nka) = 0, i.e. the condition for no radiation 

1 - N k a = n n  n = 0 ,  1 , 2  ,.... 
2 

(c) In zy plane 8 = 90°, sin0 = 1, the angular distribution is given by 

sin2[iNka(l - coscp)] - sinZ[Nkasinz f ]  dF 
dfl sin2[&ka(l - cosy)] sin’[kasin’ $1 o< - - 

As lim el = d(z) ,  we have 
k-rm 

Hence, for ka > 1 the angular distribution of the radiation in the zy plane 
is isotropic, i.e. the distribution is a circle as illustrated in Fig. 4.39. 

Y 

Fig. 4.39 

4067 

A complicated charge distribution rotates rigidly about a fixed axia 
with angular velocity wo. No point in the distribution is further than a 
distance d from the axis. The motion is non-relativistic, i.e. wod < c (see 
Fig. 4.40.) 

(a) What frequencies of electromagnetic radiation may be seen by an 
observer at a distance r > d? 
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(b) Give an order of magnitude estimate of the relative amount of 
power radiated a t  each frequency (averaged over both time and angle of 
observation). 

(MITI 

Fig. 4.40 

Solution: 

As can be seen from Fig. 4.40, d is the distance far away from the axis 
of rotation of the system with v = wod << c, so the radiation of this system 
can be considered as a multipole radiation. 

Let C ( x l  y,  t) be the observer's frame and C'(Z', y', z') a frame fixed 
on the system. The radius vector of a point in the distribution may be 
expressed as 

€ = rel. + ye, + ze, = x'e; + y'e; + t'e: (1) 

in the C and C' frames. We take the axis of rotation as the common z-axis 
of the two frames and that at 1 = 0 the E'- and x-axes, the y'- and y-axes 
coincide. We then have the transformation equations 

E = x' cos(wot) - y' sin(wo1) , 

t = 2. 
y = z'sin(w0t) + y'cos(w0t) , (2) 

We can now find the electric dipole moment P(t), electric quadrupole mo- 
ment D(1) and magnetic dipole moment m(t) in the C frame. The electric 
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dipole moment is 
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= [PL, cos(w0t) - Pi, sin(wot)]e, + [Pil sin(w0t) 

+ Pit cos(wot)]ey + PlreZ , (3) 

where Pi , ,  Pi, and Pi, are the t, y and z components of the electric dipole 
moment in the C' frame in which the charge distribution is at rest. Eq. (3) 
shows that P ( t )  oscillates with the frequency WO. Hence the electric dipole 
radiation is a monochromatic radiation of angular frequency W O .  

As the angular velocity W O  is a constant, the rotation of the charge 
system produces a stable current only. Hence the magnetic dipole moment 
of the system, m, is a constant vector, independent of time. Therefore no 
magnetic dipole radiation, which is o( in, is emitted. 

For the electric quadrupole moment D(t), the components are given 
bY 

For example, 

0 1 2  = D21 = 3 pxydV J 
= 3 p[t' cos(wot) - y' sin(wot)] [z'sin(wot) + y' cos(wot)]dV J 

- yt2)sin(2wot) + t'y'cos(2wot) d ~ .  1 
In the C' frame the quadrupole components are 

Di2 D&,, = 3 1 pz'y'dV , 
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= 3 p ( x P  - z52)dV.  J 
Note that under the rotation the charge element pdV does not change. 
Thus 

D12 = DZl = - 2 Oi2 sin(2wot) + Di2 cos(2w0t). (4) 

Similarly, we have 

0 1 3  = 0 3 1  = 3 p z r d V  = 3 p[x'cos(wot) - y'sin(wot)]z'dV J J 
And other components of D(1) can be similarly obtained. It is seen from 
Eq. (4) and Eq. ( 5 )  that the electric quadrupole radiation is a mixture of 
two monochromatic angular frequencies wo and 2w0. 

In short, Eqs. (3), (4) and ( 5 )  show that the frequencies of electre 
magnetic radiation of the system are wo (electric dipole radiation, which is 
dominant) and L o  (electric quadrupole radiation). 

The fields of the successive multipole radiations are reduced in magni- 
tude by a factor Ad = . y d .  So the electric quadrupole radiation is weaker 
than the electric dipole radiation by a factor ( y d ) 2 .  
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1. THE LORENTZ TRANSFORMATION (5001-5017) 

5001 
The radar speed trap operates on a frequency of lo9 Hz. What is 

the beat frequency between the transmitted signal and one received after 
reflection from a car moving at 30 m/sec? 

( Wisconsin) 

Solution: 
Suppose the car is moving towards the radar with velocity u.  Let the 

radar frequency be vo and the frequency of the signal as received by the car 
be v1. The situation is the same as if the car were stationary and the radar 
moved toward it with velocity u. Hence the relativistic Doppler effect gives 

correct to the first power of v / c .  Now the car acts like a source of frequency 
v1, so the frequency of the reflected signal as received by the radar (also 
correct to the first power of u / c )  is 

Thus the beat frequency is 

The result is the same if we had assumed the car to be moving away from 
the stationary radar. For then we would have to replace u by --v in the 
above and obtain vo - v2 vo %. 

5002 
A plane monochromatic electromagnetic wave propagating in free space 

is incident normally on the plane of the surface of a medium of index of 
refraction n. Relative to stationary observer, the electric field of the incident 
wave is given by the real part of E:ei(kz-’”t), where z is the coordinate along 
the normal to the surface. Obtain the frequency of the reflected wave in 
the case that the medium and its surface are moving with velocity u along 
the positive z direction, with respect to the observer. 

( S U N  Y, Buflalo) 

553 
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Solution: 
Let the observer's frame and a frame fixed on the moving medium be 

C and C' respectively. C' moves with velocity u relative to C along the 
z direction. Let the propagation four-vectors of the incident and reflected 
waves in C and C' be respectively 

W W 2  
ki = (0, 0, k) -), kr = ( O , O ,  -h, -) 

C C 

k; = (0, 0 ,  k', W' -)) k; = (0, 0) -g, w1, -) , 
C C 

w' where k = t, k2 = 7 ,  k' = $, ki = +. 
Lorentz transformation for a four-vector gives 

with p = f ,  7 = (1 - p2)-h. 
In Z', no change of frequency occurs on reflection, i.e., w i  = w'. Hence 

being the angular frequency of the reflected wave as observed by the ob- 
server. 

5003 

In the inertial ,frame of the fixed stars, a spaceship travels along the 
z-axis, with z(t )  being its position at time t .  Of course, the velocity u and 
acceleration a in this frame are u = 2 and a = g. Suppose the motion 
to be such that the acceleration as determined by the space passengers 
is constant in time. What this means is the following. At any instant 
we transform to an inertial frame in which the spaceship is momentarily 
at rest. Let g be the acceleration of the spaceship in that frame at that 
instant. Now suppose that g ,  so defined instant by instant, is a constant. 

You are given the constant g. In the fixed star frame the spaceship 
starts with initial velocity u = 0 when t = 0. What is the distance t 
traveled when it has achieved a velocity u? 
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Allow for relativistic kinematics, so that u is not necessarily small 
compared with the speed of light c. 

(CUSPEA) 
Solution: 

Consider two inertial frames C and C' with C' moving with a constant 
velocity u along the x direction relative to C. Let the velocity and acceler- 
ation of an object moving in the z direction be u,  a = %, and u', a' = $$ 
in the two frames respectively. Lorentz transformation gives 

t = 7(t' + pcq ,  ct = y(ct  + px') , 
where p = 3 , ~  = (1-p2)-3. Then the velocity of the object is transformed 
according to 

Differentiating the above, we have 

dt = y (dt' + f d d )  = 7dl ' (  1 + $u') , 

d u' 
du = 

vu' 2 ' r2 (1 + 7)  
whose ratio gives the transformation of acceleration: 

(2) 
a' 

a =  
vu' 3 

Y3 (1 + 7) 

Now assume that C is the inertial frame attached to the fixed stars and C' 
is the inertial frame in which the spaceship is momentarily at rest. Then 
in C' 

and Eqs. (1) and (2) give 

u' = 0, a' = g , 

9 u = v ,  a = -  

with 7 = (1 - $) a .  As the velocity of the spaceship is increased from 0 
to u in C, the distance traveled is 

r3 
-1 
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5004 
As observed in an inertial frame S, two spaceships are traveling in op- 

posite directions along straight, parallel trajectories separated by a distance 
d as shown in Fig. 5.1. The speed of each ship is c/2, where c is the speed 
of light. 

(a) At the instant (as viewed from S) when the ships are at the points 
of closest approach (indicated by the dotted line in Fig. 5.1) ship (1) ejects 
a small package which has speed 3c/4 (also as viewed from S). From the 
point of view of an observer in ship ( l ) ,  at  what angle must the package 
be aimed in order to be received by ship (2)? Assume the observer in ship 
(1) has a coordinate system whose axes are parallel to those of S and, as 
shown in Fig. 5.1, the direction of motion is parallel to the y axis. 

(b) What is the speed of the package as seen by the observer in ship 

(CUSPEA) 
(I)? 

Solution: 
(a) In the inertial frame S, the y-component of the velocity of the 

package should be c/2 in order that the package will have the same y 
coordinate as ship (2) as the package passes through the distance Ax = d. 
The velocity of the package in S can be expressed in the form 

u = use, + uyey 
with ug = c/2. As u = IuI = c, 

Let S' be the inertial frame fixed on ship (1). In S' the velocity of the 
package is 

ui = u,e, + uyey . 
S' moves with speed c/2 relative to S along the -y  direction, i.e. the 
velocity of St relative to S is v = -ce,/2. Velocity transformation then 
gives 

I I  I I  

'-L-21=gc' u - - u  - 4 + 4  4 
u -  

y 1 - 3  l + $  
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I I 
I i" I I Y'  

kuf X '  

c-- -  i 

+ d - +  
S 

I c2,Qt 

I 

Fig. 5.1 Fig. 5.2 

Let a' be the angle between the velocity d of the package in S' and the x' 
axis as shown in Fig. 5.2. Then 

(b) In S' the speed of the package is 

5005 
(a) Write down the equations of conservation of momentum and energy 

for the Compton effect (a  photon striking a stationary electron). 
(b) Find the scattered photon's energy for the case of 180' back scat- 

tering. (Assume the recoiling electron proceeds with approximately the 
speed of light.) 

( Wisconsin) 

Solution: 
(a) Conservation of momentum is expressed by the equations 

hv hv' -- - - cos B+ymu co9 'p , 
C C 

hut - sin 0 = ymu sin 'p , 
C 

where B is the angle between the directions of motion of the incident and 
scattered photons, p is that between the incident photon and the recoiling 
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electron, .as shown in Fig. 5.3, m is the rest mass of an electron, p = 3 ,  v 
being the speed of the recoil electron, and 7 = (1 - P2)- 4 .  

Fig. 5.3 

Conservation of energy is expressed by the equation 

hu + mc2 = hu‘ + 7mc2 . 

(b) For back scattering, 6 = ISO”, p = 0”. The above equations reduce 
to 

hu + hu‘ = 7PmcZ , 
hu - hu’ = (y - l)mc2 . 

(1) 

(2) 

(hu + = 72/32m2~4 = (r2 - l)mzc4 . (3) 

Squaring both sides of Eq. (1) we have 

Combining Eqs. (2) and (3), we have 

4h2uu‘ = 2mc2 h(u - u‘) , 

or 
hu hu‘ = - , 

% + 1  

which is the energy of the scattered photon. 

5006 

A charged particle is constrained to move with constant velocity u 
in the c-direction (with y = 90, z = 0 fixed). It moves above an infinite 
perfectly conducting metal sheet that undulates with “wavelength” L along 
the z-direction. A distant observer is located in the z = 0 plane and detects 
the electromagnetic radiation emitted at angle 6 (the angle between the 
velocity vector and a vector drawn from the charge to the observer) as 



Relaiiviiy, Pariiclc-Field Inieraciionr 669 

shown in Fig. 5.4. What is the wavelength A of the radiation detected by 
the observer? 

( Prince ton) 

Fig. 5.4 

Solution: 
The induced charges in the metal sheet will move on the surface of 

the sheet along the general direction of motion of the charged particle. 
The acceleration of the induced charges moving on the undulating surface 
will lead to emission of bremsstrahlung (braking radiation). The radiation 
detected by a distant observer located along the 0 direction is that resulting 
from the constructive interference in that direction. Hence, the wavelength 
of the radiation satisfies the condition 

L L cos e A 
- - -=mc’  v C 

where m is an integer, or 

For m = 1, A1 = L ( t  - cos 0). 
We can also approach the problem by regarding the effect of the metal 

sheet as that of an image charge, which together with the real charge forms 
an oscillating dipole of velocity v = ve, and frequency of vibration fo = t .  
From the formula of Doppler shift the frequency detected by the observer 
is 

and the corresponding wavelength is 

This result is the same as the foregoing X i .  
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5007 

T w o  large parallel plates (non-conducting), separated by a distance d 
and oriented as shown in Fig. 5.5, move together along x-axis with velocity 
u ,  not necessarily small compared with c. The upper and lower plates have 
uniform surface charge densities +a and -u respectively in the rest frame 
of the plates. Find the magnitude and direction of the electric and magnetic 
fields between the plates (neglecting edge effects). 

(Columbia) 

Solution: 
Let the electromagnetic fields be E’, B’ in frame S’ (0 x‘ y’ z‘) where 

the plates are at rest; and be E, B in the laboratory frame S (0 x y 2). 
The field vectors transform according to 

E, = EL, B, = B: , 

Ey = 7 ( E i  + P c B ~ ) ,  By = 7 BI - - Ei , ( 9 
P E, = 7 ( E :  - PcBI),  B, = 7 (B: + ; .;> , 

where p = :, 7 = (1 - P 2 ) - + .  
In the rest frame S‘, 

B:= Bi = Bi = O ,  

so that 
E, = 0 ,  B, = 0 , 

6 ,  Ey = O ,  By = - 
EOC 

, B , = O .  

7P 

E 7 b  
2 -  

E O  
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Hence in the laboratory frame, the electric intensity is in the --z direction 
and has magnitude E, while the magnetic induction is in the +y direction 
and has magnitude 3 u, where 7 = (1 - $)-+. 

5008 

Show that E2 - B2 and E . B are invariant under a Lorentz transfor- 

(UC, Berkeley) 
mation. 

Solution: 
Decompose the electromagnetic field into longitudinal and transverse 

components with respect to the direction of the relative velocity between 
two inertial frames C and C'. In C, we have 

E = E l  + Ell, B = B l  + BII . 

In C', which moves with velocity u relative to C, we have (in Gaussian 
units) 

E; = Ell Bb = BII 

E ; = + + Y x B I ) ,  C 

where 
1 

r =  Jm' 
Thus 

As v is perpendicular to both B l  and E l ,  we have 

(v x B ~ ) .  (V x E ~ )  = U ~ E ~  .B* , 
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so that 
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E/ -B/  = E~~ . B~~ + 7 2 (  1 - $) E~ .B* = Ell . BII + El . Bl = E. B . 

From the expression for E i ,  we have 

and 

Hence 

since E l  v x BJ. = E l  x v . B l  = -Bl v x E l  for a box product. 

mation. Note that in SI units it is E2 - c2B2 that is Lorentz invariant. 
Therefore E2 - B2 and E - B are invariant under a Lorentz transfor- 

5009 
(a) A classical electromagnetic wave satisfies the relations 

E . B = O ,  E ~ = c ~ B ~  

between the electric and magnetic fields. 
satisfied in any one Lorentz frame, are valid in all frames. 

Show that these relations, if 
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(b) If K is a unit three-vector in the direction of propagation of the 
wave, then according to  classical electromagnetism, K E = K B = 0. 
Show that this statement is also invariant under Lorentz transformation 
by showing its equivalence to the manifestly Lorentz invariant statement 
nPFPy = 0, where n” is a four-vector oriented in the direction of propaga- 
tion of the wave and FPy is the field strength tensor. 

Parts (a) and (b) together show that what looks like a light wave in 
one frame looks like one in any frame. 

(c) Consider an electromagnetic wave which in some frame has the 
form 

E, = cB, = f ( d  - Z) , , 
where lim f(z) -+ 0. What would be the values of the fields in a different 

r -bfw 
coordinate system moving with velocity u in the z direction relative to the 
frame in which the fields are as given above? Give an expression for the 
energy and momentum densities of the wave in the original frame and in 
the frame moving with velocity u,  show that the total energy-momentum 
of the wave transforms as a four-vector under the transformation between 
the two frames. (Assume the extent of the wave in the z-y plane is large 
but finite, so that its total energy and momentum are finite.) 

(Princeton) 

Solution: 
(a) It has been shown in Problem 5008 that E . B, E2 - c2B2 are 

Lorentz invariant. Hence in another Lorentz frame C‘ we have 

E’ . B‘ = E . B  = 0, Et2 - c2Bt2 = E2 -c2B2 = 0 , 
i.e. 

E‘ . B’ = 0 ,  El2 = c2Bt2 . 
(b) The electromagnetic field tensor can be represented by the matrix 

0 - c B ~  c B ~  

0 -E3 
-cB1 7 0 * 

F”“ = (::!2 cB1 0 

E2 E3 

Using the electromagnetic wave propagation four-vector K” = ( K 1 ,  K2, 
Ks, $) where K = y ,  we can express nP E K ” .  nPFccv = 0 which is 
then equivalent to KPF,,” = 0. For v = 1, we have 

W + K ~ c B ~  - K3cB2 + ; El = 0 , 



or 
C 

El = K ( B  x K)1 

Similar expressions are obtained for E2 and E3. Hence 

C E = - (B x K) . 
K 

For v = 4, we have 

-K1 El - K2E2 - K3E3 = 0 , 

or 
K - E = O .  

Since nPFPu = 0 is Lorentz covariant, it has the same form in all inertial 
frames. This means that Eqs. (1) and (2) are valid in all inertial frames. 
Now Eq. (1) gives 

(3) 
C2 

K2 E~ = - (B x K) - (B x K) = C ~ B ~  - C ~ ( B  . K ) ~  . 

From (a) we see that if E2 = c2B2 is valid in an inertial frame it is valid in 
all inertial frames. Since this relation is given for one inertial frame, Eq. (3) 
means that the relation K - B = 0 is satisfied in all inertial frames. 

(c) In frame C one has 

E= = f(ct - z), Ey = Ez = 0 , 
1 

B= = 0, By = ; f ( d  - z ) ,  Bz = 0 . 
Suppose a frame C’ moves with velocity u relative to C frame along the 
z-axis. Then Lorentz transformation gives 

B : = . I ( B y - ! E , )  = l ( l - p ) f ( c t - z ) ,  C 
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V where 
p =  - 7 =  ( l - p a ) - ? .  

C 1  

The energy densities in frames C and C' are respectively given by 

Thus 

The momentum density is 

w' = € 0 7 2  (1 - f2[7(l - P )  (d' - z') 1 * 

g=-- - -- - soE x B = eoE,Bye, . E x H  E x B  
C2 C2P0 

Hence the momentum density as seen in C and C' has components 

- 60 2 
g, = gg = 0, gz - 7 f (d - t.1 I 

g; = g; = 0, gr ' = E o 7 Z ( l - p ) 2 f 2 [ 7 ( l - p ) ( d ' - Z r ' ) ] .  
C 

The total energy and the total momentum are 

W = l w d V = ~ ~ l  f 2 ( d - z ) d V ,  

W 
f2(ct  - z)dV = - G, = G, = 0, G, = 2 

C C 

in C and 

W' = L, w'dV' 
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in C'. 
As the wave has finite extension, V and V' must contain the same 

finite number of waves in the direction of propagation, i.e. the z direction. 
As Eq. (4) requires 

dV = 7( 1 - p ) W  , 
W' = ~ ( 1 -  p) W .  

Thus the transformation equations for total energy-momentum are 

That is, (GI %) transforms like a four-vector. 

5010 

An infinitely long perfectly conducting straight wire of radius r carries 
a constant current i and charge density zero as seen by a fixed observer A. 
The current is due to an electron stream of uniform density moving with 
high (relativistic) velocity U. A second observer B travels parallel to the 
wire with high (relativistic) velocity w .  As seen by the observer B: 

(a) What is the electromagnetic field? 
(b) What is the charge density in the wire implied by this field? 
(c) With what velocities do the electron and ion streams move? 
(d) How do you account for the presence of a charge density seen by 

(Princeton) 
B but not by A? 

Solution: 
(a) Let E and C' be the rest frames of the observers A and B r e  

spectively, the common z-axis being along the axis of the conducting wire, 
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which is fixed in C, as shown in Fig. 5.6. In C, p = 0, j = 
electric and magnetic fields in C are respectively 

E=O,  

where e,, %, and ev form an orthogonal system. Lorentz transformation 
gives the electromagnetic field as seen in C' as 

EL = Ell = 0, BL = BII = 0 ,  

E' = E', =  EL + V  x BL) = -~uBE+ = 

and the lengths r and ro where 7 = ** 
transformation. 

the 

4 

I 

Fig. 5.6 

(b) Let the charge density of the wire in E' be p', then the electric field 
produced by p' for r < ro is given by Gauss' law 

2irrE: = p'irr2/so 

to be 

Comparing this with the expression for E' above we have 

where we have used poco = 3. 
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(c) In C the velocity of the electron stream is Ve = -Ue,, while the 
ions are stationary, i.e. vi = 0. Using the Lorentz transformation of velocity 
we have in C‘ 

(6) 
’ u + u  

1 + 7  
v, = -uiT e, , vi = -ues. 

(d) The charge density is zero in C. That is, the positive charges of 
the positive ions are neutralized by the negative charges of the electrons. 
Thus pe + pi = 0, where pe and pi are the charge densities of the electrons 
and ions. As 

p , = - - = - -  
j I 

-U nr$U 

we have 

However, the positive ions are a t  rest in C and do not give rise to a current. 
Hence 

( a ,  p) form a four-vector, so the charge densities of the electrons and ions 
in C’ are respectively 

Obviously, p; + pi # 0, but the sum of p;  and pi is just the charge density 
p’ detected by B. 

5011 
(a) Derive the repulsive force on an electron at  a distance r < a from 

the axis of a cylindrical column of electrons of uniform charge density po 
and radius a.  

(b) An observer in the laboratory sees a beam of circular cross section 
and density p moving at  velocity v .  What force does he see on an electron 
of the beam at distance r < a from the axis? 
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(c) If u is near the velocity of light, what is the force of part (b) as 
seen by an observer moving with the beam? Compare this force with the 
anawer to part (b) and comment. 

(d) If tz = 2 x 1O’O cm-3 and u = 0 .99~  (c = light velocity), what 
gradient of a transverse magnetic field would just hold this beam from 
spreading in one of its dimensions? 

Solution: 
(a) Use cylindrical coordinates with the z-axis along the axis of the 

cylindrical column of electrons. By Gauss’ flux theorem and the symmetry 
we obtain the electric field at  a distance r < a from the axis: 

( Wisconsin) 

e,. (r < a) POP E(r) = - 
2EO 

Thus the force on an electron at that point is 

Note that this is a repulsive force as po itself is negative. 
(b) Let the rest frame of the column of electrons and the laboratory 

frame be C‘ and C respectively with C’ moving with velocity u relative to 
C along the z-axis. By transforming the current-charge density four-vector 
we find p = ypo, where 7 = (1 - $)-+. In C‘ the electric and magnetic 
fields are E’ = !j$ er, B’ = 0. In C, one has 

Thus the force on an electron of the beam at r < a is given by 

n 

v‘ I 

C2 
= -eyE’ + ey - E , 

as v = ve, is perpendicular to El. 
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As there is no transverse Lorentz contraction, r = r'. Hence 

(c) In 2 the force on the electron is 

As 7 > 1, F' > F. Actually, in the rest frame C' only the electric field 
exerts a force on the electron, while in the laboratory frame C, although 
the electric force is larger, there is also a magnetic force acting oppmite in 
direction to the electric force. As a result the total force on the electron is 
smaller as seen in C. 

(d) In C the force on the electron is 

The additional magnetic field Bo necessary 

-ev x Bo + F = 
by 

1.e.. 

to keep it stationary is given 

0, 

As v = ve,, the above requires 

The gradient of the magnetic field is then 

With n = 2 x 10" x lo6 m-3, v = O.ggc, c0 = 8.84 x 
obtain 

C/Vm, we 

I 2 x 1016 x 1.6 x 10-19 
2 x 8.84 x lo-'' x 1--,199z x 0.99 x 3 x 108 

= 0.0121 T/m = 1.21 Gs/cm. 
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5012 

The uniformly distributed charge per unit length in an infinite ion 
beam of constant circular cross section is q. Calculate the force on a single 
beam ion that is located at  radius r, assuming that the beam radius R is 
greater than r and that the ions all have the same velocity u. 

( UC, Berkeley) 

Solution: 
Use cylindrical coordinates with the z-axis along the axis of the ion 

beam such that the flow of the ions is in the +r  direction. Let C' and 
C be the rest frame of the ions and the laboratory frame respectively, the 
former moving with velocity v relative to the latter in the +z direction. The 
charge per unit length in C is q. In C' it is given by q = 7(-) = 7g', or 
q' = q/7, where 7 = (1 - p 2 ) - i ,  p = :. In C' the electronic field is given 
by Gauss' law 27rE: = a t  5 to be 

As the ions are stationary, 
B'=O. 

Transforming to C we have EL = y(EL - v x BL) = TE',, Ell = Eh = 0, 
or 

vx E' VXE' and B l  = ?(By + -+) = y +, Bll = Bil = 0, or 

Note that, as r is transverse to v ,  r' = r. Hence the total force acting on 
an ion of charge Q at distance r < R from the axis in the laboratory frame 
is 

F = QE+ QV x B 
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If v << c, then F = f i e r ,  which is what one would obtain if both the 
charge and the ion beam were stationary. 

5013 
Given a uniform beam of charged particles q / l  charges per unit length, 

moving with velocity u,  uniformly distributed within a circular cylinder of 
radius R. What is the 

(a) electric field E 
(b) magnetic field B 
(c) energy density 
(d) momentum density 

of the field throughout space? 
(UC, Berkeley) 

Solution: 
(a), (b) Referring to Problems 5011 and 5012, we have 

(c) The energy density is 

w = - 1 (EoE' + 1 8') 
2 

(d) The momentum density is 
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5014 
Calculate the net radial force on an individual electron in an infinitely 

long cylindrical beam of relativistic electrons of constant density n moving 
with uniform velocity v. Consider both the electric and magnetic forces. 

( Wisconsin) 

Solution: 
The charge density of the electron beam is p = -en. As shown in 

Problem 5011, the net radial force on an individual electron is 

where 
1 

y =  J-- 

5015 
A perfectly conducting sphere of radius R moves with constant velocity 

v = vez ( u  << c) through a uniform magnetic field B = Be,. Find the 
surface charge density induced on the sphere to lowest order in v / c .  

Solution: 
Let C' and C be the rest frame of the conducting sphere and the 

Iaboratory frame respectively. In C we have B = Be,, E = 0. Transforming 
to C' we have 

( M W  

Ei = Ell = 0, E i  = y(E1 + v  x BI) = yvBe,, 

Hence 
E' = yvBe, , B' = yBe,. 

In the lowest order approximation, 7 = (1 - $)-'Iz = 1, one has 

E' uBe, , B' = Be,.  
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In C' the electric field external to the sphere E' is uniform SO the potential 
outside the sphere is (see Problem 1065) 

cog e , E' R3 
cp' = - E'r cos 0 + - 

rz 
with 0 as shown in Fig. 5.7. 

Z 

Fig. 5.7 

The surface charge density on the conductor is given by the boundary 
condition for D: 

On transforming back to C, as the relative velocity of C' is dong the 2 

direction, the angle B remains unchanged. Hence the surface charge density 
induced on the sphere to lowest order in v/c is 

= yal M u1 = 3&oVB cos e . 

5016 
Let a particle of charge g and rest mass m be released with zero initial 

velocity in a region of space containing an electric field E in the y direction 
and a magnetic field B in the z direction. 

(a) Describe the conditions necessary for the existence of a Lorentr 
frame in which (1) E = 0 and (2) B = 0. 

(b) Describe the motion that would ensue in the original frame if case 
(a) (1) attains. 

(c) Solve for the momentum as a function of time in the frame with 
B = 0 for case (a)(2). 

(UC, Eerkeley) 
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Soh t ion: 

relative velocity u along the t direction. In C we have 
(a) Let C be the laboratory frame and C' be a frame moving with 

E =  Ee, ,  B= Be, . 
Lorentz transformation gives the electromagnetic field in C' as 

EL = Es = 0, EL = 7(Ey - u B ~ )  = y ( E - u B ) ,  E: = 7(ES+uBy) = 0, 

(1) For Ei = 0 in C' we require that 

E - u B z O ,  

or u = 3. However, as u 5 c,  for such a frame C' to exist we require that 
E 5 cB.  
( 2 )  For B' = 0 in C', we require that B - 5 E = 0 ,  or u = 9. Then for 
such a frame C' to exist we require that 

cB 5 E .  

(b) If E' = 0, the motion of the charge q in C' is described by 

where u' is the velocity of the particle in C'. Equation (2) means that 

mc' = constant. 

Hence u' = constant as well. This implies that the magnitude of the velocity 
of the particle does not change, while its direction changes. As the initial 
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velocity of the particle in C is zero, the  velocity of the particle in E' a t  the 
initial time i t  = 0 is by the transformation equations 

to be 
E 

ub = - v e x  = -- 
B ex 

Thus the magnitude of the velocity of the particle will always be u' = 6, 
and we have 

B2c2 - E2 = constant. 
Bc 

Then Eq. (1) reduces to 

From the transformation equations for B we have B' = 4 JB2c2 - E2e , .  
Hence Eq. (3) gives rise to 

where 

u; = wu' 
u' Y = -wu: , 

.? - 0 1  

Y '  

U' - 

qB' d- - q(c2B2 - E2)  
W =  - 

m c2mB ' 

Equation (6) shows that u: = constant. As U: = 0 at t' = 0, u: = 0 for all 
times. 

(4) + ( 5 ) x i  gives 

or 

where 
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The solution is 
= -,,be-iwt' 

or 
u: = ub cos (wt') ,  ul  = -ub sin (wt')  , 

where ub is a constant. 
As ub = 5 at t' = 0 we find that 

E E 
B B 

u: = - cos (wt') ,  ub = -- sin (w t ' ) .  

These equations show that the particle will undergo circular motion in the 
zy plane with a radius 

u' E c2mE R = - = - =  
w BW q(C2B2 - E2)  ' 

In C, because of Lorentz contraction in the z direction, the orbit is an 
ellipse with the minor axis along the z-axis. 

(c) Consider a frame C' in which B' = 0. Let pi be the momentum of 
the particle. The equation of motion is then 

The quantity E2 - c 2 B 2  is Lorentz invariant as shown in Problem 5008. 
Hence E' = d E 2  - c2 B2 el, using also the result of (a). Then the equation 
of motion has component equations 

dP: dP: -- - = O ,  
dt' - dt' (7) 

Equation (7) shows that both p; and p: are constant, being independent of 
time. The particle is initially at rest in C, so its initial velocity is opposite 
that of C', i.e., u6 = -9 e,, as shown in (a)(2). Hence 



678 Problem8 €4 Solufionr on E/eclromagnefirm 

Equation (8) gives 
p&’) = Q J r n t ’ ,  

where we have used the initial condition ub, = 0 a t  t‘ = 0. 

5017 

Consider an arbitrary plane electromagnetic wave propagating in vac- 
uum in t-direction. Let A( .  - c t )  be the vector potential of the wave; there 
are no sources, so adopt a gauge in which the scalar potential is identi- 
cally zero. Assume that the wave does not extend throughout all spaces, 
in particular A = 0 for sufficiently large values of t - cl. The wave strikes 
a particle with charge e which is initially a t  rest and accelerates it to a 
velocity which may be relativistic. 

(a) Show that A, = 0. 
(b) Show that p~ = -eA, where PI is the particle momentum in the 

y r  plane. (Note: Since this is a relativistic problem, do not solve it with 
non-relativistic mechanics.) 

(UC, Berkeley) 

Solution: 
(a) As A = A(z - c t ) ,  

OA - -c 
BA -- aA - BA -- ax - Ct)  at a(z - ct) 

With the gauge condition cp = 0, 

As plane electromagnetic waves are transverse, E, = 0. Thus 

aA, c a A ,  = 0,  --- - 
at a(. - C t )  

showing that A,(+ - c t )  = constant. 
Since the wave does not extend throughout all space, the vector poten- 

tial vanishes for sufficiently large values of z - ct .  Hence the above constant 
is zero, i.e., A, = 0 at all points of space. 
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(b) Let r be the displacement of the charged particle at time t and 
write the vector potential as A(r, t ) .  We have 

The equation of motion of a particle of charge e and momentum p in 
the electromagnetic field is 

- = e ( E + v x B ) .  dP 
dt 

lleating r and v as independent variables, we have 

v x  ( V x A ) =  V ( V . A ) - ( V * V ) A .  (3) 

Equations (1)-(3) give 

dP dA - = eV(v . A )  - e -. dt dt 

Consider the transverse component of the particle momentum, p l  = p v e y  + 
PJ e ~ .  

The vector potential A(. - d) of the plane electromagnetic wave is 
independent of the coordinates y and z ,  and has no longitudinal component 
(see (a)). As r and v are to be treated as independent variables also, we 
have 

and similarly & (v A) = 0. Hence 

dPl dAJ. - = -e - 
dt dt 

Integration gives 
p l = - e A l + C .  

Since the initial velocity of the particle is zero, the constant C is zero. 
Alrthermore with A, = 0, AJ. = A. So we can write the above as 
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2. ELECTROMAGNETIC FIELD OF A CHARGED 
PARTICLE (5018-5025) 

5018 
Show that the electromagnetic field of a particle of charge q moving 

with constant velocity v is given by 

9 
X Ey = - 7 Y ,  

where 

x = ( 7 2  (x - v1)2 + y2 + z2}3’2 ’ 
and we have chosen the x-axis along v (note that we use units such that 
the proportionality constant in  Coulomb’s law is K = 1). 

( S  V N Y ,  Bugdo) 

S o h  t ion: 

the units used we have in C‘ 
Let C be the observer’s frame and C‘ the rest frame of the particle. In 

I I qx‘ E (X ) = - , B’(x’) = 0, 
r13 

where 
r’ = Ix’I. 

The Lorentz transformation for time-space between C and C1 is given by 

Z t  = r ( x  - u t )  ’ 
Yt = y ,  
zt = z ,  

80 that  
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The (inverse) Lorentz transformation for electromagnetic field gives 

5019 
(a) Consider two positrons in a beam at SLAC. The beam has energy 

of about 50 GeV (7 e los). In the beam frame (rest frame) they are 
separated by a distance d, and positron e t  is traveling directly ahead of 
e;, as shown in Fig. 5.8. Write down expressions at ef giving the effect of 
e2 .  Specifically, give the following vectors: El B, the Lorentz force F, and 
the acceleration a. Do this in two reference frames: 

2. the laboratory frame. 
The results will differ by various relativistic factors. Give intuitive explit 
nations of these factors. 

(b) The problem is the same as in part (a) except this time the two 
positrons are traveling side by side as sketched in Fig. 5.9. 

(OC, Berkeley) 
Solution: 

(a) Let C' and C be the beam rest frame and the laboratory frame 
respectively. In C' the effects exerted by e t  on ef are 

1. the rest frame, 

B'=O, 
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Thus in E’, ef is a nonrelativistic particle that will undergo rectilinear 
accelerated motion under the action of the electrostatic field E’ established 
by e;. 

The Lorentz transformation for electromagnetic field Ell = E i ,  B11 -- 
BL, gives 

Problcmr i?4 Soluiionr on Eleciromagnetirm 

Hence the force on ef is 

As 7 = lo5, ef is a relativistic particle in C and must satisfy the relativistic 
equations of motion 

mv d 
dt 

= F, or m c - ( 7 P )  = F ,  
d 

mc’ dr = F - v ,  or m c - = F p  
d 

dt 

where p = I ,  7 = (1 - p2)-a, since F = Fez ,  v = uez. We then have 

or 
dv F e2 a 
dt my3 4rc0r3mdz ez = * 

a=-=-=- 

It follows that when the motion of the two positrons is as shown in 
Fig. 5.8, the electromagnetic field and the Lorentz force are the same in X 
and El. However, due to the relativistic effect the acceleration of ef in the 
laboratory frame is only $ times that in the rest frame. As $ 
a is extremely small. In other words, the influence of the force exerted by 
a neighboring collinear charge on a charge moving with high speed will be 
small. The whole beam travels together in a state of high velocity and high 
energy. 

Fig. 5.8 
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(b) In the ca8e shown in Fig. 5.9, we have in the rest frame C' the 
various vectors at e t :  

n 

X 

t 

Y -  

Fig. 5.9 

In the laboratory frame C, as 

we have 

e2 F' 
4 ?Tho d27 7 

F =  e ( E + v  x B) = --e, = - .  

In this case F . v = 0, 80 that 7 = constant and 

rnc d F 
(7P) = - 

m7 dt m7 ' 
a=---- 

or 
a' 

e, = - F e2 

rn7 4ncodLm73 r3 * 
a=-=- 
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These results show that when the two positrons are traveling side by side, 
all the vectors in C, as compared with the corresponding vectors in E', 
will involve the Lorentz factor 7 which is a constant of the motion. In the 
laboratory frame, both the electric and magnetic fields exist, the former 
being increased by 7 from that in the rest frame. As to the effects of E 
and B on e t ,  they tend to cancel each other, which reduces the force on 
the acceleration of e;' by factors $ and $ respectively, as compared with 
those in the rest frame. 

5020 
In Fig. 5.10 a point charge e moves with constant velocity u in the 

I direction so that a t  time t it is at the point Q with coordinates 2 = 0, 
y = 0, z = u t .  Find at the time t and at the point P with coordinates 
t = b, y = 0, z = 0 (see Fig. 5.10) 

(a) the scalar potential 4, 
(b) the vector potential A, 
(c) the electric field in the z direction, E,. 

( Wisconsin) 

X 

Fig. 5.10 

Solution: 

by 
(a) The Liknard-Wiechert potentials a t  P due to the charge are given 

e ev 
A =  '= 4 m o [ r -  f .rl1 47r~oc2[r - f r] 

where r is the radius vector from the retarded position of the charge to the 
field point PI i.e., 

ez = be, - ut'e, , 
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with 

Thus 

or 

r t ' = t - - .  
C 

This is the retardation condition, with the solutions 

-put f J( 1 - + v2t2 
r =  

1 - p2 
9 

where p = f .  
However the upper sign is to be taken since r 2 0. As v = ve,, 

The scalar potential 4 is then 

(b) The vector potential A is 

ev 
A =  

4neoc2J(1 - p2) b2 + v2t2 e* * 

(c) The electric field at P is obtained by differentiating the Liknard- 
wieciirt potentials: 

aA E(t) = -V$ - - 
81 ' 

For the spatial differentiation, b is to be first replaced by 2. We then have 
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As A is in the %-direction, it does not contribute to Ex.  Hence 

e( 1 - P 2 ) b  
4reo[(1 - P2) 6’ + ~ ~ i ~ ] ~ ’ ~  ’ 

Ex = 

5021 

For a particle of charge e moving non-relativistically, find 
(a) The timeaveraged power ,radiated per unit solid angle, dP/dS2, in 

terms of velocity pc, acceleration pc, and the unit vector n’ from the charge 
toward the observer; 

(b) dP/dSZ, if the particle moves as ~ ( t )  = acos(w0t); 
(c) dP/dSZ for circular motion of radius R in the zy plane with constant 

(d) Sketch the angular distribution of the radiation in each case. 
(e) Qualitatively, how is dP/dQ changed if the motion is relativistic? 

angular frequency W O .  

(Princeton) 

Solution: 

by 
(a) For a non-relativistic particle of charge e the radiation field is given 

en’ x (n‘ x B c )  - e 
E =  -- n’ x (n’ x p) , 

4neo c2r 4reocr 
1 B = -n‘ x E ,  
C 

where r is the distance of the observer from the charge. The Poynting 
vector at the observer is then 

Let 6 be the angle between n’ and a, then 

This result is not changed by time averging unless the motion of the charge 
is periodic. 



(b) If z = acos(wot), then PC = 2 = -awicos(wot) and aa 

1 
Jr C O S ~ ( W O ~ )  dt = 4, where T is the period, 

( ( 8 ~ ) ~ )  = 5 Q2w;. 

Hence 
sin2 e . dP eaa2u,4 - =  

dR 32~~~0s 
(c) The circular motion of the particle in the zy plane may be consid- 

ered as superposition of two mutually perpendicular harmonic oscillations: 

R(1’) = R cos (wol’)eS + R sin (wol’)ey. 
In spherical coordinates let the observer have radius vector r(r, 8, ’p) from 
the center of the circle, which is ,also the origin of the coordinate system. 
The angles between r or n’ and p for the two oscillations are given by 

cos 

C O S ~ ,  = sin 8 cos (; - c p )  = sin e sin ‘p . 
= sin 8 cos cp , 

Using the results of (b) we have 

(sina el + sin2 e,) dP e2R2wt 

e2R2ui 

-- 
dR - 3 2 d ~ o C 3  

- - (1 + cos2 e) . 
3 2 * 2 C 0 3  

(d) For the cases (a) and (b), the curves p = vs. 0 are skc-:hed in 
Figs. 5.11 and 5.12 respectively, where J is the direction of 8. 

Fig. 5.11 
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Fig. 5.12 

(e) For /3 x 0, the direction of maximum intensity is along 8 = $. As 
/3 + 1, the direction of maximum intensity tends more and more toward 
the direction 8 = 0, i.e., the direction of p.  In fact the radiation wi!l 
be concentrated mainly in a cone with A0 - about the direction of p .  
However there is no radiation exactly along that direction. 

5022 

Cerenkov radiation is emitted by a high energy charged particle which 
moves through a medium with a velocity greater than the velocity of elec- 
tromagnetic wave propagation in the medium. 

(a) .Derive the relationship between the particle velocity TJ = Pc,  the 
index of refraction n of the medium, and the angle 8 at which the cerenkov 
radiation is emitted relative to the line of flight of the particle. 

(b) Hydrogen gas at one atmosphere and at 2OoC has an index of 
refraction n = 1 + 1.35 x What is the minimum kinetic energy in 
MeV which an electron (of rest mass 0.5 MeV/c2) would need in order to  
emit Cerenkov radiation in traversing a medium of hydrogen gas at 2OoC 
and one atmosphere? 

(c) A Cerenkov radiation particle detector is made by fitting a long 
pipe of one atmosphere, 2OoC hydrogen gas with an optical system capable 
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of detecting the emitted light and of measuring the angle of emission 8 to an 
accuracy of 68 = radian. A beam of charged particles with momentum 
of 100 GeV/c are passed through the counter. Since the momentum is 
known, the measurement of the Cerenkov angle is, in effect, a measurement 
of the particle rest mass mo. For particles with mo near 1 GeV/c2, and to 
first order in small quantities, what is the fractional error (i.e., Grno/mo) in 
the determination of mo with the Cerenkov counter? 

(CUSPEA) 

Solution: 

(a) As shown in Fig. 5.13, the radiation emitted by the charge at Q' 
at time t' arrives at  P at time t when the charge is at Q. As the radiation 
propagates at  the speed c/n and the particle has speed v where v > c/n, 
we have 

C Q'P = - ( t  - 1 ' )  Q'Q = ~ ( t  - t') 
n 

or 
c 1  

un pn' 
-=cos Q'P e = - = -  
Q'Q 

where p = 5 .  At all the points intermediate between Q' and Q the radiation 
emitted will arrive at  the line QP at time t .  Hence QP forms the wavefront 
of all radiation emitted prior to t .  

Cercnkov wavefront 

-@- I v ( t - t ' )  

Fig. 5.13 

(b) As I cos 81 5 1, we require p 2 for emission of Cerenkov radia- 
tion. Hence we require 
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Thus the particle must have a kinetic energy greater than 

1 
!a 

( 4 2  x 1.35 x 10-4 
w 29.93 MeV. 

(c) For a relativistic particle of momentum P > moc, 

For the Cerenkov radiation emitted by the particle, we have 

1 
cos B = - 

Pn ' 
or 

d/3 = np2 sin BdB . 
Combining the above we have 

With 7 = 4 = = 100, n = 1 + 1.35 x we have 
moc 

p w l - 7 = 1 - 5 x 1 0 - 5 ,  1 
2 x 10 

1 
C- B = - = ( I  - 5 x (1 + 1.35 x = I - 8.5 x 

Pn 
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t an0  = 

and hence 

1 = ,/( 1 - 8.5 x 10-5)-2 - 1 /A- 
w , / m m  1.3 X lo-’, 

- 5 x x lo4 x 1.3 x lo-’ x 1 0 - ~  = 0.13. 

5023 

A waveguide is formed by two infinite parallel perfectly conducting 
planes separated by a distance a. The gap between the planes is filled 
with a gas whose index of refraction is n. (This is taken to be frequency 
independent .) 

(a) Consider the guided plane wave modes in which the field strengths 
are independent of the y variable. (The y axis is into the paper as shown 
in Fig. 5.14.) For a given wavelength X find the allowed frequency w .  For 
each such mode find the phase velocity up and the group velocity ug. 

t- Z 

a I k Y X  

+- 

Fig. 5.14 

(b) A uniform charged wire, which extends infinitely along the y direc- 
tion (Fig. 5.15), moves in the midplane of the gap with velocity u > c/n. It 
emits cerenkov radiation. A t  any fixed point in the gap this reveals itself as 
time-varying electric and magnetic fields. How does the magnitude of the 
electric field vary with time at  a point in the midplane of the gap? Sketch 
the frequency spectrum ant1 give the principal frequency. 

Fig. 5.15 
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(c) Any electromagnetic disturbance (independent of y) must be ex- 
pressible as a superposition of the waveguide modes considered in part (a). 
What is the mode corresponding to the principal frequency of the Cerenkov 
spectrum considered in part (b)? 

(Princeton) 

Solution: 
(a) Take the midplane of the gap between the two planes as the cy 

plane. As the field strength does not depend on y and the wave is guided 
along the z direction, we can write 

E = E( z )  e i (k=o-wt)  

with k, = 9. E satisfies the wave equation 

where 
12 n2 2 2 k = - w  C2 - k , ,  

subject to  the boundary conditions 

E , = E , = O ,  for z = O , a .  

E is also subject to the condition V - E  = 0, i.e., 
rise to another boundary condition that 

= -ik, E,. This gives 

Consider the equation for E x :  

+ k“ Ex = 0 . a 2  E, 
az2 
- 

The solution is 

The boundary conditons give 

A = O ,  k ’ a = m a .  ( m = 0 , 1 , 2 , 3  . . . )  
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Hence 

Similarly 

We also have - = k 2 + k ' 2 = ( F ) 2 + ( y )  n2w2 2 . 

w m = q m .  n 

C2 

Thus for a given wavelength A the allowed angular frequencies are the series 
of discrete values 

The phase velocity is then 

--- 
p -  k,  - n  

and the group velocity is 

21 ---- - [ l +  (32]-1'2. 
g -  dk,  n 

(b) In vacuum the electric field at a field point at time t produced by 
a particle of charge q moving with uniform velocity v is 

where R is the radius vector from the location of the charge a t  time t to 
the field point, 

a = l -  (:)2, s =  [ U R ~ + F ( Y . R ) ~  I ?  
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If the charge moves in a medium of permittivity E and refractive index n, 
the above expression is to be modified to 

where 
A 

.=1-($)?, s =  [aR~+(~v.R)z]2 

Let p be the angle between v and R, then 

If u > f ,  8 will become imaginary except for the region of space with 
sin g~ 5 &. As the particle speed is greater than the speed of propagation 
of electromagnetic waves in the medium, the field point must be to the rear 
of the particle at time t (Problem 5022). Thus the field will exist only 
within a rear cone of half angle ‘p = arcsin (k) with the vertex at the 
location of the particle a t  time t .  On the surface of this cone E + 00. This 
surface is the surface of the Cerenkov shock wave and contains the Cerenkov 
radiation field. The infinitely long charged wire can be considered an infinite 
set of point charges, so the region of the Cerenkov radiation will be a rear 
wedge with the wire forming its thin edge and ,the inclined planes making 
an angle 2y. A t  any point in the wedge the intensity E of the radiation 
field is the superposition of the intensities of the Cerenkov radiation field 
at that point due to all the point charges. 

Consider a point P in the midplane as shown in Fig. 5.16. Obviously 
P has to be at the rear of the line of charges represented by the y-axis. Let 
the line of charges pass through P at  t = 0, then at time t the line is at 

X 

V I  

Fig. 5.16 
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a distance ut from P. The radius vector from a line charge element Xdy to 
point P is 

R = - U t e , .  - yey . 
As v = we,, R - v  = -u2t. The intensity of the field at P caused by Ady is 

Ady ( 1  - n2 $) (-Ute, - ye,) 

n2 [ ( I  - 9) ( y ~  + u 2 t 2 )  + 7 1  v'nata 312 ' dE= 

The total Cerenkov field intensity at P at time t is the vector sum of 
the intensities contributed by all charge elements on the line. By symmetry 
the contributions of two charge elements located at y and -y to E, will 
cancel out and the total contribution is the sum of their z components. 
Hence the total electric field a t  P is in the x direction and has magnitude 

E ( t )  = 2 1 "  dE, , 

where the upper limit of the integral is given by the requirement that P 
should fall within the Cerenkov cone of the charge element Ady at yo. Thus 

0 

- 1) tan p 1 
IX - .  - - 

t n 2 u t J l -  (W - 1 )  t a p  

This can be written as 
A 
t '  

E ( t )  = - 

where A is a constant. 
By Fourier transform 

with 
l o o  E ( w )  = g Loo E(t)e'"' dt = - 

Aa 
- dx = x i ,  
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Ai 
E(w) = - 

2 ’  

i.e., IE(oo)I is a constant, independent of frequency. This means that the 
Cerenkov radiation has a “white spectrum”, i.e., each of its monochromatic 
components has the same intensity and there is no principal frequency. 

(c) As shown in Fig. 5.15, let a unit vector S be normal to the upper 
plane of the wedge forming the surface of the Cerenkov radiation. S is just 
along the direction k (lkl = n) of the Cerenkov radiation. Then 

w W 

C 
k, = - n  sin p =  - n  

However not all the frequencies in the “white spectrum” of the Cerenkov 
radiation can propagate in the waveguide, only those that satisfy 

or 

The frequencies w, which are allowed by the waveguide may be considered 
the principal modes of the Cerenkov radiation in the waveguide. 

5024 

A particle with mass rn and electric charge q is bound by the Coulomb 
interaction to an infinitely massive particle with electric charge -q. At 
t = 0 its orbit is (approximately) a circle of radius R. At  what time will it 
have spiraled into R/2? (Assume that R is large enough so that you can 
use the classical radiation theory rather than quantum mechanics.) 

( Colum bio) 

Solution: 

The total energy of the particle of mass m is 
The massive particle can be considered stationary during the motion. 

I 
2 

E = - m v 2 + V ,  
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where the potential energy of the particle is that due to the Coulomb in- 
teraction, 

r being the distance of the particle from the massive particle. 
As the particle moves in a circle of radius r ,  we have 

or 

Hence 
!z2 E = - - .  

8mOr 
AS the particle undergoes centripetal acceleration v it loses energy by ra- 
diation: 

On the other hand, we have for the above 

d E  q2 dr 
dt 8reor2 dt * 

---- - 

Hence 

As r = R at t = 0, the time at which r = 6 is 

T = -  12*2&;C3n? J,' r2dr = 77r2e;c3m2 R3 
!14 2q4 

5025 
A classical hydrogen atom has the electron at a radius equal to  the 

first Bohr radius at time 1 = 0. Derive an expression for the time it takes 
the radius to decrease to zero due to radiation. Assume that the energy 
loss per revolution is small compared with the remaining total energy of 
the atom. 

(Princeton) 
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Solution: 
As the energy loss per revolution is small we may assume the motion 

to be nonrelativistic. Then in Gaussian units the rate of radiation loss of 
the electron is 

d E  2e2 - = -- 
dt 3c3 a2 I 

where a is the magnitude of the acceleration. In the Coulomb field of 
the hydrogen nucleus the total energy and acceleration of the electron are 
respectively 

e2 
a=-  

1 e2 e2 E = -mv2 - - = __  
2 r 2r ’ mr2 ’ 

where we have used the expression for the centripetal acceleration a = $. 
Hence 

dE dE dr e2 dr 2e2 

or 
3m2c3 

dt = -- r 2 d r .  
4e4 

Therefore, the time taken for the Bohr orbit to collapse completely is 

m2c3a$ r2dr = - 
4e4 I 

where a0 = & is the first Bohr radius. 

3. MOTION OF A CHARGED PARTICLE IN 
ELECTROMAGNETIC FIELD (5026-5039) 

5026 
A particle of mass rn and charge e is accelerated for a time by a uniform 

(a) What is the momentum of the particle at the end of the acceleration 

(b) What is the velocity of the particle at that time? 
(c) The particle is unstable and decays with a lifetime r in its rest 

frame. What lifetime would be measured by a stationary observer who ob- 
served the decay of the particle moving uniformly with the above velocity? 

( Wisconrin) 

electric field to a velocity not necessarily small compared with c. 

time? 
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Solution: 

1 
(4 As 

-- d(m7u) - e E ,  m7u = 1 eEdt = e E l ,  
dt 

where E is the intensity of the uniform electric field, 

7 = (1 - p2)-* with p = - .  U 

C 

or 
eEt 
mc 

7/3 = (72  - 1 ) i  = - , 
we have 

1 eEt 

or 

giving 

( eEt )2  
( e  E l )2  + ( mc)2 

p’ = 

e E d  
, / (eEt)2 + (mc)2 * 

v = p c =  

(c) On account of time dilation, the particle’s lifetime in the observer’s 
frame is 

T = 7 r = ~ / l + ( s )  2 . 

5027 
The Lagrangian of a relativistic charged particle of mass rn, charge e 

and velocity v moving in an electromagnetic field with vector potential A 
im e L = - ~ , / - + - A . V .  

C 

The field of a dipole of magnetic moment p along the polar axis is described 
by the vector potential A = p+e# where 8 is the polar angle and 4 is 
the azimuthal angle. 
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(a) Express the canonical momentum pb conjugate to q5 in terms of the 

(b) Show that this momentum p+ is a constant of the motion. 
(c) If the vector potential A given above is replaced by 

coordinates and their derivatives. 

A' = A + Vx(r ,  8, 4) ,  

where x is an arbitrary function of coordinates, how is the expression for 
the canonical momentum p+ changed? Is the expression obtained in part 
(a) still a constant of the motion? Explain. 

( Wisconsin) 

Solution: 

Hamil tonian. 
We first use Cartesian coordinates to derive an expression for the 

Let 7 = t/'-8". The canonical momentum is 

or, in vector form, 
e 

p = myv + -A. 
C 

The Hamiltonian is then 

72/32 = y2 - 1 . 
(a) In spherical coordinates the velocity is 

v = re, + roe8 + r sin 0 4 e b .  

The Lagrangian of the magnetic dipole in the field of vector potential A is 
therefore 

i. mc2 e psin2 0 L = - -  

The momentum conjugates to 4 is 
7 +;I. 

- d L  
a4 

pb = - - -mc2 
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Hence 
e p sin2 8 
c r  

(b) As the Hamiltonian does not depend on 4, 

p+=myr2sin28$+-- .  

Hence p+ is a constant of the motion. 

new Lagrangian is 
(c) If the vector potential is replaced by A' = A + VX(r, 8, #), the 

-mc2 e e L' = - + - A * v + ; V X * V .  
Y C 

The canonical momentum is now 

e e 
p' = ~ T V  + ;A + ; V X .  

But the Hamiltonian 

is the same as before. 
For an arbitrary scalar function x ,  

1 ax - e + ,  V X = - e e , + - - e e e + -  ar r ae r sin 8 
6X 1 ax 

80 that 
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Thus the momentum conjugate to 4 is now 

i.e., p$ is modified by the addition of the term f %. 
&ant of the motion. However, as 

As H’ is still independent of 4, the canonical momentum p i  is a con- 

and x is an arbitrary scalar function, the part pd is not a constant of the 
motion. 

5028 
An electron (mass rn, charge e)  moves in a plane perpendicular to a 

uniform magnetic field. If energy loss by radiation is neglected the orbit ie 
a circle of some radius R. Let E be the total electron energy, allowing for 
relativistic kinematics so that E >> mc2. 

(a) Express the needed field induction B analytically in terms of the 
above parameters. Compute numerically, in Gauss, for the case where 
R = 30 meters, E = 2.5 x lo9 electron-volts. For this part of the problem 
you will have to recall some universal constzints. 

(b) Actually, the electron radiates electromagnetic energy because it 
is being accelerated by the B field. However, suppose that the energy 
loes per revolution, AE, is small compared with E .  Express the ratio 
A E / E  analytically in terms of the parameters. Then evaluate this ratio 
numerically for the particular values of R and E given above. 

(CUSPEA) 
Solution: 

(a) In uniform magnetic field B the motion of an electron is described 
in Gaussian units by 

dP e - = - v x B ,  
dt c 

where p is the momentum of the electron, 



Rclativiiy, Pariiclc-Field h i c n e i i o n r  603 

with 7 = (1 - p2)-* ,  /3 = $. Since 5 v x B . v = 0, the magnetic force 
does no work and the magnitude of the velocity does not change, i.e., v, 
and hence 7, are constant. For circular motion, 

Then 

As v is normal to B, we have 

or 

v2  e 
m 7 ~  = -uB 

PC B = -  
eR ' 

C 

With E W mc2, pc = dE2 - m2c4 = E and 

E 
e R  B = - M 0.28 x lo' Gs. 

(b) The rate of radiation of an accelerated non-relativistic electron ia 

where v and p are respectively the velocity and momentum of the electron. 
For a relativistic electron, the formula is modified to 

p = - 2 - e2 (- dp, -) df , 
3 m2G dr dr 

where dr = $, p, and f l  are respectively the covariant and contravariant 
momentum-energy four-vector of the electron: 

Thus 
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Since the energy losss of the electron per revolution is very small, we can 
take approximations % NN 0 and 7 w constant. Then 

-- dP dP 2e 
dr - 7 d t = m 7  dt a 

Substitution in the expression for r gives 

The energy loss per revolution is 

5029 
Consider the static magnetic field given in rectangular coordinates by 

B = Bo(t x - y y ) / a  . 

(a) Show that this field obeys Maxwell’s equations in free space. 
(b) Sketch the field lines and indicate where filamentary currents would 

be placed to approximate such a field. 
(c) Calculate the magnetic flux per unit length in the i-direction be- 

tween the origin and the field line whose minimum distance from the origin 
is R. 

(d) If an observer is moving with a non-relativistic velocity v = v i  a t  
some location ( 2 ,  y), what electric potential would he measure relative to 
the origin? 

(e) If the magnetic field Bo(t) is slowly varying in time, what electric 
field would a stationary observer a t  location (2, y) measure? 

( Wisconsin) 
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Solution: 

( 4  

V - B =  i3-+jj -++-) . [ - (~ i3-y#)]  8 6 Bo ( 8"2 6y 6% a 

V x B =  (i--+jj-+i-)  6 8 6 x [-(z&-yjj)] Bo 
az 6y 6% a 

BO 
a 

= -(2 x i - j j x  9) = 0 .  

(b) The magnetic field lines are given by the differential equation 

or 

Hence 

d(zy)  = 0 .  

zy = const. 

The field lines are shown in Fig. 5.17. In order to create such a field, four 
infinitely long straight currents parallel to the x direction are symmetrically 
placed on the four quadrants with flow directions as shown in Fig. 5.17. 

Fig. 5.17 
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(c) Consider a rectangle of height z = 1 and length R along the bisector 
of the right angle between the x- and y-axes in the first quadrant i.e., along 
the line x = y). Then the unit normal to this rectangle is n = 3 (2 - 0) .  
Along the length R, B(z, y) = % (z2 - y$) = % x(2 - i). Taking as the 
area element of the rectangle do = a d z ,  one has for the magnetic flux 
through the rectangle 

c 

B~ R~ 4~ = / B(x, y) . ndu = 2 a 1" +dz = - 2a . 

(d) 'lkansforming to the observer's frame, we find 

EL = y ( E i  + V  x B i )  = 7~ x B, Ei =Ell = O ,  
or 

m for small velocities, p = f 
E ' = v x B ,  

0 , 7  = (1 - ~ ' 1 - 3  1. 
Hence 

E'= v i  x [ -(xi-yfi)]  Bo = -u(xfi+y4). Bo 
a a 

The potential t#(x, y) relative to the origin (0, 0) 85 measured by the ob- 
server is given by 

where r = x i  + yy. 
Thus 

(e) Maxwell's equation V x E = -% gives 
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As B is only slowly varying in time, B can be taken to be independent 
of the spatial coordinates. The solution of this set of equations is E, = 
constant, E,, = constant, and 

or 

Hence f i ( x )  = fz(y) = constant, which as well as the other constants can 
be taken to be zero as we are not interested in any uniform field. Therefore 

5030 
Consider the motion of electrons in an axially symmetric magnetic 

field. Suppose that at  z = 0 (the “median plane”) the radial component 
of the magnetic field is 0 so B{z = 0) = B(r) e,. Electrons at z = 0 then 
follow a circular path of radius R, as shown in Fig. 5.18. 

(a) What is the relationship between the electron momentum p and 
the orbit radius R? In a betatron, electrons are accelerated by a magnetic 
field which changes with time. Let 8, be the average value of the magnetic 
field over the plane of the orbit (within the orbit), i.e., 

where f l ~  is the magnetic flux through the orbit. Let Bo equal B(r = 
R, z = 0). 

Fig. 5.18 
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(b) Suppose B,, is changed by an amount AB,, and Bo is changed by 
A&. How must ABav be related to ABo if the electrons are to remain at 
radius R as their momentum is increased? 

(c) Suppose the t component of the magnetic field near r = R and 
z = 0 varies with r as B,(r )  = &(R) ($)n. Find the equations of motion 
for small departures from the equilibrium orbit in the median plane. There 
are two equations, one for small vertical changes and one for small radial 
changes. Neglect any coupling between radial and vertical motion. 

(d) For what range of n is the orbit stable against both vertical and 
radial perturbations? 

(Princeton) 

Solution: 
For simplicity, we shall assume nonrelativistic motions. 
(a) The equation of motion is m I I = - e  Iv x BI, or $ = -evB. 

Hence P = rnv = -eBR, where -e is the electronic charge. 
(b) I t  is required that R remains unchanged as Bo increases by A &  

and v changes 'by Av.  T h u s  

or 

as 

mAv ABo % -- eR ' 

mu2 -- - -euBo. 
R 

The change of v arises from B changing with time. Faraday's law 

E - d r =  -l€3 . d S  

indicates that a tangential electric field 

is induced on the orbit. Thus the resultant change of momentum is 

At -e d4 -eA4 -eRAB,, d t = - -  
21rR - 2 ,  
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as A4 = A B a V ~ R 2 .  Hence 

1 ABo = - ABav. 
2 

(c) Suppose the electron suffers a radial perturbation, so that the equi- 
librium radius and angular velocity change by small quantities: 

where wg = fi = -$. 
In cylindrical coordinates r, 8, z ,  the electron has velocity 

v = ie, + r6ee. 

Newton's second law 
F = m a =  -ev x B 

then gives 
-eriB, = rn(+ - re2), 

eiB, = m(ri + 2 i i ) .  

v x B = rBB,e, - iB,ee. 
As B = B.eZ, 

In terms of the perturbations, 

+ = + I ,  e = w o + w 1 ,  e = & l  

and to first approximation, the above equations respectively become 

e i l  B, w mR& + 2rnilwa. 

Using B,(R + r1) = B,(R) + (s), r1, eB,(R) = w o  , these equations 
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become, again to first approximation, 

-eRwoB:(R)rl - eB,(Rwl+ rlwo) = m(r1 - 2Rw0w1 - r lw;) ,  

and 
m] + i l W 0  = 0 ,  

where B:(R) = (F),. Integrating the second equation and using it in 
the first give 

-eRwoB:(R)rl = mFl+ w O r l  . 
Now as 

2 

B:(R) = Bo(R)n (:)"-' - (- $) 1 = -E n B , ( R ) ,  
r=R 

we have, again using eB,(R) = mwo, the radial equation of motion 

rt + (I - n)w,"rl = 0 .  (1) 

The vertical motion is given by Newton's second law F, = mi. Now 

F, = - e ( v  x B) e, = -e(iBe - roll,) 
= - e i l  Be + e(R + q )  ( W O  + wl)B ,  = eRwoB,, 

as Be and B, are first order small quantities. Hence 

m f  = ewo RE, . 
To find B,, consider a small loop C in a plane containing the z axis as 
shown in Fig. 5.19. Using Ampere's circuital law 5, B - dl = 0 and noting 
that there is no radial component of B in the plane z = 0, we find 

B,(R)z  4- B,(z)dr - B,(R + dr)z = 0 ,  

Fig. 5.19 
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As B : ( R )  = -+ B , ( R ) ,  eB, (R)  = mwo, we have 

mi: + mw,2nx = 0. (2) 

Equations (1) and ( 2 )  describe small departures from the equilibrium orbit. 
(d) For the orbit to be stable both the vertical and radial perturbations 

must be sinusoidal. Then Eq. (1) requires n < 1 and Eq. (2) requires n > 0. 
Hence we must have 0 < n < 1. 

5031 
An electron moves in a one-dimensional potential well, of harmonic 

(a) Calculate the radiated energy per revolution. 
(b) What is the ratio of the energy loss per revolution to the average 

(c) How much time must it take to lose half of its energy? 

oscillator with frequency w = lo6 rad/s, and amplitude 20 = lo-" cm. 

mechanical energy? 

(Columbia) 

Solution: 

of a nonrelativistic electron is, in Gaussian units, (Problem 5032(a)) 
(a) The radiation reaction which acts as a damping force to the motion 

2e2 ... f = -  
3s 2 *  

Thus the equation of motion for the electron is 

or 

2e2 ... 
m2 = - k z +  - 2 ,  

3s 

2e2 ... 
2 = -w;x + - 2 ,  

3 m s  
where w: = k. We consider the radiation damping to be small and first 
neglect the radiation term so that x + w i z  = 0, or t = zge-iwOt. Then 

2e2 ... i2e2wt - x = -  3mc3 2 =i2woaz 
3 n d  

cawa with a = &. 
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The equation of motion now becomes 

i = - ( w i  - i2woa) x . 

The solution is 

Note that as 2 = 3 ro y) where ro = & = 2 . 8 2 ~  em is the classical 
radius of electron, is much smaller than unity, the above approximation 
holds. Furthermore, we can take 

2 x x --wax. 

The average mechanical energy of the electron is 

1 1 ( E )  = - m ( i 2 )  + - k ( x 2 )  
2 2 
1 
4 4 
1 
2 

1 2 - 2 a i  = - nawix: e-2ai  + - kxoe 

= - m u i x i e - 2 a t .  

The average rate of energy loss by radiation is 

- 2e2 w:x: _---  
36’ 2 I 

80 the energy loss per revolution is 

(b) The ratio of the energy loss per revolution to  the total mechanical 
energy is - 

AE 4r e2wo 4n wg 

( E )  3 mc3 3 c 
-= - . - -  - - ro - = 3.9 x lo-’” 
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1 
E ( t )  = - 2 nwizge-2at . 

Let E(t + r )  = 3 E ( t ) .  Then 

In2 3mc3 
2a  2e wo 

-- 
2 2 In2 r = - -  

3c =- In2 
2rowo 

= 1.1 x 1013 s .  

5032 

An electron of charge e and mass m is bound by a linear restoring force 
with spring constant k = mu:. When the electron oscillates, the radiated 
power is expressed by 

2e2h2 P = -  
3c3 

where v is the acceleration of the electron and c is the speed of light. 
(a) Consider the radiative energy loss to be due to the action of a 

damping force F, . Assume that the energy loss per cycle is small compared 
with the total energy of the electron. Using the work-energy relationship 
over a long time period, obtain an expression for F, in t e r m  of v. Under 
what conditions is Fb approximately proportional to u? 

(b) Write down the equation of motion for the oscillating charge, as- 
suming that F, is proportional to u .  Solve for the position of the charge as 
a function of time. 

(c) Is the assumption of part (a) that the energy loss per cycle is small 
satisfied for a natural frequency 2 = 1015 Hz? 

(d) Now assume that the electron oscillator is also driven by an exter- 
nal electric field E = Eo cos(wt) .  Find the relative time-averaged inten- 
sity Illmax of the radiated power as a function of angular frequncy w for 
Iw - wol << wo (near resonance). Find the frequency w1 for which I is a 
maximum, find the fractional “level shift” ( w ~  - wo)/wo and the fractional 
full width at half-maximum A w ~ w ~ ~ / w o .  

(MITI 
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Solution: 
(a) The damping force is defined such that the work done against it 

per unit time by the electron just equals the power radiated. In Gaussian 
units we thus have 

Letting t 2  - t ,  = T be one period of oscillation and assuming that the 
energy loss per cycle is small compared with the total energy, we can treat 
the motion of the electron as quasi-periodic. Then vlt, = vita, vIt, = vita 
and the first term on the right-hand side cancels out. So, the above gives 

2e2 
3c3 

F, = -V. 

If the damping force is very weak compared with the restoring force on 
the electron, the displacement of the electron can be taken to be still x = 
xoe-iwOtl and, furthermore, we can take V = - w i v .  Then F, would be 
proportional to v ,  

2e2w,2 
3c3 

Fa =-- V .  

(b) The equation of motion for the electron is 

2eawa By setting y = d, the above equation can be written as 

% + + + U : C = O .  

If F, is much smaller than the restoring force, i.e., y < wo, the above has 
the solution (Problem 5031) 

= zo e- $ 4  e - iwo i  

(c) For a natural frequency f = 2 = 1015 Hz, 

2 wo' 
7 = - ro 7 = 2.5 x 108 s-', 3 



Rclaiioiiy, Pariicle-Field Inicmciionr 615 

where PO = 
condition y < wo is obviously satisfied. 

reduced by a factor e - 4  
energy loss per cycle to the total mechanical energy can be estimated as 

= 2.82 x 10'13 cm is the classical radius of electron. The 

The potential energy of the electron is 4 mw$$. After each cycle, z is 
where T is the period 5. Thus the ratio of the 

1 - e-TT = 1 - exp (-2.5 x lo8 x 10-l~) 
= 2.5 lo-' K 1. 

The same goes for the kinetic part of its energy. 
Thus the assumption of (a) is valid. 

(d) After adding the external field, the equation of motion becomes 

2 2 w a  Putting y = d, it can be written as 

x + Ti. + ";z = -5 Eoe-iw'. 
m 

By substituting x = roe-iw' in the equation, we get the steady state solu- 

1 
tion 

Eoe-iwt , e 

m w2 - w: + iwy 
x = -  

which gives 
2 = -- e W 2  Eoe- iw t  

m w2 - w: + iw7 

The time-averaged radiated power is now 

I,, occurs near the natural frequency WO. 

correct to second order of small quantities, 
Let Aw = w - wo and u = e. As u = < 1, 2 < 1, we have, 

e4 Ei 1 + 4u + 6u2 I(u) = - 
3m29 4 u ' + 3  
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From = 0, we find 

so the frequency corresponding to Z,, is 

and the maximum radiated power is 

Hence 
-- wo” . - -  YZ r2  I ( w )  - 
I,, 4(w - wo)2 + 72 wo” - 4(w - wo)2 + 73 * 

For Z(w)/Zmax = $, w = ui = wg f 5. The full width at half maximum is 
therefore 

AWFWHM - w+ -w-  7 - -  - .  - 
WO WO wo 

5033 
To account for the effects of energy radiation by an accelerating charged 

particle, we must modify Newton’s equation of motion by adding a radiative 
reaction force FR. 

(a) Deduce the classical result for FR: 

2 e2 .. 
3c3 

F R = - - v  

by using conservation .of energy. Assume for simplicity that the orbit is 
circular so that v v = 0, where v is the particle’s velocity. 

Now consider a free electron. Let a plane wave with electric field 
E = Eoe-iwt be incident on the electron. Again assume u < c. 

(b) What is the time-averaged force (F) on the electron due to  the 
electromagnetic wave? 
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(c) Use the radiation pressure p of this wave to deduce the effective 
croes section for the scattering of radiation 

tJ = ( W P .  
(Chicago) 

Solution: 
(a) See Problem 5032. 
(b) The equation of motion for an electron under the action of a plane 

electromagnetic wave is 

In the steady state r = roe-iwt . Substitution in the above gives 

eEo ro = mw2 + i &?$ ' 
3c 

The force on the electron averaged over one period is 
e e ( F )  = (-eEoe""' - - v x B) = -- (v x B) 
C C 

with 

a8 (e-'"') = 0. 
v = i = -iwroe"w' 

e 
2c 

(F) = -- &(v* x B) 

where 
C 

(S) = (-EX B) 
4* 

47r 2 

8% 

Re(E' x B) C = - . -  
C = -Eo x Bo 

is the average Poynting vector. 



Now 

since the assumption u < c means that wr < c, or 
where ro = &, the classical radius of electron, - r. Hence 

= mro 5 < mw2, 

(c) The average rr.diation pressure is (p) = 9. It is related to (F) 
through the effective cross section u by 

( F )  8re4 - 2 

(p) 
u=-- 3 m ~  - 3 ‘O ’ 

where TO is the classical radius of the electron. 

5034 
Consider the classical theory of the width of an atomic spectral line. 

The “atom” consists of an electron of mass m and charge e in a harmonic 
oscillator potential. There is also africtional damping force, so the equation 
of motion for the electron is 

mx+mw:x+7i= 0. 

(a) Suppose at time t = 0, x = xo and x = 0. What is the subse- 
quent motion of the electron? A classical electron executing this motion 
would emit electromagnetic radiation. Determine the intensity Z(w) of this 
radiation as a function of frequency. (You need not calculate the absolute 
normalization of Z(w) ,  only the form of thew dependence of Z(w). In other 
words, it is enough to calculate Z(w) up to a cosntant of proportionality.) 
Assume 7 / m  < wo. 

(b) Now suppose the damping force 7i is absent from the equation in 
(a) and that the oscillation is damped only by the loss of energy to radiation 
(an effect which has been ignored above). The energy U of the oscillator 
will decay as Uoe-”. What, under the above assumptions, is I’? (You 
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may assume that in any one oscillation the electron loses only a very small 
fraction of its energy.) 

(c) For an atomic spectral line of 5000 A, what is the width of the 
spectral line, in Angstroms, as determined from the calculation of part 
(b)? About how many oscillations does the electron make while losing half 
its energy? Rough estimates are enough. 

(Princeton) 

Soh t ion: 
(a) The equation of motion for the electron is 

with the initial conditions 
xlt=o = xo , 

xlt=o = 0 

Its solution is 
x = Z o e - 2 ~  ' e-'W', 

where 

As & < W O ,  w % W O ,  and x = xoe-kte-iwo The oscillation or the 
electron about the positive nucleus is equivalent to an oscillating dipole 
of moment p = p o e - ~ ' e ' ' w o ' ,  i.e., a dipole oscillator with attenuating 
amplitude, where po = exo. Its radiation field at a large distance away is 
given by 

E(r ,  t )  = Eo(r) e-% ('-2) e-iwO('-f) . 
For simplicty we shall put t - 5 = 1' and write 

Note that 1' is the retarded time. By Fourier transform the oscillations are 
a superposition of oscillations of a spread of frequencies: 

+m 
E(t)  = l, E(w) e-iW'' dw , 
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where, as E ( t )  = 0 for t < 0, 

EO 1 - -  - 
2n i(w - wo) - & . 

The rate of radiation is then 
1 

(w - wo)2 + & . w = lE (W) l2  a 

This is a Lorents spectrum. 
(b) For 7 = 0, p = poe-iwo'' and the rate of dipole radiation is 

e2w$cg R e ( F 6 )  = - 2 2 1  (P) = - ( \ i ; \ 2 )  = - - 
3c3 3c3 2 3c3 

2elw' The total energy of the dipole is U = 4 mw,2xgj so ( P )  = & U. As the 
loss of energy is due solely to  radiation, we have 

dU 2e2wz 
dtr 3mc3 
- + - U U O ,  

which has solution U = 
(c) To find the width of the spectral line, we see that, for -y = 0, 27;; in 

Eq. (1) is to  be replaced by f. Then if we define A w  = w+ - w- , where wf 
are the frequencies at which the intensity is half the maximum intensity, 
we have 

with r = s. 

r - - - -  
2 2  

A w = r .  
or 

Hence 

47r 

3 
= - 2.82 x = 1.2 x 1 0 - ~  A , 

where ro = 5 = 2.82 x A is the classical radius of electron. 
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The time needed for losing half the energy is T = while the time for 
one oscillation is 7 = 5. Hence to  lose half the energy the number of 
oscillations required is 

ln2=--  ’0 1n2 T In2 wo 3c 
T I” 2~ 4nworo 8r2 ro 
31n2 5000 
tw 2.82 x 10-5 

N=-=-----=- 

= 4.7 x lo6.  -- - 

5035 
Energy loss due to radiation is supposed to be insignificant for a non- 

relativistic charged particle in a cyclotron. To illustrate this fact, consider 
a particle of given charge, mass and kinetic energy which starts out in a 
circular path of given radius in a cyclotron with a uniform axial magnetic 
field. 

(a) Determine the kinetic energy of the particle as a function of time. 
(b) If the particle is a proton with the initial kinetic energy of 100 

million electron volts, find how long it takes, in seconds, for it to lase 10 
percent of its energy, if it starts at a radius of 10 meters. 

(OC, Berkeley) 

Solution: 
(a) Let the particle’s mass, charge, and kinetic energy (at time t )  be 

m, g and T respectively. As the particle is non-relativistic, the radiation 
energy loss per revolution is very much smaller than the kinetic energy, so 
that we may consider the particle as moving along a circle of radius R at 
time 2. Its rate of radiation is 

The equation of motion for the charge as it moves along a circular path 
in an axial uniform magnetic field B is 

n . mvz mlvl= - = qvB . R 
The non-relativistic kinetic energy of the particle is T = f mv2. Thus its 
rate of radiation is 



The .magnetic force does no work on the charge since v x B v = 0. P 
is therefore equal to the loss of kinetic energy per unit time: 

which gives 

where To ia the initial kinetic energy of the charge. 

it takes to lose 10 percent of its initial energy is 
(b) For a proton, q = 1.6 x C, m = 1.67 x lo-'' kg. The time 

As T = 4 mu2 = L . R 2 q 2 B 2 ,  2m with TO = 100 MeV, R = 10 m, the magnetic 
field is given by 

2mTo B2 = - 2.09 x Wba/m2. 
R2q2 

Substituting it in the expression for T ,  we find 

T & 8.07 x 10" s .  

5036 

A non-relativistic positron of charge e and velocity v1 (UI c) i m  
pinges head-on on a fixed nucleus of charge Ze. The positron, which is 
comihg from far away, is decelerated unitil it comes to rest and then is ac- 
celerated again in the opposite direction until it reaches a terminal velocity 
v2. Taking radiation loss into account (but assuming it is small) find vz as 
a function of u1 and 2. What are the angular distribution and polarization 
of the radiation? 

(Princeton) 

Solution: 
As the radiation loss of the positron is much smaller than its kinetic 

energy, it can be considered as a small perturbation. We therefore first 
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neglect the effect of radiation. By the conservation of energy, when the 
distance between the positron and the fixed nucleus is r and its velocity is 
v we have 

When v = 0, r reaches its minimum ro. Thus 

or 

whence 

Differentiating the last equation we have 

or 

The rate of radiation loss is given by 

dW dW . dW 2ea ..2 r = - -  p = - -  -- 
dt dr dr ‘=s ’ 

80 that 

Hence 
dr 

r3 ,/- * 

By putting r = ro sec2a, we can carry out the integration and find 
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AS i mvg = 3 mu: - AW, we have 

Hence 

as tJ1 < c. 
Because u < c, the radiation is dipole in nature so that the angular distri- 
bution of its radiated power is given by 

0 being the angle between the directions of the radiation and the particle 
velocity. The radiation is plane polarized with the electric field vector in 
the plane containing the directions of the radiation and the acceleration 
(which is the same as that of the velocity in this case). 

5037 
A charged particle moves near the horizontal symmetry plane of a 

cyclotron in an almmt circular orbit of radius R. Show that the small 
vertical motions are simple harmonic with frequency 

( Wisconsin) 

Solution: 
As shown in Fig. 5.20, we choose a loop C for Ampkre's circuital law 

fc B . dl zz p o l  = 0. Thus 

B,(r)t - B,(r + d r ) t  + B,(z)dr - Br(t  = 0)dr = 0 .  

As Br(z = 0) = 0, we have 
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f 

Fig. 5.20 

The vertical motion of the particle is described by 

m i  = p(v x B)z = q(vrB0 - We&). 

As Be = 0, = v ,  this gives 

or 

where 

i = -W,z% , 

v aB, v2  aB, 
m dr RB, ar 

w,” = L - = - - 
mua aa = qvB,. The angular velocity of circular motion is we = R. Fur- 

thermore, * is negative for z # 0 as shown in Fig. 5.20. Hence using 3 
to denote the absolute value we can write 

R aB, 

5038 

A high-current neutral plasma discharge is intended to focus a weak 
beam of antiprotons. The relativistic antiprotons are incident parallel to 
the axis of the discharge, travel a distance L through the arc, and leave the 
axis. 

(a) Calculate the magnetic field distribution produced by a current I 
in the discharge, assumed to be a cyclinder of uniform current density of 
radius R. 
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(b) Show that the magnetic deflection of the particles is such that 
the beam entering the field parallel to the axis can be focused to a point 
down-stream of the discharge. 

(c) Which way must the arc current be directed? 
(d) Using the thin lens approximation, find the focal length of such a 

(e) If the plasma were replaced by an electron beam with the same 

(UC, Berkeley) 

(a) The magnetic field at a point distance r 5 R from the axis of the 

lens. 

current, would the focal length be the same? Explain your answer. 

Solution: 

current cylinder is given by Ampbre's circuital law f, B . dl = p o l  to  be 

Note that the relative directions of I and B are given by the right-handed 
screw rule. 

(b) (c) The antiproton carries charge -e. Its motion must be opposite 
in direction to the current for it to experience a force -ev x B pointing 
towards the axis of the discharge for focusing. 

(d) From the above we see that an antiproton has velocity v = -v, e, - 
v , e .  As B = Bee, its equation of radial motion is 

dvr poevz m - = -e(v x B),. = --evzB M -evB = -- 
dt 2sR2 '' 

Note that 
dr d z  
212 u 

dt = - % -, 

and 
v M const. 

Furthermore, rn = -J+ can also be taken to be approximately con- 
stant. Thus after traveling an arc of length L the radial velocity is 
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toward the axis. In the thin lens approximation the focal length is then 

(e) If the plasma were replaced by an electron beam of the same cur- 
rent, the antiprotons would experience an electric force whose direction 
deviates from the axis of the discharge. Under the assumption of uniform 
current distribution the electron number density n is constant. Applying 
G a u d  flux theorem to a unit length of the electron beam we find 

2rrcoE = - n e m 2 ,  

or ner 
2EO 

E = - - - - - .  

As I = -nev,rR2, where v, is the velocity of the electrons, the electric 
force on an antiproton is 

while the magnetic force on the antiproton is 

where u is the velocity of the antiprotons. Hence 

The magnetic force can therefore be neglected and the antiprotons, which 
come mainly under the action of electric repulsion, can no longer be focused. 

5039 

A beam of relativistic particles with charge e > 0 is passed successively 
through two regions, each of length 1 which contain uniform magnetic and 
electric fields B and E as shown in Fig. 5.21. The fields are adjusted so 
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that the beam suffers fixed small deflections OB and OE (0, < 1, dl3 < 1) 
in the respective fields. 

(a) Show that the momentum p of the particle can be determined in 
terms of B, fig, and 1. 

(b) Show that by using both the B and E fields, one can determine 
the velocity and mass of the particles in the beam. 

( Wisconsin) 

Solution: 

in a magnetic field B is 
The equation of the motion of a particle of charge e and rest mass mo 

d 
- ( m v ) = e v x B  
dt 

1 
where 

7 =  d m  m = 7m0, 

Differentiating (yv)' = c2(y2 - l ) ,  we have 

27v. ( % v + y -  = 2yc 2 - d7 ") dt dt 

or 

In the magnetic field v I v ,  so 3 = 0, i.e., 7 = const. Using Carteaian 
coordinates such that B = B e z ,  we can write the equation of motion as 

The z equation shows i- = const. As 

% = O ,  z = o  

initially, there is no z motion. 
Putting wo = we have vmo , 
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and, by differentiation, 
x - w o g = o ,  
Y + w 0 5 = 0 .  

x + w ; i  = 0 ,  
Y + w ; y = o .  

{ ::: 

{ ::: 
Combining the above we obtain 

'This set of equations shows that the particle executes circular motion with 
angular velocity wo and radius 

v P 
wo mwo 

R = - -  --, 

Note that m = 7mo is constant in the magnetic field. As shown in Fig. 5.21, 

Fig. 5.21 

(b) In the electric field, $(mv) = e E .  Taking Cartesian coordinates 
such that E = Eek, we have 

mvi = eEt % e E - ,  1 
v 

i.e., 

Then 

, eE1 
m v  v y = - ,  
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from which u can be calculated as p can be determined from Qg. 
As rn = yrno = $ = 9, rno can also be calculated. 

4. SCATTERING AND DISPERSION OF 
ELECTROMAGNETIC WAVES (5040-5056) 

5040 

Calculate the scattering cross section of a classical electron for high- 

(Columbia) 
frequency electromagnetic waves. 

Solution: 
Let the fields of the high frequency electromagnetic waves be EO(r, t )  

and Bo(r, t ) .  For plane electromagnetic waves, &IEI = @]HI, or 
1B1 = 3 IEI, so that for a classical electron with u < c the magnetic force 
ev x Bo can be neglected when compared with the electric force eEo. We let 
Eo(r, t )  = Eoe-iwl at a fixed point r. As the frequency of the incident waves 
is high, we must take into account the radiation damping (see Problem 
5032). Then the equation of motion for the electron is 

where x is the displacement of the electron from the equilibrium position, 
the point r above. Consider small damping so that x = -w2x and let 

. We then have e 2 1 2  = 6rcomeJ 

Letting x = xoe-iwt 'we have 

The radiation field of the electron at a point of radius vector r from it is 

e 
4r€oc2t E(x, 1 )  = - n x (n x x) , 
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r where 
n = - .  

t 

Let a be the angle between n and Eo. We then have 

e2wEo sin a e-iwt E(x ,  t )  = - 
4raomcz(w + iy)r , 

whoee amplitude is 

The intensity of the incident waves, averaged over one cycle, is 

Similarly, the intensity of the scattered waves in the direction a is 

or 

where t o  = ,.Plcl is the classical radius of electron. 
Take coordinate axes as shown in Fig. 5.22 such that the origin 0 is at 

the equilibrium position of the electron, the z-axis is along the direction of 
the incident waves, and the z-axis is in the plane containing the z-axis and 
r, the direction of the secondary waves. With the angles defined as shown, 
we have, since Eo is in the zy plane, 

X 
A 

Fa. 6.22 
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If the incident waves are not polarized, 4 is random and the secondary 
intensity l ( 8 )  for a given scattering angle 6 must be averaged over 4: 

The total radiated power is then 

Hence the scattering cross section is 

5041 
A linearly polarized plane electromagnetic wave of frequency w ,  inten- 

sity l o  is scattered by a free electron. Starting with a general formula for 
the rate of radiation of an accelerated charge, derive the differential crws- 
section for scattering in the non-relativistic limit (Thompson scattering). 
Discuss the angular distribution and polarization of the scattered radiation. 

(VC, Berkeley) 

Solution: 
Consider the forced oscillation of the electron by the incident wave. As 

u < c the magnetic force could be ignored in comparison with the electric 
force, and we can think of the electron as in a uniform electric field since 
the incident wavelength is much greater than the amplitude of electron’s 
motion. The electric intensity of the incident plane wave at the electron is 
E = Eoe-jwt and the equation of motion is 

m i  = -eE. 

The rate of the radiation emitted by the electron at angle a with the 
direction of acceleration is, in Gaussian units, 

d P  e2v2 2 - = -  sin a. 
dR 4rC3 
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, we 
& As the average intensity of the incident wave is I0 = (IE x HI) = 

have 
Iorz sin'a, 

dP 
dQ 
-=  

where re = $ is the classical radius of electron. 

have 
Let 0 be the scattering angle and define 4 as in Problem 5040. We 

sin' a = 1 - sin' 0 cos' 4 .  
So the differential cross section for scattering is 

-- - r," (1 - sin' 8 cos' 'p) , d a  dP -- 
dS2 - IodQ 

which shows that the angular distribution of the secondary radiation de- 
pends on both the scattering angle 8 and the polarization angle 4. In the 
forward and backward directions of the primary radiation, the scattered ra- 
diation is maximum regardless of the polarization of the primary waves. In 
the transverse directions, 8 = :, the scattered radiation is minimum; it is 
zero for 4 = 0, T .  For any other scattering angle 8 ,  the scattered radiation 
intensity depends on Q, being maximum for Q = t, 9 and minimum for 
Q = 0) u. 

The electric intensity of the secondary waves is 

e 
c2r3 

E=-- r x ( r x v ) ,  

where r is the radius vector of the field point from the location of the 
electron. This shows that E is in the plane containing r and v. As the inci- 
dent waves are linearly polarized, v has a fixed direction and the secondary 
radiation is linearly polarized also. 

5042 

A linearly polarized electromagnetic wave, wavelength A, is scattered 
by a small dielectric cylinder of radius 6,  height h, and dielectric constant 
K (b < h < A). The axis of the cylinder is normal to the incident wave 
vector and parallel to the electric field of the incident wave. Find the total 
scattering cross section. 

(OC, Berkeley) 
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Solution: 
As b < h < A, the small dielectric cylinder can be considered as an 

elctric dipole of moment p for scattering of the electromagnetic wave. The 
electric field generated by p is much smaller than the electric field of the in- 
cident electromagnetic wave. Since the tangential component of the electric 
field intensity across the surface of the cylinder is continuous, the electric 
field inside the cylinder is equal to the electric field E = Egei(k'r-w')ea of 
the incident wave. Take the origin at the location of the dipole, then r = 0 
and the electric dipole moment of the small cylinder is 

p = r P h ~ o ( K  - l)Eoe-iw'e,, 

the z-axis being taken along the axis of the cylinder. 

over one cycle, is 
The total power radiated by the oscillating electric dipole, averaged 

The intensity of the incident wave is l o  = 
croas section of the cylinder is 

E;, 80 the total scattering 

P n  w4 
q = - =  - b 4 h 2 ( ~  - I ) ~  - 

10 6 c4 * 

5043 
A plane electromagnetic wave of wavelength A is incident on an in- 

sulating sphere which has dielectric constant E and radius a. The sphere 
is small compared with the wavelength (a < A). Compute the scattering 
croes section as a function of scattering angle. Comment on the polarization 
of the scattered wave as a function of the scattering direction. 

(Princeton) 

Solution: 
Assume the incident electromagnetic wave to be linearly polarized and 

let its electric intensity be E = Egei(k.x-w*). In this field the insulating 
sphere is polarized so that it is equivalent to an electric dipole at the center 
of dipole moment (Problem 1064) 
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Take coordinates with the origin at the center of the sphere and the 
z-axis parallel to Eo as shown in Fig. 5.23. Then 

p = - 4 . r r ~ ~ a ~ w ~  (5) ~ ~ ~ - i w t '  e, . 
€ + 2co 

Fig. 5.23 

The radiation field of the dipole under the condition a < X at a point 
of radius vector R is given by 

where t is given by the retardation condition t' = t - 5 ,  and k = !$. The 
averaged Poynting vector (Problem 4049) is 

where 10 = ~ E O C E , ~  is the (average) intensity of the incident wave. As the 
average power scattered into a solid angle dfl in the radial direction at angle 
8 to the z-axis is (S) R'dfl, the differential scattering cross section is 

The scattered wave is polarized with the electric vectors in the plane 
containing the scattered direction and the direction of the electric vector of 
the primary wave at the dipole. 
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5044 

A beam of plane polarized electromagnetic radiation of frequency w ,  
electric field amplitude Eo, and polarization c is normally incident on a 
region of space containing a low density plasma ( p  = 0, no electrons/vol). 

(a) Calculate the conductivity as a function of frequency. 
(b) Using the Maxwell equations determine the index of refraction 

(c) Calculate and plot the magnitude of E as a function of position in 

( Wisconsin) 

(a) As the plasma is of low density, the space is essentially free space 

inside the plasma. 

the region of the edge of the plasma. 

Solution: 

with permittivity to and permeability PO. Maxwell's equations are then 

V . E ' = - = O ,  P 
t o  

V . B ' = O ,  
1 aE' V x B ' = P ~ +  --. 

c2 at 

We also have Ohm's law 

j = -noev = aE' , 

where v is the average velocity of the electrons inside the plasma. For u B: c, 
the magnetic force on an electron is much smaller than the electric force 
and can be neglected. The equation of motion for an electron is therefore 

dv e 
dt m 
- = - - B E ' .  

As the traversing radiation has electric intensity E' = E6(x)e-iwt, the 
displacement of the electron from the equilibrium position is r = roe-iwt 
in the steady state. The equation of motion then gives 

and 



Relatiuiit, Pariicle-Field Inieracliona 637 

Hence 
E’ noe2 j=i- 

mw 
and the conductivity is 

noe2 
u = i - .  

mw 

(b) The polarization vector of the plasma is by definition 
n 

so that the electric displacement is 

Hence the effective dielectric constant of the plasma is given by 

P noe2 
E = & a +  - = &a - - 

E’ m u 2  

or 

where 

is called the plasma (angular) frequency. 
The index of refraction of the plasma is therefore 

n = = = ,/’- 
(c) Consider the primary wave Eo = Eoei(k*-w ‘)e=, where k = $ I  as 

incident normally on the boundary of the plasma, then the wave inside the 
plasma is also a plane polarized wave, with amplitude E& = and wave 
number k’ = n = kn (see Problem 4011). Hence the electric intensity of 
the wave in the region of the edge of the plasma is 
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Note that for w > w,, n and En are real and E’ propagates as wave, but for 
w < w,, n and En are imaginary and E’ attenuates exponentially as shown 
in Fig. 5.24. 

E’ 

Fig. 5.24 

5045 
A “tenuous plasma” consists of free electric charges of mass rn and 

charge e.  There are n charges per unit volume. Assume that the density 
is uniform and that interactions between the charges may be neglected. 
Electromagnetic plane waves (frequency w ,  wave number E) are incident on 
the plasma. 

(a) Find the conductivity (I as a function of w .  
(b) Find the dispersion relation, i.e., find the relation between k and w. 
(c) Find the index of refraction as a function of w .  The plasma fre- 

4 m e 2  
w p  = - quency is defined by 

m ’  
if e is expressed in e.s.u. units. What happens if w < w,? 

(d) Now suppose there is an external magnetic field Bo. Consider 
plane waves traveling parallel to Bo. Show that the index of refraction is 
different for right and left circularly polarized waves. (Assume that B of 
the traveling wave is negligible compared with Bo.) 

(Princeton) 

Soh tion: 
Gaussian units are to be used for this problem. 
The electric vector of the incident wave at a charge is Eoe’iwt, while 

the effect of the magnetic vector can be ignored in the non-relativistic case.. 
Thus the equation of motion for a charge e in the plasma is 

mx = eEoe-iW‘. 
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In the steady state x = xoe--iw‘. Substitution gives 

eEo 
w 2  ’ xo = -- 

or 
e E  

w 2  * 

x = -- 

(a) The motion of the charges gives rise to a current density 

. ne2 j = n e x  = I - E, 
mw 

80 that the conductivity is 

j ,en 
E m w  

u = - = i - .  

(b) The polarization of the plasma is 

ne2 
mwa P = n e x  = -- E = X e E ,  

where xe is the polarizability of the plasma. The dielectric constant is by 
definition 

4nne2 W 2  
E: = 1 + 4 ~ x e  = 1 - -- -1-3, 

mw= 
where 

4 m e 2  
U P =  J, 

is the plasma frequency. Then the refractive index of the plasma is 

rn we may assume p = po = 1 for the plasma. 
plasma is therefore given by 

1 = 2 ( 0 2  - w,’) , 

The wave number in the 

which is the dispersion relation. 



(c) The index of refraction is 

If w < wp, n is an imaginary number, and so is k .  Take the z-axis along 
the direction of propagation. Writing k = i K ,  where K is real, we see 
that eika = e-f iz  , so the wave will attenuate exponentially and there is no 
propagation, the plasma serving only to reflect the incident wave. 

(d) As B = Boer, k = ke , ,  the equation of motion for a charge e in 
the plasma is 

e 
mx = e E +  - v  x Bo. 

Since the plane wave is transverse, we have E = E,e,+ Eyey. In the steady 
state, the charge will oscillate with the same frequency w and the solution 
will have the form x = xoe-iwt . Thus v = x = (-iw)x, and the component 
equations are 

C 

m g = e E , - - h B o ,  e 

mi:=O. 
C 

Suppose z and i. are both zero initially. Then z = 0 and x = xes + ye,. 
For the right circularly polarized wave (looking against the direction 

of propagation E rotates to the right, i.e., clockwise) the electric vector is 

ER = Re { Eo(e, + e - igey )e - iw t  1 
= EO cos(wt) e, - EO sin(wt) ey , 

and Eqs. (1) and (2) reduce to 

e 
m2 = eEo coswt + - Boy, 

C 

e 
mij = -eEo sin wt - - B o i  . 

C 

Let u = x - iy, wc = e, the above equations can be combined into 

ii - iwcu = - (ccswt + isinwt) = - eEo ego e i W t  
m m 
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The steady state solution is 

Substitution gives 
eEo 

mw(w - w,) ' 
uo = - 

hence 
eEo (coswl+ isinwt) u = -  

-we) 
9 

whose real and imaginary parts respectively give 

eEo cos wt eEo sin wt 
Y =  2 = -  

mw(w - wc) ' W(W - wc) 

or, in vector form, 
eER 

mw(w - w,) - x = -  

Thus for the right circularly polarized wave, the polarizability of the plasma 
is 

ne2 
XeR = - w ( w  - wc) ' 

and the corresponding index of refraction is 

m = f i = d m  

mw(w - w,) 
= (1- 

or, in terms of the plasma frequency up, 

For the left circularly polarized wave, the electric vector is 

EL = Re {Eo(e, + e'fe,)e-'w*) 
= Eo cos(wt)e, + EO sin(wt)e, . 
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Then, putting u = x + i y  and repeating the above procedure, we obtain 
the index of refraction 

It is obvious that nL # nR, unless wc = 0, i.e., BO = 0. 

5046 
The dispersion relation for electromagnetic waves in a plasma is given 

by 
d ( k )  = w; + c2k2 , 

where the plasma frequency wp is defined as 

4nNe2 
wp = - m 

for an electron density N, charge per electron e l  and mass per electron m. 

(a) For w > wp, find the index of refraction n of the plasma. 
(b) For w > wp, is n greater than or less than I? Discuss. 
(c) For w > up, calculate the velocity at which messages can be trans- 

(d) For w < up, describe quantitatively the behavior of an electromag- 

(UC, Berkeieg) 

mitted through the plasma. 

netic wave in the plasma. 

Solution: 
(a) n = (1 - w ; / w 2 ) t .  
(b) For w > up, n < 1. 
(c) For w > up, the phase velocity in the plasma is 

C 
v p = - > c ,  

n 

However, messages or signals are transmitted with the group velocity 

dw c2k 1 

dk w 
ug = - = - = c(1- w;/wz)  a . 

Ae w > wp, it is clear that vg < c. 
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(d) For w < wp, n and L are imaginary and the electromagnetic waves 
attenuate exponentially after entering into the plasma. Hence electromag- 
netic waves of frequencies w < wp cannot propagate in the plasma. 

5047 

Discuss the propagation of electromagnetic waves of frequency w 
through a region filled with free electric charges (mass rn and charge e) 
of density N per cm3. 

(a) In particular, find an expression for the index of refraction and 
show that under certain conditions it may be complex. 

(b) Discuss the reflection and transmission of waves at normal inci- 
dence under conditions when the index of refraction is real, and when it is 
complex. 

(c) Show that there is a critical frequency (the plasma frequency) di- 
viding the real and complex regions of behavior. 

(d) Verify that the critical frequency lies in the radio range (N = 10') 
for the ionosphere and in the ultraviolet for metallic sodium (N = 2.5 x 

(UC, Berkeley) 
1022). 

Solution: 
(a) See Problem 5044. 

(b) For normal incidence, if the index of refraction is real, both reflec- 
tion and transmission will take place. Let the amplitude of the incident 
wave be Eo, then the amplitude of the reflected wave and the reflectivity 
are respectively (Problem 4011) 

2 E& = - 1-n Eo 1 R = ( C )  
l + n  

and the amplitude of the transmitted wave and the transmittivity are re- 

If n is complex, the transmitted wave will attenuate exponentially so that 
effectively only reflection occurs (see Problem 5044). 



644 Problems €4 Solufiona on EIectromagneiiam 

W 2  (c) The  index of refraction is n = (1 - $)i, where = in SI 
in Gaussian units. n is real for w > wp and imaginary units and w i  = 

for w < wp. Thus wp can be considered a critical frequency. 
(d) For the electron 

e = 1.6 x lo-'' C, m = 9.1 x kg. 

With N = 106/cm3 for the ionosphere and co = 8.85 x 
give 

F/m, they 

within the range of radio frequencies. 
For metallic sodium, N = 2.5 x lOZ2/cm3, so that 

2.5 x lo2' x lo6 x (1.6 x 10- 
U P =  ( 9.1 x 10-31 x 8.85 x 10-12 

= 8.91 x 1015 8, 

in the ultraviolet range. 

5048 

Assume that the ionosphere consists of a uniform plasma of free elec- 
trons and neglect collisions. 

(a) Derive an expression for the index of refraction for electromagnetic 
waves propagating in this medium in terms of the frequency. 

(b) Now suppose that there is an external uniform static magnetic field 
due to the earth, parallel to the direction of propagation of the electromag- 
netic waves. In this case, left and right circularly polarized waves will have 
different indices of refraction; derive the expressions for both of them. 

(c) There is a certain frequency below which the electromagnetic wave 
incident on the plasma is completely reflected. Calculate this frequency for 
both left and right polarized waves, given that the density of electrons is 
lo6 cm-3 and B = 0.3 gauss. 

(VC, Berkeley) 
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Solution: 
(a), (b) See Problem 5045. 
(c) The refractive index n of the plasma is given by 

where wp = 4- is the plasma frequency, N being the density of free 
electrons. When n2 < 0, n is imaginary and electromagnetjc waves of 
(angular) frequency w cannot propagate in the plasma. Hence the cutoff 
frequency is that for which n = 0, i.e., w,,. 

For frequencies < up, the wave will be totally reflected by the plasma. 
For the right and left circularly polarized waves, the refractive indices nR 
and nL are given by (Probiem 5045) 

where n- = nR, w, = z. The cutoff frequencies are given by n$ = 0. 
Thus the cutoff frequencies for right and left circularly polarized waves are 
respec ti vel y 

wc i- J- -w, + & T q  
2 , WLC = 2 

With N .= 105/cm3, B = 0.3 Gs, and m = 9.1 x 
e.8.u. for the electron, we have 

W& = 

g, e = 4.8 x lo-'* 

4T x 105 x (4.8 x ~ o - ~ O )  

9.1 x 10-28 w; = = 3.18 x 1014 s - 2 ,  

4.8 x 10-lo x 0.3 
3 x 10'0 x 9.1 x 10-28 

wRc = 2.1 x lo7 s-l ,  wLc 

wc = 

and hence 

= 5.27 x lo6 s-' , 

= 1.5 107 s-l. 

5049 

Derive an expression for the penetration depth of a very low frequency 
electromagnetic wave into a plasma in which electrons are free to move. 
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Express your answer in terms of the electron density no, electron charge e 
and mass m. What does "very low" mean in this context? What is the 
depth in cm for no = lOI4 

( UC, Berkeley) 

Solution: 
The dispersion relation for a plasma is (Problem 5045) 

where wf = is the plasma frequency. A "very low" frequency means 
that the frequency satisfies w << up. For such frequencies k is imaginary. 
Let k = itc, where K = $ 4 z - j  w 2  - then eikr = e-fir  , the z-axis being 
taken along the direction of propagation. This means the wave amplitude 
attenuates exponentially in the plasma. The penetration depth 6 is defined 
as the depth from the plasma surface where the amplitude is e- l  of its 
surface value, i.e., 

tcd= 1 ,  

or 

With no = l O I 4  ~ m - ~ ,  we have 

and 

'O'O = 0.053 cm. 5.64 x 10" 
6 =  

5050 
In the presence of a uniform static magnetic field H, a medium may 

become magnetized. The magnetization may be coupled self-consistently 
to an electromagnetic field set up in the medium. 

(a) Write down an equation of motion governing the time variation 
of the magnetization under the influence of a (generally time-dependent) 
magnetic field. 



Relativity, Particle-Field Inferacfions 647 

(b) An electromagnetic field is, of course, in turn generated by the 
time-dependent magnetization as described by the appropriate Maxwell's 
equations. Assume the dielectric constant E = 1 for the magnetic medium. 
Find the dispersion relation w = w ( k )  for the propagation of a plane wave 
of magnetization in the medium. 

Solution: 

definition of permeability p,  

(S VNY, BuJyixlo) 

(a) Assuming the medium to be linear, M = xmH, we have, by the 

(b) Maxwell's equations for the medium are 

4A 1 d D  V x H = - j + - -  1 a B  
c at c c a t '  

V x E =  --- 

Note that B in the equations is the superposition of the external field and 
the timedependent field produced by the magnetization M(t). 

Consider the medium as isolated and uncharged, then p = j = 0. Also 
D = E as E = 1. Maxwell's equations now reduce to 

1 aE V X H = - -  1 BB 
c at c at ' VxE=--- 

with 
B = p H .  

Deduce from these equations the wave equation 

Consider a plane wave solution 

H(t) = Hoei(k'r-wt). 

Substitution in the wave equation gives the dispersion relation 
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or w w  
v c  

k = - = y m .  

The magnetization M can then be represented by a plane wave 

~ ( 1 )  = x ~ ( w ) H ( ~ )  = X m ~ o  ei(k 'r -wt)  . 

As M satisfies the same wave equation the dispersion relation above remains 
valid. 

5051 
In a classical theory of the dispersion of light in a transparent dielectric 

medium one can assume that the light wave interacts with atomic electrons 
which are bound in harmonic oscillator potentials. In the simplest case, 
the medium contains N electrons per unit volume with the same resonance 
frequency wg . 

(a) Calculate the response of one such electron to a linearly polarized 
electromagnetic plane wave of electric field amplitude Eo and frequency w .  

(b) For the medium, give expressions for the atomic polarizability, the 
dielectric susceptibility and the refractive index as functions of the light 
frequency. What happens near resonance? What happens above resonance? 
The phase velocity of the light wave exceeds the vacuum velocity of light if 
the refractive index becomes smaller than 1. Does this violate the principles 
of the special theory of relativity? 

(S UN Y, Buflafo) 

Solution: 
(a) The equation of motion for the electron is 

m x  = -nwox - eEge-iW' .  

Consider the steady state solution x = xge- iw' .  Substituting in the equa- 
tion gives 

2 

eEo e - i W t  
X =  

m(w2 - wg) 

The electric dipole moment of the atom in the field of the light wave is 
(b) Assume that each atom contributes only one oscillating electron. 

e 2 E  
m(w2 - w i )  

p = -ex = - 
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giving the atomic polarizability 

P e2 a = - =  
E m(w;-w2)’  

As there are N electrons per unit volume, the polarization of the medium 
ie 

Ne2E 
m(w8 - w2) * 

P = n p =  

The electric displacement is by definition 

Hence the dielectric constant is 

N e 2  
E = E O +  m(w$ - W Z )  * 

Assume the medium to be non-ferromagnetic, then p = PO, and the 
refractive index is given by 

Putting 

we have 

For w < wo, we have E > € 0 ,  n > 1, and the phase velocity of the wave in 
the medium is up = < c. 

n is real but smaller than unity. This means 
with a velocity greater than the 

velocity of light in free space. However, the energy or signal carried by the 
wave travels with the group velocity vg given by 

1 dk n o dn - -  - -= -+ - -  
vg did c c &  
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8s E = F. Equation (1) gives 

as n > 1. Then as up > c,  vg < c. Hence there is no violation of the 
principles of special relativity. For both the above cases, n increases with 
increasing w and the dispersion is said to be normal. 

For w = W O ,  Eq. (1)  does not hold but damping (collision and radiation) 
must be taken into account. Equation (1) is modified to  

I +  w; (w2 - w2) 
nFu [ 

l +  (w,” - w2)2 + ,272 

Thus n x 1 for w = W O .  As w increases from a value smaller than wg 

to one larger than wo, n decreases from a value greater than unity to one 
smaller than unity. In this region n decreases with increasing w and the 
dispersion is said to be anomalous. 

For w > d-., n is imaginary so that k = n is also imaginary. 
Let it be irc. Then the wave amplitude at a point distance r from the surface 
of the medium simply attenuates according to e-&‘ and propagation is not 
possible in the medium. 

Near resonance w M W O ,  the absorption coefficient becomes very large. 
Thus the medium is essentially opaque to the wave a t  w w wg and for 

5052 

Consider a model of an isotropic medium composed of N harmonically 
bound particles of charge e, mass m and natural frequency wg, per unit 
volume. 

(a) Show that, for a zero magnetic field, the dielectric function of the 
medium is given by 

4?rNe2/m 
E ( W )  = 1 + 

w,z-w2 . 
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(b) (The Faraday effect) Now a static magnetic field B in the direction 
of propagation of the electromagnetic wave is added. Show that the left 
and right circularly polarized electromagnetic waves have different dielectric 
functions, with the difference equals to 

4*Ne2 2eBwlmc 6 4 ~ )  = - 
m (w: - w2)2 - (eBw/mc)2 * 

(Chicago) 
Solution: 

(a) See Problem 5051. 
(b) Take the z-axis along the direction of propagation, then k = Ee,. 

When a static magnetic field B = Be, is added, the equation of motion for 
a harmonically bounded particle is 

e mx = -rnwix+ eE + -x x B. 

As plane electromagnetic waves are transverse, E has only x and y compe 
nents. The component equations are 

C 

e mi = -mwix + eE, + -By, 

m i  = -mw,y + eEy - -BZ, 

mr = -mwoz. 

C 

e 2 
C 

2 

The last equation shows that motion along the r direction is harmonic but 
not affected by the applied fields and can thus be neglected. For the right 
circularly polarized wave (Problem 5045) 

ER = Eo cos(wt)e, - EO sin(wt)e, , 

so the remaining equations of motion are 

e 
mx = - m i x  + eEo co9 wt  + - Bfj , 

m i  = -rnw,y - eEosin wt - - Bx . 
C 

e 2 
C 

Putting 
eB 

u = z + i y ,  w e = -  
mc ’ 
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(1) - i x (2) gives 

2 eEo eEo eiwt u - iw,u + wou = - (coawt + isinwt) = - m m 

In the steady state, u N e w t .  Substitution in the above givea 

eEo(coswt + isinwt) 
m(w2 - w2 + ww,) 

U =  ' 

Separating the real and imaginary parts we have 

eEo coswt 
m<wi - w2 + w w c )  ' 

eEo sin wt 
m(wi  - w2 + ww,) ' 

y = -  t =  

Combining the above in vector form gives 

eER 
m(wi - w2 + ww,) * 

X =  

Hence the polarization of the medium due to the right circularly polarized 
wave is 

N e 2 E R  
m ( w i  - w2 + ww,)  * 

P = N e x  = 

As E = 1 + 4a 5 ,  the above gives 

4aNe2  
m(w; - w2 + ww,) . E R = f +  

Similarly for the left circularly polarized wave 

EL = EO cos(wt)e, + EO sin(wt)ey , 
we find 

47rNe2 
m(wi - w2 - ww,) ' 

E L = 1 +  

The difference between EL and ER is therefore 

1 

4 a N e 2  2e Bw / m c  --. - 
m ( w i  - wa)2 - (eBw/mc)2 ' 
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5053 

An electrically neutral collisionless plasma of uniform density no is at 
rest and is permeated by a uniform magnetic field (0, 0, Bo). Consider an 
electromagnetic wave of frequency w propagating parallel to the magnetic 
field. Show that the wave splits into two waves for which the refractive 
indices are 

where the plasma frequency is w p  = (4~noe~/rn,)3 and the cyclotron f r e  
quency is w, = eBo/mec.  Show that these waves are, respectively, right- 
hand and left-hand circularly polarized. Explain physically why the refrac- 
tive index can be less than one. What happens when it vanishes? What 
happens when it becomes infinite? (You may assume that only the elec- 
trons respond to the wave and that the positive charges remain uniformly 
distributed.) 

(UC, Berkeley) 

Solution: 
Suppose the neutral plasma consists of free electrons and an equal 

number of positive charges. Only the free electrons, for which wo = 0, take 
part significantly in the oscillations. Using the results of problem 5045 we 
have, as p w po = 1, 

4nnoe2 w; 
n i = c R =  1-  = 1 -  

mew2( 1 - w,/w) w(w - w,) 

Since the hase velocity of electromagnetic waves in the medium, 
c ( L ( E ) - ~  w C C ~ ,  may exceed the velocity of light speed c in vacuum, the 
refractive index n = $ may be less than one. Physically, as 

P 

where xe is the polarizability of the medium, n < 1 means that xe < 0. 
As the electric dipole moment per electron is p = XeE, this means that 
the polarization vector P of the medium caused by the external waves ie 
antiparailel to E. 
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With wo = 0, the group velocity ug = cn (Problem 5051). Thus 
vg = 0 when n = 0. This means that a signal consisting of such waves will 
be turned back at that point. Consider the case n i  = 0. We have 

2 w2  -k wcw - wp = 0 ,  

or 
-wc f +.‘ + 4w; 

2 w = w L c =  

Similarly we have for nk = 0, 

Thus w& > W L ~ .  If w > W R ~ ,  then both nR and nL are real, and prop- 
agation is possible for both polarizations. A plane electromagnetic wave 
in the medium will split into two circularly polarized waves with different 
refraction properties. If W R ~  > w > W L ~ ,  nR is imaginary and propagation 
is possible for only the left circularly polarized wave. A plane electromag- 
netic wave will become left circularly polarized in the medium. If w < w k ,  
then propagation is not possible for both circular polarizations. Note that 
for n imaginary, say n = it), eiLr = e-Qr and the amplitude attenuates 
exponentially. 

w 3  1 If w = w c ,  n~ = ioo,  ti^ = ( 1  - ”;) 2. As wp >> wC generally, nL is also 
%c 

a large imaginary number. No propagation is possible. Both nR,  nL = ioo 
if w = 0. In such a case, there is no wave but only an electrostatic field 
which separates the positive and negative charges at  the boundary of the 
plasma. Then the plasma surface acts as a shield to  external electrostatic 
fields. 

5054 

A radio source in space emits a pulse of “noise” containing a wide band 
of frequencies. Because of dispersion in the interstellar medium the pulse 
arrives at  the earth as a whistle whose frequency changes with time. If this 
rate of change (frequency versus time) is measured and the distance D to 
the source is known, show that it is possible to deduce the average electron 
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density in the interstellar medium (assumed fully ionized). (Hint: Look a t  
the response of a free electron to a high frequency electric field to deduce 
the relation between frequency and the wave number 2 r / X ) .  

(CUSPEA) 

S o h  t ion: 
Considering the interstellar medium as a tenuous plasma, we have from 

Problem 5044 
n = (1 - w : / w 2 ) + ,  (1 )  

where w is the frequency of the transversing radio wave, w p  = @ is the 
plasma frequency of the medium, N being the average number density of 
the electrons in the medium. With the wave number k = $ n ,  the group 
velocity vg of the electromagnetic wave is given by 

dk n w dn -+ - - .  I - - -  - ’; - dw c c dw 

Equation (1) gives 2 = $ 3 i, so that 

vg = t ic  ( n2 + ::)-l = nc.  

Since a pulse propagates with the group velocity, the p 
the source to the earth is approximately 

Thus 

or 

ting time from 

Thus if D and 
average electron density N. 

are known, we can calculate w i  = and hence the 
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5055 
A pulsar emits a pulse of broadband electromagnetic radiation which 

is 1 millisecond in duration. This pulse then propagates 1000 light years 
(loz1 cm) through interstellar space to reach radio astronomers on earth. 

(a) What must be the minimum bandwidth of a radio telescope receiver 
in order that the observed pulse shape be not distorted greatly? 

(b) Now consider that the interstellar medium contains a low density 
plasma (plasma frequency wp = 5000 radians/sec). Estimate the difference 
in measured pulse arrival times for radio telescopes operating at 400 MHz 
and 1000 MHz. Recall that the dispersion relation for a plasma is w2 = 
k2c2 + w i .  

Solution: 

of the radio telescope receiver as 

W I T )  

(a) The uncertainty principle AuAt FZ 1 gives the minimum bandwidth 

I 
At 

A u -  - = lo3 Hz. 

(b) The group velocity of electromagnetic waves in the interstellar 
medium is 

ug = aw = c J-7 1 - d / w  

For operating frequencies w1 = 4 x lo8 s-l,  w2 = lo9 s-l we have 

2 = 1.25 x 
W 1  w2 

W W 2 = 

With an interstellar distance L = 10'' m, the difference in the measured 
pulse arrival times is 

A t = - - - =  L L L  - [ ( I  - $)-* - (1 - 9 - 4 1  
U g l  Dg2 c w3 

2c [ (%)'- (:)'I = 0.052 s .  

5056 
A pulsar emits short regularly spaced burst of radio waves which have 

been observed, e.g., at the frequencies w1 = 2x j l  = 2563 MHz and w2 = 
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2mf2 = 3833 MHz. It  is noted that the arrival times of these bursts are 
delayed at the lower frequencies: the pulse at fl arrives 0.367 sec after the 
pulse at f 2 .  Attributing this delay to dispersion in the interstellar medium 
which is assumed to  consist of ionized hydrogen with 10' electrons per m3, 
give an estimate for the distance of this pulsar from earth. 

(a) Show that the electron plasma frequency for a tenuous neutral gas 
consisting of heavy ions and free electrons is given in Gaussian units by 

up=(.> 4 r N e a  9 

where N is the electron density. 
(b) Using that result and remembering that the index of refraction of 

a tenuous plasma is given by n = 6 = (1 - g)tl calculate the distance 
of the pulsar. 

Solution: 
(a) In a neutral plasma, when the distribution of the electrons is per- 

turbed and undulates non-uniformly, an electric field will be produced which 
causes the electrons to move in a way to tend to  return the plasma to the 
neutral state. The characteristic (angular) frequency of the undulation can 
be estimated as follows. Consider an electron of the plasma in an electric 
field El the equation of motion is 

(Ckicago) 

dv 
me dt = -eE , 

The motion of electrons produces a current of density 

j = - N e v .  

Combining the above we have 

or, taking divergence of the two sides, 

8 N e Z  
- ( V . j )  = - V . E .  
at m 



658 Problerna f3 Solutions on Elteiromagnetiarn 

Using the continuity equation V . j  = - 
4*p, we obtain 

and Maxwell's equation V - E = 

a2p 47rNe2 -+- P =  0 '  a t 2  me 
or 

with 
wp = \I--. 4rNe2 

This equation shows that the charge density a t  a point oscillates simple 
harmonically with characteristic (angular) frequency wp. 

(b) Using the results of Problem 5055 we find the distance from the 
pulsar to the earth: 

me 

The electron plasma frequency 

PO = 2.82 x 

3.833 x lo9 s- ' .  As w1 w2 >> wp we have approximateIy 

cm being the classical radius of electron. 
The observed (angular) frequencies are w1 = 2.563 x lo9 s-l ,  w2 = 

With At = 0.367 s, 

L = 8.16 x lo2' cm = 8.5 x lo2 light years. 
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current and a current sheet 
current and metal slab 2072 
current loops 2048 
electric dipoles 1092, 1093 
magnetic dipole and wire loop 
magnetic dipoles 2076 
parallel currents 2064 
perpendicular currents 2065 
point charges 1078 
relativistic moving charges 5019 

coil in magnetic field 2052, 2078 
moving charge 5011, 5012, 5014 

Fourier transform 4009, 5023, 5034 
Fresnel’s formula 4012 

2066 

2077 

Force on 

Gauss’ law 1005 
Geiger counter 3068 

Induced emf in 
coils in relative motion 2057 
wire loop in changing magnetic field 
wire loop near current 
wire loop rotating in magnetic field 

2077 
2041,2042, 2043, 2060, 2061 

2040, 2051 
Inductance circuit 3021, 3028 
Inductances 

Induction between coils 3033, 3090 
Ionization chamber 1106 
Ionosphere 5048 

Larmor precession 2084 
Lines of force 5029 
Logic gate 3060 
London’s equations 2071 

Magnet in earth’s field 2069 

combination of 3034 
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Magnetic field inside 
current-carrying cylinder 2086 
iron core of current coil 2044 

Magnetization 5050 
Magnetization of iron needle 2074 
Maxwell’s equations, solution of 4004, 4005 
Microprocessor 3065 
Motion in magnetic field of 

anisotropic particle 2089 
long wire 2053, 2054, 2056 
metal block 2073 
metal disc 2070 
wire loop 2055 

in cyclotron 5035, 5037 
in electric field 2080 
in electric and magnetic fields 
in magnetic field 
in potential well 5031 
parallel to  wire carrying current and charge 2079 

Motion of magnetic dipole about fixed magnetic dipole 
Motion of metal sphere in electric and magnetic fields 
Motion of relativistic charge in EM field 

Mutual inductance of coaxial coils 

Motion of charge 

2082, 2090, 5038 
2083, 5030, 5035 

2081 
2075 

5016, 5026, 5028, 5039 
Lagrangian and Hamiltonian for 5027 

2039, 2046, 2048 

Network 3074 

Oscillation of charge caused by EM wave 5032, 5033, 5034 

Paramagnetic sphere in magnetic field 
Plasma 

2067 

conductivity of 5044 
group velocity in 5054, 5055 
refractive index of 5044, 5045, 5047, 5048, 5053 

Plasma frequency 5045 
Point charge in presence of 

conducting sphere 
dielectric 1047 
plane conductor 

1080, 1081, 1082, 1083, 1087 

1073, 1074, 1076, 1077, 1079, 1085, 1086 
Poisson’s equation 1090 



664 Indcz t o  Prodlemr 

Polarization vector 1007 
Polarized hydrogen atoms in magnetic field 
Potential 

2084 

Liknard-W iechert 5020 
vector 5017 

Poynting vector 4032 
Protection of devices from fields 4046 
Pulsar 5055, 5056 
Pulse, subnanosecond 3073 
Pulse generator 3076, 3083 

Radiation from 
ac loop 4055 
ac sheet 4047 
accelerated charge 4052, 5021, 5036 
combination of oscillating dipoles 4065, 4066 
linear antenna 4048, 4053, 4056, 4057, 4058, 4059 
oscillating electric dipole 4049, 4050, 4063, 4064 
pulsating charged sphere 4051 
rotating charge distribution 4067 
television transmitter 4054 

Radiation of quadrupole field 
Radiative reaction 5032, 5033 
RC network 
RCL circuit 3022, 3025, 3087 
Reflection and refraction of EM waves 

at conductor surface 4031 
at dielectric surface 4010 
a t  surface of anisotropic medium 
on normal incidence on conductor 4014, 4027 
on normal incidence on dielectric 

4060, 4061, 4062 

3008, 3012, 3013, 3018, 3024, 3084 

4022 

401 1, 4012, 4016 
Reflection coefficient 4013 
Reflection of X-rays 4029 
Relaxation oscillator 3055 
Resistances 

RL network 3014, 3015, 3016, 3017 
Rotating charged 

cylinder 206 1 
sphere 2036, 2059 
spherical shell 2032, 2033, 2035 

combination of 3007, 3026 



h d c z  l o  Problems 665 

Self-induc tame of 
copper-foil cylinder 2058 
toroid coil 2045 

Schmitt trigger 3062 
Solenoid 

field of 2008, 2009, 2050, 3034 
inductance of 3027, 3030, 3034 

Space inversion 
effect on electromagnetic quantities 4008 

Spaceship kinematics 5003, 5004 
Spectral lines 4044, 5034 
Sphere in conducting medium 2031 
Sphere in electric field 

dielectric 1056, 1062, 1063, 1064 
conducting 1065, 1069 

Storage cells 308b 

Telegraph line, 3088 
Thkvenin’s $Keorem 3003 
Time r e v e ~ a l  

Toroid 

Trrrfisformation of 

efFect;on electromagnetic quantities 4008 

dgnet izat ion of 2025 

acceleration 5003 
current-charge density 5010 
energy-momentum density 5009 
field vectors 5007, 5008, 5009 

Transformer 3023, 3086 
Transistor 3049 
Transistor circuit 3063, 3064, 3080 
Transmission coefficient 4028 
Transmission line 3067, 3089, 4043 

Units 3040 

Waveguide 
parallel plane-conductor 5023 
rectangular 4036, 4037, 4038, 4039 
triangular 4040 

Zener diode 3045 
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