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Chapter 1

Vector Analysis

Problem 1.1

(a) From the diagram, [B + C|cosf3 = |B| cos6: + |C| cosf,. Multiply by |A|.
|A||B + C| cosb3 = |A||B| cos6; + |A||C|cosbs.
So: A+(B + C) = A-B + A-C. (Dot product is distributive.) 2
Similarly: |B + C]sin 63 = {B|sin; + |C]|sin@,. Mulitply by |A|A. / -
JAl|B + C|sin6s & = |A||B|sin6; & + |A[|C| sin 6, &. Sl Vislame:
If fi is the unit vector pointing out of the page, it follows that H
AX(B+C) = (AXB) + (AxC). (Cross product is distributive.) IBlcos6y  |C|cos b2

(b) For the general case, see G. E. Hay’s Vector and Tensor Analysis, Chapter 1, Section 7 (dot product) and
Section 8 (cross product).

:}(Clsin 62

Problem 1.2
The triple cross-product is not in general associative. For example, c
suppose A = B and C is perpendicular to A, as in the diagram.
Then (BxC) points out-of-the-page, and AX(BXC) points down, A=B
and has magnitude ABC. But (AXxB) = 0, so (AXB)xXC =0 # :
AX(BxC). BXC yAx(BxC)
Problem 1.3 2
A=+1%+19-12;A=V3;B=1%+19+1% B=V3. 4
AB=+1+1-1=1=A4Bcosf = v3V/3cosf => cosf = }. A

6 = cos™ (3) = 70.5288°

Problem 1.4

The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example,
we might pick the base (A) and the left side (B):

A=-1%+2§+02B=-1%+0§+32.
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x § 2

-1 2 0|=6%+3y+22.

-1 0 3

This has the right direction, but the wrong magnitude. To make a unit vector out of it, simply divide by its

length:
|AXB[=+v36+9+4="1.

Problem 1.5

AxB=

% ¥ Z
AX(BXC) =

A Ay A,
(ByC: ~ B,Cy) (B:Cs—ByCs) (BsC, — B,Ca)
= #[Ay(BzCy — ByCy) — A;(B:Cy — B2 C2)] + 9() + 2()
(DI just check the x-component; the others go the same way.)
=%(AyB:Cy ~ AyByCr — A:B,Cs + A:B2C.) + 9() + 2().
B(A-C) ~ C(A'B) = [B;(A;C: + AyCy + A;C.) — Co(AsBs + AyBy + A:B.)| %+ 0¥+ ()2
= %(AyB.Cy + A:B,C. — A,B,C; — A, B:C:) + 9() + (). They agree.
Problem 1.6
Ax(BxC)+Bx(CxA)+Cx(AxB) = B(A-C)-C(A-B)+C(A-B)~A(C-B)+A(B-C)-B(C-A) = 0.
So: AX(BxC) - (AxB)xC = -Bx(CxA) = A(B-C) — C(A-B).
If this is zero, then either A is parallel to C (including the case in which they point in opposite directions, or
one is zero), or else B-C = B-A = 0, in which case B is perpendicular to A and C (including the case B = 0).
Conclusion: |A><(B><C) = (AXB)XC <= either A is parallel to C, or B is perpendicular to A and C.
Problem 1.7

2= (A% +69 +82) — (2% + 89 +72) =[2X— 25 + 2

Problem 1.8

(a) AyBy + A, B, = (cos Ay + sin A, )(cos ¢ By + sin ¢B:) + (—sin pAy, + cos pA,)(— sin ¢ B, + cos $B;)

= cos® pAy By + sin ¢ cos ¢(Ay B, + A, B,) + sin $A, B, + sin’ ¢AyBy — sindcos §(Ay B, + A.By) +
cos® pA. B,

= (cos® ¢ + sin® §) Ay By + (sin® ¢ + cos® $) A, B; = AyBy + A, B,. v
() (A2)? + (A)? + (A:) = B A4 = B2 (S50 R 4y) (Shog RueAr) = Tk (BuRog Bur) Ay A

1 if j=k
3 -

2,=1R.,R.k—{ 0 if j#k }‘
Moreover, if R is to preserve lengths for all vectors A, then this condition is not only sufficient but also
necessary. For suppose A = (1,0,0). Then 3,4 (5, Ry Ru) A, Ax = 5, Ry Ry, and this must equal 1 (since we
want Ay + A+ A, = 1). Likewise, 53, Ry Ri = B2, RigRug = 1. To check the case j # k, choose A = (1,1,0).
Then we want 2 = £, ¢ (L, RyjRux) AjAx = T, Ra Ry + %, RoRip + . RuRis + 5, R Ry But we already
know that the first two sums are both 1; the third and fourth are equal, so =, Ri Rz = %, Ro R,y =0, and so
on for other unequal combinations of j, k. v/ In matrix notation: RR = 1, where R is the transpose of R.

This equals A2 + A} + A2 provided




Problem 1.9
)Z Looking down the axis: %

_ A 120° rotation carries the z axis into the y (= %) axis, y into = (=), and « into z (= ). So A, = Az,
A=Az, A=Ay

001
R=[100
010

Problem 1.10

® Az = Ao By =y B = 42)
(6) [A— —A,]in the sense (A = —As, &y = ~ Ay, & = —As)

() (AxB) — (~A)x(~B) = (AxB). That s, if C = AxB, [C — C]. No minus sign, in contrast to
behavior of an “ordinary” vector, as given by (b). If A and B are pseudovectors, then (AXB) — (A)x(B) =
(AxB). So the cross-product of two pseud ors is again a pseudovector. In the cross-product of a vector
and a pseudovector, one changes sign, the other doesn’t, and therefore the cross-product is itself a vector.
Angular momentum (L = rxp) and torque (N = rXF) are pseudovectors.

(d) A-(BXC) — (=A)-((~B)x(~C)) = —A«(BXC). So, if a = A-(BXC), then a pseudoscalar
changes sign under inversion of coordinates.

Problem 1.11

(QVf=22%+3y°§ +42°2

(B)Vf = 2zy32t & + 32y?24§ + da*P 2

(©Vf=esinylnzk +ecosylnzy +e”siny(1/2) 2

Problom 1.12

(a) Vh = 10[(2y — 62 — 18) % + (22 — 8y + 28) §]. Vh = 0 at summit, so
2y 6z~ 18=0 e B
2 — 8y + 28 = 0 => 6z — 24y + 84 =0 }2” 18- 24y +84=0.
Wy=66=>y=3—2—-244+28=0=>z=-2.

Top is | 3 miles north, 2 miles west, of South Hadley. |

(b) Putting in z = -2,y = 3:
h=10(~12 — 12 — 36 + 36 + 84 + 12) =

(0) Putting in ¢ =1,y =1: Vh=10[(2—6— 18) % + (2 — 8+28) §] = 10(—22% + 229) = 220(- % +7).
|Vh| = 220v/32 ~ [311 ft/mile | direction: [northwest.
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Problem 1.13
r=@-2)x+@W—-y)F+(z-2)% 2=/(@-22+y—-y)2+ (-2
® V(a“) = 2l (=g (= 2R+ GOI+ £08 = 2o —2) R+ 20y —1)§ 42z 2 =2a.

51[(1 )+ -y’ + (- ')“]"x+80 g+ 20tz
‘( “fa(z-a)x - 10"ty - )7 - 30 %2(1—1’)2
Ot = 24 (= 1) 7+ (2 = )] = (10 = (1223

(c) Z(»") =no" 18 = nanY(4124;) = na" iy, 50| V(") = a4,

Problem 1.14

y cos ¢ + z sin ¢; multiply by sin ¢: Fsin ¢ = +y sinpcos$ + 2 sin’ §.
y sin ¢ + z cos ¢; multiply by cos¢: Zcos¢d = —y sinpcos ¢+ z cos ¢.
Add: Fsing +Zcos ¢ = z(sin? ¢ + cos? ¢) = z. Likewise, Fcos$ — Zsing = y.
So 9" =cosg; 3 = —sing; & 8‘ =sing; & = cos ¢. Therefore

), =4 = F5t + L& =+ cosd(V1), +3in (V).
V/) - 52 gg + ;[8‘ —sing(V f)y + cos §(V f) So Vf transforms as a vector. ged

Problem 1.15
(Q)V-va = £(a?) + £ (302%) + £(-202) =20 +0 -2 =0.

(6)V-vs = £(zy) + &(2y2) + £(322) =y + 2z + 3z.

(©V-ve = &%) + &2y + %) + £(2y2) = 0+ (22) + (2y) = 2(z +)-

Problem 1.16
Vo= B,(-,)+‘,v(4§)+;,(1) 2 [aa(a;2 +9? 4274 [pa g2+ ) H| 4 22 407 42978
=07 E+a(=3/20 420+ 07 + (- 8/20” hy +07E +2(=3/2)07F2
=33 —3r%(z® +y% +2%) =3r3
This conclusion is surprising, because, from the dmgram, this vector field is obviously diverging away from the
origin. How, then, can V-v = 0?7 The answer is that V-v = 0 everywhere ezcept at the origin, but at the
origin our calculation is no good, since 7 = 0, and the expression for v blows up. In fact, V-v is infinite at
that one point, and zero elsewhere, as we shall see in Sect. 1.5.
Problem 1.17
0S vy + sin pv;; T, = —sindpvy +cos pv,.

ﬁff

= "Tz cosg+ 3 sing= (G0t + Grgz) cosp+ (B3 + G &) sing. Useresult in Prob. 114
= (%”4 cos ¢+ 5 @'- smqﬁ) cos ¢+ (‘i"A cos¢p+ G sm¢) sin ¢.

2% By ¢+ﬁtcos¢——(%’£5‘;‘+m a.)sin¢+(8” ’%,%+‘9 a;) cos ¢

o
=7( %l sm¢+—'~ cos¢) sxn¢+(—%—"* s)n¢+%"; oos¢) cos ¢. So

=%‘Lcos’¢+%’l snn¢ws¢+~‘ singcos ¢+ 9 smz¢+% sin“q}—%"}sinqbcosd)

g8
T
8



—ﬁl sin$cos$ + % —V‘ cos? ¢

=ﬂ"v (cos? ¢+sm ¢)+@'-(sm ¢ +cos?g) = —'-+—* v

Problem 1.18

x 9y 2
@Vxva=| & & & |=%0-622)+5(0+22) +2(37 - 0) =
22 8z2® —2zz
x § 2
OVxv=| & & & |=%0-2)+50-32)+20-z)=|-2y%X 329332
zy 2yz 3zz
% v 2
() Vxve=| & 2 2 | =%(22-22) +5(0-0) +3(2y — 29) = [0]
2 (2zy+2%) 2z

Problem 1.19
v=yk+zForv=yrR+azy+ayh;orv=(322z—2°) X +39 + (z° — 3z2) %;
or v = (sin z)(cosh y) & — (cosz)(sinhy) §; etc.

Problem 1.20
0 V(o) = YD 80 g 1 05 = (52 4 g8L) k+ (1B +93) 7+ (1% +93E) 2
=7 (gxr By o) rg(Er+ Ly séz)-wg)w(vn. qed
(v) V-(AXB) = £ (A,B. — A;B,) + £ (A:B: — A:B:) + §; (A=By — AyB:)
=A,&+B%ﬂ A,"—": By%+A,B—B'-+Bz§;‘ﬁ A.%E - B %
+4,%8x B 2Ax _ 4,88 _B %
. (4 ) o~ 5. (3 ) - e ()
—4, (%= - %) A, (ﬁm ﬁ’n) B-(VxA) - A:(VxB). qed
(V)VX(fA)_(M-M),—‘_,_(M M)y.,.(ﬂLxl-_&E_-z)-
=(fQAA+A-£ 7% Aya)x+(fﬂ‘+A3‘f 12— 4.5
(fPﬁ+Ay5£ f—l—A,ﬁ)i
o[ ) s ()
_[(A"ﬁf'AWV)“'(A‘ - ) +(4:8 - Avow)a]
=/f(VxA) - Ax(Vf). ged

Problem 1.21

(@) (AV)B = (4,280 + 4,2 + 4,28 ) 2+ (4 5 + A5 + 4%y
+ (A% A%+ 4.92)2.

5 %% Let’s just do the z component.

-V)i]

V)i, = 5,0 :
1, = 3= (vd +od +28) yodmrm
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= Ha [+ a(-Dhy2e] +vo [-hphp] + 22 -3 ipe2e] }
HE- 3@ o +a?)} = HE- 3 (@4 + )} =1 (E-9) =0
Same goes for the other components. Hence: n

©) (va-V (x’ 24 31:22— —2zz ﬂz) (zy % +2yz§ + 3723)

=22 (yx+09 +328) +3x22 (zX + 229 +02) — 222 (0% + 2y ¥ + 3z2)
= (2y + 32%22) & + (622° — dayz) § + (322 — 6222) 2

=|:c2 (y+3zz)i+212(322~2y)§'731212]

Problem 1.22
(ii) (V(A-B)], = & (AcBu + AyBy + A;B.) = %2 B, + A, %8s + 228, + 4,92 + %4:B, 4 4,28
[Ax(VXBJ], = 4,(VxB): ~ A:(VxB), = 4,(% = §) - A (% - )
[Bx(VxA), 7B( %x) B, (8 — 84:)
[(A-V)B], = (Aaz?-+Ay5+Azaz)Ba~AzM‘+A8—B‘+A=TB‘
[(B-V)Al, = B, % + B, %> + B. %=
So [Ax(VxB)+Bx(VxA)+(A V)B + (B- V)A]
AP — 4,%8: — A, %8s 4 4,08 g O _p o4 _p odp o4
+Az%‘i=+A,,——t+A,% +B,%+B,,%‘;n+3.—5—x
= B A0 By (G - O 1o ) A (O - e + )
B, (- 341+Q‘4+741 )+ 4:( %«Lﬂxnhﬁit
= [V(A-B)], (same for y and z)
(i) [Vx(AXB)l, = £(AxXB); = &(AxB), = £(A:By— AB:) - £&(A:B: — A:B:)
= %B + A5 - GaB, - A% - Yp, A, %%+%B;+Aﬁ§*
[(B-V)A — (A-V)B + A(V-B) — B(V A)]
—B¢%+B,,ﬂ=+3%- Ag%Be — A, 0B — A, %8st A (9 + 5+ 985) — Bo (Y + B 4 9y
—Bv By +A2(_%+%+‘ﬂ!+%)+32$’$ a;y é‘z
+ Ay (—5F2) + A (= %5x) + B: (%)
= [V x(AXB)], (same for y and z)
Problem 1.23

V(fl9) = Z(fl9)x+ By(flg)y +&(f/9)2

= Jf—,—é'fa x+—"—r”L f”ly-‘)——é—;—ﬁ-’ 2

= ;l,f(gix+ ) f(%g:‘:+§§y+%}i)]= VISIY . ged
V-(Alg) = £(4:/9)+ a—(Av/gH £(4:/9)

_ 9% A y—s—l A, 88 g%a-a. Y
= el o
= ;1,[9 (e + 2 +Ma) (482 + 4,38 + A4, 5)] = A58 geq



(Vx(Afal, = &(A:/e) - F(klo)
= ”;Tx'i;nﬂ‘i_uil_;l“_vﬁ
- 2l )" (o)

M%M (same for y and z). qed

Problem 1.24

£ § 2
@) AxB=| z 2 3z |=x(6zz)+F(92y)+8(—22* — 6y?)
3y -2z 0

V-(AxB) = £(622) + £ (92y) + £(-207 —6y?) =6z + 9z + 0 =15z
VxA =%(§32) - @) +3 (£@) - £(32) +2 (&) - £(=)) =0 B(VxA) =0
VxB =% (%(0) - g;(—z:)) +7 (2@ -20)+2 (;,%(_21) - ;,%(3!,)) =52 A(VxB)=—15z
V-(AXB) £ B{(VXA) — A-(VXB) =0 — (~15z) = 15z. v
(b) AB = 3zy - dzy = —zy ; V(AB) = V(-ay) = *Z(-2p) + I & (o) = ~yx - 2§

3z | = %(—10y) + 9(5z); BX(VXA) =0

(A-V)B = (zg; +oud+ 3;%) (3y% — 22§) = %(6y) + §(~2z)
(B-V)A = (3;,;; - 2:%) (2% + 29§ +322) = X(3y) + ¥(—4z)
AX(VXB)+Bx(VxA)+(A-V)B+ (B-V)A
= _10y%+529 +6yX— 20§ +3yX— 42y = ~y% — 9 = V-(A-B). v
(0) VX(AXB) = % (§(-20% - 69%) ~ £ (921)) + 7 (£(622) — £(~20* — 64) + 2 (£(920) - £ (622))
= %(—12y — 9y) + 9(6z + 4z) + 2(0) = 21y %X + 10z 3
VA=L(@) + &) +£B2)=1+2+3=6; VB= Z(3) + £&(-20) =0

(B-V)A - (A-V)B +A(V-B) —B(V-A) =3y —4c 9 — by % + 229 — 18y% + 1229 = —21yx + 10z §
=VX(AXB). v
Problem 1.25

E

() %Tf = %&T’ = ‘;Z—T:‘ =-T =>1V2Tb =-3T, = —3sinzsinysinz.|
25T,
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Problem 1.26
v (Vxv) =& (- Gm) + & (G- )+ & (-5
= (%’g‘; - %;) + % - ng’g';) + (%"5 Zuy ) =0, by equality of cross-derivatives.
From Prob. 1.18: VXvp = —2y% — 329 — 22 = V«(Vxvs) = Z(-2y) + %(-—31) +&(-z)=0.v
Problem 1.27

~

% 3 2
|2 2 8 |_gen ey, o8 _ o o _ ot
VXV =| % gy o | =X(ge ~ otey) + (o8 — an) + 2k — gy
5 8 B

bz
=0, by equality of cross-derivatives.
In Prob. 1.11(b), vf 2y z"x+3a:2 224§ + 42%y%2% 3, so

vxwn=| & % é’,
zzya 4 szazd 4121]313

= %(3-42°y%2° — 4 32%y°2%) + 9(4 - 22y°2% — 2 day®2®) + 3(2 - Bzy®2t — 3 23y%2%) = 0. v
Problem 1.28
(a) (0,0,0) — (1,0,0).2:0 > Ly =2z =0;dl = dze%;v-dl = 2?d; [v-dl = [j z’dx (=2/3))3 =1/3.

(100)—)( ,1,0.2=1y:021,2=0dl=dyy;v-di=2yzdy=0; [v-dl=

1,1,00 — (1,1,1).s=y=1,2:0- Lidl=dz#;v-dl=y?dz=dz [v-dl = fo z—z|‘1,=

Total: [v-dl=(1/3)+0+1
(b) (0,0,0) — (0,0,1). 2=y =0,2:0 = L;dl=dz%v-di=y*dz=0; [ v-dl = 0.

(0,0,1) — (0,1,1). 2 =0,y:0 > Lz=Ldl=dyy;v-dl 2yzdy=2ydy;fv-dl=ﬂ2ydy =y’=1

0,1,1) — (1,1,1). 2: 0 Ly =z = Lidl=da&;v-dl = 2de; [ v - dl = [} o2 dz = (z3/3)[§ = 1/3.

Total: [v-dl=0+1+(1/3)=
(© z=y=2:0-1;dz = dy = dz; v - dl = 2® dz + 2yzdy + y° dz = 2? dz + 22 dz + 2° dz = 4z dz;

[v-di= [} 42%dz = (42°/3)}}
(@ $v-di=(4/3)- (43) =
Problem 1.29

Ly :0 o Lz = Ojda = dedy%;v-da = y(2* - 3)dedy = ~3ydedy; [v-da = ~3 [Pde [Pydy =

-3(1’3)(%@) = -3(2)(2) In Ex. 1.7 we got 20, for the same boundary line (the square in the zy-
plane), so the answer is e surface integral does not depend only on the boundary line. The total flux
for the cube is 20 + 12
Problem 1.30
JTdr = [ 2?dzdydz. You can do the integrals in any order—here it is simplest to save z for last:

21 (f )]

The sloping surface is z+y+2z = 1, so the z integral is fnu_"_') dz = 1—y—2z. For a given z, y ranges from 0 to
12,50 the y integral is [ (1—y—z)dy = [(1-2)y— @¥/DS ™ = (1-2)? - [(1~2)?/2] = (1-2)*/2 =




©

(1/2) = 2 + (22/2). Finally, the z integral is [} 22(3 —z+ £)dz = [j(5 -2+ 5)dz = (5 -5+ )b =
%_ 1
Problem 1.31

T(b)=1+4+2="7; T(a)=0. = [T(b)—T(a) =
= (22 + 4y)% + (42 + 223)§ + (6y2%)2; VT-dl = (2z + dy)dz + (4z + 22%)dy + (6y22)dz

(a) Segment1: £:0-1, y=z=dy=dz=0. [VT-dl= fo(Za:)dx—z‘I
Segment 2: y:0—1,2=1,2=0,dz=dz=0.[VT-dl= f0(4 dy—4y|0=4 f:VT'dl=7-\/
Segment 3: z:0—=1, z=y=1, dv=dy=0. [VT-dl = [}(6z%)dz = 25|y =2.

(b) Segment 1: z:0 1, z=y=dz=dy=0.[VTIdl= fn(O)dz— .
Segment 2: y:0-31, z=0, z2=1, dz=dz = 0. [VT-dl = [} (2)dy = 2ylp = 2. [Evra=1v
Segment 3: z:0—1, y=z=1,dy=dz=0.[VT-di= fo (2z +4) dz 2 -

= (@ +4)f;=1+4=5.

@©z:0-1, y==2, z=2% dy=drdz=2zdz.

VT-dl = (22 + 4z)dz + (42 + 22°)dz + (6z2%)2z dz = (10z + 142°%)dz.

[2VT-dl = [} (102 + 14s%)dz = (52° +227)[; =5+2=7. v
Problem 1.32

Vv=y+22+3z

J(Vvidr = [y+22+30) dedydz = [[{f3(y+22 +32) d:c} dydz
[y +22)z + %zz]: =2(y+22)+6

f{fo(2y+4z+6 dy}dz
[ +(4z+6y]0—4+2(4z+6) 82+16

= [2(8z+16)dz= (422 +162); = 16+32 =
Numbering the surfaces as in Fig. 1.29:

(i) da = dy dz %,z = 2. v-da = 2ydydz. [v.da = [[2ydydz = 2y2l: =8.
(ii) da = —dy dz %,z = 0. v-da = 0. [v-da =0.
(iii) da = dzdz §,y = 2. v-da = dzdz dz. [v-da = [[4zdzdz = 16.
(iv) da = —dzdzy,y = 0. v-da =0. [v-da = 0.
(v) da dy,z =2. v-da=6zdzdy. [v-da = 24.
(vi) da = —dzdy 2,z =0. v-da=0. [v-da =0.
= [vida=8+16+24=487
Problem 1.33

Vxv==%0-2y)+9(0-32)+2(0—z) = -2yX - 32§ —z2.
da = dy dz %, if we agree that the path integral shall run counterclockwise. So
(Vxv)-da = —2ydyda.
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J(Vxv)da = f{fg“' ——Zy)dy}dz

3 yﬂlﬂ—z =—(2-2)?
- J& 4—4z+z’)dz—— (42—2:2+’3—3) z
~(5-8+3) =[-5] X

Meanwhile, v-dl = (zy)dz + (2y2)dy + (32z)dz. There are three segments. v

1]

z

(s)\ N\

(@)
MNz=z=0de=dz=0.y:02. [vdl=0.
(2z=02=2-y; dt=0, dz——dy,y 2 = 0. v-dl = 2yzdy.
Jvdi= [ 2y(2- gy = - [ (4y - 2P)dy = — (2° - B®) [ = — (8- %~
B z=y=0de=dy=0; 2:2-0. v-dl=0. [v.dl=0. So §v-di=-8. v
Problem 1.34

By Corollary 1, f(V X v)-da should equal 3. VXv = (422 — 2z)% + 22%.
(i) da=dydzk, z=1; y,2:0 = 1. (VXV)-da= (427 — 2)dydz; [(VXv)-da= f‘,‘(422 —2)dz
= (§° -2 =4 ~2=-1%
(ii) da = —dzdy2, 2=0; z,y: 0 =+ 1. (VXV)-da=0; [(VXv)-da=0.
(i) da = dzdz§, y = 1; 2,2:0 =+ 1. (Vxv)-da=0; [(Vxv)-da=0.
(iv) da= —dzdzy, y=0; 2,2:0 > 1. (VXV)-da=0; f(VXv)-da=0.
(v) da=dzdy2, z2=1; ,y: 0 = 1. (VXv)-da =2dzdy; [(VXV)-da=2.
= J(Uxv)da=-3+2=%.v

Problem 1.35

(a) Use the product rule VX (fA) = f(VXA)— A x(Vf):

/Sj(VxA)~da=/SVX(fA).dH/S[Ax(vf)]-da=j£’fA-dl+/s[Ax(Vf)]-da. qed.

(T used Stokes’ theorem in the last step.)

(b) Use the product rule V-(A xB) =B-(VxA) - A-(VxB):

/\)B-(VxA)dr:/vV'(AxB)df+/vA-(VxB)dr=fi;(AxB)Ada+/vA-(VxB)d‘r. qed.

(I used the divergence theorem in the last step.)
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Problem 1.36 [r =

TR 0= (i) st ().

Problem 1.37

There are many ways to do this one—probably the most illuminating way is to work it out by trigonometry
from Fig. 1.36. The most systematic approach is to study the expression:

r=zX+y§+zZ=rsinfcosgX +rsinf@sing§ + rcosda.

If I only vary r slightly, then dr = z- 2 (r)dr is a short vector pointing in the direction of increase in r. To make
it a unit vector, I must divide by its length. Thus:

TIPN
P= 0 =22
s 1%l

& = sinfcos¢x +sinfsing§ +cosf;
o

s;n20c0s7¢+sm @sin® ¢ + cos? 0 = 1.
% —rcosﬂcosq}x+rmsﬂsm¢y—rsm9z

® = r2cos? fcos? ¢ -+ r2 cos? fsin® ¢ + r2sm?§ = r2.

g—;:—rsinﬂsin¢ﬁ+rsin9ws¢y; [g—;F: 2 sin? @sin® ¢ + 72 sin? @ cos? ¢ = 12 sin? 6.
i sin@cos@% + sinfsin ¢y + cos6 2.
=8 =cosfcospk+cosfsnd§ —sinf 2.

¢ =—sinpX+cospy.
Check: sin® §(cos? ¢ + sin® ¢) + cos? @ = sin? @ + cos?’d = 1, v
= —cosfsinpcos¢ + cosfsinpcosdp =0, v etc.

sinf# = sin? @ cos pR + sin® fsin ¢ § + sinfcosf 2.

cos 60 = cos? fcos R + cos? G sinpF — sin 0 cos 2.
Add these:

(1) sinff+cos§8 =+cosp%+singy;

(2) ¢ =-—singk+cospy.
Multiply (1) by cos¢, (2) by sin ¢, and subtract:

[ = sing cos o7 + cosfcos p 6 — sin 9 .
Multiply (1) by sin ¢, (2) by cos ¢, and add:

[5 = sinfsin g + cosfisin 66 + cos s .

sinf cos@ cos & + sinf cosfsin pF + cos® 0 2.
sin 6 cosf cos ¢ % + sinf cos@sin ¢ ¥ — sin? 02.
Subtract these:
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Problem 1.38

(@) Vovi = 5 2022 = H4r% = 4r
JOVv)dr = () sin6drdodg) = (4) [} rodr [ sin0.d8 [37dg = (4) (&) (2)(2r) =[4mR?]
[vi-da= [(r2F)-(rsin 0 db dg ) = r* [J sinBdf [7" dp = 4wR* v (Note: at surface of sphere r = R.)

(b) Vova= 52 (r?h) =0 = | f(V-vy)dr =0
[va-da = [(&F) (2sinfdf dp?) = [sinfdb dg =
They don’t agree! The point is that this divergence is zero ezcept at the origin, where it blows up, so our
calculation of f(V-v2) is sncorrect. The right answer is 47.
Problem 1.39

Vv =

(r? 1 c088) + 5k 25(sin 075in0) + k7 & (rsin f cos §)
? 080 + b 7 2sin0 cos b + g 7 sin 6(— sin ¢)

18
w2or
& 3r
3cosf +2cosf — sing = 5cosf — sin

J(Vv)dr = f(5c0s6 — sin¢) r? sin0dr dg dg = [Fr? dr [ [ 27 (5 cos § — sin ¢) d¢] dBsing
“—>2n(5cos6)

(&) qom) fF singcos ,dp

<3 an’e z_1
I

Two surfaces—one the hemisphere: da = R®sinfdfdp#; r=R; ¢:0—2m, 6:0— 3.
Jv-da= [(rcos6)R?sinfd6 dp = R‘q‘f;‘L sin@cos@dﬂj;)z" d¢ = R® () (2n) = =R,

other the flat bottom: da = (dr)(rsin8dg)(+6) = rdrdp6 (here § = ). r:0 5 R, ¢:0— 2m.
Jveda = [(rsin6)(r dr dg) = fuxvz dr foh dp = Z'erTs.

Total: [v-da =R+ 2aR®=4xR%. v

Problem 1.40 l Vt = (cosf +sindcos ¢)f + (~sin + cosfcos $)0 + 7 (~sifsin )b

vt V-(Vi)

L& (r?(cosf + sinf cos 4)) + sk Z (sinO(—sin 8 + cosfcos ) + k7 & (—sin )
7 2r(cos 0 + 8in 0 c0s §) + 75ty (—25in 8 cos @ + cos? 6 cos ¢ — sin® 6 cos ¢) — k7 cos b
”i‘n,[Zsindfos0+25in29cos¢—25in9fos9+coszf)cos¢ — sin? 6 cos ¢ — cos ¢]

= i [(sin*8 + cos® ) cos p — cos ¢] = 0.
>
Check: rcos@ = z, rsinfcosé =z = in Cartesian coordinates ¢ = z + z. Cbviously, Laplacian is zero.
Gradient Theorem: [ Vit-dl = t(b) — t(a)
Segment 1: § =3, ¢ =0, r:0 2. dl=dr#; Vi-dl=/(cos@ +sinfcosg)dr = (0 + 1)dr = dr.
[Vedl = [Jdr=2.
Segment 2: 0 =%, r=2, $:0 3. dl=rsin0dpd =2dp .
Vit-dl = (—sin $)(2dg) = —2singds. [Vedl=— [F2sinpdp = 2cosg|§ = —2.

1]




Segment 3: r =2, ¢ § 6: 5

dl=rdof=2dob; thl—(—sin0+cosﬁcos¢)(2d9):AZSinGdﬂ.
[Vtdi= —f?2sm€d0 = 2cos6]} = 2.

13

Total: [ Vi-dl=2—2+2=[2] Meanwhile, t(b) — t(a) = [2(1 +0)] - [0()] = 2. v

Problem 1.41 From Fig. 142, (8 = cos¢ % +sin¢§; ¢ = —sing% +cosdy; 2 =12

Multiply first by cos ¢, second by sin ¢, and subtract:
§cos¢p — ¢sm¢ﬁcos %+ cos psin ¢ § + sin® ¢x—sm¢cos¢y_x(sm ¢+ cos? )

so[ = -smp ]

Multiply first by sin ¢, second by cos ¢, and add:
8sing + Ppcos¢ = sin pcos pX + sin® ¢ F — sin pcos gk + cos? p§ = P(sin? ¢ + cos® ¢) =

So|y =sing$§ +cos¢¢.

Problem 1.42
() Vov = L2 (ss(2+sin¢)) + (ssm¢cos¢)+l(3z)
125(2 + sin® (13)—i~;e1(¢:os2 —sin?¢) +3
4+2sin2¢+oos2¢—sin2¢+3
4+sin’¢+cos?p+3=8]
(b) (V-v)dr = [(8)sdsdpdz =8 [7 sds [F do [} dz = 8(2) (5) (5) =
Meanwhile, the surface integral has five parts:
top: z =5, da = sdsdp2; v-da = 3zsdsd¢ = 15sdsd¢. fv-da_lﬁj;, sdsf0’ d¢ = 157.
0, da = —sdsdg#; v-da = —3zsdsdp=0. [v-da=0.
z da~dadz$,vda—asln¢cos¢icdz 0. [v-da=0.
left: ¢ =0, da= —dsdqu, vda_—ssln¢cos¢dsdz_04 fvda_O
front: s =2, da-sdzﬁdzs, vda——a(2+sm $)sdpdz = 4(2 + sin® $)dg dz.
Jv-da= 4fu (2 +sin® ¢)d¢f° dz = (4)(7 + §)(5) = 257.
So fv-da = 157 + 257 = 40m. v/
© Vxv = (,M(sz) (ssm¢cos¢))s+(",(s(2+sm’¢))—,,%(3z))4‘>
+1 (E(s sin ¢ cos ¢) — 37 (s(2 +sin? q}))) F
= %(Zssin¢cos¢—325in¢cos¢)=

(LI}

I

Problem 1.43

(2) 3(3%) -2(3) -1 =27~ 6~1=20.]
(b) cosm =
()
(d)In(-2+3)=In1=

Problem 1.44
(a) [%,(2 + 3)18(2) dz = 3(0+3) =[1.]
(b) By Bq. 1.94, 6(1 —2) =d(z — 1), s0 1 + 3 + 2 = [6.]
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© [}, 92236z + 1) de =9 (-1)*}
(d) |1 (if a>b),0 (ifa<b).
Problem 1.45

(a) [22, £ (2) [o8(2)] de = = f(@)0(@) %, ~ [25, 4% (2 f(2)) 8(x) da.
The first term is zero, since d(z) = 0 at +oo; % (z f(z)) = z% + "‘/ = zi +f.

So the integral is — [, (¢4 + £) 6(z) de = 0= £(0) = =£(0) = = [, f(2)6(z) do.
So, z:&6(z) = —é(z). qed
®) 23, 1) dds = 1PN - I, £0(@)de = f(o0) - [§° dz = f(c0) = (f(c0) - £(0)

=f(0)= f_mf(z 5(z) dx So L =5(z). qed

Problem 1.46
(a) | p(r) = g8%(r — r'). | Check: [p(r)dr =g [6*(r —1')dr=¢q. ¢
(b) | p(r) = g8°(r — ') — ¢8%(x).
(c) Evidently p(r) = A8(r — R). To determine the constant A, we require

Q= [pdr = [AS(r — R)dnr®dr = A4rR?. So A= S |p(r) = 5u0(r— R
Problem 1.47
(a) e’ +aa+a?=
(b) J(r — b)2&83(r) dr = b = 35 (4* +3%) =
(c) ¢ =25+ 9+4=238>36 =067 so c is outside V, so the integral is [zero.]

@ (e—@x+27+22)  =(1x+09+(-1)2)’ =1+1=2< (152 =
and hence the integral is e-(d — e) = (3,2,1):(—2,0,2) = 6 + 0 +2 =

Problem 1.48

First method: use Eq. 1.99 to write J = [ e™" (476%r)) dr = 4re™® =

Second method: integrating by parts (use Eq. 1.59).

25, so e is inside V,

o L E _ o N ..
J = —/ﬁ~V(e )dr+fe r~2~d& But V(e ’)=<Ee ')r:—-e .
v 5

-7 smed9d¢r-4n/e ’dr+e"R/sin€d0d¢
0
7.y

—e™®4e70) = (Here R = o0, so e ® =0.)

n
S
3
n
2
=
+
'S
S
®
|
£l
IS

VxFy =

© Flo %
oo
oo o
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[F2 is a gradient; Fy is a curl (2 + 92+ 22) do (F2 = VUy).
For Aq, we want (% — 9) = (“ %én) 0 Y82 4, =%, A=A =0would doit.
(F1 = VxA;). (But these are not unique.)
x vy Z
(b) V-Fs = Z(y2) + &(w2) + £(oy) =0 VxFs= ,,— 5‘, L |=2@-0)+9 -y +2(z—2)=0
]

Y
So F3 can be written as the gradient of a scalar (Fg = VU:;) and as the curl of a vector (F3 = VXAg). In
does the job. For the vector potential, we have

84: _ Oy —yz,  which suggests A, = Jy’z + f(,2); Ay = —jy2’ +g(z.0)

% —84: =gz, suggesting Ag =122z + h(z,y); A = -2z +(y,2)
LA BTA; =ay, so Ay = L2y + k(y,2); A = —Lay? +1(z,3)

Putting this all together: |A3 =z (2 -y x+y(a® -2y +2(y* —2?) 2} I (again, not unique).

Problem 1.50

(d) = (a): VXF=Vx(-VU)=0 (Eq. 1.4 - curl of gradient is always zero).
(a) = (c): §F-dl= [(VXF)-da =0 (Eq. 1.57-Stokes’ theorem).

@ = ®) [ F d- [0, Fd=[2F-d+f F-d=§F-d=0s0

b b
/ F»dl:/ F-dl.
a I a 11

(b) = (c): same as (c) = (b), only in reverse; (c) = (a): same as (a)=> (c).
Problem 1.51

(d) = (a): V-F=V(VxW)=0 (Eq 1.46—divergence of curl is always zero).
(a) = (c): § F-da= [(V-F)dr =0 (Eq. 1.56—divergence theorem).

(© = () f;F-da—[;;F-da=§F -da=0,s0

/F-da:/ F-da.
I Ir

(Note: sign change because for § F - da, da is outward, whereas for surface II it is inward.)
(b) = (c): same as (c) => (b), in reverse; (c)=> (a): same as (a)=> (c) .
Problem 1.52
Tn Prob. 1.15 we found that V-v, = 0; in Prob. 1.18 we found that VXv, =0. So
|vc can be written as the gradient of a scalar; v, can be written as the curl of a vector.l

(a) To find ¢

] §i =y’ > t=y’c+f(y,2)
@) § = (20y+2%)

3) =2z

Sle g|m
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From (1) & (3) we get %E=Zyz=:rf=yz’+g(y)=t=y’z+yz’+g(y),so%=Zzy+12+§$=
2zy + 2% (from (2)) = %:04 ‘We may as well pick g = 0; then

(b) Tofind W: %% — Fe = o2 O — B =322, W ~ 8 = 922

Pick W, = 0; then

W, _ . 2 _ 3.2,
5 = 3z > W, = 357 + f(y,2)
3_6‘){1 = -2zz= Wy = -2’2+ g(y,2).

E;l:ﬁ:}%é gf 0. May as well pick f =g =0.

)"' Z
2 £ | =% (2?) +§ (322%) +5(~222).v
2tz —$2222

You can add any gradient (Vt) to W without changing its curl, so this answer is far from unique. Some
other solutions:

W =z23% - 222§;
W = (2zyz +22%) %+ 2%y %
W =zyz% — §2229 + 322 (y — 32%) 2.

Probelm 1.53

" —- __ 2.2 s 2 _;i — s
Vv = r’ (r r2cosf) + maw(smor cos¢) —rsinsaqb( 72 cos 0sin ¢)
= ——41‘ cos0+——9cos0r ms¢+rsm0

[4sm€+cos¢ cos ¢] = 4rcosf.

(~r? cosf cos )
rcosO

R /2 w2
/(V-v)dr = /(4rms9)rzsin0drd0d¢=4°/r3dr[cwﬂsingdoo/d¢
- @ (3) ()=

Surface consists of four parts:
(1) Curved: da = R?sin0dfdp#; r = R. v-da= (R?cos8) (R?sinfdfdg).

/2 /2
.da= i —r (Y (@) =&
/v da—R‘/oosﬁsmOdO/dzﬁ—R (2) (Z)_ T
° 0




(2) Left: da = —rdrdfd; $=0. v-da=(r’cosfsing)(rdrdf) =0. [v-da=0.
(3) Back: da =rdrdf¢; ¢ =n/2. v-da=(—r®cosfsing) (rdrdf) = —rcosdr db.

R /2
/v ~da= /radr / cosfdf = — (%R‘) (+1) = _%Rd,
0 o

(4) Bottom: da = rsin drd¢6; § =7/2. v-da= (r?cos¢) (rdrdg).

R /2

/‘v-da:/rsdr/cosdnw:%R‘A

0 o

Total: §v-da=mR‘/4+0— LR 4 IRV =R o

Problem 1.54
E

y z
Vxv=|4& & & |=t®-a). So [(VXv)-da=(b—a)rR%
ay bz O

vedl=(ay % +bz §) - (dex +dy ¥ +dz2) = aydz + bzdy; 2° +y> = R? = 2zdz + 2ydy =0,
sody = —(z/y)dz. So v -dl = aydz +bz(—z/y)dz = L (ay® - bs?) dz.

2_g?
For the “upper” semicircle, y = VRZ —z2,s0 v -dl = "(TRWZ_,—

r _
/v»dl = R/L- R(a_“‘zl;)xzdzz {astin“ (%) —(a+1b) [—; R? — a2+ ~Iz—ﬁsin’l (%)]} +:
= %R’(a — b)sin~}(z/R) ;R = %R’(a —b) (sin~}(~1) — sin"}(+1)) = %R“(a —b) (—g - g)

= %'HR’ (b—a).
And the same for the lower semicircle (y changes sign, but the limits on the integral are reversed) so
$v-di=aR*b~a). v

Problem 1.55
Nzr=2=0;de=dz=0;y:0=1 v-dl=(y+3z)dy=ydy.

1 1 1
/v~dl:/ydy=§.
° [

(2 z=0; 2=2-2y; dz=-2dy; y:1-0. v-dl=(y+3z)dy+6dz=ydy—12dy = (y — 12) dy.

0
/v~dl=/(y—12)dy=—(%—12) =—%+1z.
1

@B z=y=0;dz=dy=0; 2:2-0. v-dl=6dz

/v-dl:/ﬁdz:—lZ.

2
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Total: §v-dl=}-}+12-12=
Meanwhile, Stokes thereom says §v-dl= [(VxV)-da. Here da= dydz%, so all we need is
(VXV), = (6) Z(y+3z)=0. Therefore [(VXv)-da=0.v
Problem 1.56
Start at the origin.

(1) 6=%,¢=0;7r:0>1 v-di=(rcos’6)(dr) =0. [v-di=0.

(2 r=1,0=%; ¢:0->7/2. v-dl=(3r)(rsin0dg) =3dp. [v-dl= 3fd¢——

(3) $=%; rsinf=y=1,s0r =g, dr—mrcosod«‘) 60:3 7.

cos?f [ cosf cos@sinf
v-dl = (rcos?6)(dr)— (rcos@sin6)(rdf) = o (—sinZO)dtheta—m
_ _(co539 co_sd) _ _cosf (cos20+sin29)dg _cos@do
sin¢  sinf) " sin@ sin 0 T osinfg
Therefore
Feoso 1 M 1 1 1_1
/V"":‘nm‘” Tl 2D TM 27
m

(4)0=2,¢=Z%;r:vV20. v~dl=(rcos“€)(d'r)=%rdr.

Total:

Stokes’ theorem says this should equal [(VxV)-da

Uxv = — [86(51n93r)——( rsmocoso)]H [

rsinf

1 [a—(—rrcosdsind) - = (rcos“@)] )

= rsmo[Srcosﬂ]r+ [-6r]9+—[‘Zrcos051n9+2rcosf)sm9]¢
= 3cotff—68.

(1) Back face: da = —rdrdd; (Vxv)-da=0. [(VxV)-da=0.

(2) Bottom: da = —rsin@drdg8; (Vxv)-da=6rsinfdrdg. § = 3,50 (VXV)-da =6rdrdg

/2

1 7 _3nm
/(va) da= /6rdr/d ‘3'3= 3 v
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Problem 1.57
v-dl=ydz.

(1) Left side: z=a—z; dz = —dz; y =0.
(2) Bottom: dz=0. Therefore [v-dl=0.

Therefore [v-dl=0.

0
(3) Back: z=a—}y; dz=—1/2dy; y:2a - 0. fv~d1=fy(—«%dy) =

Meanwhile, VXv = %, so [(V xv) - da is the projection of this surface on the zy plane = N

Problem 1.58
_ 19 19 1 )
Vv = r_“(')r (r?r smﬂ) 050 (sin@4r? cos&) + sm03¢ (r? tang)
= —4r sinf + — 04r (cos® 6 —sin? ) = 6 (sin® @ + cos @ — sin® §)
_ . cos’6
- sinf

/6

/6 2r
) [ in 20
/(v-v)df = /(4#::0) (r* sin 0 dr do dg) = /4r3dr/c0520;i«9/d¢: (RY) (2m) [§+’“‘; ]
0 o

0 60° 4
— omRt (;r_z+51n60 ) =ﬂ<,+3§) = | =& (27 + 3V/3).

4 6

Surface consists of two parts:
(1) Theice cream: v = R; ¢:0 = 2m; 6: 0 — 7/6; da = R?sin0df dp; v-da = (R%sin6) (R? sin 6 df dg) =
R*sin® 0 df do.

/vda R‘/smzdde/dfﬁ (R*) (2m) [ 0—2511120] /s—ZwR‘ (——251n60°) ==

(2) The cone: §=%; ¢:0—2m; r:0— R; da=rsinfdpdrf = YErdrdg; v-da=v3rdrdg

R 2n
4
/v-da=\/§/r3dr/d¢=‘/§-%.2n=§n
o 0

Thereforefwda:%(%—§+\/§)=%(2n+3\/§). v

Problem 1.59
(a) Corollary 2 says §(VT)-dl = 0. Stokes’ theorem says §(VT)-dl = [[V x(VT)]-da. So [[V x(VT)]-da =0,

and since this is true for any surface, the integrand must vanish: VX (VT) = 0, confirming Eq. 1.44.

R <7_3ﬁ

?)
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(b) Corollary 2 says §(V xv)-da = 0. Divergence theorem says §(V xv)-da = [ V-(Vxv)dr.So [ V+(V xv)dr
= 0, and since this is true for any volume, the integrand must vanish: V(V Xv) = 0, confirming Eq. 1.46.
Problem 1.60

(a) Divergence theorem: §v -da = [(V-v)dr. Let v = cT, where c is a constant vector. Using product
rule #5 in front cover: V-v = V-(cT) = T(V-c) +c-(VT). But ¢ is constant so V-¢ = 0. Therefore we have:
[e-(VT)dr = [Tc- da. Since c is constant, take it outside the integrals: ¢+ [ VI'dr = c- [Tda. But c
is any constant vector—in particular, it could be be %, or §, or Z—so each component of the integral on left
equals corresponding component on the right, and hence

/VTd‘r:/TdaA qed

(b) Let v — (v x c) in divergence theorem. Then [ V-(v x ¢)dr = [(v x ¢) - da. Product rule #6 =
Vi(vxc)=c-(VXV)—v-(Vxec)=c:(Vxv). (Note: Vxc =0, since ¢ is constant.) Meanwhile vector
identity (1) says da- (v X ¢) = ¢- (da x v) = —c- (v x da). Thus fc- (Vxv)dr = — [c- (v x da). Take c
outside, and again let ¢ be %X, ¥, 2 then:

/(va)dr:——/vxda. qed

(c) Let v = T'VU in divergence theorem: [ V-(T'VU)dr = [ TVU -da. Product rule #(5) = V-(TVU) =
TV-(VU) + (VU) - (VT) = TV2U + (VU) - (VT). Therefore

/ (TV2U + (VU) - (VT)) dr = / (TVU)-da. qed

(d) Rewrite (c) with T «+ U : [ (UV2T + (VT)- (VU)) dr = [(UVT)-da. Subtract this from (c), noting
that the (VU) - (VT) terms cancel:

/ (TV2U -UVT) dr = / (TVU -UVT)-da. qed

(e) Stoke’s theorem: [(VXV)-da = §v-dl Let v=cT. By Product Rule #(7): Vx(cT) = T(V x¢) —
¢ X (VT) = —c x (VT) (since c is constant). Therefore, — f(c x (VT))-da = § Tc- dl. Use vector indentity
#1 to rewrite the first term (c x (VT))-da = ¢- (VT xda). So — [¢- (VT xda) = § c-Tdl. Pull ¢ outside,
and let ¢ = %, ¥, and Z to prove:

/VTXda:—delA qed

Problem 1.61
(a) da = R?sin 6 df d¢ . Let the surface be the northern hemisp} The % and clearly i
to zero, and the Z component of # is cos 8, so

/2 in2 2
a=/R‘sinﬁcosﬂd3d¢i=21rRzi/ sinacosada=2mzi¥ ;'/ =
0

(b) Let T = 1 in Prob. 1.60(a). Then VT =0, so § da = 0. qed.

(c) This follows from (b). For suppose a, # a; then if you put them together to make a closed surface,
fda=a) —as #0.

(d) For one such triangle, da = (r x dl) (since r x dl is the area of the parallelogram, and the direction is
perpendicular to the surface), so for the entire conical surface, a = % f rxdl
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(e) Let T = c - r, and use product rule #4: VT = V(c-r) = ¢ x (VXr) + (c- V)r. But Vxr = 0, and
(c-V)r=(cZ +c,;% +e:Z) @k +yy =28)=co X+, 9 +c:2 = c. So Prob. 1.60(e) says

del:f(cd‘)dl:—/(VT)xda:—/cxda:—cx/da:—cxa:axc. qed

Problem 1.62
@

For a sphere of radius R:
Jv-da = [(}%) (R?sin0d@dg?) =R [sin6dOdp = 47R.
R So divergence
J(Vv)dr = [(%)(r*sin6drdfde) = (fdr) ([ sin6d6dg) = 4nR. theorem checks.
0

Evidently there is no delta function at the origin.

xR = 52 (%) = 32 (™) = S+ 2 = [mr D

(except for n = —2, for which we already know (Eq. 1.99) that the divergence is 4r6%(r)).

(2) Geometrically, it should be zero. Likewise, the curl in the spherical coordinates obviously gives
To be certain there is no lurking delta function here, we integrate over a sphere of radius R, using
Prob. 1.60(b): If VX(r"f) = 0, then [(Vxv)dr = 0 £ —§v xda. But v = r"f and da =
R%sin6dfdp # are both in the # directions, so v x da = 0. v/




Chapter 2

Electrostatics

Problem 2.1

(2)

M) |F= ﬁ#, where r is the distance from center to each numeral. F points toward the missing g.
o 1

E: tion: by ition, this is equivalent to (a), with an extra —g at 6 o’clock—since the force of all

twelve is zero, the net force is that of —g only.

()

pointing toward the missing ¢. Same reason as (b). Note, however, that if you explained (b) as

(d)

a cancellation in pairs of opposite charges (1 o’clock against 7 o’clock; 2 against 8, etc.), with one unpaired ¢
doing the job, then you'll need a different explanation for (d).

Problem 2.2
(a) “Horizontal” components cancel. Net vertical field is: E, = 4;—(02;% cosé.
Here¢2=z’+(§)2;coso=f;,so E E 2

dmeg (12 + (

‘When z 3> d you're so far away it just looks like a single charge 2¢; the field
should reduce to B = 22§ 2. And it does (just set d - 0 in the formula).

(b) This time the “vertical” components cancel, leaving

_ 1 e
E= 2-2%sin0%, or

E
X
E
Z
7 =g °

From far away, (2 3> d), the field goes like E ~ ﬁfg 2, which, as we shall see, is the field of a dipole. (If we

set d — 0, we get E = 0, as is appropriate; to the extent that this configuration looks like a single point charge
from far away, the net charge is zero, so E — 0.)

22
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Problem 2.3
E. = g [ 3 cost; (02 =22 422 cosf =)

L
w2 o Gmade

= Lz |H=El| =24
Treo it | T Aweo 2 VAL
= 1 Adz oo — d:
By = —ggly BFsin= o) [ oty
- 1 [_4] L=_¢,\[;, ]
Tneo el Tme " |z T VAT
=2 24+ () 2
" dmeg 2 V22 + L2 z-
For z >> L you expect it to look like a point charge ¢ = AL: E — h:(ﬂ %i It checks, for with z > L the %

term — 0, and the 2 term — g1-2L3.
Problem 2.4
From Ex. 2.1, with L — £ and z - /2% + (%)2 (distance from center of edge to P), field of one edge is:

1 Aa
dreo [aq g [ o

There are 4 sides, and we want vertical components only, so multiply by 4cos§ = 474=
224

E =

1 4)az

. . A—
dreo (2 ey [y 2

E

Problem 2.5

“Horizontal” components cancel, leaving: E = ﬁ {[3# cos6} z.
)Y Here, 2% =72 + 22, cos@ = Z (both constants), while [dl = 27r. So

Problem 2.6
Break it into rings of radius r, and thickness dr, and use Prob. 2.5 to express the field of each ring. Total
charge of a ring is o - 277 - dr = X - 277, s0 A = odr is the “line charge” of each ring.

_ 1 (odr)2arz . _ 1 R
Ering = Ireo (r2_+ 2/ Eagisk = 4"602m:rz/°

.
Y

Eouk = ——2r0z |1 |,
ok = om0z |2 = ey | B
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For R > z the second term — 0, 50 Eplane = ﬁa%mz
1/2

(1+“2) zl(l—%ﬁ;),m[]“%—%+%§;—=gxy

S, where Q = 7R%. v

For z> R, W

1_2nR%
and E = o282 = oo

Problem 2.7
E is clearly in the z direction. From the diagram,
dg = oda = oR?sin@ df d¢,
= R? + 22 — 2Rzcos b,
cosp = =Reesd

So

_ 1 oR?sin 6 df dp(z — Rcosb)
T dmeg (R2 + 22 — 2Rz cos0)3/2 ~
_ 1 2 ™ (z— Rcos#)sind

= _4 (@rRo) / @+ 72— 2Rzc0s6)72

Jd¢ =2m.

z

df.  Let u=cosf; du——sm&dﬂ{o 0=>u—+1}.

=r=>u=-1
= 2, z—Ru N . s
= (2 R%0) ——————( T 2% 2Reu)i? Integral can be done by partial fractions—or look it up.
sie Rio )[ u-R ]‘ 1 ZWRZU{(z—R)v(—z—R)}
- g 22VRZ + 22— 2Reu), 4w 27 |z—R| lz+R| [~

For z > R (outside the sphere), E; = gi- m‘n; =

For z < R (inside), E; = 0,s0 |E =0.
Problem 2.8

According to Prob. 2.7, all shells interior to the point (i.e. at smaller r) contribute as though their charge
were concentrated at the center, while all exterior shells contribute nothing. Therefore:

where Q,n is the total charge interior to the point. Qutside the sphere, all the charge is interior, so

Inside the sphere, only that fraction of the total which is interior to the point counts:

4 3 3
37T T 1
e mQ’ so B= 41reo w95

Qe =

Problem 2.9
(a) p=€o V-E =co b 2 (r?- kr) = eo pk(5r*
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(b) By Gauss’s low: Qenc = 0 § E - da = eo(kR®)(4nR2) =

By direct integration: Qene = [pdr = [ (5eokr?)(4nr2dr) = 20meok [ ridr = dmegkRS.¢
Problem 2.10

Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface
of this larger cube gets the same flux as every other one, so:

1
/E-da_ﬂ/]?nda. T
one
face

whole
large
cube

The latter is Lq, by Gauss’s law. Therefore / E-da= %
o

ne
face

Gaussian surface: Inside: § E - da = E(4nr?) = LQenc = 0= [E=0.]
(As in Prob. 2.7.)

— Gaussian surface: Outside: E(4nr?) = L(04nR?) =

Problem 2.11

Problem 2.12

D

Problem 2.13

-
wi

cda=E- 41 = 3
Gaussian surface $E-da=E-4nr ar3p. So

o

Since Qgot = §7R%p, E = A=+ (as in Prob. 2.8).

Gaussian surface
‘- §E-da=FE-2ms-1=LQenc = LML S0
__J
—

(same as Ex. 2.1).

Problem 2.14

Gaussian surface §E.da=FE - 4nmr? = %Q,m = ilﬂfpdr = z‘zf(ki)(rﬂ sin 6 df df d¢)
& kdn [§Pdi = ARt = zhid,
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Problem 2.15

() Qenc =0, 50
(ii) §B-da = E(dnr?) = LQenc = L [par=1 ]

7

% 72 5in @ d7 df d phs

_ k
= tnk e tmk( o) B q,( ) IE|
(i) E( [ dF =22 (b—a), 50
Problem 2.16
(0] (D_ Gaussian surface ~ $ Erda=E-2ms 1= LQenc = Lpms?l;

/TN \*—— Gaussian surface

—Z__

|+— Gaussian surface
(i) $E-da=E-21s-1= 2Qenc=0;

T |E}

I
I
I
I
L
a

o

s
Problem 2.17

On the z z plane E = 0 by symmetry. Set up a Gaussian “pillbox” with one face in this plane and the
other at y.

I Gaussian pillbox ~ JE-da=E-A= 1 Q= L Ayp;

(for |y| < d).




27

Qune = 2 Adp = (for y > d).

Problem 2.18
From Prob. 2.12, the field inside the positive sphere is E = or+, where r,. is the vector from the positive
center to the point in question. Likewise, the field of the negatwe sphere is —5';1'_ So the total field is

=L (r, -
E= 360(1'+ ro)

But (see diagram) ry —r_ =d. So|E
0

Problem 2.19

_ 1 A . '
VXE = Tre V)(//szd Tres / [Vx (42)] pdr  (since p depends on r', not r)

=0 (since VX (—2) =0, from Prob. 1.62).
%

Problem 2.20 N
2

(1) VXE, =k g; a, = k[%(0 - 2y) + $(0 — 32) + (0 — z)] #0,

< Jlo

2yz
s0 E; is an mmossible electrostatlc field.

%
(2) VXEs = k|2

y?: 2my+22 29z

Slo
S

= k[%(22 - 22) + $(0 — 0) + &(2y - 2y)] = 0,

50 E; is a possible electrostatic field. z
Let’s go by the indicated path:

= (y?dz + (2zy + 2%)dy + 2yzdz)k (2o, Y0, z0)
Step I'y =0;dy=dz=0.E-dl=ky’dz =0. 1
Step II: © = 29, y: 0 = yg, 2=0.dz =dz=0. 1 "V
E - dl = k(2zy + 2%)dy = 2kzoy dy.
Jrr B -dl = 2kao [° ydy = kzoy3. T

Step III: £ =20, y =yo, 2: 0 —> 20;dz =dy = 0. T
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E.dl = 2kyzdz = 2kyoz dz.
J11r B+ dl =240k [§° 2dz = kyozd.

(20.40,30)
V(z0.50,20) = — [ E-dl = —k(zoyd +y023), or | V (2,9, 2) = —k(zy® +y2%).
o

Check: —VV=k[ & (v +v2%) 2+ & (3 +92%) 9+ & (a1 +y2?) 8] =kly® 2+ (22p+27) 9+2y2 8]=B V'
Problem 2.21

V(@)=-[LE-d. {

Outside the sphere (r > R): E= ﬁ;ﬂ,i—

Inside the sphere (r < R): E = g fri.

Aréo B

Soforr>R: V(r)=~[, (4m )’— mnq()l

2_p2

and for r < R: V(r) = —f: (4;@ ;@;) di - [ (4;—(0719;?) dF = 7L [R A (uﬁ‘)]

Whenr >R, VV = g2 (L= —zLAf, 0 E=—VV = gL 4f. v
Whenr <R, WV =gk (3-f)t = g (-5) f = g ffiso B=—VV = o hri’
Problem 2.22

E= ‘,:‘ 225 (Prob. 2.13). In this case we cannot set the reference point at co, since the charge itself
extends to 00. Let's set it at s = a. The

Ve == [} (#52)ds
(In this form it is clear why a = co would be no good—likewise the other “natural” point, a = 0.)
VV = -gdooag (In(8) 8= ~g&;2\ 8= -E. v/
Problem 2.23

V() = - [o B dt = — [ (&852)dr - [ (65D - [0 = £852 - £ (§) +a (i -})

SE{-g-m@)-1ep)

Problem 2.24
Using Eq. 2.22 and the fields from Prob. 2.16:

V) -V(©)=-[fE- dl—~foEdl JPE-di=—of [ sds— 82 [P Lds

20
1 b
= 250) l +2£°lns] T 142k )
Problem 2.25

(@|v= %Lz
OV (5)
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L
OV = g J2p 7 = 5 e + VP + D) .

A ln[L+\/z2+—m] _~—1n(—‘f-@@)‘

T\tme | LA VR | e
©V = gks [ HrG = Loomo WVEFAr = 5:; (\/R’—Jrzz— z) .
In each case, by symmetry 3% = §£ =0. . E=-§/2.
@ E=-gg2(-3) = 1 202 3| (agrees with Prob. 2.2a).
(z3+ 4mey (Zn+ (%) ) /

= A 1 1_1 _ 1 1__1 5
O E=-75 {mz—m” LT ? V:mf"} ?

A= +\/1'z +‘t:7 L—\/x‘+LT
Treo VEETLE =T

1_1 JEEY PO DA N S PY i
bRvirr2 2l 1}z % [1 \/W] % | (agrees with Prob. 2.6).

If the right-hand charge in (a) is —g, then , which, naively, suggests E = —V'V = 0, in contradiction
with the answer to Prob. 2.2b. The point is that we only know V on the z azis, and from this we cannot
hope to compute E; = —8— or E, = —-} That was OK in part (a), because we knew from symmetry that
E, = E, =0. But now E pomts in the = dlrechon, so knowing V on the z axis is insufficient to determine E.

Problem 2.26

(agrees with Ex. 2.1).

©E=-

V(a) =

1V o2\ | 2m0 1 (w2
dmen Jo 2 " dreg 2 T 2
(where r = 2/v/2)

V2Zh
V(b) = L/ (‘72:") dr, wheres = 1/h% +2% — V2.
0

4meg
_omo 1 /"5" 2 w
im0 v2Jo  /R2 42 -2l

van
= ﬁ [\/hz +22 = Vo + %m(z\/hz 22— VB %~ \/ih)]
0

h . m
2@ [h+71n(2h+2\/-h Vah) — b= s ln(h= V)| = =575 ‘/_[]n(zh+\/-h In(2h— fh)]
_a 2+v2) _oh (2+v2)?) o
_Eln(z \/_) = ( )—Z—Euln(l-)-\/i)

‘ @-V(b) = _[ ~m(+v3)]. ‘
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Problem 2.27

Cut the cylinder into slabs, as shown in the figure, and

L
————
use result of Prob. 2.25¢, with z = = and o — pdz: “ﬂ \ i
z+L/2
V=of [ (VR -z)ds U i }
z-L/2 —=
= £} VR TS + Rl + VR D) - 2] 1) * d

A A ALE
& {(l+%)\/R3+(t+%)g’(l*%)\/R’+(z—~‘lz‘)2+ﬂ’ln|iks‘+ R,*E:tz) ]42114},

(Note: — (2 4+ L)%+ (2= L) =22 —2L - B 422 — 2L+ &£ = —22L)

2
=~VV_fz——= ) { z+ (z+ R? + z—— - (-3
e 5 ¢r—

z+’7“+\/R2+(z+-’;)2 z—%+\/R2+z——)
1 M 1
\/R2+(z+%)2 \/R2+(z——

Il
Flo
—
-
]
—
S
~—
©
+
-
E]
2
+
—~
N
|
D
~
JE——
~

Problem 2.28
Orient axes so P is on z axis. z
V=i fedr Here p is constant, dr = r? sin 8 dr df d¢, g’}

T Ame JaT 2=+/2% + 72 = 2rz cos.

r2 sin 8 dr d6 d d
V= g Al ) dg =2

Iyt di =7 (V17 +27=2rzcos)|; = L (VT + 22+ 2rz — VT + 22 — 2rz)

2/z , if s
R Fraliasy
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5
V=g ome z{ofg

2 r?
But p= gle, 50 V(2) = 2%‘—2{5(}?2*55)2520’—,1(3—%:); V(r)ZgZ“—R(Iifﬁ): v

Problem 2.29
V2V = 2-V2[(8)dr = g&= [p(x')(V2})dr (since p is a function of r', not r)

Treg Treo

= o o)~ — )] dr = — Lp(e). ¢

Problem 2.30.

(2) Ex. 2.4: Eapove = 5% 85 Enelow = —35fi (ft always pointing up); Eabove = Evelow = ZA. v/
Ex. 2.5: At each surface, E = 0 one side and E = % other side, so AE = ;”B- v

Prob. 211: Eoue = 25# = £#; Ein = 0; 50 AE = £i.

eor =3

N
®) Outside: §E - da= E(2ns)l = £ Qene = L(2rR)] = E = £85 = £ (at surfacc).
Inside: Qenc =0,50 E=0. ., AE = %E. v

=
1
(€) Vour = , = f—;’ (at surface); Vin = % 580 Vout = Vin. v
—““gr = 5%_—— (at surface); 8‘;/'. =0; so—‘““v %ﬂz—%.w/
Problem 2.31

@Veimre = {2 v =i (24 ).

S We=qV =
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Problem 2.32
(a) W = } [pVdr. From Prob. 2.21 (or Prob. 2.28): V =

(-

_1 1 g (" 2y 10 [ ifs]ﬂ_qp(aRs)
= 2%4mer 3R Jo (3 m)“’"d"«xn T TEs|, TR \" S
_ g B g
Seg Seo STR3

(b) W = ¢ [E%dr. Outside (r > R) E = gl %# ; Inside (r < R) E = gl frk.

€ 1
W= 0(4““)” {/ 4(r 41rdr)+/ 41rr2dr)}
_refnr o Le ey L,
" dmeg 2 r)lp RO \5 = Inee 2 5R 4dmeg 5 R’

o
(c) W = 2 { §sVE-da+ [, E%dr}, where V is large enough to enclose all the charge, but otherwise
arbitrary. Let’s use a sphere of radius @ > R. Here V = g1-14.

_& q 14q 2 /" 1 a\,
{/ Treq )r sxn9d6d¢+/Edr+R Treor? (4rrr®dr)

r 4#50

¢ 1, ' 41r 1, L Y
Gy a™ ¥ neo)? 5B+ e 7 \ 77/
_t@yr o1 1 1) 1 3¢
S 2 { 5R a+R} TrgsEY

As @ — oo, the contribution from the surface integral ( -i) goes to zero, while the volume integral

(558 - 1)) picks up the slack.
Problem 2.33

charge on sphere of radius r).

1 "
dW:dq’V:dq(—) 1 @=
/dq q= 4 mr3p = g s 7 (g =total charge on sphere).
dnr?

dg = 4nridrp = 4 qud'r‘:irzdr

R3

- 3q 1 3¢
"~ dmeo (R:’) ( rdr ) 41reoR° ridr

1 R, 13RS _ 1 (3¢
= e RS Jo Tdr_41rsoR5 5  4meg \5 R v




Problem 2.34
(a) W =29 [E%dr. E=

Taes i (a <7 <b), zero elsewhere.

2
W= () L1 () = o [ e =

O Wi=gdel M=o Bi=gdahfl>a) Ez=4:(ﬂ: #(r>b). So
Ey By = (,,m)z—,i- (r > b), and hence [ E, - By dr = — (,,) Ldnr2dr = —
Wi =Wh +Wa + 60 [ By - Badr = glo® (3 + - 3) = 5% (%—A)
Problem 2.35

__a . P __9
@|or= TR 7 T ape? T 41rb2'|

O VO = [T A=~ [ (ks ) - [0 - fu(x‘eai‘r)dr-fg((’)d“_

“drai Y. ) - q 2
(the charge “drains oft”); V/(0) = — [%(0)dr — [ (s &) dr — [3(0)dr = —co (-9
Problem 2.36
__ 9 . ___ D, _ %t
@0 = Tna? || T 41rbz'| OR= “azRE

where r = vector from center of large sphere.

1
B, =T,

= et where r, (r;) is the vector from center of cavity a (b).
o7

(e) or changes (but not o, or 03); Eoutside changes (but not E, or E); force on g, and g still zero.

Problem 2.37
Between the plates, E = 0; outside the plates E = o/eg = Q/€0A. So

€2 _ € Q*

P=oE=52m

Problem 2.38

Inside, E = 0; outside, E = “‘n =1 s0

Ewe =3t fo = 0(Bave)si 0 = 52
F,=[fda= f(TxQﬁF) (4mgn)°°50R25i“0d*9d¢

= 2.,,(mz an”/zsmﬁcosﬁdﬁ—m( n) (}sin’ (5’)|"/2 ( n)

32w R2¢
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Problem 2.39
Say the charge on the inner cylinder is @, for a length L. The field is given by Gauss’s law:

JE-da=E -2rs-L=1Quc=LQ=>E= F?.TL% 5. Potential difference between the cylinders is

V() - V() = /E sl - m.,L/ == 27reoL (b)

As set up here, a is at the higher potential, so V = V(a) - V(b) = 5757 ln( ).

C= %,l = I’T"(‘-g-%, s0 capacitance per unit length is

Problem 2.40

(a) W = (force) x (di = X (area) x (dist:

(b) W = (energy per unit volume)x (decrease in volume) = (Eo ETQ) (Ae). Same as (a), confirming that the
energy lost is equal to the work done.
Problem 2.41

From Prob. 2.4, the field at height z above the center of a square loop (side a) is
1 4)az

Tl )

Here A = a 2 (see figure), and we integrate over a from 0 to @:

E= 2.

= ,soada-—Zdu

1 a
= ——202/
dmeo o (2+% )\112+“2

@
1 /a2/4 du oz [Z tan! (\/2“+—,z)] /4
0
]

(wt+22)Voute2 e

a2 42

+ 2

= 20 {ta.n“] (2—) —tan~! (1)};
ey z

z

=—4oz
4meq z

a— oo (infinite plane): E = 22 [tan~!(00) — §

2> a (point charge): Let f(z) = tan~' v/T+z — %, and expand as a Taylor series:

f(z) = f(0) +2f'(0) + z’f”(0)+
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1

Here f(0) = tan (1)~ £ = § ~ £ =0; /'(2) = iy b v = sy © PO = 4,

fz) = —x+()z +()z+-

i o 20 (1a2)_ 1 _ga® _ 1
Ths (since 37 =2 < 1), B 7 (iﬂf) Smar = mar Y

Problem 2.42
18 A 1 &8 (Bsinfcos¢
= E= =z — T
p=aV E“{r’f)r (r r)+rsin96¢< r )}
1 1 Bsinf .
=[5+ gy n)
Problem 2.43
From Prob. 2.12, the field inside 2 uniformly charged sphere is: E = m%r So the force per unit volume

isf=pE= (};QRT) (;#)r = %(H%g)ﬂr, and the force in the z direction on dr is:

2
dF, = fydr=— (ﬁ) rcos@(r? sin @ dr df dgp).

The total force on the “northern” hemisphere is:

3/ Q \2 (R, [ 2
F, =/f,dr= b (FE‘“‘) ./o 7 dr/u cos@smf)df)/o d¢

" 2 m/2
_ }_ Q R_ sin® @ (2n)
wRrS) \ 1 2 o
Problem 2.44
2l (%= L% [ L Tionmry =R
Veenter = 4meg /4“ T 4meo R ~ 4mey R(Z i) = 260
1 da = 2mR?sin6 df, i
o = 2. sin
=— [ = ith ;
Voo = Tres /4"“’“" {J=R’+RZ—2nzcoso=2RZ(1—ms9), 7
__1 o(2rR?) /"/2 sin6d6 T
_41f€o RV2 Jo \/1—005? \/—
oR oR
= T0-0)= T Voo Vermer = k—o(ﬁ -1,
Problem 2.45
First let’s determine the electric field inside and outside the sphere, using Gauss’s law:
v rd
a,fE < da = eodn°E = Qone = /pd‘r = /(kf)f“ sinf dr dfdp = m/o Rdr= {:k;‘ f: ; :;f



36 CHAPTER 2. ELECTROSTATICS
SoE=£r2f(r<R); E= mi(r>R)

1

Method I:
R 2\ 2 0o 2
) — (YN g kR 2
W= 2 /E dr (Eq. 2.45) = /0 (46 ) 4mridr + 2/‘; (46‘,‘,‘2 4nridr
2 L 2 /R
s, 8 1 _"_kz R_7 _1 _Tk (R 7
) {/0 dr+R/ A =g \ T (7)) "8 (T TR

Method II:
W:% / oVdr (Eq. 2.43).
g R (kR T (kr? E [ 1\[°
e <n Vi) = - [[Bea= - [N ()0 [ (E)d,__a{a &N
k(B (e
= 460(R 373) 3 F-7)
r 2 _2""2/R 33_16)
2/( )[360( 4)]41rrdr_——3€0 A R3r i dr

_ 2mk? RQR_‘ﬁlg_ _ mK*R" (6) _ mk’R" v
) 4 4T7[ 236 \7) Te

Problem 2.46
—Ar M= _ g=Ar
E:_vv=_A£(e )f:-A{'()‘)eize}

ar\ r r

p=eV-E=eA{eM1+Ar) V- (%) + 5 V(1 +4r))}. But V- (&) = 4ré*(r) (Eq. 1.99), and
e (1 + Ar)83(r) = 8(r) (Eq. 1.88). Meanwhile,
V (e (1 +Ar)) =2 (e (1+Ar)) = # {-Ae™ (1 +r) + e A} = #(—A2re ).

ar -
Q= /pdf =€d {41r /53(!') dr — )2 /574”2«#} =cgA (41r - /\241r/ re"‘\'dr) .
o

But [ re M dr = 3k, 50 Q = dmeod (1 - §7) = [z250]
Problem 2.47

So 5 -V (e (1+ M) = ——e"", and | p

0A [41rb"’(r)

(2) Potential of +A is Vi = —z2-1n (°+), where s is distance from A, (Prob. 2.22).
Potential of — is V_ = +52-In (), where s_ is distance from A_.
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Now s4 = +/(y — 0)? + 22, and s_ = \/(y +a)? + 2%, s0

s (VemrE) _[ A [wra?+s?
V(2,9,2) = 77 In (¢(,_a)n+zz) = | Zreo In [(v —a)?+22]"

(b) Equipotentials are given by gt—:%:%; = el4m€V0/A) = k = constant. That is:
¥ +2ay +a® + 2% = k(y? — 2ay +a® +2%) = y?(k — 1) + 22(k — 1) + a(k — 1) — 2ay(k + 1) =0, or
32+ 2% +a? — 2ay (2—1%) = 0. The equation for a circle, with center at (yo,0) and radius R, is
(y—0)? +22 = R, or y? + 22 + (4§ — R?) — 2yy0 = 0.
Evidently the equipotentials are circles, with yo = a (’;{‘—{) and

2
2 2 — 1 k2 +2k-+1—k?+2k—1
=y -R*=>R*=y} —a?=a® ({d‘—l) —a2=a“———5—>-n_l)+ =aﬂz—'—fk1k, ,or

or, in terms of Vp:

etmeoVo/A 41 gimeoVo/A 4 g2meoto/A

Y0 =0 i = = Yoo s —gmamavels = | 20th
. e2meoVo/2 9 a
= Cemave/r 1 (e2me0Vo/X — g—2meato/) ~ sinh (ZT‘AQV,,)
z

Problem 2.48
(8) V?V = ~ £ (Eq. 2.24), s0

(b) gV = jmv? -

(¢) dg= Apdz ; % = ap%% =| Apv = I (constant). (Note: p, hence also I, is negative.)
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av 1, 11 _ I m
(d) &F = WP = TwAv T A\ 2V

, where g = —-ﬁ

(Note: I is negatwe, so B is positive; g is
(e) Multiply by V' = 4£ :

v'%’ = ﬂV‘l/“% = /V’ av' = ﬂ/v-lﬂ v = %V” =28V"/2 1 constant.
But V(0) = V'(0) = 0 (cathode is at potential zero, and field at cathode is zero), so the constant is zero, and
V' =4pv1/2 o % =2\/BVY4 = vy = 2\/Bds;
/V_I“dV =2\/E/dt => %Vﬂ/‘ =2y/Bz + constant.

But V(0) = 0, so this constant is also zero.

3 3 2\ 9.\ 81%m \'/®
8/4 — 2 =(2 A4/3 =(2 4/3 _ 4/3
14 2\/5::, so V(z) (2\/5) 43, or V(z) (4;3) Ed (325%,4211) 43,

Z\4/3
Interms of V, (instead of I): [V (z) = Vo (E) (see graph).

Without space-charge, V' would increase linearly: V(z) = V5 (%).

—2/8

BV 141
PTG T T °d‘/33 3’

2/3

45 _[ /aavarm (2)

1/3
O Vi@ == (5a) e = v5 = ptr; P~ By,

I= “;E%"FEVO‘W2 = KV2/?, where | K

Problem 2.49

1 [pt /A
@ |B= e B (1+3)ear.
(b) The field of a point charge at the origin is radial and symmetric, so VXE = 0, and hence this is also

true (by superposition) for any collection of charges.

" 1 "1 r
c V=-[ E-dl=——q [ = +_ T/ dp
© / 41reo / ,,.2 ! €

e~ = =T/ 1
41reoq/ dr= 41rso {/ e dr+ A e dr}



| .

" Now [Ae "/ dr = —@ - %f@df +— exactly right to kill the last term. Therefore
/AP
Vi) = 41reg {_ T

O A e
-4
€0

o
=>‘21{-e-"/A 1+ 8 +1}.
€ A
. L -4 BY mn (1 B)ern gl 2 8
‘%;E da+,\2/deT_Eo{(1+/\)e 1+/\ € +1 = qed

(¢) Does the result in (d) hold for a nonspherical surface? Suppose we )\‘
make a “dent” in the sphere—pushing a patch (area R?sin@df d¢)
from radius R out to radius S (area S?sin6df dg).

vda=-L [ L S\ -5/ (s2 R\ “minipe
AfE da_41r5 {S“ (l-l—/\) (S?sin 6 df dgp) — 1+ 5)e (R?sinf df d¢)

S\ —s/a_ B\ _rpi
__4"50 (1+ )e 1+/\ € sin 6 df d¢.

1 _la fern - _—
A% /Vdr_/\Mm/ P drdddp = 35 s.nodod¢/ re~/Adr
S
I A (14T
Ineg S“'Mad‘b( (HA))L;
-4 SY s (14 B e-rn]
= “Ines (1+ /\)e 1+ 5y € sin6 df d¢.

So the change in 55 [V dr exactly compensates for the change in §E - da, and we get g for the total using
the dented sphere, just as we did with the perfect sphere. Any closed surface can be built up by successive
distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside,

the total is gn-Q,,,c. Charges outside do not contribute (in the argument above we found that® for this

volume §E - da+ ;‘; JV dr = 0—and, again, the sum is not changed by distortions of the surface, as long as ¢
remains outside). So the new “Gauss’s Law” holds for any charge configuration.

(f) In differential form, “Gauss’s law” reads: or, putting it all in terms of E:

VE- = /E cdl= —p Since E = —VV, this also yields “Poisson’s equation”: —V2V + — v V = 6—
0
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Problem 2.50

p= ¢ V-E = o (ax) = [€oa] (constant everywhere).

The same charge density would be compatible (as far as Gauss's law is concerned) with E = ayy, for
instance, or E = (§)r, etc. The point is that Gauss’s law (and VXE = 0) by themselves do not determine
the field—like any di i they must be )l d by appropriate boundary conditions.
Ordinarily, these are so “obvious” that we impose them almost subconsciously (“E must go to zero far from
the source charges”)—or we appeal to symmetry to resolve the ambiguity (“the field must be the same—in
magnitude—on both sides of an infinite plane of surface charge”). But in this case there are no natural
boundary conditions, and no persuasive symmetry conditions, to fix the answer. The question “What is the
electric field produced by a uniform charge density filling all of space?” is simply ill-posed: it does not give
us sufficient information to determine the answer. (Incidentally, it won’t help to appeal to Coulomb’s law
(E = I p%dT)*ﬁhe integral is hopelessly indefinite, in this case.)

1
Treo

Problem 2.51
Compare Newton’s law of universal gravitation to Coulomb’s law:

1 an,
4meg 12

F=-G

mims o
— 5 F=

— G and g — m. The gravitational energy of a sphere (translating Prob. 2.32) is therefore

Evidently

1
Treo

Now, G = 6.67 x 10~11 N m?2/kg?, and for the sun M = 1.99 x 10%° kg, R = 6.96 x 10 m, so the sun’s
gravitational energy is W = 2.28 x 104! J. At the current rate, this energy would be dissipated in a time

t_?_WAS.QOXIO s =|1.87 x 10" years.
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Problem 2.52
First eliminate z, using the formula for the ellipsoid:
o) = 12 !
’ 4mab \/c2(z?]af) + 2 (12 /%) + 1 — (2%/a?) — W2/e%)

Now (for parts (a) and (b)) set ¢ — 0, “squashing” the ellipsoid down to an ellipse in the zy plane:

__Q
@)= et A= Garar 75
(I multiplied by 2 to count both surfaces.)

(a) For the circular disk, set a = b= R and let r = /22 + ¢2. m
A
(b) For the ribbon, let Q/b = A, and then take the limit b — co:

(c) Let b= ¢, r = /4% + 22, making an ellipsoid of revolution:
2
’— =1, witho=

N @ 1
Ed 4mac® \[z2jaf + r2]ch
The charge on 2 ring of width dz is

dg = o2nrds, where ds = \/dz? + dr? = dz\/1 + (dr/dz)?.

224
Now 202 2 BT s 14 55 = e  JPIEEPTE. Ths

a? c

_da_, Q@ 1 ¢ A .Q
/\(z)—E—Zm‘mMzmr\/r Jat +r2/ct = 30" (C’anstaﬂt!)

o(1)

o(n)

I
'
i
'
'
|
'
1
|
L
a

o] S
(G

Ma)

“a a

() (@)




Chapter 3

Special Techniques

Problem 3.1

The argument is exactly the same as in Sect. 3.1.4, except that since z < R, V22 + R2 - 2zR = (R - 2),
. g 1 _ :
instead of (z — R). Hence Vaye = Tneg 3R [(z+R)— (R-2)] = If there is more than one charge

yro I’i'“’, and the average due to exterior

inside the sphere, the average potential due to interior charges is ——
charges is Veenter, 50 Vave = Veenter + 1225 ¥/
Problem 3.2

A stable equilibrium is a point of local minimum in the potential energy. Here the potential energy is qV.
But we know that Laplace’s equation allows no local minima for V. What looks like a minimum, in the figure,
must in fact be a saddle point, and the box “leaks” through the center of each face.
Problem 3.3

Laplace’s ion in spherical di: , for V d dent only on r, reads:
2y, 1 d (LdVY 28V _ @ _
ViV = sar \" ar —0=>rdr—c(constant)=>dr—

Ezample: potential of a uniformly charged sphere.

In eylindrical coordinates: V2V = 2% (aﬂ) =05 Yo

. sds \" ds ds ds s -

Ezample: potential of a long wire,
Problem 3.4

Same as proof of second uniqueness theorem, up to the equation §sV3E; -da = — f,(Bs)*dr. But on
each surface, either V3 = 0 (if V is specified on the surface), or else B3, = 0 (if %r =-E is speclﬁed) So
Jy(Bs)? =0, and hence E; = E1.  qed
Problem 3.5

Putting U = T = V; into Green’s identity:

[VaV2Vh + V¥ - VW] dr = § VaV¥-da. But V2V = Vi - V2V = -2 + £ = 0,and V4 = ~Es.
v S 0

So / Eldr = —f V»Es - da, and the rest is the same as before.
v s

42



Problem 3.6
Place image charges +2qg at z = —d and —g at z = —3d. Total force on +¢ is

q [-29 , 2 —q]ﬂ_ ' (_1 1_1)

e fra |G Y@ TG T e \ 275

Problem 3.7
(a) From Fig. 3.13: 2= V1% +a? —2racosf; +' =12 +b%—2rbcosf. Therefore:

¢ _ B¢
2 a /r2 + b2 —2rbcosd
q

2

(Eq. 3.15), while b = %— (Eq. 3.16).
_ q

(%) \/r2+§;—2r¥cosﬁ \/(“—I{)Z+R2—2mc059

Therefore:

1 (s i)_;L 1 _ 1
Vir6) = 4meo (’L * 2/ ) " | 4neo | V72 + a2 — 2racos@ /R? + (ra/R)? — 2racos@ .

Clearly, when r = R, V = 0.
(b) 0= —€0Z%  (Eq. 2.49). In this case, $% = ¥ at the point r = R. Therefore,

o) = —eo (ﬁ) {—%(7‘2 +a? — 2racosf)~3/2(2r — 2a cos6)

2
+ % (R? + (ra/R)* — 2racosﬁ)_:‘/2 (%27‘ - Zamw) }

r=R

2
= —% {—(R“ +a? — 2Racos8)"S/2(R — acosf) + (R? +a? — 2Racosf)~/* (% - acosa) }

= Ypryg2_ -3/2 [p_ _ﬁ
= 41r(R +a® — 2Racosf) [R acosf R+acos9]

= | #(R2 — a?)(R? + a® — 2Racos6)~%/2.

P / oda= (B - a?) / (B® + a? — 2Racos6)~%/2R? sin0 df dip
.

q 2 _ 2 2 1 2 —-1/2
= —=(R?-a®)2nR’ [——(R2 +a? — 2Racosf) ]
4R Ra o

9 (2 _ R? 1 1 ]
= L@-R e
2 ) [7}22+a2 +2Ra  VR?+a?-2Ra
But a > R (else ¢ would be inside), so VR2 +a2 —2Ra=a—R.
1 1

- L@ - [y - )~ le- D - @RI = Lam)

@+R) @-R
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(c) The force on g, due to the sphere, is the same as the force of the image charge ¢, to wit:
L e _ 1 (R, L _ 1 R
" dmeo (a—b)?2  dmeg 2 (a—R%/a)? ~  4mey (a2 — R2)?”
To bring ¢ in from infinity to a, then, we do work

a

_PR[ @ . @R[ 11
Tdre ) @-R2? dne | 2@ - R?)

oo

Problem 3.8
Place a second image charge, ¢”, at the center of the sphere;

this will not alter the fact that the sphere is an eguipotential, a-b
m
i —_—
but merely wncrease that potential from zero to Vo = 4—“;%; a,,—a,—a
U
q" = 4megVoR at center of sphere. | @
For a neutral sphere, ¢' + ¢ = 0.
_ L q ! _ ad 1
Fo= Inep? (a2+(a—b " 4meg —a2+(a—b)7
_ 97 bQa-b) _ g(-Rg/a) (R*/a)(2a— R?/a)
4meg a(a — b)? 4mey a%(a — R%/a)?
_ _| ¢ (R\ (@2-R)
- 4meo \a ) (a® — R2)Z’
(Drop the minus sign, because the problem asks for the force of attraction.)
Problem 3.9
(a) Image problem: A above, —) below. Potential was found in Prob. 2.47:
z
=2 _A 2 /g2 z
v V(1) = o lnfs-/s4) = o Ta(s? /5}) Lo
R z Z| A (et GErd? q s
dmeo  \y?+ (2 -d)? 4+/ v
v v _8v
(b) o = g Here Frale evaluated at z = 0.

A 1 1
W = —ogig (a9 - it 9)

- A d  -d ]
AT TR
Check: Total charge induced on a strip of width [ parallel to the y axis:

= 5 et [ O -2 -3
4

= =M. Therefore Ajpg = =), as it should be.

2=0
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Problem 3.10
The image configuration is as shown.
il CREES
q 1 1 B
V) = m{\/(z—a)“+(y—b)z+zz RV e e e el
_ 1 - 1 . PR =g
VE+a)Z+y-02+22 (z—a)?+(y+b)?+2°

For this to work, [6 must be and integer divisor of 180°. | Thus 180°, 90°, 60°, 45°, etc., are OK, but no
others. It works for 45°, say, with the charges as shown.

(Note the strategy: to make the z axis an equipotential (V = 0),

you place the image charge (1) in the refiection point. To make the

45° line an equipotential, you place charge (2) at the image point.

45° line

x

But that screws up the z axis, so you must now insert image (3) to
balance (2). Moreover, to make the 45° line V = 0 you also need (4), o
to balance (1). But now, to restore the z axis to V = 0 you need (5) &
to balance (4), and so on. why 1t works for 8 = 45°

- d
The reason this doesn’t work for arbitrary angles is that you are even- 135° line (g/ o goo
tually forced to place an image charge within the original region of § {?

interest, and that’s not allowed—all images must go outside the re-
gion, or you're no longer dealing with the same problem at all.)

why it doesn’t work for § = 135°

Problem 3.11
. A (z+a)? +9y?
o : = b ’ ? = i _
From Prob. 2.47 (with yo = d): |V Tres n [(z —Tr where a2 = yo2 — R? = |a d® - R?
and

acoth(2meoVo/A) =d S 4 _ 2meoVo
{acsch(ZneaVo//\)=R = (dividing) 7 = cosh (=== ), or

Problem 3.12

V(z,y) = ic"e-""/“ sin(nmy/a) (Eq. 3.30), where Cp= ‘—ZL/Vo(y) sin(nry/a)dy (Eq. 3.34).
n=1 o

+Vo, for0<y<a/2

Vo, fora/2<y<a } . Therefore,

In this case Vo(y) = {

a/2

cos(nmy /
o (nn/a)

a/2
cos(nmy/a)

2 . f i
6= % 0/sm(mry/a)dy—n//zsm(""y/“)d” e (nm/a)

= %{—ws(%{) +cos(0)+cos(mr)—cos(7%)} = i—‘:{g{l+(—l)"—2ms (%)}

a/z}
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The term in curly brackets is:
n=1 : 1-1-2cos(n/2)=
n=2 : 1+41-2cos(r)=
n=3 : 1—1-2cos(3r/2)=
n=4 : 14+1-2cos(2m)=

etc. (Zero if n is odd or divisible by 4, otherwise 4.)

Therefore
C = 8Vy/nm, n = 2,6,10,14,etc. (in general, 45 + 2, for j =0,1,2,
10, otherwise.
So
8% e~™#/% sin(nmy/a) | _ 8V0 e~(st2)mz/agin[(4] 4 2) 7ry/a]
V(z,y) =
"_2§0, n E (45 +2) |
Problem 3.13
4V e—nmz/a v
V(z,y) = ﬂ_" Z /2sin(nmy/a) (Eq.3.36); o= €05y (Eq. 2.49). |
n=135,... |
So
_ O [Vl nrosag 1R o A,
o(y) = —€ o { p Z ne sin(nmy/a) T @~ Z ;(—T)e sin(nmy/a) _
4y z sin(n7y/a).
¢ a=izs,..

Or, using the closed form 3.37:
V(z,y) = %tan" ( s1n(1ry/a))) >0= .,ZVD (—sm(wy/a)) goosh(mt/a) o

1+ !:;J(n/a)

sinh(rz/a; sinh®(nz/a)

2oVp _sin(ry/a) cosh(nz/a) |
a sin®(my/a) + sinh?(1z/a) | 50

Summation of series Eq. 3.36
1 _arefa
V(z,y) = I where I = Z e sin(nmy/a).
n=1,3,5,..
Now sinw = Im (e*), so
| 1,n
= = =1 z
I=Im Z o e m Z 2Zh

where £ = e~"(@=%)/2_ Now

L

1,35, =0

1]

1 -1 =1 20y = 1 i
/l_uzdu_zln(l_‘z)_zln(}le )—z(lnR+19),
0
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where Re*? = 1£Z . Therefore

1 ) 1 142 _ 14eCmlfe (14 e~mE=w)/e) (1 - g-nlati/a)
I = Im{i(lnR+10)}—§9< B“tl—Z_l—e 57 —(1_5 W) (1 e 7)
1+4e72/0 (g47/a _ gmmu/e) _ g-2rz/a | | gic=ne/agin(ny/a) — e~2x2/a
[1 - e=ntz-w)/a]? - |1 = e=rte=iwy/a]® ’
50
2e~"%/%sin(ry/a) 2sin(my/a) sin(my/a)
tang = = =8 .
1—e—2mz/a ems/a — g=7z/a ~ sinh(nz/a)
Therefore
_ 1. i sin(my/a) _ 2%, _, ( sin(ry/a)
I=gtan (smh(m/a) rend V) =2 tan™ ST )
Problem 3.14

2 2 v ’
) %TZ n ZT‘Z/ =0, with boundary conditions /

0 V@0=0, o)
(i) V(z,a)=0, vo z
i) V(o) =0,

™ Vo =we. ) =

As in Ex. 3.4, separation of variables yields
V(z,y) = (Ae** + Be™**) (C'sinky + D cos ky) .

Here ()= D = 0, (iii)=> B = — A4, (i)=> ka is an integer multiple of :

V(z,y) = AC (e"’”‘/“ - e""”/“) sin(nmy/a) = (2AC) sinh(nrz/a) sin(nmy/a).

But (2AC) is a constant, and the most general linear bination of ble soluti i with (i),

(), i) is

V(z,y) = i Chp sinh(nrz /a) sin(nry/a).
n=1

It remains to determine the coefficients Cl, so as to fit boundary condition (iv):

ZC’,. sinh(nwb/a) sin(nmy/a) = Vo(y). Fourier’s trick = C,, sinh(nmb/a) = % Vo(y) sin(nmy/a) dy.

0

Therefore

2 h .
Cn= m‘b/vo(y) sin(nmy/a) dy.
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2V 0, if niseven,
® asmh(mrb/a) /sln(mry/a)dy asinh(nmb/a) x { 22, ifnisodd. }
_4% sinh(n7z/a) sin(nmy/a)
Ve == ugs T nsmb(nnb/a)

Problem 3.15
Same format as Ex. 3.5, only the boundary conditions are:

(i) V=0 when z=0,
(i) V=0 when z=gq,
(i) V=0 when y=0,
(ivy V=0 when y=a,
(v V=0 when z=0,
(vi) V=V, when z=a.
This time we want si idal functions in z and y, exp lin z:

X(z) = Asin(kz) + Beos(kz), Y(y) = Csin(ly) + Dcos(ly), 2Z(z) = EeVE+Pz 4 Ge=VFFPz

()= B =0; (ii)=> k =nn/a; (iii)=> D = 0; (iv)=> | = mn/a; (v)=> B+ G =0. Therefore
2(2) = 2Esinh(n/n? + m?z/a).

Putting this all together, and combining the constants, we have:

o

V(z,9,2) = Z E Ch,m sin(nmz/a) sin(mmy/a) sinh(7v/n? + m2z/a).
n=1lm=1
It remains to eval the Ch,m, by imposing boundary condition (vi):

Vo= z z [C,.vm sinh(rv/n? + m’)] sin(nnz/a) sin(mny/a).
According to Egs. 3.50 and 3.51:

. 2 2 0, if n or m is even,
Cam smh( n’ +m ( ) %/!sm nnz/a) sin(mmy/a) drdy = 1:26,:/:1’ if both are odd.

Therefore

T,
V(z,y,2) = 1:_11/0 > > ;%sin(mr:c/a) sin(marv/a)————m:in&wn,.__”:—r':/ a).

n=1,3,5,... m=1,3,5,...




Problem 3.16

|...
|

Py(z) @-1)’=

3(1: -1) 2z 1(12—1)2

1 _1 &
Py T 8da?
(@ -1)’+20 (e - 1) 2::] = ga [(a? - 1) (a2 — 1+ 427)]

(= —1) (522 —1)] = [2: (52 — 1) + (2? — 1) 10z]

Wl 00|t 00 i 0O
§laflao

— -—v&-

bl

(52° —z + 52° — 5z) =

We need to show that P3(cos6) satisfies

1 d (sind%) =—I(+1)P, with I =3,

sin6 df
where Py(cosf) = 3 cos@ (5cos? 6 — 3) .
dP; 1 . 5 . 1. 2 2
o = 3 [-sin8 (505”6 —3) +cosf(10cos6(~sin)] =~ sind (5cos’ 6 — 3 + 10 cos’ 6)
= —:—;sin9(5coszd—l).
i(sin@ﬁ) = ———[sm‘@(f‘xcos 9~1)]——é [25in6 cos@ (5cos® @ — 1) + sin @ (—10 cosfsin 8)]
o ) = T2
= —8sinfcosd [5cos?f — 1 - 5sin’ 6] .
1 d(.  ,dP
mﬁ(smoﬂ) = —3cosf [5cos’ —1—5 (1 — cos’#)] = —3 cos@ (10cos? @ — 6)

1]

—3.4. %oos@(Scos?O—s) — U+ 1P qed

1 1
/Pl(:c)Pa(x)dz=/(x)% (54° — 32) do = % @ -, = %(1—1+1—1)=0. v
-1 -1

Problem 3.17 o
(2) Inside: V(r,8) =Y Air'Pi(cosf) (Eq. 3.66) where
=0

A= %/%(O)H(cosﬂ snfdd (Eq 3.69).
0

In this case Vp(8) = Vo comes outside the integral, so

@+

= = /P,(oosv ) sin 6 d.
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But Py(cos @) = 1, so the integral can be written

/Pg(wsﬂ)ﬂ(msa)sinad&={ % g;ig } (Eq. 3.68).
0

Therefore

o il#0
A“{v.,, ifl=0}'

Plugging this into the general form:
V(r,6) = Ao r®Po(cos6)
The potential is comtant thnmghout the sphere.
Outside: V (r,8) Z mﬂ(cos 6) (Eq. 3.72), where

B = (”T“)R'“ / Vo(6)Pi(cos) sinfdf  (Eq. 3.73).
o

x
@D / L [0, ifl#0

= R, [ Pi(cosf)sind = RVo, 120
0

i.e. equals Vp at r = R, then falls off like %).

S Ar'Pi(cos6), forr <R (Eq.3.78)
V(r,0) =< 50
z I_HP,(cosG) forr >R (Eq. 3.79)

where
=RM™14;, (Eq.3.81)
and
17 .
A P / o0(8)Pi(cos@)sinfdf (Eq. 3.84)
fl#0
= ST 1::rc.-/P} cosf)sinfdf = { Roo/eo, lflf }
Therefore
ﬁ, forr <R
€
V(r,6) = .
Eol trrsr
€ T
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Note: in terms of the total charge Q = 4w R%00,

1Q

Py
V(r,0) =

LQ’ forr >R

4meg T

Problem 3.18

Vo(8) = kcos(36) = k [4cos® 8 — 3 cos8)] = k[aPs(cos ) + BPy(cosB)] .

(I know that any 3'9 order pol. jal can be as a linear bination of the first four Legendre
polynomials; in this case, since the polynomial is odd, I only need P, and P3.)

4cos’f —3cosf = %(500530—30059) +,Bcos0=57acossﬂ+ (,6— ga) cosf,

4=7=>r1=3; —3=ﬂ——g—a:ﬂ—%~§=ﬂ—l—=>,6=——3=—g.
Therefore
Vo(6) = [8Ps(0050) 3Py (cos8)].
Now o
S Ar'Pi(cos), forr<R (Eq.3.66)
V(r,g) =S &0 s
Z mP,(cmsf)) forr >R (Eq.3.71)

where

4 = @D /vo(an(cosa)smoda (Eq. 3.69)

2R}

= (2;%1)2 {s/PS(oosom(coso)sinads - 3/P1(c059)}",(cosﬂ) sinada}
0 0

k(2+1) 2 k1 B
5 {8(7?156“ Sarrnyin) = §poe =3

8k/5RS, ifl=
—3k/5R, ifl=1

[

} (zero otherwise).

Therefore

V(r,9)=——rP|(cosﬁ)+SRSr Py(cosb) ‘ [ * Pu(cos8) - 3( )Pl(cose)]‘

EIES

{8(—) 2[500530 3cosb] — ( )cosﬁ}:tr

V(r,0) = Igcrﬁcosﬁ{«l(}%)z [5cos?6 — 3] —3}‘
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(for r < R). Meanwhile, B; = A R?+! (Eq. 3.81—this follows from the continuity of V at R). Therefore

8kR[5, ifl1=3 N
B = { _3)6}{2/51 ;fl: 1 } (zero otherwise).

So

—3kR

4 2
V(r,0) = P (cosf) + — R Pg(cosﬂ) g [8 (?) Py(cos8) — 3 (%) P](coso)] N

Ve = E (?)zme {4 (?)2 [5eos?6 - 3] —3}

(for r > R). Finally, using Eq. 3.83:

or

o(8) = e (2+1)ARP(cost) = e [34, Py + TA;R* Py
=0
3 8
= 50[3( R)P1+7(5R3)R2Ps]= =

L [-9Py (cos§) + 56 P3(cos8)] |
ok k

= 9cosO+—(5ws 60— SCOSO)]

- 2
= Rcosﬁ[ 9+28-5cos?0— 28-3]

_ |k -
=15 cosf [140 cos? g 93] .
Problem 3.19

o x
UseEq.3.83: o(f)=e Z(ZI+I)A1R’_1H(CQB 6). But Eq. 3.69says: 4; = 212—1-;[] /Vg(@)P[(cos 6) sin6 df.

=0 °

5.

Putting them together:

a(f) = (2l+ 1)*CiPi(cosh), with C; = /Vo 0)Pi(cosB)sin@df. qed

Problem 3.20
Set V = 0 on the equatorial plane, far from the sphere. Then the potential is the same as Ex. 3.8 plus the
potential of a uniformly charged spherical shell:

‘V(r,d):—E‘, (r—lf—z) cosf + 1e

4meg T




=

53
Problem 3.21
B
@ Vo) = ’Mp,(mso) (- > R), 50 V(r,0) = Z,mf"(l) Erﬁ =5 [VPFTE -]
=0
Since 7 > R in this region, vr2 + R2 =r\/1+ (R/r)2 =1 [1 + 5(}Z/r)2 - §(R/r)‘ +.. ] , 80

)
B _ o 1R? 1R' _o (R* R!
gm-z'[lJ'ir—z“gF*“"l]—z 7w
2
Comparing like powers of r, I see that Bn-‘—%, B; =0, Bﬁ_—% . . Therefore
o
oR?[1 R?
V(r6) = b [; - sz(wsv) +..
N (for r > R).
oR? 1(R 2
= 467[1—§(-T-) (3 cos 0—1)+U.],

oo
() V(r,6) = ZA.r‘Pg(cosO) (r < R). In the northern hemispere, 0 < < 7/2,
=0

oo
o
=§Azr'=%[\/ﬂ+m—r].

Since r < R in this region, v/72 + R? = R\/1+ (r/R) = R [1 + %(r/}?:)2 - %(r/R)‘ + ] . Therefore

& 1?2 174
EAW'——[R+-——-—~+ ..—r].
= 2R 8R®
3 N~ a a o
Camparmghkepowets:Ao=ER, Alz—z, Ag=m,...,so

V(.9

oR
20

[R—r}"‘. (cos8) +—ﬂ(cos€) ]

(}%) cosf + % (}%)2 (8cos?@—1) +

]

V(r,m) = 2( Vo =

=0

In the southern hemisphere we’ll have to go for @ = , using P;(—

=

(for r < R, northern hemisphere).

(-1

= VAT,
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(I put an overbar on 4, to distinguish it from the northern A;).

The only difference is the sign of 4;:
= +(0/2¢0), Ao = Ao, Az = 4,. So:

Vo) = = [R+7‘P|(oos€) + 2—1Rr’Pz(coso) +] )

(for r < R, southern hemisphere).
[2i]

=5 1+(R)oos9+ (%)2(300520—1)4-“.],

Problem 3.22

S Ar'Pi(cos6), (r < R) (Eq. 3.78),
V(8 ={ 2

S P R(eost), (> B) (Ba. 379),
=0

where B; = A;R?*+! (Eq. 3.81) and

n
1 N
A = Wb/ao(f))ﬂ(oosf))smvdv (Eq. 3.84)
/2

- = R, Lt /P,(cosa)smada /p, (cosO)sinddd b (let = = cosf)
/2

- %{/H(z)dz—/ﬁ(z)dz}.
0 -1

Now Py(—z) = (—1)'Pi(z), since P(z) is even, for even I, and odd, for odd {. Therefore
o 0 1
[P@de= [ACod-2) = 1) [ AEe
et 1 0
and hence

0, if ! is even
1

1
=90 g (—1y -
A= 1 ( 1)]/P‘(’)"" ”—"_/P,(z)d:, if Lis odd
° Rt 10




S0 Ay = Az = Ay = Ag =0, and all we need are A, Az, and As.
1 1

12

/P](z)dz = /zdz: 3
o o

sz(a:)dx = %0/‘ 508 - 32) de =%(5__ i;)

1

_l(ﬁ_i)_
, " 2\1" 2

1

5

1
1 1 20 zt 22\ |"

dr = = 5 3 == = — 70— —
/Ps(a:) £ 8/(631: 702° + 15z) dz g (636 70 1 +15 ) )|°

55

Therefore
Zoo (1Y g (1) . _ o (1Y)
1‘41_ ) (2) Y= om ( s)’ A= o (16)’ e‘q
and
_%0ps (1N o _oops(_ 1), 90 pr .
B=2r (1) 5= 2p (-5)s Bs=2r (6),m.
Thus
2 1
‘% [P‘(cosﬂ)v—(%) I’g(cos&)+g(%) (cos6) + (r<R),
Vin®) =19 e 1(R\? 1(R
o P.(cos@)—z(7) Pg(cow)+§(7) Py(cos®) +...|, (r>R)
Problem 3.23

Look for solutions of the form V(s,$) = S(s)®(4):

Multiply by s? and divide by V = §&:
ds 1d%*®
§¢ds( - )+¥W_0.
Since the first term involves s only, and the second ¢ only, each is a constant:

sd (dS 1d? . _
ga(sz)_a, QW =0y, with Gy + Gy =0.
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Now C, must be negative (else we get e ials for @, which do not return to their original value—as
geometrically they must— when ¢ is increased by 2r).

Cp = —k% Then % = —k*® = & = Acosk¢ + Bsinke.
Moreover, since &(¢ + 27) = &(¢), k must be an nteger: k= 0,1,2,3,... (negative integers are just repeats,
but k = 0 must be included, since = A (a constant) is OK).

sdis (sg) = kS can be solved by § = s", provided n is chosen right:

d ne1y =g @ ony - p2gn-1 200 _ 2 =
sds(sns )—nsds(s)fnss =n"s" =k*’S = n=+k.
Evidently the general solution is S(s) = Cs* + Ds™*, unless k = 0, in which case we have only one solution
to a d- ly, S = So we must treat k = 0 separately. One solution is a
constant—but what’s the other? Go back to the differential equation for S, and put in k = 0:

si .sE =0= sd;s = constant = C' = as_¢ =dS= C’B = § = Clns+ D (another constant).
ds \" ds ds ds s ]

So the second solution in this case is In s. [How about ®? That too reduces to a single solution, & = 4, in the

case k = 0. What’s the second solution here? Well, putting k = 0 into the & equation:

%:;—0:>£~constant-3:>d>=B¢+A.

But a term of the form B¢ is unacceptable, since it does not return to its initial value when ¢ is augmented
by 2m.) Conclusion: The general solution with cylindrical symmetry is

V(s,¢) =ao+bolns + E [s"(a; cos k¢ + by sin k) + s7*(cy coske + di. sinkg)].
k=1

Yes: the potential of a line charge goes like In s, which s included.
Problem 3.24
Picking V = 0 on the yz plane, with Eq in the z direction, we have (Eq. 3.74):
i v=o0, when s = R,
(i) V — —Eoz = —Epscos¢, for s> R.
Evidently ap = bp = by = dy, =0, and ax = ¢ = 0 except for k = 1:

Y

Vis,¢) = (ﬂls + %‘) c0s .

@i)=> e1 = —a1 R?; (ii)— a1 = —Ey. Therefore

Vis,¢) = (—Eos + E‘)’RZ) cosp, or |V(s,¢)=—Eos [(?)2 - 1] cos¢.
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RZ
v=-afr| =-wh (-5 -1)eons|_ ~[Foumne]
Problem 3.25 -
Inside: V(s,¢) = ao + Za" (ax cos k¢ + by sinkg) . (In this region Ins and s~* are no good—they blow
k=1

upat s =0.)
%
Outside: V(s,4) =T+ » sl* (cxcoske + di sink¢). (Here Ins and s* are no good at s — 00).
k=1

o=~ (-—-——8‘/‘“lt - %) (Eq. 2.36).

ds ds

Thus
5 & k N k-1 .
asinbg = —euz —gE (cx cos ke + di sinkg) — kR*™! (), cos k¢ + by sinkg) » .
k=1

Evidently ax = ¢x = 0; by = dj = 0 except k = 5; @ = 5eg (-R}ad;, - R‘bs)A Also, V is continuous at s = R:
g+ R%bs sin5¢ = do+ %ds sin 5¢. So ag = o (might as well choose both zero); R3bs = R~3ds, or ds = R'%bs.

. a aR®
Combining these results: a = 5eg (R*bs + R*bs) = 10eoR%bs; bs = Weh® ds = 0" Therefore

V(s,4) =

asinb¢ [ s5/R%, fors<R,
10¢g RS/s%, fors>R.

Problem 3.26
Monopole term:

Q= /pdf = kR/ [%(R—Zr) sin@] r%sin 6 dr df dg.
i But the r integral is
1 r
/(R—Zr)dr: (Rr—r)|f =R ~R*=0. SoQ=0.

o

Dipole term:

‘ /rcosﬂpdf = IcR/(rcosO) [%(R —Zr)sino] +2 sin0 dr df dg.
:  But the 0 integral is

7 sin®@|" 1
/sin“@cosﬁdﬂ = _—| ==(0-0)=0.
J 3, 3

" Sothe dipole contribution is likewise zero.
Quadrupole term:

2 (8 g L _1//2 _nltm- -]2.
/r (2cos 3 5 pdr—sz % (3cos? 6 — 1) r2(R 2r)sin | r% sin 0 dr d6.
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T integral: "
R 3 4 R RS Rt
2(R— =(Zp-L)| =& L2 __&
/Or(R 2r)dr (3R z)o 3 ) =
0 integral:
x n "
(3cos?d —1) sin29d€=2/sin“9d€—3/sin‘0d0
—_—
0 3(1—sin2 6)— sin? 0 0 )
L 3 9 T
=2(5)-3(5)=~(-5)=-%
¢ integral:

The whole integral is:

6 48
For point P on the z axis (r — 2z in Eq. 3.95) the approximate potential is

Lin (—E) (-3)em= kR

(Quadrupole.)

Problem 3.27
= (3¢ga — qa) Z + (—2qa — 2¢(—a)) ¥ = 2ga . Therefore

« L Pt
dreg 12

_1 2gacosé 0059 .
v (Dipole)
Problem 3.28

(a) By symmetry, p is clearly in the z direction: p =p2; p= [2pdr = [zoda.

and p-f =2qa% - = 2gacosf, so

b -
p = /(Rcosf))(kcosd)Rssinadﬁqu = 21rR3k/cos2€sin€d9 =2rR% (_g_az_ﬁ)
o

0
3 3
;wRak[l 1= 41rRk Aﬂgk

1 4mR% cosé
T 4neg 3 12

(b)

(Dipole.)




This is also the ezact

59
ial. Conclusion: all multiple of this distribution (except the dipole) are
exactly zero.
Problem 3.29
Using Eq. 3.94 with r' = d/2

1_1 d\"
W ; (ﬂ) P, (cos8);
for 2_, we let @ — 180° + 6, so cos@ — — cos6:

1_1&

a\"
P ;;’(27) Py(—cos).
But Py(—z) = (=1)"Pa(z), so
1 a\" "
=i = 20(5) [Pa(cos8) — P (—cosf)] = 4ﬁor (2_7‘) Py(cosd).
n=( n=1,3,5,..
Therefore N dcost
cos
Vip = — P,(a 0s0) = i S while
_2q (d)\? _ 2 &1 g 1 3
%cz74“£0r <2r) Ps(cos ) = T B (5cos*9 — 3cosh) = g (5cos® 8 — 3cosh)
Problem 3.30
3gacosf
Q
@He=[] @p @) v g [+ 2] = 4“0 2+ ]
2q qacos0
(i) V = —4"60 [—-+
) Ve E 3qasm(?sm¢
(i) V = 4—“6 [r +
Problem 3.31

2 ] (from Eq. 1.64, §-f = sinfsin ¢).
a) This pointisat 7 =a,0 =%, ¢=0,s0 E =
2

—gE=|-
41rcua3( 2); F=g¢ 4Ty

(b)Herer=a, 6 =0,s0 E = as( f) = 41reoa3 4“0043
@)V =¢[v(0,0,a) - V(a,0,0)] =

6=

41reua3

P

41reua2 [COS(O) cos ] 4mega?’
. Problem 3.32 1 1 B
— - acos

© Q=-¢,50 Viono = Ere—u?q; p=gqa2 so Vap= qu Pl Therefore
q 1 acosﬂ

=L (- E(r,6 .

;7(”9) 4meg ( ;T ‘ ' (0= e [ =

5 (2005€f+sin9§)] J
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Problem 3.33 o N R
=(p-#)#+(p-0)0 =pcosd# —psin6 6 (Fig. 3.36). So 3(p-#)# ~p = 3pcosOF —pcos i+ psind§ =

2pcos@f + psinfh. So Eq. 3.104 = Eq. 3.103. v/

Problem 3.34

. _de dv_ Adz_ d
.Multlplybyv—dt. v = det:) (20

But v = 0 when z = d, so constant = —A/d, and hence v* = 24

J %dz:—@!#:—@t.

This integral can also be integrated directly. Let z = u?; dz = 2udu.

d u ° L
d—u? + - sin”! (—)}| = —dsin™'(1) = —d.
2 va)llva (O] 2

_ [ dm w2d? d 2m3d3eom
t= 547 \/ 7 22lﬁarsom \/q—z

- + - +—Z+E— + - + =

where A =

&
16meg

0

Therefore

Problem 3.35
+

The image configuration is shown in the figure; the positive image charge forces cancel in pairs. The net
force of the negative image charges is:

F= L LI 1 + ! +
4meo 2@-2)]  [20+20a-2)]  [a+2(a-2)

1 1 1
TRz’ T (2a+22)?  (da+20) “}

e [ e e Y

1

1 '
ie. 1 = ives: F = —
When a — oo (i.e. a > z) only the = term survives: Treg 02

Eq. 3.12). When z = a/2,

v (same as for only one plane—

1 ¢ 1 1 1 1 1 1
= 4_7{ (a/zv*(3a/2>“+(5a/2)”“']‘ [(a/zv"(sa/z)“(5a/2)2+'“]}=°'“




61

Problem 3.36
Following Prob. 2.47, we place image line charges —X at y = b and +\ at y = —b (here y is the horizontal

axis, z vertical).
%
-\ FA
R Z =zt

In the solution to Prob. 2.47 substitute:

_}a—b L otb o fa-b ®_fa+b z_Rﬂﬁb_R_z
PRl ) T 2 Ry

o () vn(3)] - (3
V.= 41reo [ln(sz)+ln( ]_4“01 szs,

(v +a)® + 22[(y — b)* +27]
B 41reo {[(y a? +22][(y + )2 + 27

_ (s + a® + 2as cos ¢)[(as/R)? + R? — 2as cos ¢]
- 41[60 { }

} or, using y = scos¢, z = ssing,

(a? + a? — 2ascos ¢)[(as/R)? + R? + 2as cos ¢]

Problem 3.37
Sinoe the fon is azimuthall i, V(1,6) = 3 (4 +r,+,)n(cose>

(@r>b A =0 foralll, since V = 0 at co. Therefore V(r,d):Z HrlP.(oosv)

a<r<b: V(r6)= Z(C’n'l+ IH)PI(COSG) r<a: V(r,6)=Vp.

‘We need to determine By, Ci, Dy, and Vp. To do this, invoke boundary conditions as follows: (i) V is

at a, (i) V is i at b, (i) A (6—V) = —ia(ﬁ) at b.

ar

- B,

. () :Zy—,j,ﬂ(coso) =y (C,b' bm) Py(cos8); u+l = O+ Efﬁ =|B =0+ Dy | (1)
D .

C,a'+T‘1=O, ifl#0, Dy = —a®*1C), 1 #0, ®

Coa® + 22 =V, if1=0; [| Do=oloaCe

Putting (2) into (1) gives By = b**+1C; — a®+1C), 1 #£0, By = bC + aVi — aCy. Therefore

CEDM (C,a' + a’,')—+‘1) P(cosb) = Vo;

B = (bﬂl-f-] —a’“‘l) c,l # 0, a
By = (b—a)Co + aVp.
(iﬁ):ZB[—(zﬂ)]LP(coso) -3 (cur+ D Z(+1) Pi(cosb) = kp (cos6). So
L il 1 () 1 w1 .
-G (e =g 0 12
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or
—(+)B — G + 1+ 1)D, =0 (I+1)(Bi - Dy) = —I2+1Cy.
1 -2\ &k 2
Bi(+2) + (C,+D1b—2>=g, forl=1 Ci+5(Bi-D)=k |
Therefore ‘

I+ 1)(B - Dp) + b*+C = 0,for 1 #£ 1, |
it 5(B- D)= = ®)

Plug (2) and (1') into (3): ‘
Forl#0or1: |
(14+1) [(8%1 — a®+1) G+ L] +IPHIC = 0; (1 D)PHICHIBPTIC = 0; (A+1)CI =0 Cr =0, |

Thersore (1) and (3 [BL=0r= D =0 or 15 1]

3 |
Forl=1 G+ p[E°-a)C+da] =k G +200 =k = D = —d%Cy 3 |

By = (b* - ) Gy = [ By = (0% — &®) k/3eo.

For I = 0: B—Do = 0= By = D = (b—a)Co+aVp = aV—aCy,506C; =0 =>[Co = 0; Do =aVp = Bo.| |
— 3
Virg) =2 G V(r0) = ﬁ 2 ( - :‘—2) cost,

3
++)k0059,’r2b.
€0
__ov| _ o k a __ (W, k _
(b)o,(0) = —eo —I = —€p [__+E(1+Zﬂ_3) 0059]~ eo< +E0 cosﬁ)_

3r
Voe aVp 1 1 dmaeeVy _ oVl |
@ = [ ouda = *24ra? = [sracols = Quo ] At torge v~7°lm§=4__7u=_rﬂ.« |
Problem 3.38 i

Use multipole expansion (Eq. 3.95): pdr — Adz = 2% dz,and r' = z:

Conclusion:

a<r<b. ‘

4“0 Z e / P, (coso)— dz.

The integral is

%Pn(coso)/ "dz = QP (cos0

-a

Q 2a7t1
= EP,,(CQS&) pores for n even, zero for n odd.

Therefore

91 L (ay
741reur":§4 [n+1(7‘) P,,(cosO)]. ed

Problem 3. 39
Use of variables in cylindrical di (Prob. 3.23):

V(s,¢) =ao+bolns+ z (ak cos ke + by sin ko) + 7% (ci cos ke + di sin kg)] .
k=1
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s<R: V(s,¢) =12, s"(arcosks+bisink¢) (Insand s~ blow up at s = 0);
s> R: V(s,¢) = Yre, s (ckcoskd + disinkg) (Ins and s* blow up as s — o).

{We may as well pick constants so V — 0 as s — oo, and hence ap = 0.) Continuity at s = R =
ZR"(a;, coske + besinkg) = ZR"'(CIﬂ cosk¢ + disinkg), so ¢ = R%*ax, dp = R**b,. Eq. 2.36 says:
v v
Blpe” B8 |

= —ln. Therefore
€

-k N . 1
z W(ck cosk¢ + di sinkg) — Z kR*"(ay coske + by sinkg) = — gn,

S 2kR*(ag cos kg + by sin kg) = { ‘i°”/:7€o E?r < ‘z < ’2’;) } .

Fourier’s trick: multiply by (cosl¢) d¢ and integrate from 0 to 2, using

27 o

/sinkascoslasddb:O; /cos kpcoslpdp = { 0, kf: }
o o

27
=0; a=0.
"

Then
sinlg
o 1

AR = 2 [/ coslddd — / cosl¢d¢] Ll {5‘"1“’

Multiply by (sinl¢) d¢ and integrate, using f sin k¢sinlpdgp = { 0, k#1 }

k=1
_ 1"
ARy [} [ sinlpdé — s)nl¢d¢:| L) {—“’S
) D/ / [

27
coslg } = 5"_(2~2cosl1r)
x leg

o [}

0, if 1 is even b= 0, if 1 is even
4oo/leg, if 1is odd "=\ 200/7el*R'7Y, iflisodd [

200R 1. (s/R)* (s<R)
Voo =S5 X kzs‘“"‘”{ T ANE

. Problem 3.40

a
1 X P,(cosh) _ / n
4”0 ey P L= [ 2"A(2)dz.

“a
@) I= k/cos (%) dz=k [2?‘1 sin (%)] : = 2:—k [sin (%) —sin (—%)] = %. Therefore:

a

Y
i (2) Vir6) = é (“;{L") % (Monopole.)
0
z
a

Use Eq. 3.95, in the form V(r) =
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®) —
b [tk {(2) 0 (2) - Een ()]
O k{(%)z[sin(ﬂ)—sm(—n)]—E;_zcos(,,)_‘:r_z cos(—ﬂ}:ﬁii;
= P ‘V(r, 0) = InleT, (Z‘f_") %0059- (Dipole)
© L = h=0
o= k[seos(Z) e k{z'i‘i?(Z;/

—a

‘V(r,ﬂ) = 1 (_4“3’“

1 2
P ) 53 (3cos?0—1). ‘ (Quadrupole.)

Problem 3.41

(a) The average field due to a point charge g at r is

_ 1 _ 1 q.
3 Eave = W/Edﬂ where E = Tne o)
0 11 [
dr 50 Eape = — dr.

(470 R3) Ine | 2

(Here r is the source point, dr is the field Point, 50 % goes from r to dr.) The field at r due to uniform

charge p over the sphere is E; = p,‘% dr. This time dr is the source point and r is the field point,

4rey
50 % goes from dr to r, and hence carries the opposite sign. So with p = —g/ (37 R?), the two expressions
agree: Eave = E,.

(b) From Prob. 2.12:

. _a f _ P
E, = 3eopr T T 4me R? T dneoR?

(c) If there are many charges inside the sphere, Eay. is the sum of the individual averages, and pio is the
sum of the individual dipole moments. So Eaye = —m. qed

(d) The same argument, only with ¢ placed at r outside the sphere, gives

1 (57R%)

Bue=E,= -— L s (feld at r due to uniformly charged sphere) = ﬁ:—gﬁ
0 0
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But this is precisely the field produced by g (at r) at the center of the sphere. So the average field (over
the sphere) due to a point charge outside the sphere is the same as the field that same charge produces
at the center. And by superposition, this holds for any collection of exterior charges.

Problem 3.42

(@)
Egp = #(stﬂiﬁ-sinBé)
_P

Trers [2cosB(sinf cos % + sinfsin @ § + cosf2)
meo!

+sinf(cosf cos g X + cosfsin ¢ § — sin 6 2)]

= P 3sinf cosfcos g% + 3sinf cosfsin ¢ § + (2cos? 9 —sin6) 2| .
4reprd [N —

=3cos? -1

1
Bave = (%"T:,) / Eqypdr
1 » 1ag %t sind o 5102
@y (m) ,/r_:' [3sin6 cosf(cos ¢ +sin ¢ §) + (3cos? 8 — 1) 2] v sin 0 drr df dgp.

or 2r
on
But /coszﬁd¢=/sin¢d¢=0, so the % and § terms drop out, and [ d¢ = 2, so
0
0 0

R Es
-1 P 1 .
Eave = €7 (4"60) 21r6/rdr D/(3m529 1)sinf df

—_—
(— cos? 9-+cos B)|§ =1~1+1-1=0

R
which contradicts the result of Prob. 3.41. [Note, however, that the r integral, %dr,

blows up, since InT — —o0 as r — 0. If, as suggested, we truncate the r integral at r = ¢, then it is ﬁn%te, and
the 6 integral gives E,ve = 0.]

(b) We want E within the e-sphere to be a delta function: E = Aé%(r), with A selected so that the average
field is consistent with the general theorem in Prob. 3.41:

- 1 3 __A P __ P
Fan = () /A6 (0= 275y = s > A= gy a0 hene

Problem 3.43
@1I= / (VVA) - (VVh) dr. But V- (Vi VVa) = (VVA) - (VV2) + Vi(V2Va), s0

1
I:/V~(V1VV2)dT—/V1(V7V2) fVl(VVg)»da+E—/V1pzdr.
s 0
But the surface integral is over a huge sphere “at infinity”, where V; and Vo — 0. So I = l / Vipa dr. By
€

1
the same argument, with 1 and 2 reversed, I = —;/ng dr. So /szdr = /VQ/n dr. qed
: 0
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Situation (1): Qa = [,prdr =Q; Qs = fyprdr =0; Vip = Vs
b,
Situation (2) : Qo = [, p2dr =0; Qb = [, p2dr = Q; Voo = Vha-
{ [ Vipz dr = Vi [, prdr + Vs f, po d1 = Ve Q. }

[ Vaprdr = Voo [, pra7 + Vas [, pr dr = VeaQ.
Green’s reciprocity theorem says QVas = QVsa, 50 Vap = Vho. qed
Problem 3.44

(a) Situation (1): actual. Situation (2): right plate at Vp, left plate at V = 0, no charge at z.
v=0 V=0

e [ Vit = ViQu + V2 Qes + Vi
But V;, =V, =0 and Q,, =0, 50 [Vipadr =0.
[ Vaprdr = ViQu + V2uQes 4 Vias.
But Vi, =0 Qa, =, Vi, = Vo, Qr, = Q2, and Vi, = Vo(z/d). So 0 = Vo(z/d)q + VoQ2, and hence

Q=

qz/d.

Situation (1): actual. Situation (2): left plate at Vo, right plate at V = 0, no charge at z.

[Viendr =0= [Vaprdr = ViQu + Vea@e, + V@, = %001 + 0¥z +0.
But Vi, = Vo (1 - %) s0
@ = —a-=/d)
(b) Situation (1): actual. Situation (2): inner sphere at Vo, outer sphere at zero, no charge at r.
[ Virdr = VesQu + V1,0 + Vo Q.
But V,, = Vi, =0, Qr, =0. So [Vippdr =0.
[ Vb1 dr = VeaQus +Vea@r, + Ve = Quo + Ve +0.

But V,, is the potential at r in configuration 2: V(r) = A + B/r, with V(a) = Vo = A+ B/a = Vp, or

aA+B =aVp, and V(b)) = 0 = A+ B/b =0, or bA+ B = 0. Subtract: (b—a)d = —alp = A =
—aVo/(b~a); B(L—3})=Vo =B = B=abl/(b-a). So V(r) = ¢ (2 — 1). Therefore

Al “(bai/oa) (2 - 1) e _(b‘?u) G - 1)'
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Now let Situation (2) be: inner sphere at zero, outer at Vp, no charge at r.
[Vimrdr=0= [ Vaprdr = VesQus +Via@e, + Vo, =0+ Vi, + Qili

This time ispluysbyleV('r) =A+L2withV(e)=0=>A+B/a=0; V(b)) =Vo = A + B/b=Vp, so
2% a
Vi) = —) (1-2). Therefore, G (1-2)+eh=0 |Q= —(b a) (-9

Ptoblem 3. 45

3 Z £85,Q, = 3 / {SZr,r,ZrJ —')? zi-,fjé.,}pdfr
Y

ny=1 =1 =1
Zf.r::f-r':r'cosﬁ':Zi‘,r' Er.r,é{,—Zr,r, #-f=1 So
= =

LR N (5 S OE TNE PV _l 2 " _ .

el (,J cos @' — 7 )pd’r = gre 5 | T Paleost)pdr’ (the n =2 term in Bq. 3.05).
(b) Because 2 = y2 = (a/2)? for all four charges, Qzz = Qyy = [3(a/2)? — (V2¢/2)?] (g~ q—q+4q) = 0.

Because z = 0 for all four charges, Qe = ~(v23/2)2(q ~ ¢ ~ g+ ) = 0 and Quz = Qs = Quz = Quy = 0.
This leaves only

9= =3[(5) (5)a+ (5) (-5) 0+ (5) (D) o+ (

Vauad =

©

Q, = / [3(r; — d)(rj — dj) = (r — d)?8;5] pdr  (T'll drop the primes, for simplicity.)
/ [8rary —r283] pdr — 3d¢/r,pdr— 3d,-/r,-pdr +3d,d, /pd‘r +2d- /rp dré,

- d*s, /pdr = Qi — 3(dip; + dyp.) + 3dud, Q + 26,,d - p — d%6,,Q.

Soif p=0and Q =0then Q,, = Qy. qed
(d) Eq. 3.95 with n = 3:

1 1
Voct = oo r‘ (73 Ps(cos8')pdr'; Ps(cosf) = 3 (5cos® 8 — 3cosh) .

g

Define the “octopole moment” as

Qui= / (Brir e — (P2 (55 + s + 718, p(e") .
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Problem 3.46 \
1 1 1 1 1
vema i) ()

2 = 72 + a? — 2racosf,
% = P+ +2racos,
% = V24— 2rbeosh,
2 = 1+ ¥+ 2rbeosd.

1
Expanding as in Ex. 3.10: (a‘ -
1

a a
1 2r
p = — cosf (we want a > r, not r 3> a, this time).

(% — ,}) £ % cos 6 (here we want b < 7, because b = R?/a, Eq. 3.16)
2

But ¢’ = -Eq (Eq. 3.15), so

V(r6) = % [ —5 cos

R? 1 (2 R®
rTwso] Tres ( ) (r - r—’) cosf.

Set Ep = o1 2 (field in the vicinity of the sphere produced by +q):
4rep a®

V(r,6 cosf| (agrees with Eq. 3.76).

Problem 3.47
The boundary conditions are
(i) V=0wheny=0,
(u) V=V, wheny =a,

g
(iv) V =0 when z=—b.

Go back to Eq. 3.26 and examine the case k = 0: d2X/dz? = d?Y/dy® = 0, s0 X (z) = Az+B, Y (y) = Cy+D.
But this configuration is symmetric in z, so A = 0, and hence the k = 0 solution is V(z,y) = Cy + D. Pick
D =0, C = V,/a, and subtract off this part:

V(o) =Vl +7(z).
The remainder (V (z,y)) satisfies boundary conditions similar to Ex. 3.4:

© v

0 wheny =0,
when y =a,

(i) V =-Vo(y/a) whenz =",
(iv) V =-Vo(y/a) when z = —b.

<1<




|
| "

(The point of peeling off V(y/a) was to recover (ii), on which the constraint k = nx/a depends.)
The solution (following Ex. 3.4) is

V(z,y) = Y Cn cosh(nmz/a) sin(nmy/a),
n=1
and it remains to fit condition (iii):

Vby) = Z Ch cosh(nmb/a) sin(nry/a) = —Vo(y/a).

Invoke Fourier’s trick:

a a
z Ch cosh(nmb/a) / sin(nmy/a)sin(n'my/a) dy = —% / ysin(n'ry/a) dy,
o o
a
gc,. cosh(nmb/a) = —% / ysin(nmy/a) dy
o

_W‘/Eﬂ/u) [(i) sin(nmy/a) — ( y)cos mry/a)] )

e

a2 cosh(nmb/a) nr cosh(mrb/a)

Cn

V(z,y) =|Vo [— z (£1)" cosh(nrz/a) sin(: mry/a)]

n  cosh(nmb/a)

Problem 3.48
(a) Using Prob. 3.14b (with b = a):

_4% sinh(nrz/a)sin mry/u)
Viz.y) = T z nsinh(nm)

v

_ 4V nmry cosh(nmz/ae)sin(nmy/a)
W = T8z a0 -1rE Z (w)

a nsinh(nm) =0

n odd
_ 4eoVD E sin mry/a)
s Tsinh(nm)
4V

1 ¢
A= /oa(y)dyz— ,.%dmfn sin(nmy/a) dy.

. __a a_ @ _ 2, .
But .[) sin(nmy/a) dy = —Ecos(nny/a)in = E[I — cos(nm)] = mr(sm(:e n is odd).
_ 8aWe 1
- I3 > nsinh(n,
n odd

[I have not found a way to sum this series analytically. Mathematica gives the numerical value 0.0866434,
which agrees precisely with In2/8.]
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Using Prob. 3.47 (with b = a/2):

2 —1)™ cosh
V) =V [% . ;; (—1)" cosh(nmz/a)sin(; mry/a)]

n cosh(nm/2)
_ A4 _ 1 2 amy (—1)" cosh(nwz/a) cos(nmy/a)
0@ = g |  =-ak [; () T ety ] |-
_ 1 2 (=1)"cosh(nrz/a)| _  eVo —1)" cosh(nnz/a)
= oW [E *ta E cosh(nn/2) ] = [1 +2Z cosh(nm/2) }
a/2 yr e
A= /_ﬂ/ o(z)de = — [a+ ZZ ey cosh(mrz/a) dz]

But / cosh(nrz/a)dz = isinh(mrz/a)
—a/2 nw -

2a
= Hsmh(mr/z),

B % [u . 47(; > (- ta:h(nn/Z)] A [ . %; (=) ca:h(nn/?)]

n

[Again, I have not found a way to sum this series analytically. The numerical value is -0.612111, which agrees
with the expected value (In2 — m)/4.]
(b) From Prob. 3.23:

V(s,¢) =ao+bolns+ Z (uks + bk——) [ex cos(k¢) + d sin(k¢)].

et
In the interior (s < R) bo and b must be zero (Ins and 1/s blow up at the origin). Symmetry = di = 0. So

V(s,¢) =ao+ iuka" cos(k¢).

k=1

At the surface:
Vo, if —w/d<d<m/4,
V(&9 = EukRk coslke) = { 00 :)f.her:v/ise o<l
k=0 ’ "

Fourier’s trick: multiply by cos(k'$) and integrate from —m to m:

ZGAR”/ cos(g) cos(K'd) dp = Vo/w cos(k'¢) dp = Vgsm(k’¢)/k’ »(Vg/k’)sm(k’w/tl), if ' #0,
k=0 /! Vor/2, if k' = 0
But

. 0, fk#EK
/ cos(kg) cos(k'¢)dp = 2m, if k=K =0,
- m, k=K #0. ‘
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S0 2mag = Vom/2 = ag = Vo/4; marR* = (2Vo/k)sin(kn/4) = ai = (2Vp/mkR*)sin(kn/4) (k # 0); hence

_ o |1, 2 Xsin(kn/4) s\*
V(s,6) = Vo [Z +2 k; = (E) cos(ke)| .
Using Eq. 2.49, and noting that in this case i = —8:

_ vy 2 sin(kr/d), ., AR
o) =coy| = eov.,;kz;: g ke cos(ke)| = =20 ;sm(kw/él) cos(k).

‘We want the net (line) charge on the segment opposite to Vo (-7 < ¢ < —3m/4 and 3n/4 < ¢ < ):

_ _ T _ 4EQVO el ) T
A= /n(d))quﬁ = 2R/3'“ o(p)dp = . ;sm{kn/tl) /3"/4 cos(k¢) dp
16V . sin(kg)|* | _  4eoVo <= sin(kn/4)sin(3km/4)
s/ [T ,} D S
k=1 k=1
k sin(kn/4) sin(3kn/4) product
1 1V2 1/V/2 1/2
2 1 -1 -1
3 Yve 1/v2 1/2
1 0 0 0
5 -1V2 -1/V2 1/2
6 -1 1 -1
7 -1V2 -1/V2 1/2
8 0 0 0
46V [1 1 1 16V [1 11 1
A=— - - == g Zf=o.

Ouch! What went wrong? The problem is that the series }(1/k) is divergent, so the “subtraction” oo — oo
is suspect. One way to avoid this is to go back to V(s, ), calculate € (8V/8s) at s # R, and save the limit
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s — R until the end:

o(ts) = t';V 250Vo Z sm(k1r/4) ks

cos(kdb)
= 2% S a¥ sin(kn/4) cos(kg) (where z = s/R - 1 at the end).
”R k=1

Mz) = o(¢s)Rdd= —‘“j{—v" 3 %z’““ sin(km/4) sin(3k /4)
k=1

_ _deVo[1 z3 2 1 /22 o8 21°

- _T[E(""?*?*")_E(z —+)

N
T

) (1+—+—+ )

_ 2o [1 l+z l+z2 _ euVu 1+z\ [1+2? ‘

T Tz [Eln(lfz)“ ( ] Tz 1- 1—:2) '

_aW (1+2)7. - _
1rz1 [l-i—z2 ’ /\—-}1_1311/\(1)_

But (see math tables) :In (
1
2

|
Problem 3.49 !
z

|
9 F=¢E= e r3(2r:os.9r+sm99)A \‘
' |
mg \
Now consider the pendulum: F = —mg2 — T'#, where T — mgcos¢ = mv?®/l and (by conservation of

energy) mgl cos ¢ = (1/2)mv? => v = 2gl cos ¢ (assuming it started from rest at ¢ = 90°, as stipulated). But
cos¢ = —cosb, so T = mg(— cosb) + (m/l)(—2gl cos §) = —3mgcos b, and hence

F = —mg(cos0 & — sin08) + 3mgcos O F = mg(2cosOF +sin 6 9). k
This total force is such as to keep the pendulum on a circular arc, and it is identical to the force on ¢ in the

field of a dipole, with mg «» gp/4meol®. Evidently g also executes semicircular motion, as though it were on a
tether of fixed length .




Chapter 4

Electrostatic Fields in Matter

Problem 4.1

E=V/z = 500/1073 = 5x 10°. Table 4.1: a/4meo = 0.66 x 1030, 50 & = 4 7(8.85 x 10712)(0.66 x 10~3) =
734x 107, p=aFE=ed = d=oaE/e= (734 x 1074!)(5 x 10%)/(1.6 x 10~1°) = 2.29 x 10~16 m.
d/R=(2.29 x 10716) /(0.5 x 10710) = To ionize, say d = R. Then R = aE/e =aV/ex =V =
Regfa = (0.5 x 1071%)(16 x 10-19)(10~3)/(7.34 x 10~41) =
Problem 4.2

First find the field, at radius r, using Gauss’ law: [E-da = L Qenc, or E = gl b Qenc-

.

_ [ 410 [ svja2 9] a sepuf2, - o
Qenc = ./opdr—m/oe rdf"—u—3 -3¢ o+ o |

2 ) _a .
- [efzf/a (,z rart “?) _ "7] =g [1_e—zr/a (1+2£+2;—2)] .

L [Note: Qenc(r — 00) = q.] So the field of the electron cloud is B, = £ % [1 — e~27/2 (1 oL+ 25)] The

Ameo

- proton will be shifted from r = 0 to the point d where E, = E (the external field):

L af,_ e d &
E_4md2[1 cwile (1422 25|

. Expanding in powers of (d/a):

2d 1
—2d/a _ q_[%@)_ 1([2¢
¢ - (%) +3(
2

v]—e""/“(1+2§+2f—2) = 1-(1-2

73
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_ 1 g (4 1 1 — 3
£= 41reod2(3u3) 41reo3a3(q) Sregad’

[Not so different from the uniform sphere model of Ex. 4.1 (see Eq. 4.2). Note that this result predicts
o = 2% = $(05x 10‘1")3 = 0.09 x 10~%°m?, compared with an experimental value (Table 4.1) of
0.66 x 10 m3. Ironically the “classical” formula (Eq. 4.2) is slightly closer to the empirical value.]
Problem 4.3

p(r) = Ar. Electric field (by Gauss’s Law): §E-da = E (4n1?) = L Qenc = &[] AT4n7dF, or E =
# %; = % This “internal” field balances the external field E when nucleus is “off-center” an amount
d: ad’/deg = E = d = \/4E[A. So the induced dipole moment is p = ed = 2e\/eg/AVE. Evidently

For Eq. 4.1 to hold in the weak-field limit, £ must be proporttonal to r, for small r, which means that p
must go to a constant (not zero) at the origin: | p(0) # 0 | (nor infinite).

Problem 4.4

erld of ¢: % . Induced dipole moment of atom: p = aE =

T dﬂeo
— .
q T £
Field of this dipole, ¢ location of ¢ (9 =, in Bq. 3.103): B = —— L (229 (45 the right)
ield of this dipole, at locati q [N q. = Trea 7 \megr? .

2
Force on ¢ due to this field: | F = 2« e\ L (attractive).
dreg ) T3

Problem 4.5
Field of p; at p2 (§ = /2 in Eq. 3.103): E; =

Torque on pe: Ny = py x E; = poEy 5in90° = po By = (points into the page).

Field of p; at py (§ =7 in Eq. 3.103): E2 = —— (~2#) (points to the right).

467‘

Torque on p;: Ny =p1 X Ey = 421re 3 (points into the page).
0
Problem 4.6
(a)
%“' Use image dipole as shown in Fig. (a). Redraw, placing p, at the origin, Fig. (b).
z
= P £+ sin 0 6): - £ ingd
7 E,_4“60(21)3(2cos9r+sm90), p=pcosff+psinfo.
+x
P: ? - »
N = pxE,= Tre @ [(cosBr+sm.99) X (2cosf# +sm00)]
() » X X
9 = W[cosBsin9¢+25in9cosB(-¢)]
P .
_ p’sinfcosf, .
0 /2 = W(—d)) (out of the page).

Py
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(out of the page).

For 0 < 6 < /2, N tends to rotate p ise; for 7/2 < 8 < m, N rotates p clockwise. Thus the
stable orientation is perpendicular to the surface—either t or J. |
Problem 4.7 L
v Say the field is uniform and points in the y direction. First slide p
in from infinity along the z axis—this takes no work, since F is L dl.
tE (If E is not uniform, slide p in along a trajectory L the field.) Now
5 rotate (counterclockwise) into final position. The torque exerted by
E is N = pxE = pEsinf%. The torque we exert is N = pEsinf
P g clockwise, and df is lock 50 the net work done by us is
negatwe:
U= f:/szsm§d§ =pE (—cos?)ﬁ/2 = —pE (cosf — cos §) = —pEcosf = —p-E. qed
Problem 4.8
U= -p1-Ey, but By = gl- % [3(p2-£) # — pal- So U = ghz & [P1'p2 — 3(p1f) (p2-#)]. qed
Problem 4.9

1 g._ g zX+yy+22
=(p- 45 E=— L= 9 ZX¥XUYT2Z
@ F=(p: V)E (Eq. 4.5); 4meo 2 r 4mep (22 +y2 + 22)3/2

F = ( 0 ,,0,, 0y =z

= = \Peoz Y Pay Y P52 ) Tneo (2 +y2 + 22)3/2
2 1 _3 2z . 3 2y
o P @+ +27 2@+ + 27)5/2 P | T3 G w2 + 2

B, 2 N g [m_ _a_[p_3x(p:x)

t [ @+ o2 +z2)5/2}} T dme [P 15 (p,z +y,y+p,z)] 4mep [r“ ™|,

F =

b E= 4" = (3 [p-(-8)](-%)—p} = Rra [3(p - £)# — p]. (This is from Eq. 3.104; the minus signs

are because r pomt,s toward p, in this problem.)

[Note that the forces are equal and opposite, as you would expect from Newton’s third law.]
Problem 4.10

(2) op =P-f

= ~V-P = ———(r k) = —rlzakrz =

(b) Forr<R,E = mm‘r (Prob. 2.12), so E = | —(k/ep) r.

For r > R, same as if all charge at center; but Quor = (kR)(47R2) + (—3k)(47R3) = 0, so0




76 CHAPTER 4. ELECTROSTATIC FIELDS IN MATTER

Problem 4.11
ps = 0; op = P-fi = =P (plus sign at one end—the one P points toward; minus sign at the other—the one
P points away from).

(i) L > a. Then the ends look like point charges, and the whole thing is like a physical dipole, of length L and
charge Pra®. See Fig. (a).

(ii) L < a. Then it’s like a circular parallel-plate capacitor. Field is nearly uniform inside; nonuniform “fringing

field” at the edges. See Fig. (b).

(a) Like a dipole (b) Like a parallel-plate capacitor

(iti) L ~ a. See Fig. (c)-

Problem 4.12

V= AM f dr =P { b su —-Id'r}. But the term in curly brackets is precisely the field of a uniformly
charged sphere, divided by p. The integral was done explicitly in Prob. 2.7 and 2.8:

1 (/3R i SR
L N o (r>R), 3egr? (r > R),
Tnee —dr=- So V(r,0) =
meo S 4 L (43R R 1
e m 0 < )- 5P (r <R).

Problem 4.13

Think of it as two cylinders of opposite uniform charge density +p. Inside, the field at a distance s from
the axis of a uniformly charge cylinder is given by Gauss’s law: E2rsf = —mrszl = E = (p/2¢)s. For
two such cylinders, one plus and one minus, the net field (inside) is E = E4 fE. = (p/2¢€0) (s+ —s-). But

+ —s_ = —d, so E=|—pd/(2¢), | where d is the vector from the negative axis to positive axis. In this case

S.
the total dipole moment of a chunk of length € is P (r0?¢) = (pra®¢) d. So pd =P, and |E /(2¢0), | for

s<a.




7

Outside, Gauss’s law gives E2mst = —pnu’t =>E= for one cylinder. For the combination, E =

E+E_ =4 (ﬂ- - —) where

o+

2(., H

d
s: = sFg;

- ()t ) 3 ()

1
52

1
Z s+s

(s + S(s‘;% F %) (keeping only st order terms in d).
LAY Iy PLCEL:V
c] -3 ().

P],| fors>a.

Problem 4.14

Total charge on the dielectric is Qo = fs m;du + fv ppdr = §gP -da~ [, V-Pdr. But the divergence
theorem says §; P - da = [}, V-Pdr, 50 Qenc =
Problem 4.15

- __ L8 ok __k  _po_[+P-f=k/b  (atr=b),
(“)”“"V'P"_ZE(' ‘)“r_z' "“‘P'“‘{-P. =—k/a ((atr=a).}

Gauss’s law = E = 4“0 9‘-3’& £. Forr < a, Qenc =0, s0 For r > b, Qenc = 0 (Prob. 4.14), so
Fora <1 <b, Qenc = (3£) (4ma?) + [} (3£) 4n72dF = —4mwka — dnk(r — a) = —4nkr; 50 | E = —(k/eor) £

b) § D-da = Qy,,. = 0= D =0 everywhere. D = gE +P = 0= E = (—1/¢)P, s0
|E=0(forr<aandr > b);| |E=—(k/€0’l’)f‘ (foru<r<b),|

Problem 4.16

(a) Same as Eo minus the field at the center of a sphere with uniform polarization P. The latter (Eq. 4.14)
is —P/3c. So D = ¢E = o + 1P =Dy — P + 1P, so

(b) Same as Eo minus the field of + charges at the two ends of the “needle”—but these are small, and far

w50 [B=Ex| D= B = aBs=Do- P s0[D=Dy-P]

(c) Same as E, minus the field of a parallel-plate capacitor with upper plate at ¢ = P. The latter is
~(1/e0)P, 50 |E=Eq + LP.| D =&E = &Eo+P, 50
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Problem 4.17

D@ @

(uniform) (field of two circular plates) (same as E outside, but lines
continuous, since V-D = 0)

Problem 4.18

(a) Apply [ D -da = Qy.,. to the gaussian surface shown. DA = gA = (Note: D = 0 inside the
metal plate.) This is true in both slabs; D points down.

= — |

(b) D = ¢E = E = o/e; inslab 1, E = /ey in slab 2. But ¢ = eoer, 50 &1 = 2e0; €2 = Seo. |
E = 20/3¢0. |

(c) P = €oxeE, 50 P = €oxed/(€06r) = (Xe/€+)0; Xe =€r—1=>P=(1—¢1)o. |P;

(d) V = Eya + Esa = (0a/6e0)(3+4) =

op = +P; at bottom of slab (1) = ¢/2,

@ =01 ;' b at top of slab (1) = —0/2;

oy = +P; at bottom of slab (2) = 0/3,
oy = —P; at top of slab (2) = —0/3.

. [ total surface charge above: o — (¢/2) =0 /2, _ o
(f) In slab 1: { total surface charge below: (0/2) — (0/3) + (0/3) =0 = —a/2, | = P =g ¥

. | total surface charge above: o — (c/2) + (0/2) — (0/3) = 20/3 _ 20
In slab 2: { total surface charge below: (¢/3) — 0 = —20/3, == 3¢ v
L 40
—o/2
@
—+v§§
4
®
+o/3

L -0

Problem 4.19

With no dielectric, Co = Aeo/d (Eq. 2.54).
In configuration (a), with +o on upper plate, —o on lower, D = o between the plates.
d

E = o/ (in air) and E = o/¢ (in dielectric). So V = £§ + £¢ = ;24 (14 2).

= _ €A 2
o= % =g (H—l/e,.) =

In configuration (b), with potential difference V: E = V/d, so 0 = & E = V/d (in air).



9

P=¢yx.E = eox.V/d (in dielectric), so oo = —eoX.V/d (at top surface of dielectric).
oot =€V/d =05 + 0y =05 — €oxeV/d, 50 0f = &V (L + Xe)/d = €0€xV/d (0!

S8 1AL A ALY LY ) Ae (Lhe
=>Cb.—v—-v [72+Uf2 = Cod+eads, == 3

. Ci Ca — L 2¢, _ (1+en)?—der _ 1+2entde2—de, _ (1—e,)?
[Which is greater? Gt — s = e — T = 12—(1?‘? == %W):) >0. S0 Cp > Ca]

If the z axis points down:

bove dielectric).

E D P o (top surface) || o (top plate)
0 V= e V o Ter V.
(a) air (ef:—l) ax (e,fn) aex 0 0 (¢,E+1) 3
(2) dielectric | 2y ¥ % | Zen LR | Amars | —Zelal -
(b) air Tz or % 0 0 ¥ (left)
(b) duelectric % 2% |(e-D2Fx| —(e—1D)2F | e2F (right)

Problem 4.20
[Deda = Qy,,. = Ddnr® = pim® = D = Lpr = E = (pr/3¢), for r < R; Ddnr?® = p§nR? = D =
PR332 = E = (pR?[3eor®) £, for r > R.

pR* 1 p/“ pR*  pR?
=— [ EBa=L > _£ LA L.
v ,[: 3€0 7|, 3€ RT 3Eo+362

Problem 4.21
Let Q be the charge on a length £ of the inner conductor.
Q

W‘ B= 2mepst
@ b c 0
v _[ E-‘ﬂ:/ﬂ (2720t)?+./b. (%){:=2reol [ln(£)+%“ln(§)],
(o} Q _ 2men
T T Ve~ |ln(@/a) + (1/e) In(c/b)

Problem 4.22
Same method as Ex. 4.7: solve Laplace’s equation for Via(s,¢) (s < @) and Vow (s, ¢) (s > a), subject to

_ _ _ __Q
waia = D2rst=Q=D= (a<s<b), E——2“68£(b<r<c).

the boundary conditions z
@ Vi = Vou ats=a, )
(i) ePn = g ats=a, E“T
(ili) Vour ~— —Foscos¢ for s> a.
Yy

From Prob. 3.23 (invoking boundary condition (iii)):

k=1

Vin(5,8) = Y s*(ax coskg + bisinke), Vous(s,$) = —Eoscosg+ Y s~¥(ck coskg + di sin kg).
k=1
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(I eliminated the constant terms by setting V = 0 on the y z plane.) Condition (i) says
Z a*(ay, coske + by sinkg) = —Epscos ¢ + z a~*(cy, cos k¢ + dy sin kg),
while (ii) says
€ Y ka*~1(ax cosk + bysinke) = —Focos — > _ ka™*~!(cx cos k¢ + dy sin kg).
Evidently by = di, = 0 for all k, ax = ¢ = 0 unless k = 1, whereas for k =1,
aay = —Epa+a~ler, ea = —Eg—a"3¢.

Solving for ay,

a =

B (s ) = - =
T PR e T T

and hence Ejy(s, ¢) = —66—1 As in the spherical case (Ex. 4.7), the field inside is uniform.

Problem 4.23

1 2 1 2
Po = coXcEo; Bi = —3—Po = ~XBy; P1 = coxeBr = ~ZEy; By = —3-Py = By .
n co 3 3 3¢
Evidently By, = (_%) Eo, s0

E=E +E +E: +

The geometric series can be summed explicitly:
o

Zz": ! s0

)
n=0 1 z

which agrees with Eq. 4.49. [Curiously, this method formally requires that x. < 3 (else the infinite series
diverges), yet the result is subject to no such restriction, since we can also get it by the method of Ex. 4.7.]
Problem 4.24

Potentials:
Vout(r,8) = —Eorcost+ Y i Pi(cos), (r>b);
Viea(r,0) = & (At + Bir) Peos0),  (@<r<b)
Vin(r,0) = 0, (r<a).

Boundary Conditions:
(i) Vour Vined:  (r=10);
(i) ot = ePfu, (r=b)
0, (r=a).

[}
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@M = —Eobco549+zblBTllP,(cose):2(A,bl b‘+1) Py(cosb);
(i) = e,Z[lA,b" (l+1)b,+2]1-"1(c039) —Epcos — Z(I+I)WPI(C0549),

(i) = Aad'+ rf“ =0 = B =-d®"14,.

Forl#1:

i = (A ZH']AI 2L+1 2041
0] b,+1~ 1 W, = By= 4 (8P - a?H);

) e [lA,b' -1 (l+1) A‘] (1+1)b,+2 = B = -4 [(li )b"“+a"+‘] = A4 =B =0.

=)
Forl=1:

(i) —Enb+ L= ap-2 A

b2
@) e (A, + 2”bf1) =—Ey~ 2% = —2B; — Eob® = ¢, 4 (b° +20%) .

= By - Eob® = 4,2 (b° —d®);

So —3Egh® = A, [2(b° — 0®) +¢ (b + 20%)]; Al:ﬁl‘faﬂTﬂ?—‘—iHZ(a/m'

- 35
Vnea(r:6) = 2[1—(a/b)3]+er[1+2(a/b)“l( ‘_)°°59

E(r,6) = —Vmez‘WMﬁ{(l+zs—z)cost—(l—-w)smﬂﬂ} ‘

Problem 4.25

There are four charges involved: (i) g, (ii) polarization charge surrounding g, (iii) surface charge (0s) on
the top surface of the lower dielectric, (iv) surface charge (o}) on the lower surface of the upper dielectric.
In view of Eq. 4.39, the bound charge (ii) is g, = —q(x4/(1 + Xt), so the total (point) charge at (0,0,d) is

=¢+¢ =g/(1+x.) =g/ Asin Ex. 48,

-1 qd/e. oy oy -
- _o _ % —Peii = +P, = coxeEs);
() o €oXe [ Tragp @l 20 2 (here oy A=+ €oXeE:);
1 qdfe, gy oy
TR ' I T T =-P, = —eX.E;).
(b) oy = eox, [41ren e )§ e 2ep (here o P, coXLEz)

Solve for o5, o}: first divide by x.e and x, (respectively) and subtract:

o _o _1_ade , ,[nb+1 ad/c, ]

——T5 = o, =X,
Xe Xe 27(24a2)} X 27 (2 4 g2)3
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Plug this into (a) and solve for o, using €. = 1+ x4:

-1 qdfe o
o = mx:(l +Xe) — 0] (Xe +Xe), 50

_ Xe
o= 41r "+ dz)s 1+ (e +x2)/2"

qd Erxelr
41r (2 + ) [T+ (xe +x0)/2)

o=

o o= A -1 qd 1 L _gdfe 50
P T X\ T )i L+ e+ X072 2ﬂ(r2+d2)§

The total bound surface charge is o = 03 + 0} = 4= r—::me—[ﬁ_—(;‘—_’fm (which vanishes, as it should, when
X4 = Xe)- The total bound charge is (compare Eq. 4.51):

_ (Xe = Xe)g
* =26+ (e + X072 and ence
1 q/e. [
V)= — T £ >0).
(r) 41r€a{\/zz+yz+ \/zz y2+,+d)7} (for z > 0)

- 2 20/ (e
Meanwhlle,smce~+q¢ 9 [Hu]: 4 [y L LalG e

€ dte] e+e’ ey 22 +y? + (2 — d)? {for 2 <0).

Problem 4.26

From Ex. 4.5:
0, (r<a)
D= O’Q R (r<a , E= 41r_2i’ (a<r<d)
et (r>a) R
77 Treor? £, (r>b)

ol

1 1@ 1711, / Ll
w = §/D~Ed1‘—§(4’”)241r{e A rz'r""‘d +—= 2 =

= %{ﬁe‘%)*%} 8”50(1+Xe)(% _)'

&)

b (_1) m}
+=(=
e @\ T/l




Problem 4.27
Using Eq. 4.55: W = % [ E? dr. From Ex. 4.2 and Eq. 3.103,
-1
TP 2, (r<R)

3

E = 2 so
R°P PN ’
W(2m59r+mn99), (r>R)

2 2R3
Wecn = e_o(i) dipp - PR

2 \3e¢/ 3 27 e
2
e [RP 1 iy .
Wisk = < (E) /"—s(4coszﬂ+sm 6) r*sin 0 dr do dop
- ®PR, [T 2 o\ i © 1 o PP 3 1y[®
= T 2m A (1 + 3cos’ 9)sm.9d9/R % (- cos@ — cos G)|D ~53 .
_ m(RP? [ 4\ _4nR°P?
T 90 \3R%) T 2l
Wit =

This is the correct electrostatic energy of the configuration, but it is not the “total work necessary to assemble
the system,” because it leaves out the mechanical energy involved in polarizing the molecules.

Using Eq. 4.58: W = L f D- Edf For 7 < R, D = ¢E, so this contribution is the same as before.
Forr <R D= eE+P = —iP + P = P = -2¢FE, so D-E = —2%E?, and this contribution is
now (~2) (2”” RS) =-%£ "; , exactly cancelling the exterior term. Conclusion.
surprising, since the derwatlon in Sect. 4.4.3 calculates the work done on the free charge, and in this problem
there is no free charge in sight. Since this is a nonlinear dielectric, however, the result cannot be interpreted as
the “work necessary to assemble the configuration”—the latter would depend entirely on how you assemble it.

Problem 4.28

First find the capacitance, as a function of h:

A part: B = 722 == V = 22-1In(b/a), \
In(b/a)

Oilpart: D=2 5 E= 2. =y =22 € €

= 4me

4dns 4dmes
Q=XNh+ A€~ h)= e h— A+ M= A[(er — 1)h + €] = Mxeh + £), where £ is the total height.
Q _ Mxeh+8)

=V = 2aum(a) T = 20

(xeh +£)
In(b/a) *

The net upward force is given by Eq. 4.64: F = JV29Z = V2 I, eoxeV?
The gravitational force down is F = mg = pn(bz - az)gh = 82— a?)gn(b/a)
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Problem 4.29
8
(a) Eq. 4.5 = F2 = (py - V) E,; =ng, (Ev);

P 5___ P
Eq. 31035 By = o6 =— s

o Pp2[d (1
27 Tlre, Ly \

Z. Therefore v

z
To calculate Fy, put p, at the origin, pointing in the z direction; then p;
is at —r2, and it points in the —§ direction. So F; = (p;-V)E; =
P2 vy
—p,ﬁ ; we need E; as a function of z, y, and 2.
7 Y |omymo,omer
11 B
From Eq. 3.104: E; = =3 [M —p], where r = X +yJy + 22, p» = —p2¥, and hence
P2 T = —pay.
N “ByR+yy+28)+ (@2 +12+2)9] _ pr [“Beyx+(2® - 2% +20)§ - 3yz2
2 T e (22 +y2 + 22)5/2 T ey (22 +y? + 22)5/2
OE, P2 51 o 2 2,20 O - o 5
S _ P2 [ 2o - - —(-3z% —4yy — ;
B o 37 y[-3zyx + (2> — 2% + 2°) ¥ 3yzz]+r5( X —4yy —323) 35
OE, p2 —3z, P2 3,
-2 = B2 %5 Fi=—p (2
% |00 4meq T8 5o n 4meo 15 “
These results are consistent with Newton’s third law: F; = —F,.

(b) From page 165, N3 = (p2 x E;) + (r x F2). The first term was calculated in Prob. 4.5; the second we
get from (a), using r =ry:

@
S

mp2 . o 3pip2 3ppe
= —%); Fy= = s
P2 xEr 41reor3( %) rxFa=(9)x (41reor‘ z) Tnegrd

This is equal and opposite to the torque on p; due to p2, with respect to the center of p; (see Prob. 4.5).
Problem 4.30

Net force is| to the right | (see diagram). Note that the field lines must bulge to the right, as shown, because
E is perpendicular to the surface of each conductor.

I ’
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Problem 4.31
P=kr=k(zx+yy+22) = pp=—VP=—k(1+1+1)=
Total volume bound charge:

= P-ii. At top surface, fi = %, 2z = a/2; s0 0p = ka/2. Clearly, m on all six surfaces.
Total surface bound charge: | Qsurt = 6(ka/2)a” = 3ka®. | Total bound charge is zero. v’
Problem 4.32

_lp_ aXe T

%Dda Qf‘“ciD_tlnr’ o E_eD 4m(1+xe) 72
p=-VP=—_ (g F)_ Xe 53(r) | (Eq. 1.99); op = P-# ;
(1 + x.) r2 T+ x. ! 4r(1 + x.)R?’

Qsurt = 0p(47R?) Tox The compensating negative charge is at the center:
e

_ __Xe 3 =
/pbd'r— 1+Xe/6(r)d’r q

e
14xe

Problem 4.33

Ell is continuous (Eq. 4.29); D, is continuous (Eq. 4.26, with o7 = 0). So Ea, =-Es,, Dy, = Dy, =
6By, = & Ey,, and hence
tanb _ E.,/Ey, _Ey _e qed
. tanby By /Ey B, &
¥ 1is air and 2 is dielectric, tanf2/tan 6 = e3/eo > 1, and the field lines bend away from the normal. This is
- the opposite of light rays, so a convex “lens” would defocus the field lines.
" Problem 4.34

In view of Eq. 4.39, the net dipole moment at the center is p' = p — -1+Lx€p T +x‘p

2 = 2p. We want the
- potential produced by p’ (at the center) and o3 (at R). Use separation of variables:

o
Outside: V(r,0) = ,_“Pl(cosa) (Eq. 3.72)
= y =
o __1 pcos !
Inside:  V(r,0) = o +§Alr Py(cos6) (Egs. 3.66,3.102)
W = AR, or By=RM4, (1#1)
.V continuous at R =
B _ 1
e Rz Lo+ AR, or By= B+ AR
4 v _ 1 2pcosd _ 11 _1
Brlny” Bl = Zz+1)R,+2P,(coss)+4m v S AR B(cost) = g,

= -tpi=-lioxEn=
€ €0

| 1 2pcosd 11
xéﬁn__x{ T +ZIA,R Py(cosf) } .
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-+ 1)R,+2 —LAR"™ = X AR (1#1); or — (A + DAR™ = xl AR = A =0(L#1). |
B 1 % _ 1 AR 1oy, AR
Forl=1: ‘2123 thaom iTX ( Tneo e R3 +A‘) B+ 4“05, 2 " I Xz
P _ P AR _ 1 xp AR A,R L ‘
Trae M N Gan T T2 T Tha e X 2 Grxe) = g%,
oa_ L e _ 1 %e=Dp L, p [ 2(6, ) I ‘
17 freo B, (3 + Xe)  4meo Rier(er +2) 17 Ireoe, (er+2) 4meger €p + 27

o~ () ) =m |

1 pcosé 1 prcosf 2(e, — 1) ‘

Meanwhile, for r < R, V(r,0) =

dmey €12 ' 4meg R3  eer +2)
pcosf e —1\ r? ‘

—_— =5 <R).

dmeor2e, [1 +2 (e,. + 2) R3 r<B)

Problem 4.35 ‘

Given two solutions, V4 (and E; = —VV;, Dy = ¢E;) and V2 (B2 = —VV,, Dy = ¢E,), define Vs = Vo - W
(Es = By — E;, D3 = D, — Dy).

[, V-(VsDs)dr = [ VsDy-da=0, (Vs =0 on S), 50 [(VV5) - Dy dr + [ Va(V-Dg) dr =0.
But V-Dj = V-D; — V.D; = ps — py =0, and VVs = VV; — VVi = B + By = —Fy, 50 [ By - Dy dr =0.
But D3 = D; — D) = €E; — ¢E; = ¢Es, so [ ¢(E3)*dr = 0. But € > 0, so E3 = 0, so V5 — V; = constant. But ‘

at surface, Vo = W, so Vo =V everywhere. qed
B ‘
in which case |P = eg)(,V\)r2

Problem 4.36
)= _eox%o

(a) Proposed potential: |V(r) VQE

If so, then |E =-VV = V()R £,

in the region z < 0. (P = 0 for z > 0, of course.) Then op = éoxeVo

%(i .| (Note: ii points out

R
of dielectric = i = —f.) This oy is on the surface at r = R. The flat surface 2z = 0 carries no bound charge,
since i = # L #. Nor is there any volume bound charge (Eq. 4.39). If V is to have the required spherical
symmetry, the net charge must be uniform:

OtotdTR? = Qo1 = 4meg RV: (since Vo = Qtot/4meoR), 50 0tot = €Vo/R. Therefore

_ [ (&Vo/R), on northern hemisphere
91 =1 (Vo/R)(1 + xe), on southern hemisphere

(b) By construction, giet = 05 +0f = €oVp/R is uniform (on the northern hemisphere o = 0, 0y = eoVo/R; ‘
on the southern hemisphere o, = —eoX.Vo/R, so o7 = €Vp/R). The potential of a uniformly charged sphere is ‘

_ Qe _GelrR) _«WE_ R
4meor 4meor R er o ‘

(c) Since everything is consistent, and the boundary conditions (V =V at r = R, V — 0 at co) are met,
Prob. 4.35 guarantees that this is the solution.
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(d) Figure (b) works the same way, but Fig. (a) does not: on the flat surface, P is not perpendicular to fi,
so we'd get bound charge on this surface, spoiling the symmetry.
Problem 4.37

Eext =

P - . . €0Xe
———§. Si the sph tiny, th tant, h P=_—""
Tmeas © ince the sphere is tiny, this is essentially constant, and hence T+ x.]3

_ coxe AN (A Nago(foxe Y (AN (1) (1),
Fo= /(1+x,/3) (21[’603) ds (21reas) §dr = (1+x¢/3> (21reo s 52 s/ dr
X M \14 o5, YR
1+x./3 (41!260) 8% 3"R 5= 3 + Xe nzgs"

Problem 4.38

Bt (Bx. 4.7).

The density of atoms is N =

. The macroscopic field E is Eseif + Eeise, where Egeyr is the average
field over the sphere due to the atom itself.

P =aEese = P = NoEeise.

[Actually, it is the field at the center, not the average over the sphere, that belongs here, but the two are in
fact equal, as we found in Prob. 3.41d.] Now
1p
Egetr = — o
(Eq. 3.105), so

1 « a Na
= “EFE:IW + Eeise = (1 - m) Eeise = (1 - —) Eeise-

So
No
= A= Najsa)® - XeEs
and hence
_ Nafje
Xe = A= Naf3e)

Solving for a-
Na _ Na Na ( x,)
P Xes

€@ Xe 360 Xe 3e0 (e - 1)
=——=2 —="__2°  Butx.=¢—1, == . d
NA+x/3) N @Gt+x. Xem&-hLsoe=Ty ae

Problem 4.39

For an ideal gas, N = Avagadro’s number/22.4 liters = (6.02 x 1023)/(22.4 x 1073) = 2.7 x 10%. Na/e =
(2.7 x 10%8)(4mep x 10730)B /ey = 3.4 x 10~*f, where S is the number listed in Table 4.1.

B ﬂ 0.667, Najeo = (34 x 10-4)(0.67) =23 x 10~4, x = 2.5 x 10~
f 60205, Najeo = (3.4 x 10-4)(0.21) = 7.1 x 105, x, = 6.5 x 105 -

ﬂ 0.396, Nafeo = (3.4 x 10-4)(0.40) = 1.4 x 10-4, x, = 1.3 x 10=¢ ( 2greement is quite good.
Ar B=164, Najer=(34x10-4)(1.64) = 5.6 x 10~, x, =5.2 x 10~
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Problem 4.40 5 5
(a) Jopue ™ T du  (RT)2e /¥ [~ (u/kT) - 1”55

) = =
) fffs e~u/hT gy —kTe*“/’“Tl’:E

[Epr/AT — ePB/AT] 4 [(pE[KT)e~?E/MT + (pE/kT)e?E/¥T]
e—pB/KT _ goBIFT

KT =B [T 26T ir pcoth
= TP\ GERT — gpB/RT | T pE cot IcT

P = N(p); p = (pcosO)E = (P - E)(B/E) = —(u)(B/E); P = N,,—p(_;

. kT
Np{mm( pE}
Let y = P/Np, © = pE/KT. Theny = cothz—1/z. Asz — 0,y = (%4-;‘%; +..,)_§ AU

0, so the graph staits at the origin, with an initial slope of 1/3. As & — oo, y = coth(co) = 1, so the graph
goes asymptotically to y = 1 (see Figure).

pe/kT
(b) For small z, y = 1z, so Tv’; = -é”rT, or Pr ﬁ%E = egxe E = P is proportional to E, and

o — - —30 (3 y: [ — molecules _ molecules ,, moles , grams
For water at 20° = 293K, p=6.1 x 10730 Cm; N = T2reues = MEBgies x o x EEs,

= (60 10%) x (&) x (10°) = 0.33 x 10%%; Xe = p sl 1O ) = [12.] Table 4.2 gives an
experimental value of 79, so it’s pretty far off.
For water vapor at 100° = 373K, treated as an ideal gas, “2lume = (2.4 x 107%) x (33) = 2.85 x 1072 m®.
203

‘mole

_ 60x10% _ s, . _  (211x10%)(61x107%) —
= 25 xi0E = XX 0% Xe= mE e i as x 0 - X 10

Table 4.2 gives 5.9 x 1073, so this time the agreement is quite good.




Chapter 5

Magnetostatics

Problem 5.1
Since v x B points upward, and that is also the direction of the force, ¢ must be To find R, in
terms of @ and d, use the pythagorean theorem:

+d

(R—d?+a®=R? = R*-2Rd+d®+d*=R® > R= 24

The cyclotron formula then gives

p=¢BR

Problem 5.2
The general solution is (Eq. 5.6):

y(t) = Ci cos(wt) + Cosin(wt) + %t +Cs;  z(t) = Cacos(wt) — Ci sin(wt) + Cy.

(2) y(0) = 2(0) = 0; §(0) = E/B; #(0) = 0. Use these to determine Cy, Cz, C3, and Cj.

- Y0)=0=C1 +C5 =0; §(0) =wCo + E/B=E/B=Cy=0; 2(0)=0= Co+C4 =0= Cs = 0;
#0) =0=> Cy =0, and hence also C3 = 0. So|y(t) = Et/B; z(t) = 0.| Does this make sense? The magnetic

force is g(v x B) = —¢(E/B)B#% = —qE, which exactly cancels the electric force; since there is no net force,
the particle moves in a straight line at constant speed. v’

(b) Assuming it starts from the origin, so C3 = —C}, Cy = —Cs, we have 2(0) = 0= C; = 0= C; = 0;

E‘ E_E E N E
10)= = Tind Cow + = 5= 2 =Cy = 5B = —Cy; y(t) = ~ﬁsm(wt) + Et,

E i) 2(t) = 2= [1— =
ZwB’ or [y(t) = m[?«)t—sm (wt)]; 2(t) = 5B [1 —cos(wt)]. | Let 8 = E/2wB.

Then y(t) ﬁ[?wt —sin(wt)]; 2(t) = B[1 - cos(wi)]; (v — 2Bwt) = —Bsin(wt), (z — B) = —Bcos(wt) =
(y 26wt)? + (z — B)? = B°. This is a circle of radius 8 whose center moves to the right at constant speed:
=20wt; z0=B.

2(t) = cos(wt) +

N E E E E_E
(c) 2(0) = 5(0) = g C;w—E:C;——C:;:—w—E;ng+§=—§=>02204=0.

89
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y(t) = —% cos(wt) + gt + %; z(t) = IJEB sin(wt). |y(t) = % (1 + wt — cos(wt)]; z(t) = % sin(wt).

Let 8 = E/wB; then [y — B(1 + wt)] = —fcos(wt), z = Bsin(wt); [y — B(1 +wt)]® + 2* = B2, This is a circle
of radius § whose center is at yo = B(1 + wt), z =0.

Problem 5.3
(a) From Eq. 5.2, F=¢[E+ (v xB)|=0= E=vB =

(b) From Eq. 5.3, mv = qBR = % =
Problem 5.4
S I flows counterclock (if not, change the sign of the answer). The force on the left side (toward

the left) cancels the force on the right side (toward the right); the force on the top is IaB = Iak(a/2) =
Ika?/2, (pointing upward), and the force on the bottom is JaB = —Ika?/2 (also upward). So the net force is

F=|Ilka?z.
Problem 5.5

because the length-p dicular-to-flow is the cir fe

(b)J:3=>1=/Jda=a/13dsd¢=2m/ds=2ma=>a=i;1=
s s 2ma

Problem 5.6
(a) v=wr, so (b) v =wrsinf = |J = pwrsin 0@, | where p = Q/(4/3)7R5.
Problem 5.7
dp d dp P .
il prdr = / o rdr = —/(V -J)rdr (by the continuity equation). Now product rule #5
v
says V - (zJ) = 2(V - J) + T - (Vz). But Vz =%, 50 V- (2J) = 2(V - J) + Jo. Thus [,,(V-J)zdr =

/ V- (z3)dr — / Jz dr. The first term is [ zJ - da (by the divergence theorem), and since J is entirely
v v

mnside V), it is zero on the surface S. Therefore [,,(V - J)zdr = — [, J; dr, or, combining this with the y and
z components, [,,(V - J)rdr = - [, J dr. Or, referring back to the first line, Td% = /Jd'r. qed

Problem 5.8

(a) Use Eq. 5.35, with z = R,0; = —6; = 45°, and four sides: B =

(b) z=R, 0 =—0, = %, and n sides: B =
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(c) For small 8, sin8 = 6. So as n - 0, B — 0L (E) same as Eq. 5.38, with z = 0).

2R

Problem 5.9
(a) The straight segments produce no field at P. The two quarter-circles give B =

(b) The two half-lines are the same as one infinite line: ﬁ, the half-circle contributes E

1—2;) (into the page).

Problem 5.10 I
(a) The forces on the two sides cancel. At the bottom, B = g:-s =>F= (

(up). At the

wl) o _ ol
27s " 2ms

__ml __pol’a .
top, B = T >F= st a) (down). The net force i (up).

'
(b) The force on the bottom is the same as before, poI?/27 (up). On the left side, B = gi’; 2

2
=I(dl xB) = I{dzX + dyy + dz ) x (ﬂ{; z) sl (—dzy +dyX). But the 2 component cancels the

dz Here y = v/3z, so

sz (n/f+a/2) 1
corresponding term from the right side, and Fy = ——— /
s

2n Jorvs
2
Fy=- Hol In M == sol® In{1+4 @ . The force on the right side is the same, so the net
N I3 23
Y
. .| pol? 2 \/§a
force on the triangle is o l:l 75 In(1+
Problem 5.11

Use Eq. 5.38 for a ring of width dz, with I — nldz:

v[.o’ﬂ.I a'z =

B= 2 /(a2+22)3/2 dz. But z = acot#, f mﬂ ] \ -
e 1 sin® § \ } \ Z/ }

””*‘m‘w:md——‘m = <

s (% + 22) Y 2
o

P
p=tonl [as g ton] / singdf = F2~ ”°“I B2 cost]g? = “""I BO% (cos B, — cosfy).
2 a3sin’ @

Tor an infinite solenoid, 6, = 0, §1 = , so (cosfz —cos) =1—(~1)=2, and B
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Problem 5.12
1o A20?

Magnetic attraction per unit length (Eqs. 5.37 and 5.13): f,, = Pt
1

A
Electric field of one wire (Eq. 2.9): E = s Electric repulsion per unit length on the other wire-
0

-1 They balance when pgv? = ~
Tored ¥ Hovm =0 O

€0
T i i prec ahi(). s
V= e = 3.00 x 10° m/s. | This is precisely the speed of light(!), fact yor 1d
885 x 10-12)(dr x 10-7) / precisely the speed of light(%), 50 in fact you cou
mever get the wires going fast enough; the electric force always dominates. ;

Problem 5.13

0, for s < a;
(a)fg.dl=32ws=[m1enc33= %&Y for s > a.

fe

utting in the numbers,

. " 3 . .
(b) J = ks; 1=/ Jda:/ ks(2ns)ds=¥:k=iA Im=/ Jdu:/ k3(2n8)ds =
0 o [ [}

2ma®
pols? .
oksd 8 omad @, fors<a;
~——=I—3,for3<a;lenc=1, fors>a. So|B=
3 a sol -
%qﬁ, for s > a.

Problem 5.14
By the right-hand-rule, the field points in the —§ direction for z > 0, and in the +§ direction for z < 0.
At z=0,B = 0. Use the amperian loop shown:

fB-dl:Bl:m,Iem=mlzJ=>(—a<z<a). I 2> 6, Ine = polal,

= { —mJay, forz>+a; ? amperian loop
so|B= { +uoJay, forz> —a. }\
z
g v
—
1

Problem 5.15
The field inside a solenoid is ponl, and outside it is zero. The outer solenoid’s field points to the left (—z),

whereas the inner one points to the right (+£). So: (i) LB = pol(n1 = 12) %, | (i) [B = —puoIa 7, ] (iii)

Problem 5.16

From Ex. 5.8, the top plate produces a field oK /2 (aiming out of the page, for points above it, and into
the page, for points below). The bottom plate produces a field poK/2 (aiming into the page, for points above
it, and out of the page, for points below). Above and below both plates the two fields cancel; between the plates
they add up to poK, pointing n.

(a) betweem the plates, elsewhere.

(b) The Lorentz force law says F = [(K x B)da, so the force per unit area is f = K x B. Here K = ov,

to the right, and B (the field of the lower plate) is poov/2, into the page. So| fm = po0v?/2 (up).
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(c) The electric field of the lower plate is o/2eo; the electric force per unit area on the upper plate is
f. = 0®/2¢y (down). | They balance if pov* = 1/eo, or [v = 1/\/Efio = ¢/ (the speed of light), as in Prob. 5.12.
Problem 5.17

We might as well orient the axes so the field point r lies on the y axis: r = (0,y,0). Consider a source point
at (z',y',2') on loop #1:

2=+ (y-y)y 2% d =de'R+dy'y;
% ¥y Z
dl'x2=| dz' dy' 0 |=(-z'dy") %+ (2'd2")§ +[(y — v') da' + 2’ dy']2.
-z (y-y) -7
ol dl' x 2 MI(—z'dy)iJr( ' dz') § + [(y — y)dz’+z'dy]z
dB; =
dr 23 4m (@) + @y -y)2+ (11)213/2
Now consider the symmetrically placed source element on z

loop #2, at (z',y',—2'). Since z' changes sign, while every-
thing else is the same, the % and § components from dB; and
dB cancel, leaving only a Z component. ged

With this, Ampére’s law yields immediately:

B= ponl Z, inside the solenoid;
0, outside

(the same as for a circular solenoid—Ex. 5.9).

For the toroid, N/2ms = n (the number of turns per unit %
length), so Eq. 5.58 yields B = ponl inside, and zero outside,
consistent with the solenoid. [Note: N/2ms = n applies only
if the toroid is large in circumference, so that s is essentially
constant over the cross-section.]

Problem 5.18
M Accord.mg to Theorem 2, in Sect. 1.6.2, [ J - da is independent of surface, for any given
boundary line, provided that J is diver, which it is, for steady currents (Eq. 5.31).

Problem 5.19
charge _ charge atoms moles grams

1
@ep= Volume ~ atom mole gram volume =& (H) (@), where
e = charge of electron = 16x1071°C,
N Avogadro's number = 6.0 x 102 mole,
M atomic mass of copper 64 gm/mole,
d = density of copper = 9.0gm/cm’.

p=(16x 10-")(6,0 x 10%%) (%ZO) =[1.4x 10* C/em®.
b J=-—F=p=v= 1{:2” = mm ={9.1x 10~3cm/s, | or about 33 cm/hr. This

is ascoms}ungly sma.ll—htera.lly slower than a snail’s pace.

7
(c) From Eq. 5.37, fr = (Ildlz) tﬂr_xz_;()_) 2 x 10-7N/cm.
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_ L 1 (X 1 1 (hhY\ _ [\ p (k) _ &
(d)E_Z'lregd’ 21rea( d ) 2 21rea( d) \»?)2r\ d ‘v’fm’ where
0 x 1010)*
¢ = 1/ /@i = 3.00 x 10°m/s. Here ff -55:(310:704) —[TIx10%]
m :

= (1.1 x 10%)(2 x 1077) =2 x 10** N/cm.

Problem 5.20

Ampére’s law says V x B = poJ. Together with the continuity equation (5.29) this gives V - (V x B) =
1oV - J = —podp/0t, which is inconsistent with div(curl)=0 unless p is constant (magnetostatics). The other

Maxwell equations are OK: VXE=0= V-(V xE) =

0 (v'), and as for the two divergence equations, there

is no relevant vanishing second derivative (the other one is curl(grad), which doesn’t involve the divergence).

Problem 5.21
At this stage I'd expect no changes in Gauss’s law

or Ampére’s law. The divergence of B would take the

form | V - B = aopm, | where p,, is the density of magnetic charge, and o is some constant (analogous to €

and po). The curl of E becomes | V x E = foJm, | where Jp,, is the magnetic current density (representing the
flow of magnetic charge), and f§ is another constant. Presumably magnetic charge is conserved, s0 p,, and Jp

satisfy a continuity equation: V - J,, = —9p,n/0t.

As for the Lorentz force law, one might guess something of the form ¢,[B + (v x E)] (where gy, is the

magnetic charge).
need to divide (v x E) by

with the di

But this is dimensionally impossible, since E has the same units as vB. Evidently we

of velocity d. The natural candidate is

& = 1/eopo: |F = ge[E + (v X B)] +¢m [B*—(Vx

In this form the magnetic analog to Coulomb’s

E)]

law reads F = 20 I dmz. #, 50 to determine g we would first introduce (arbitrarily) a unit of magnetic charge,

then measure the force between unit charges at a given separation. [For further details, and an explanation of

the minus sign in the force law, see Prob. 7.35.]

Problem 5.22

A= bo Iz )l,()I /
41r ,/zz+ 2
2 2 2
=L-’,[ln(z+ )| | el [ 22 VBT
ar O e P Py
dA ol 1 s 1 s
B = VxA=-——¢=
x Bs A [zz+\/ RN O T Y OETNO +32]
_ _mols | = —/(z)* +4* 1 _ a-(@)2+s2 1
ar | (2] = (222 + 5] /)P +s2 24 —[(21)* +5] Slz)2 + 47

_ _hols (_l)
- 4m \/W
or, since sin6; = L} and sinf; =

é

V(@) +

sin;) | (as in Eq. 5.35).

é

]

pol 22 _ z K

Vi(z ) T2
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Problem 5.23
19, 0. _k, -1 B
A¢_Ic=>B_VxA_;5§(3k)z_Ez,J_E(VXB)_

1
Ho

Problem 5.24 1

V-A= —§V~(r x B) = —§[B~(er)—r~(VxB)] = 0, since V x B = 0 (B is uniform) and
Vxr=0 (Prob. 1.62). Vx A = —%v x (rx B) = —% [(B-¥)r—(r-V)B+r(V-B)—B(V-r). But
(r-V)B=0and V-B =0(sinceBisuniform) and V-r = g—:+z—;+? 14+1+1=3. Finally,
(B-V)r = (3,3 +B,2 8,, +2 ) (%+y§+22) = B+ B, §+5,2 = B. S0 VxA = ~>(B-3B) =
qed
Problem 5.25

(a) A points in the same direction as I, and is a function only of s (the distance from the wire). In cylindrical

coordinates, then, A = A(s)%, so B=V x A = —% = MI & the field of an infinite wire). Therefore

% = —g'—;ri, and | A(r) o In(s/a) (the constant a is arbitrary; you could use 1, but then the units

A= = pol -+
look fishy). V- A = e 0.V VxA= _“21r3¢ B.v
b) Here Ampére’s law gi B-dl= B2s = polenc = 2 o oLt = 018
(b) Here Ampére’s law gives sdl= ns—mmc_m)]ns = Horpa s = -
_@13 - 6.4_ pol s _ bl 5
B= W é. F il > A= ~ir Rz(s — b%) 2. Here b is again arbitrary, except that since A

ol
TarR?

must be continuous at R, — ”DI ln(H/a) (R®—??), which means that we must pick a and b such that

- méz (s>~ R»%, fors<R;
2In(R/b) =1~ (b/R)%. "l use a = b=R. Then |A =

-‘L'"I In(s/R)3,  fors> R

Problem 5.26 oK
K=Kx=>B= :!:—y(plusforz<0 minus for z > 0). z
A is parallel to K, and depends only on z,s0 A = A(2) %.

b'e ¥y %
8joz 8]0y 8]oz ‘=@* iMy

B=VxA=

Az 0 0 0z v

will do the job—or this plus any constant. K

T

Problem 5.27 3 3 1 1
() V-A= ﬂ/V~ (—) dr'. V- (—) =-(V-3)+J.V (-) But the first term is zero, because J(r')
4r 2 2 2 2

is a function of the source coordinates, not the field coordinates. And since2=r—r', V (%) =-v' (i) . So
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i

1 1
V- (%) =-Jv G) But V' (%) = ;(V'«J)+J<V' (;) and V'-J = 0 in magnetostatics (Eq. 5.31). So
v- l =-V' 2 , and hence, by the divergence theorem, V-A = —“:0 /V’ > dr' = —4& I da,
where the integral is now over the surface surroundmg all the currents. But J = 0 on this surface, so V- A 0.v

(b)VxA:%/Vx(—)dr a /[—(VxJ)—JxV(‘)]dH But V x J =0 (since J is not

a function of r), and V (l) =-= (Eq 1.101),50 V x A = /

Ixir

dr'=B. v

() V2A = & / v ( ) dr'. But V2 ( ) =Jv? ( ) (once again, J is a constant, as far as differenti-
ation with respect to r is concerned), and V2 (;) = —4783(») (Eq. 1.102).
So V2A = %/J(r') [~4n83 ()] dr' = —pod(r). v
Problem 5.28 b

ol = }{B cdl= ~/ VU -dl = —[U(b) — U(a)] (by the gradient theorem), so U(b) # U(a). qed

For an infinite straight wire, B = % é. would do the job, in the sense that
-VU = “L"IV(QS) = %%g—: ¢ = B. But when ¢ advances by 2, this function does not return to its initial

value; it works (say) for 0 < ¢ < 2, but at 2 it “jumps” back to zero.
Problem 5.29
Use Eq. 5.67, with R — 7 and 0 — pdr:

A = unwp51n9¢/ “‘d'r+“D rsln9¢/ FdF

_ _ towp 1 9. .
B = VxA= 3 {rsinBBB [smﬁrsmB

(
= powp [(%ﬁg)wwr—v(g—?)sinﬂ ],Butp=ﬁ, s0
)

pow@ [
4rR

Problem 5.30
W,

a; —

@ oz

W,

[

Fy = Walw,y,2) = = [§ Fy(e',9,2) dz’ + Caly, 2).

F, = Wy(z,y,2) = + [ F.(a',y,2) dz' + C2(y, 2).

These sausfy (ii) and (iii), for any C) and Co; it remains to choose these functions so as to satisfy (i):
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* OF, (e y,2) .,  OC /’ OF.(z'y,2) ,, 0Cy OF.  OF,  OF,
b= dz ;ca"’ g S0t de - 22 = Fue.yz). But 52+ a_y -
OFy(z',y,2) . , 1 Co / OF; (', y,2) , , _

/0 &'+ B or = F(z,y,2). Now —‘z,—dz Fy(z,y,2) - Fz(0,y,2), so

o = F;(0,y,2). We may as well pick Co =0, Ci(y,2) = / F;(0,y',2) dy', and we’re done, with
o

=0, so

We=0; W,= / R s W= [ Royw - [ BE e
[ ] (]

(b)Vsz(aW 6W)ﬁ+(6Wz_3Wz)y+(%_%)i

8y 8z EZ oz Oz Ay

2
= [mown - [[EBET gy [*OREDD gl 1104 By oy, 29+ IFe0,2) ~ 015

< .
But V F =0, so the % term is [F,(o,y,z)+/ wfw] = F.(0,4,2) + Fa (2,9, 2) — Fx (0,1, 2),
0oVxW=F. v °

wo We OW, OW. _ T (' y,2) /” OF:(0,y',2) /1 OFy(z'y,2)
Vw’aeraera; _0+/o % dz+0 5 dy' A 5 dz' £0,

in general.
T 12 'y
(c)Wy=/ z'd’ = = Wz=/ y’dy’—/ zd:c’———zz
o 2 o
% ¥y Z
8/0z 8)dy  8/dz
0 2?/2 (¥*/2-zz)

2 (¥ 5
W—?y+(?~zz) 2| VxW=

Problem 5.31

(a) At the surface of the solenoid, Bapove = 0, Buetow = ponl% = oK % A =8 so K x i = —K3.
Evidently Eq. 5.74 holds. v/

(b) In Eq. 5.67, both expressions reduce to (uoR*wo/3)sinf ¢ at the surface, so Eq. 5.75 is satisfied.
9A o Riwo 2sin9) N 2poRwo . O0A poRwo
20 = sl bl = -0 sin0d; — = 9 So the left f
B | 3 1'3 ] N 3 sin @; o | 3 = ——sinf¢. So the side of
Eq. 5.76 is —pgRwo'sinf ¢. Meanwhile K = ov = o(w x r) = owR sin6 ¢, so the right side of Eq. 5.76 is
—powRsin ¢, and the equation is satisfied.
Problem 5.32

roblem 24 oA

Because Aabove = Abelow at every point on the surface, it follows that oz and — 8 are the same above

and below; any discontinuity is confined to the normal derivative.
94 4 [FAzaere _ OAznaen\ 5 !
Babove — Bbelow = ‘;‘h"“ + ‘;';""") %+ ( A;;" - A;';"’ )y. But Eq. 5.74 says this equals

z
o OAjouene _ 94 OArpore _ OAzpeion
foK(=9). So 8z 8z 8z

Yoclow
P and

= —po K. Thus the normal derivative of the com-

OAabove _ Abelow
on

ponent of A parallel to K suffers a discontinuity —uoK, or, more compactly: oK.

on

Problem 5.33
(Same idea as Prob. 3.33.) Write m = (m-#)# + (m- 9)8 = mcos6f — msin0@ (Fig. 5.54). Then
Ym-F)f-m= 3mcos<9r—mcos.9r+msm99 2mcosf +msin8 @, and Eq. 5.87 & Eq. 5.86. qed
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Problem 5.34

@ m=Ta=[InE2]

(c) On the z axis, § =0, r = z, # = 2 (for 2z > 0), so

is the same, with |z[? in place of z°). The exact answer (Eq. 5.38) reduces (for z > R) to B ~ polR?/2|2f*,

so they agree.

Problem 5.35

For a ring, m = Irr?. Here I = ovdr = owrdr,som = funvrrzawr dr =|mowR! /4.

Problem 5.3
The total charge on the shaded ring is dg = o(2rRsin )R df.

The time for one revolution is df = 2r/w. So the current
in the ring is I = % = owR?sinf df. The area of the ring

is m(Rsin6)?, so the magnetic moment of the ring is dm =
(owR?sin 6 dO)mR?sin® 6, and the total dipole moment of the
shell is

m = owrR* [ sin®0df = (4/3)ownR*, o

The dipole term in the multipole expa.nsm r is there-
4 6 . R*

fore Agip = Z’: 37{0 R‘sm ¢ = togwR! sing ¢, which is

also the ezact ial (Eq 567) ident], inning sphere

produces a perfect dipole field, with no hxgher multipole con-

tributions.

Problem 5
The field of one side is given by Eq. 5/ .35, with s —
2)

V22 + (w/2)? and sinf; = —sin6; = \/L——/—

22+ w22
To pick off the vertical
(w/2)
V22 + (w/2)2’
B= ol w?
27 (22 + w[4)\/P + W22

z>»w, B . The field of a dipole
points on the z axns (Eq 5.86, with r — 2, £ = 2, 0 = 0) is

Ho M
Bianaz v

_wl v
o AT T @)

component, multiply by sing = for all four

sides, multiply by 4:

unlw

Problem 5.38
The mobile charges do pull in toward the axis, but the

e

charge sets up

an electric field that repels away further accumulation. Equilibrium is reached when the electric repulsion on
a mobile charge g balances the magnetic attraction: F = g[E+ (v x B)] =0 = E = —(v x B). Say the current

for z < 0, 0 =, # = —%, so the field ‘
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is in the z direction: J = p_v 2 (where p_ and v are both negative).

?(B»dl:BZ'lrs:ponsz:B=#$;
1 2 1 -
E-da=E2rsl = —(py + p-)1s’l > E= —(py +p-)s8.
€ 2e0

1 s T sy o (FOP=Y8 3\] _Ho_ o . _ o _ . (V¥
260(ﬂ++ﬁ7~)35— [(M)x( 2 ¢)]—2ﬁ7-085?P++ﬁ7~—l’—(€olto“)-—ﬂ~ =)

2

Evidently py = —p_ (1 - % = %, or p = —7°ps. In this naive model, the mobile negative charges fill a
smaller inner cylinder, leaving a shell of positive (stationary) charge at the outside. But since v < ¢, the effect
is extremely small.
Problem 5.39

(a) If positive charges flow to the right, they are deflected and the bottom plate acquires a positive
charge.

(b)guB=gE = E=vB=V=Et=

(c) If negative charges flow to the left, they are also deflected down, and the bottom plate acquires a negative
charge. The potential difference is still the same, but this time the top plate is at the higher potential.

with the bottom at higher potential.

Problem 5.40

From Eq. 5.17, F = I [(dl x B). But B is constant, in this case, so it comes outside the integral: F =
1(fdl) x B, and [ dl = w, the vector displacement from the point at which the wire first enters the field to
the point where it leaves. Since w and B are perpendicular, F = I Bw, and F is perpendicular to w.

Problem 5.41
The angular momentum acquired by the particle as it moves out from the center to the edge is

L=/%dt=/th:/(rxF)dt:/rxq(va)dt:q/rx(dle):q[/(r-B)dl—/B(rdl)].

d(r - 1) = Ld(r?) = rdr = (1/2m)(2nrdr).
where ® = [ Bda is the total flux.

But r is perpendicular to B,sor-B=0,andr-dl=r-dr =
R
SoL = —i/ Borrdr = -—q—/Bda. It follows tha
21 Jo o
In particular, if = 0, then L = 0, and the charge emerges with zero angular momentum, which means it is
going along a radial line.  qed
Problem 5.42
From Eq. 5.24, F = [(K X Baye) da. Here K =ov, v = wRsin6 ¢, da = R?sin 0 df dg, and
Bave = $(Bun + Bout). From Eq. 5.68,
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Bn = g,‘ﬂasz - guna&u(cosﬁf — sin6). From Eq. 5.67,

_ _ poR*wo sinf mH‘wn 1 8 (sin?0\ 19 (sing\ 5
Bow = VXA_VX( 3 2 é 3 rsm6ao \ 2 ) " rar\ 7 ¢
= ““’” Ho2 Y9 (5 o5 +5inf ) = uo‘;w”(ZwSBi+sm99)(sim;er:R)(
Bae = uona‘(4cosﬁr~sm490)

K xBye = (owRsin) (‘i"’Z"—”) [¢ X (4cosf f — sinoé)] = %(awR)Z(L!cosO@+sin9i-)sin94

Picking out the z component of @ (namely, —sin 6) and of # (namely, cosf), we have

(K x Baye); = ——(a‘wR) sin® § cos 6, so
/2 -
,or|[F=— MD == (owR?)? 2.
o

F.=

a4
»?(wk)’ﬂ’/sm OcosOdfdp = — (gwkﬁ)ﬁzn (%3)

Problem 5.43
Ho edm

(a) F=ma=g.(vxB)= s (vxf)|a =—=(vxr).
- 1o ld ey B g W
(b)];;causealv,a»v—o. But a V_det(v v)—-Zdt(u)—vdt So @ Y~ 0. qed ,
_ HodeGm Hodetm _ Mo0%em (v _ x dr
(C)Tt_m(vxv)-t»m(rxa) 4" dt() 0+ == T —— e x (v x1] e (r r’dt)
_MoGegm [ 1.5 _ uquqm v_Ev). v #2-v)]_
== {r3[rv (r-v)r] rzdt(\/r r} {'r‘ —t r+2r—r =0.v
(d) (i)Q~q3=Q(i<$)=m(rxv)-¢ ““j“’"‘( ¢) Butz-¢=F-¢=0,50 (rxv) =0. But
r=rf andv= g—; =7##+760 +rsinf @ (where dots denote differentiation with respect to time), so
P00 ¢ o
rxv=|r 0 0 = (~r*sin6¢) 0 + (r*6) .
7+ r8 rsinfgp

Therefore (r x v) - ¢ =20 = 0, 50  is constant. qed
(i) Q- # = Q@ ) =m(rxv) F ““q“”"(f “£). But 2-£ = cosf, and (r x v) Lr = (r x v) £ =0, 50

Qcosf = ~mz‘q"', orQ=-— “:f;qs"; And since 6 is constant, so too is Q. qed

(i) Q-6 = Q(G-8) = m(rxv)- 0 — ‘“’z:r‘l"‘(po). But2-6 =—sinf, -6 =0, and (r x v)-8 = —rsinf¢

L k
i —Qsinf = —mr?si = =2 wi
(from (i), so —Qsin§ mr®sinf¢ = ¢ e e 8 with
Lo k2 k? sin’ 9
sm29’7 =27~ 5

(e) v* =72 + r26% + r2sin20¢%, but f =0 and ¢ = r%, so
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® —‘”—=/d¢=>¢—¢o=;;—osec*‘( ) secl(p — go)sind] =

ry/(ur/k)? —sin?0 ksing

- A _ _ H0GeGm tand
rie) = cos[(¢ — ¢o) sin 6]’ where A = dmmu

Problem 5.44

———F, or

I:smB

Put the ﬁeld point on the z axis, so r = (s,0,0). Then
(K xa) .
B = 4" da; do = Rd¢de; K = K¢
K(—sm¢x+cos¢y),a—(3—Hcos¢))‘{—Rsin¢y—
% k4 2

Kxz2 = K —sing cos ¢ 0 =
(s — Rcos¢) (—Rsing) (-2)

K[(~zcos§) % + (—zsing) § + (R — scos¢) 2];

22 = 22+ R*+5?—2Rs cos ¢. The z and y components integrate

to zero (z integrand is odd, as in Prob. 5.17).

) (R~ scos)
5 = 41!KR/(12+R’+s’—2Rscos¢)3/2d¢dz
_ wKR 2m _ /oe dz
= T Jy B e
b dz 2z 2
=R? 2 _ — e —— e = —
where d® = R? + s> — 2Rscos¢. Now /_m T EPE = BEidEh

KR [*" (R— ) 1
- MT o U:TJJ—E(;;C)OJ)M; (R—scos¢)=—R[(R2—32)+(R2+32—2Hscos¢)].

uoK d¢
[(R’_”Q)/ vz 2Rscos¢)+ d"]

/2" ) _ /" do 4 L [VE@ T ane/2) | "
0 [

atbeose Tt boosd Vg P

4 o [Py 4 (I)_ o
a+b- TV \2/ " Jar-B?

b=~2Rs, s0 a® — b? = R* + 2R%s? + 5% — 4R%s? = R* — 2R?s® + s = (R* — s%)% Va2 — b2 = |R? - &*|.

MoK (B* -4 _mK (R -5
[—|R2*32|2"+2" == |R"’—32| +1

o

. Here a = R® + 57,

), =

oK
0 =(-1+1) =

Here K = nl, so| B = ponl Z(inside), and 0(0utsnde)J as we found more easily using Ampére’s law, in Ex. 5.9).

Inside the solenoid, s < R, 50 B, = ”GT(1+1) oK. Outside the solenoid, s > R, s0 B, =
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Problem 5.45
Let the source point be r' = Rcos¢k — Rsingy, and
the field point be r = Rcosf% + Rsinf§; then 2 =
R[(cosf — cos¢) & + (sinf +sin ¢) §] and dl = Rsingpdgpx +
Rcos¢dpy = Rdp(singX + cosg§).
x ¥
sin ¢ cos ¢
(cosf —cos¢) (sinf +sing) 0
= R*(sin ¢sin@ +sin® ¢ — cos O cos ¢ + cos® ¢) dp %
= R*(1+sinfsin g — cosf cos §) dpz = R*[1 — cos(8 + ¢)) dp 2.

o™

dixz = R*d¢

d¢

. B8 d4r

I fdixa2 I, [™ [1 — cos(6 + ¢)] wlR: . (™
B = & = Holpe -
/ ), “ /

[2R? — 2R2 cos(6 + ¢)]*/° TnREP

V/1=cos(6 + ¢)

B
=[ sy,
o |87R

= o, o v = o {7 o (5]}

Ep

tan (1)

Problem 5.46

 polR? 1 1
(&) From Eq. 535,18 ="5 {[R2+(d/2+z)213/’+[R2+(d/z—z>213”} '

9B _ plR { (=3/22d/242) (—3/2)2(d/2—z)(—1)}
0z 2 | [R2+(d/2+ 2P T (R2+(d/2-2)2
3uol R? —(d/2+2) (d/2-2)

2 {[R2+(d/2+z>2r“"2 [R’+(d/2—z>215”}'
8B _ 3ulR? { —d/2 d/2 }= ,
0z |,y 2 R+ @2 '+ @2

(b) Differentiating again:

8B _ 3ulR’( -1 —(d/2+ 2)(=5/2)2(d/2 + 2)
922~ 2 Umi(dj2+2) [R? + (/2 + 2)2]
. -1 4 G225/ 9(0y
[R? +(d/2 - 27"° [R? + (d/2- 271"

2B 3uol R? { —2 | 25/2)2(d/2) } 3ul R? (_ " _a:‘ . g)

7 |, 2 [+ @2 '@ T R
3uol R?

= —H— (2 -R?). Zeroif -m in which case
@+ @ )

IR 1 1 L
= {[RH(R/M“+[R2+(R/2>21’/’}_“°m R4
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Problem 5.47
(a) The total charge on the shaded ring is dg = o(2nr) dr. The
time for one revolution is dt = 27 /w. So the current in the ring

isI= % = owr dr. From Eq. 5.38, the magnetic ﬁeld of this 2o
ring (for points on the axis) is dB = — m drz, <b
and the total field of the disk is

3
B = Moﬂw/ G%z Let u=r2, 5o du=2rdr. Then
o

2
_ poow /Ra udu  _ poow [2(u+222 )] = _ | poow [(R2+21’) _22] R
T4 )y PR 4 Vutz2/llo .

(b) Slice the sphere into slabs of thickness ¢, and use (a). Here
t=|d(Rcosf)| = Rsind db;

o = pt = pRsinfdfd; R — Rsinf; z —» z — Rcosf. First
rewrite the term in square brackets:

VT2

Rsin®

[(H’+21’)_2 ] _am+) R
VRt 2% T VR +22 VRt o B
_R2
= 2[R ]
But R? + 2% — R%sin® 6 + (2> —2Rzcos6 + R*cos® ) = R* + +

22— 2Rz cosé. So

(R?/2)sin* 0
VR? + 22 — 2Rz cosf

Let u = cosf, so du=—sinfdf; :0 =7 =>u:1— —1; sin’f =1 -2

1 R2/2 2
(B2[29)(1 —v?)

= 2 + 22

= Mp&u/l[ R? + 2% — 2Rzu

R
= popRw [11 - —2*(12 L) -1, +Is] .

B, = &’;ﬁz/ sianl)[ R+ 22— 2Rzcosd —
]

fz+Ru] du

I

1 1 3/2|!
VR? 22— =——(R24+ 22—
/;1 R? + 22 — 2Rzudu 3% (R* + 2° - 2Rzu) |?l

3/2

sz (B2 422 = 2Re)" = (82 4 2 4 2R2)"] = 532 (o= B~ G BY)

_L_z 2_p3_ 3 _n2p_ o p2_ pdy_ 22, p*
I (2* - 32°R+ 32R® — R® — 2° — 32’ R — 32 R’ R)—32(3z + R?).

L = /lédu i\/nuzz_znzur = e-Rm-G+r=2
2 VR Rz 17 Rz

+2%2 —2Rzu

—(z —RcosB)} .
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1 uZ
L= [ —%  _a
i / \/Ri + 22— 2Rzu o
1
= % R3z3 [B(R? + 2%)% + 4(R? + 2%)2Rzu + 3(2R2)*u?] VE? + 2% — szuLl
"W{ [B(R? + 2%)° + 8R2(R? + 2%) + 12B%?] (2 — R)
- [3(;22 +22)2 — 8R2(R? + 2%) + 12R?2%) (2 + R)}
= 60R313 {2 [16Rz(R? + 2*)] — R [16(R? + 2%)* + 24R?2*]}
= 60R3 ——=16R (n’f +2' —R* - 2R?2% - 2 — éR’ 2)

4 5 5 8 !
'W(TRQZ:_R‘)_MH(R” ;). 14=z/~ldu=2z; 15=R/_ludu=0.

I

- e g B2 R4 (p 50
B, = poﬂpw[sz(liz + R?%) 7 + > 15 R +zz 2z
2R* R® 2R' R®

= mew(22+——7+H+3——-2z)

_ 28 -_9
= Hopwigse Butp= g

Problem 5 48 ar
B = 4 ,;4. 2= —Rcos¢X + (y — Rsing) § + zz. (For simplicity I'll drop the prime on ¢.) ‘
22 _H’cos 6 +y® — 2Rysin ¢ + R® sin® ¢+z *R’+y + 2% — 2Rysin ¢. The source coordinates (z',y',2')
satisfy #' = Rcos¢ = dz' = —Rsin¢gdg; y' = Rsing => dy' = Rcos¢dp;z’' =0 = dz’ =0. Sodl' =
—Rsingdpx + Reospdoy.
X y Z
dl'x2=| —Rsingdp Rcos¢pdp 0
—Rcos¢ (y—Rsing) =z

ol Rz /2“ cos¢ dp  polRz 1 1 P _, ‘
4r Jo (R2+y2+22—2Rysing)’?  4n Ry /RE+y?+z2—2Rysmgly !

since sin ¢ = 0 at both limits. The y and z components are elliptic integrals, and cannot be expressed in terms ‘
of elementary functions. |

= (Rzcos ¢ do) % + (Rzsin $dg) § + (—Rysin ¢ dg + R? dg) 2. ‘

B, =

B.=0: B, :uoIRz/h sin ¢ d¢p 'B,=”“IR 2 (R—ysing) dp '
* Y 4r Jo (R?+y?+ 22— 2Rysing)*/?’ ar Jo  (R?+1? + 22 — 2Rysin¢)*?

Problem 5.49 I, dl x4
From the Biot-Savart law, the field of loop #1 is B = 327‘- f ‘,L—zx"; the force on loop #2 is
1

F:I,](dl, xB = Z—;msz%‘:w‘ Now dly x (dl; x &) = dly (dly - 5) — 3(dl; - dl5), so
2 172
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F=_Z_:hlz{ff%(dh-dl;)_fﬂlf(dli_;;t)}

The first term is what we want. It remains to show that the sgcond term is zero:
2= (22— 1)K+ (Y2 — 1) § + (22 — 21) &, 50 Vo (1/2) = [(z2 — 1)+ (g2 —v1)® + (2 _Zl)z]—l/z 2

+%[(fz"zl)z+(y2—1/1)2+(2a421)] 1/2§+a—[12—11) + 2 - 1)+ (2 — 21)%)

(12;1'1) % (ya;yl) 9- (Zz;zl) i= _% = —% sof— dlp = }{vg ( ) dl; = 0 (by Corollary
2in Sect. 1.3.3). ged
Problem 5.50
Poisson’s equation (Eq. 2.24) says V2V = —elp. For dielectrics (with no free charge), pp = -V - P

-1/2 4

(Eq. 4.12), and the resulting potential is V(r) = %ﬂ / P(l;) 2 dr'. In general, p = &V - E (Gauss’s law),
—E(r;) 2 i qed

[There are many other ways to obtain this result. For example, using Eq. 1.100:

so the analogy is P — —&E, and hence V(r) = _Il.

v. (i) =_-V. (:;2) = 4n83(2) = 48P (x — 1),

2

V)= /V(r')63(r—r')dr' = —4—1;/V(r')V'- (f,—) dr' = %/% vV dr' - 4-1—"){1/@')% da'

(Eq. 1.59). But V'V (r') = —E(r'), and the surface integral — 0 at oo, so V(r) = _1 /E(rl
. before. You can also check the result, by computing its gradient—but it’s not easy.]

Problem 5.51
(a) For uniform B, [f(Bxd) =B x [fdi=[Bxr|#A=-}Bxr)

#ol g ol _|mlw (1 1Y
®»B=£ ¢,so}(Bx.ﬂ (27ra 21rb)w_ = (a b)s¢o.

©A=-rxBf! Ad,\:

pol pol ol / 11 ol .
B = £ g = o Ty = Boo .
(@ 5eg & BOW) = 2")‘3 ; A s X é) A Ay dr s (T X $). But r here is the
yector from the origin—in cylindrical coordinates r = £8 + 2 2. So A = —%ﬁ [s(ﬁ x @)+ z(& x $)], and

The examples in (c) and (d) happen to be divergenceless, but this is not the case in general. For (letting
LAanB(/\r)d)\ for short) V-A = -V - (rxL) = —[L (Vxr)—r-(VxL)] =r-(VxL), and
VxL= ) AV x BAr)]dA = JE X[V x B(Ar)]dA = o Jy A2I(Ar)d), 50 V - A = por - J3 X23(Ar) d), and
it vanishes in regions where J =0 (which is why the examples in (c) and (d) were divergenceless). To construct
an explicit counterexample, we need the field at a point where J # O—say, inside a wire with uniform current.
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Here Ampére’s law gives B 2718 = polenc = ptoJns® = B = %13 &, so

(zs — sZ).

A = —tx/l; x(”‘”),\ ¢dA———3(rx¢)

V-A I-‘oJ[ (8%2) )+—( sz)] ‘UDJ(S sz) "011760

I

Conclusion: | (ii) does not automatically yield V - A = 0. |

Problem 5.52
(a) Exploit the analogy with the electrical case:

11 p-i

E = ——[3(p-8)i- . 3.104) =— =—FPkZ . 3.102).
4”60 = [3(p-#)#—p] (Eq.3.104) VV, withV 4“60 = (Eq. 3.102)
B = 4" e 1 i3(m-8)f—m] (Eq.587) = —VU, (Eq. 565).
Evidently the prescription is p/ep = pom: [U(r) = :;: ":‘2 £
(b) Comparing Egs. 5.67 and 5.85, the dipole moment of the shell is m = (47/3)woR* 2 (which we also got
4
in Prob. 5.36). Using the result of (a), then, |U(r) = “"“’;’ Lid ““9 forr > R.

Inside the shell, the field is uniform (Eq. 5.3 = %uoawR %, 50 U(r) = 3ugasz+consta.nt. We may

as well pick the constant to be zero, so |U(r) = —ZuoowRr cosf | for r < R.

[Notice that U(r) is not continuous at the surface (r = R): Uin(R) = —2poowR2cost # Uoue(R) =
—uocmﬂz cosf. As I warned you on p. 236: if you insist on using magnetic scalar potentials, keep away from
places where there is current!]

()

_ kowQ - 3_7J F-(1- = =-V UL 10U, 1 AU, ‘
B ATR [(1 SRE cosfF 1 st sin6 8| U= g i 5 e Tond ¢4 i
U

s 0= U(r,0,¢) =U(r,0).
:?9[0} (T:RQ) (1 5H’) sin6 = U(r,0) = (‘21:}?) (1 5R7) rcosf + f(r).

% = _(‘;":}?) (1 :Ri)cosB:U(r,B) (‘T:I?)( —W)msaw(ﬂ).

Equating the two expressions:

(552) (- 55) e 161~ (528 (1) oo

(“““’Q) 3 cosd + f(r) = g(0).

I

1

or

4nR3
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But there is no way to write 7% cos@ as the sum of a function of § and a function of r, so we'’re stuck. The
reason is that you can’t have a scalar magnetic potential in a region where the current is nonzero.
Problem 5.53 7

() V-B=0, VxB=yoJ,and V-A=0, VxA=B :A:Z—;/;dr',so

V.A=0, VxA=B, and V-W =0 (we'll chooseitso), Vx W =A =|W /

(b) W will be proportional to B and to two factors of r (since differentiating twice must recover B), so I'll
try something of the form W = ar(r - B) + #r2?B, and see if I can pick the constants a and f in such a way
that V-W =0and Vx W = A.

5 5 8z Oy 0z
V-W=a[(r-B)(V-r)+r-V(r-B)]+8[r*(V-B)+B-V(r’)]. Vr= %+5+3—‘1+1+143
V(r-B)=rx(VxB)+Bx(Vxr)+(r-V)B+(B:V)r; but B is constant, so all derivatives of B vanish,
and V x r = 0 (Prob. 1.62), so
V(iE-B)=(B-V)r= ( = 3

2 L0, .08 .90 2 N o 5
V() = "a_z”’%'”b? (2 +y* +2°) = 2wk + 2y § + 225 = 2r. So
V-W=a3(r-B)+ (r-B)] + 8[0 + 2(r - B)] = 2(r - B)(2a + ), which is zero if 2a + = 0.

VxW=afr -B)(Vxr)~rx V(- B)+8[r*(VxB)-BxV(?)] =al0-(rxB)]+A[0-2(B xr)]
= —(rxB)(a—28) = —%(r x B) (Prob. 5.24). So we want a —28 = 1/2. Evidently a —2(—2a) = 5a = 1/2,

1

52 +B,,§ +B.g- )(zx+yy+zz) B,%+B,9+B,2=B;

or o =1/10; 8 = —2a: = —1/5. Conclusion: [r@-B) - ZrZB] .| (But this is certainly not unique.)

10
@VXW=A=[(VxW)-da=[A-da Or §W-dl=
[A-da. Integrate around the amperian loop shown, taking
‘W to point parallel to the axis, and choosing W = 0 on the
axis:

—wi= / ““2"1 )1 5ds = “";I il (using Eq. 5.70 for A).

(s <R).

2 i 2 2
FO,DR,;W,:@J,/R (MT"I) B ygs = ol BT, onIRzl a(o/R);

W=-— (1 +2In(s/R)] 2| (s > R).

ponlR?
4

Problem 5.54
Apply the divergence theorem to the function [U x (V x V)], noting (from the product rule) that
V-(Ux(VxV)]=(VxV)-(VxU)=U-[V x(V x V)]

/V~[U><(V><V)] dr=/{(VxV)-(VxU)—U~[Vx(VxV)]) dr=f[Ux(VxV)]~dm
As always, suppose we have two solutions, By (and A;) and By (and Aj). Define By = B; — B, (and

A3=Ay—A;),sothat Vx A3 =Bz and VxB3=V xB; -V x By = ptoJ —ptoJ =0. Set U=V = A3
in the above identity:
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[V X 80)- (9 x Ag) = Ao+ [V x (V x A} dr = [ {(Ba) - (Ba) = Ao+ [V x Bal) dr = [(Bo)ar

= f[A3 x (V x Ag)]-da= }{(Az x Bj) - da. But either A is specified (in which case A3 = 0), or else B is

specified (in which case B3 = 0), at the surface. In either case f(As x Bg)-da=0. So /(133)2 dr =0, and
hence B, = By. qed

Problem 5.55

From Eq. 5.86, Buos = Bo — 500
oo
473
This is zero, for all 6, when r = R, given by By =

(2cos0F +5inf @). There-

— _ Bomo
2cos6 = (B() 21”.3)0059'
oMo

2R3’

fore B+ # = Bo(z - F) —

or

1/
R= oo .| Evidently no field lines cross this sphere.
27 By

Problem 5.56

_Q  _Quw s QW o Q ps _ 2.1 2,
(a)I——(h/w)—zw,a—er,m— Z”WR _sz %. L=RMv=MwR*L=MwR*2.

m _ Q wR? Q

I 2MoR? M’

and the gyromagnetic ratio is

(b) Because g is tndependent of R, the same ratio applies to all “donuts”, and hence to the entire sphere

(or any other figure of revolution):

_ e h_ ek _ (1.60 x10719)(1.05 x 10~34) _
Om= s~ tm 2011 x 10-31) =461 x 107 A
Problem 5.57

1 3
(a) Bave = W/Bdr = W/(V x A)ydr =
3 _ 3 o J o
TR }{A x da = 41:1134“?{{/4"” x da
) 1 ,

@R /J x {f N da} dr'. Note that J depends on the
source point r’, not on the field point r. To do the surface
integral, choose the (z,y, 2) coordinates so that r' lies on the z
axis (see diagram). Then 2 = /R? + (2')2 — 2Rz’ cosf, while
da = R*sin0dddp#. By sy y, the z and y

must integrate to zero; since the z component of £ is cosf, we
have
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cosfsinf

R?*sinfdfdp=2rR’ % | — e dl
sin ¢ =2rR"% R? + (2)2 — 2Rz cos0

?(lda - ,/_L#
” B VRZ +(2')? — 2Rz cos @
Let u = cosf, so du = —sinfdf.

1
= 2nnzi/ e du

1 VR2+ (2')? - 2Rz'u

2 [2(R? + (2')?) + 2Rz" 1
= 2,,322{_[iiz))+—}2“‘]‘/32+(Z:)2_211,Iu}

3R
= —33(’% {7 + @ + B) VRF+ &Y — 2R = (B + () ~ 2] VEEF FE+2R7 )
= - [3(2,—7)2 z] {[R? + (#'}* + RZ] |IR— 2| - [B* + ()2 — R2'] (R + 2)}
4—’”2'2 = 4%1", (r' < R);
= .
;("z}f)ﬁ P (R)Sr', (' > R).

3, 4n
For now we want ' < R, 50 Baye = -(—475%? Ixr)dr' = —%/(Jxr’)drﬂ Nowm = § [(rxJ)dr

(Eq. 591, 50 Baye = 2020 eq

R s

PR ' - __ Sk 3 ¢ = Bo

(b) This time 7' > R, 50 Bave = (4")7}23 R /(J x (r')s) dr’ 4"/
from the source point to the center (= —r'). Thus Baye = Been- ged

Problem 5.58
(a) Problem 5.51 gives the dipole moment of a shell: m = -3—an‘ 3. Let R — r,0 — pdr, and integrate:

Ixi

dr', where 2 now goes

A (R, 4w RS __Q
mf?wpz/o rdr_?wp?z. Butp—m, s0

_ o2 _[po2Qu
O Boe = 01 78 = |4 3R

A u:rmsmﬂd’_

(d) Use Eq. 5.67, with R — 7,0 = pdF, and integrate:

m,wp sind - pow 3Q sin@R® . | QwR sinf -
4’,/ L YR R A b i
This is tdentical to (c); evidently the field is pure dipole, for points outside the sphere

. 6B = bwQ[(_ 3 (1=
(e) According to Prob. 5.29, the field is B = R Kl 53 ) cosf (1 53 ) smBB] The average
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obviously points in the z direction, so take the z of # (cos§) and 6 (—sin8):
_ 2 _6r\ 2
Baye = 4"R 4/3)“23/[( 5R2)cos 9+(1 R’)Sm B]r sin 6 dr df d¢
_ SwwQ Kﬁ_éﬂ_ Y VRN
= (47‘_112)22“ A 3 5@ cos® 0+ T e 0| sin6do
_ 3w ps [T 7 Buw@ 1 [ 24\
= Semi R A 75 os’9+ = sin 20 ) singdf = SR 75 ), (7+9cos® 0) sing do
_ W@ aens? _ How@ Fow@
= S0 (~7cosd - 3cos 9)|D = 222 (30) = 2022 (same as (b)) ¢

Problem 5.59
The issue (and the integral) is identical to the one in Prob. 3.42. The resolution (as before) is to regard
Eq. 5.87 as correct outside an infinitesimal sphere centered at the dipole. Inside this sphere the field is a

delta-function, Aé%(r), with A selected so as to make the average field consistent with Prob. 5.57:
_ Mo 2m Zunm

- 3 __3
B = G / APy dr = A= T A=

. The added term is

Problem 5.60

=

(@) [~ 3dr, s0 [A=225" r"% / ()" P(cos 6) dr.
=

d)
(B) Amon = 21% Jdr = Z‘%d—f (Prob. 5.7), where p is the total electric dipole moment. In magne-
tostatics, p is constant, so dp/dt =0, and hence Apmon = 0. ged

(m=TJa=3I§(rxd)>m=4[(rxT)dr. qed

Problem 5.61
For a dipole at the origin and a field point in the z z plane (¢ = 0), we have

B = ——(2cosBr+sm.99) [2cos.9(sm.9x+cosBz) + sinf(cos 0 % — sin 6 2)]

= HF[SsmacosBx+(2cos 0—sm ) 2].

Here we have a stack of such dipoles, running from 2 =
—L/2 to z = +L/2. Put the field point at s on the z
axis. The % components cancel (because of symmetrical-
ly placed dipoles above and below z = 0), leaving B =

L/2 20 _
ﬂ21\/( ‘/ (:;cmr—al)dz where M is the dipole mo-

ment per unit length: m = InR* = (ovh)1R® = owRr R*h =
1
M:T—nzmmR Nowsinﬂ*i, so—:sma
h T 3 s

—scotf dz =
scotd =>dz= 9




B = ﬁ(mwnm/a (Beos’d - 1)

ugan a(-

o 349+(;039)|

2

, and o8O

8
But sinfy, = ——m——ms
" e+ (T2

smB s

sin® @

poawR
2s%

—(L/2)

““"“’Ra / (3cos?6 —1)sin0.do

poowR?

080 (1 - cos®Oi) &=

poowR3L

S R T e

€08 Oy, 5in? O, 2.
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Chapter 6

Magnetostatic Fields in Matter

Problem 6.1

N=m; X By; By = —01[3(m1 CE)E - my]; = Fimy = mys; my =myy. By =—t205

i 4m 73

N=- un mlmz ™M 65y = m‘"",-c. Herem; = ma2l, my = b2I. So Final orientation :
dow-nwa.rd (—i)‘

Problem 6.2

dF = Idl X B; dN = r X dF = Ir X (dl X B). Now (Prob. 1.6): r X (dl X B) +dl X (B X r) + B x
(rxdl) =0. But dfr X (r X B)] = dr X (r X B) +r X (dr X B) (since B is constant), and dr = dl, so
dx (Bxr)=rx(dlxB)—drx(rxB)]. Hence 2r X (dl x By = d[r X (r X B)] - B x (r x dl).

=3 {dr X (r XxB)]-B X (rxd)}. .. N=1I{fd[rx (r X B)]—B X §(r x dl)}. But the first term
is zero (§d(---) = 0), and the second integral is 2a (Eq. 1.107). SoN=-I(Bxa)=m X B. qed
Problem 6.3

@ I <-z .

According to Eq. 6.2, F = 2rIRBcosf. But B =
ﬂ[gﬂ‘—'i"—m‘l, and Bcos§ = B -y, so Bcosf =
,;5[3(011 B)(F-9) - (mi-§)]. But my-§ = 0 and
-§ = sing, while m; - ¥ = mycosf. .. Bcosf =
&3my sin ¢ cos ¢

o

[sm

o

=

F=2nIR4 L3m; singcos¢. Now sing = &, cos¢ = v — R?/r,s0 F = 3152!711111223@27_;—113
But IR?*m = mg, s0 F = ﬁmlm@ while for a dipole, R < 7,50 [ F = 3t m;mz.

() F = V(m;-B) = (m+ V)B = (magf) [§2 5 (3(m - 2)2 — my)] = f2mumez £ (),
1

2my _3

or,since z =r: |F

113
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Problem 6.4

dF = T{(dy9) x B(0,4,0) + (d=2) x B(0,&,2) ~ (dy9) x B(0,y,¢) - (d=8) x B(0,0,2)}
= 1{~(dy ) X [BO,1,¢) - BO,3,0)] +(d= %) x [B(0,¢,2) - B(0,0,2)]}
R~ E%% %6%
B

sy OB _
:Ieﬁ{zxa—yxa}. [Notethat Tdy By 0~ ¢ Blooo and fdz%%aozze%|

|
|
|
§

0,00 ]

x 9y 3 x 9 oz
F:m{ o o 1l-lo 1 o }:m{y%_i%_i%_iffi}
8B, z
_ . [.0B:  _0B, 0B, . _ o, 0By 0B, _ 0B,
_m[x 9z +¥ 3y +z6z using V-B = 0 to write 3y + 5 - 6z )

But m- B = mB, (since m = mg, here), so V(m-B) = mV(B,) =m (%B;x + 8By %?az)
Therefore F = V(m-B). qed
Problem 6.5 z

(a) B = poJozy (Prob. 5.14). pI=Joz

m-B =0, so Eq. 6.3 says i
) m-B = mapodo, o

(c) Use product rule #4: V(p-E) y
=px(VXE)+Ex (Vxp)+(p-V)E+ (E-V)p.
But p does not depend on (z,y, 2), so the second P
and fourth terms vanish, and V x E = 0, so the z
first term is zero. Hence V(p-E) = (p- V)E. qed

This argument does not apply to the magnetic analog,
since V x B # 0. In fact, V(m-B) = (m+ V)B + po(m x J).
(m - V)B, = mo g (B) = mopo oy, (m+ V)Bs = mo (soJozy) = 0.
Problem 6.6

Aluminum, copper, copper chloride, and sodium all have an odd number of electrons, so we expect them to
be paramagnetic. The rest (having an even number) should be diamagnetic.
Problem 6.7 -

Jy=VxM=0;K, =M x a= M. TM i
The field is that of a surface current K = M@,
but that’s just a solenoid, so the field

outside is zero, | and inside B = puoKp = poM. Moreover, it points upward (in the drawing), so [ B = uoM.
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Problem 6.8
10 2y, _ 1 2a 5 N 203 w3 25
VxM=1Jp= ;E(sks )z = ;(3133 )2 =3ksz, K,=MX @i =ks*(¢p x 8) = —kR’2.
So the bound current flows up the cylinder, and returns down the surface. [Incidentally, the total current should

be zero ... 15 it? Yes, for [Jyda = fDR(3k3)(21r3 ds) = 2nkR®, while [Kydl = (~kR?)(2rR) = —27kR3]
Since these currents have cylindrical symmetry, we can get the field by Ampere’s law:

s
B 213 = polene = )‘0/ Jyda = 2mkpes® = = poM.
o

Outside the cylinder Jenc =0, so |B =0.
Problem 6.9

(Essentially a long solenoid)

(Intermediate case)
[The external fields are the same as in the electrical
case; the internal fields (inside the bar) are completely
difforent—in fact, ite ih directi

Problem 6.10
K, = M, so the field inside a complete ring would be poM. The field of a square loop, at the center, is
given by Prob. 5.8: Bsq = V2ol /mR. Here I = Mw, and R = a/2, so

Bsq=%=2\/§::#; net field in gap : B:MM(l-

22w
ma )’
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Problem 6.11

As in Sec. 4.2.3, we want the average of B = Byt + Byn, Where Boy is due to molecules outside a small §

sphere around point P, and B, is due to molecules nside the sphere. The average of Boy is same as field at

center (Prob. 5.57b), and for this it is OK to use Eq. 6.10, since the center is “far” from all the moleculesin }

question:

o Mx4i
Aoy = —
-out. 4 42
outside

dr

The average of By, is 42 (22)—Eq. 5.80—where m = $mR®M. Thus the average Bi, is 2uoM/3. But whatis |

™

left out of the integral Aoy, is the contribution of a uniformly magnetized sphere, to wit: 210M/3 (Eq. 6.16), 3

and this is precisely what B,, puts back in. So we’ll get the correct macroscopic field using Eq. 6.10. qed
Problem 6.12

(a) M = ks#; J, = VXM = —k¢h; Ky = M X # = kRé.
B is in the z direction (this is ially a ition of solenoids). So
Use the amperian loop shown (shaded)—inner side at radius s:
$B-dl = Bl = piolenc = po [[ o da + K4l] = po [—KI(R — 5) + kRI] = pokls.

.| B = woksz inside.

(b) By symmetry, H points in the z direction. That same amperian loop gives fH ~dl = Hl = poly,, =0,

since there is no free current here. So , and hence Outside M = 0, so B = 0; insude
M = ksz, so B = poksz.

Problem 6.13

(a) The field of a magnetized sphere is %mM (Eq. 6.16), so with the sphere removed.

Inthecavity,H::—nB, soH:u—lo(Bo—%mM)=Ho+M—%M=>

(b) ‘The field inside a long solenoid is poK. Here K = M, so the field of the bound current on
the inside surface of the cavity is poM, pointing down. Therefore

1 1
H:E(Bo—mM)=‘;B0—M=>

Ky

© (@) Kp This time the bound currents are small, and far away from the center, s
while H = 1By = Hy + M = [H = Ho + M|

[Comment: In the wafer, B is the field in the medium; in the needle, H is the H in the medium; in the
sphere (intermediate case) both B and H are modified.]




Problem 6.14

B is the same as the field of a short solenoid; H = ”LDB -M.

/N

1

=
5

= ANNSS
=\l

N

— 7N

Problem 6.15
“Potentials”:
Win(r,6) = 3 Ar'Pi(cosf), (r<R);
{ Wou(r,0) = ¥ PirP(cosb), (r>R).
Boundary Conditions:
(i) Win(R,0) = Wour(R, 6),
{ (@) 25|+ 2 p = M = M2 £ = Moosd.
(The continuity of W follows from the gradient theorem: W(b) —
if the two points are infinitesimally separated, this last integral —

() = AR =£5 > B =R'4,
R

W) = [PYW.dl=—[PH.d

0.

M) = Y0+ 1)78kPi(cost) + T IAR-2P(cos) = M cosh.

. Combining these:

S-@+ )R AiPi(cosf) = Mcosh, so Ay =0 (1 #
Thus Win(r,8) = —J;I-rcosﬂ = %z, and hence Hip = -VW, = —

B=m(H+M)=p‘,(—%M+M)

1), and 34, = M = 4, = %
M 1
?i——SM,m
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Problem 6.16
$H.dl=1I, =Is0H=35¢ B=p(l+xm)H=

10 [ xml xmls at s =aq;
= = XmZ) s = —Mxf= Ta % 3
Jp=VxM= 50s (s oms ) © K xn= -%’;—,,’i, atr=b.
Total enclosed current, for an amperian loop between the cylinders:
I+ 21m—(l+xm 50 fB <dl = pioTene = io(1 4 3m)] = B = & (12';;('")’ 5 v

Problem 6.17

From Eq. 6.20: $H -dl = H(2ms) = I, = {; (5°/a"), (s <a);

(s>a).

e (8>a) sl (s> a).

H={T;%’ (“<")}, 0B =uH= {M?T’éi"-)'— (s<a);

3y = xmJs (Eq. 6.33), and Jy = =Lz, so same direction as I).

Ky=M X i = xpuH X fi = opposite direction to I).

= Jy(ma?) + Kp(2ma) = xmI — xmI =[0] (as it should be, of course).

Problem 6.18
By the method of Prob. 6.15:

For large r, we want B(r,6) = Bg = Bz, so H = :—QB - yLnBoi, and hence W — ——Boz =
1
=5 Bor cosf.
“Potentials”:
Win(r,8) = 3 AirtPi(cosb), (r <R);
Wour(r,0) = —”l—anrcos9+2-;F¥rﬂ(cos.9), (r>R).

Boundary Conditions:
O Win(R6) = Wou(R,0),
() o Ben | + 2| = 0.
(The latter follows from Eq. 6. 26 )

1 B, _
(i) = po L:BncosB+z(l+ 1)H,;2P,(coss)] +py IARTIP(cost) =

For l #£1, (i) = By = R¥*+ A, 50 [uo(l + 1) + pl) A R'~" = 0, and hence 4; =
Forl=1,(i) = A1R = — £ BoR+B1/R?, and (i) = Bo+240By/BP + phr = 0, 50 Ay = ~3Bo/ (o +1)-

3By 3Boz 3By . 3By
T 080 = — . —_—f= ———.
(2p0 + 1) (2p0 + 1) @po+p) " (mo+p)

3uBy  _
(240 + 1)

Win(r,8) = — Hin = ~ VWi, =

B=pH=
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By the method of Prob. 4.23:
Step 1: By magnetizes the sphere: My = xnHo = mBo. This magnetization sets up a field within
the sphere given by Eq. 6.16:

My =2 Xm 5 2 = o
B, = 3;1.0Mo— 31+XWIBG— 3nBo (where & = l-l-xm)'

Step 2: B; magnetizes the sphere an additional amount M, = 75 B1. This sets up an additional field in
the sphere:

2 2 2x)?
By = ZpoMs = 2rBy = (f) By, etc.
The total field is:
B
B=By+B1+Ba+- - = Bo+(26/3)Bo + (26/3)2Bo+- - = [1+ (26/3) + (2k/3)® + -] B = (1_—2"’0/3)
1 3 __ 343xm  _ 3(1+Xm) -
T3 = 3= 2xn /0 F ) 3 ¥ 8m—2xm ~ 8%m |00 Bo.

Problem 6.19

Am = —j:::B; M = AT'“ = —df::i,B, where V is the volume per electron. M = y,H (Eq. 6.29)
= "—D({IX—MTB (Eq. 6.30). S0 Xm = —f;:ﬂvun, [Note: xm < 1, so I won’t worry about the (1 + Xm)
term; for the same reason we need not distinguish B from Bese, as we did in deriving the Clausius-Mossotti
equation in Prob. 4.38.] Let’s say V = #mr%. Then xm = —{“i( "‘zr). Tl use 1 A= 1072 m for r.

i\ 4m.:
— 3(1.6x1071%)2
Then xm = —(1077) (‘(J_ﬂja 110~ iwfmi) =

which is not bad—Table 6.1 says X, = —1 x 1075,

However, I used only one electron per atom (copper has 29) and a very crude value for . Since the orbital
tadius is smaller for the inner electrons, they count for less (Am ~ r2). I have also neglected competing
paramagnetic effects. But never mind ... this is in the right ball park.
Problem 6.20

Place the object in a region of zero magnetic field, and heat it above the Curie point—or simply drop it on
ahard surface. If it’s delicate (a watch, say), place it between the poles of an electromagnet, and magnetize it
back and forth many times; each time you reverse the direction, reduce the field slightly.
Problem 6.21

(2) Identical to Prob. 4.7, only starting with Eqs. 6.1 and 6.3 instead of Eqgs. 4.4 and 4.5.

(b) Tdentical to Prob. 4.8, but starting with Eq. 5.87 instead of 3.104.

QU= —-{“7:;1,[3(:0591 cosfz — cos(f2 — 6y )Jmyms. Or, using cos(fz — 61) = cos 6y cos b — sin f; sin by,
= Ho MMz

v= 4 73

(sin 6, sinfz — 2cos6; cosfa) . |

Stable position occurs at minimum energy: g% =¥ =0

%’; = M2 (cos 0 sin Bz + 25in By cosf) = 0 => 2sin6) cosfz = — cosf; sinb;
QU = uomima (sin 6; cos by + 2 cosfy sinfz) = 0 = 2sin 6y cos bz = —4 cosby sin by,
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Either sin6; = sin s O, o 2

or cosf) =cosfy =0: +1 o T4
& @

Thus sin #; cosf2 = sinf; cosfy = 0.

Which of these is the stable minimum? Certainly not @ or ®—for these my is not parallel to B), whereas we
know m, will line up along B;. It remains to compare® (with 6; = 6 = 0) and @ (with 6, = /2, f, = —7/2):
Uy = domime (—2); Up = Hefima (—1). U; is the lower energy, hence the more stable configuration.

] Conclusion: They line up parallel, along the line joining them: — _Ll

(d) They’d line up the same way: — — — — — —
Problem 6.22

F:I]{dle:I(]{dl) xBa+I}{dlx[(r-Va)Bo}—I(}{dl) x[(ro~va)Bn]=1fdlx[(r-vo)B,,]
(because § dl =0). Now

(dlx Bg), = Y exyedly(Bo)e, and (r- Vo) =Y n(Vo), so
2.k 1]

s
i

IS e [ }{ " uu,] [(Vo)i(Bo)s] {Lemma 1 f ridly = 3 eymam (proof below).}

2kt

1Y epeeyman(Vo)i(Bo)i | Lemma 2: S~ euiciym = Subkm — Sumbyt (proof below)
Jukolym 7
I'Y" (Bubim = Bumbit) em(Vo)i(Bodk = Iy [ax(V0):(Bo)k = a:(Vo)(Bo)e]
kdm k
= I[(Vo)i(a-Bo) — a:(Vo - Bo)]

But Vo Bo =0 (Eq. 5.48), and m = Ia (Eq. 5.84), so F = Vo(m-Bo) (the subscript just reminds us to take
the derivatives at the point where m is located). qed

Proof of Lemma 1:
Eq. 1.108 says §(c-r)dl = a x ¢ = —c x a. The jth component is Spferpdly = =%, 1 €pmepam. Pick
¢p = 6y (i.e. 1 for the Ith component, zero for the others). Then fr; dly ==Y, Eim@m = X, €lymGm.  qed

Proof of Lemma 2:
€yk€lym = 0 unless ijk and [jm are both permutations of 123. In particular, i must either be [ or m, and k
must be the other, so

[

Zexﬂnfljm = Abubim + BOimOni.
7
To determine the constant A, pick i = =1, k =m = 3; the only contribution comes from j = 2:

€193€103 = 1 = Ad11833 + Boigbyn = A=> A=1.
To determine B, picki=m=1,k=1=3:
€123€3m = —1 = Ab1303 + Béy16s3 =B = B =-1.
So

3 eukéiym = Subkm — Gumir.  ded
7




121

Problem 6.23

(a) The electric field inside a uniformly polarized sphere, E = ——P (Eq. 4.14) translates to H = ——(poM)
—1M. But B = o(H+M). So the tic field inside a uni tized sphereis B = Mo(*’Mi—M)

same as Eq. 6.16).

(b) The electric field inside a sphere of linear dielectric in an otherwise uniform electric field is E = ¢ +;€ 7 Eo
(Eq. 4.49). Now x. translates to X, for then Eq. 4.30 (P = eX.E) goes to poM = poxmH, or M = xnH
(Eq. 6.29). So Eq. 449 = H = mﬂ"' But B = o(1 + xm)H, and By = poH, (Egs. 6.31 and 6.32),
so the magnetic field inside a sphere of linear magnetic material in an otherwise uniform magnetic field is

B 1 Bo Bo »lB

—_— B in Prob. 6.18).
BT+ xm) (L Xm/3) o o | (a6 in Pro )

(c) The average electric field over a sphere, due to charges within, is Eaye = —ﬁ}%. Let’s pretend the charges
are all due to the frozen-in polarization of some medium (whatever p might be, we can solve V-P = —p to find
the appropriate P). In this case there are no free charges, and p = [Pdr, 50 Eave = — 2 s [P dr, which
translates to

e

1 1 1
Have = —mﬁ/der— “TE™
But B = po(H + M), 50 Bave = ~42 5% + ptoMave, and Mave = ﬁ, s in agreement

with Eq. 5.89. (We must assume for this argument that all the currents are bound, but again it doesn’t really
matter, since we can model any current configuration by an appropriate frozen-in magnetization. See G. H.
Goedecke, Am. J. Phys. 66, 1010 (1998).)

Problem 6.24

Bq215: B o= p{s ) g ar'} (for uniform charge density);
Eq.49: V = P. { = Jy e dr' } (for uniform polarization);
Eq.6.11: A = poeoM x { e v i % dr' } (for uniform magnetization).

En = A rob. 2.12),
For a uniformly charged sphere (radius R): " ’ an’ ) @ )

&) (Ex 2.2).
Vo = 55(P-r)
Vn _ 360 7 P, .
‘out 3fq Z@®-1),

Eow = p

So the scalar potential of a uniformly polarized sphere is: {

and the vector potential of a uniformly magnetized sphere is: { ﬁ:ﬂ Z lis“—(é:;'d(;/[r,)(’;)’

(confirming the results of Ex. 4.2 and of Exs. 6.1 and 5.11).

Problem 6.25

() By = 2224 (Bq. 5.86, with 6 = 0). Somy-B; = —2 2. F = V(m-B) (Be.6.3) » F = &[] 2=
Eﬁd—; )’:'l‘hls is the magnetic force upward (on the upper magnet); it bal the gravitational force ds d

m? mag =0=>
2m2t 9=
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(b) The middle magnet is repelled upward by lower magnet and downward by upper magnet:
3pom?  3pom?

2mzt 2myt

—mag =0.

The top magnet is repelled upward by middle magnet, and attracted downward by lower magnet:

3pom? 3pom? _
P s U 0
. 2

Subtracting: 4m- [;‘x —grmgt G%vf‘] —mag+mag =0, or ;lz—%ﬁ-m =0,s0: 2= 1;71;51+m;¢ﬂz
Let o = z/y; then 2 = ;x%- + W-:T‘ Mathematica gives the numerical solution o =|z/y 50115
Problem 6.26

At the interface, the dicul. of Bis i (Eq. 6.26), and the parallel component of
H is continuous (Eq. 6.25 with K; = 0). So Bf = B, H] = HJ. But B = 4H (Eq. 6.31), so LBl =18l

Now tan; = Bll/B{, and tan6, = ,/Bl,so

tanfy _ B" B B_%'__ﬂ
w6 Bf Bl Bl

(the same form, though for different reasons, as Eq. 4.68).
Problem 6.27

In view of Eq. 6.33, there is a bound dipole at the center: my = X,m. So the net dipole moment at the
center is Mcenter = M + My = (1 + Xp)m = -‘%m. This produces a field given by Eq. 5.87:

=21 im0
Bﬁ?{:‘m T 4nrs (3 - B)F — ]
This accounts for the first term in the field. The remainder must be due to the bound surface current (Kj) at
r = R (since there can be no volume bound current, according to Eq. 6.33). Let us make an educated guess
(based either on the answer provided or on the analogous electrical Prob. 4.34) that the field due to the surface
bound current is (for interior points) of the form Bgurface = Am (i.e. a constant, proportional to m). In that
current

case the magnetization will be:
M=xmH= X"'B =% [3(m #)F —m] + -’%Am.

This will produce bound currents J, = VXM = 0, as it should, for 0 < 7 < R (no need to calculate this
curl—the second term is constant, and the first is essentially the field of a dipole, which we know is curl-less, |

except at r = 0), and 1

- e Xmo o XmA LA
K,_M(R)xr_h_Rs( m X §) + m (mxr)—x,,.m( wwt )sm.9$

But this is exactly the surface current produced by a spinning sphere: K = ov = owRsin 0 ¢, with (owR) ¢
XmT (f - ﬁ,) So the field it produces (for points inside) is (Eq. 5.68):

A 1
Byurtace —§ﬂo(wﬂ) unx...m (u W)'
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Everything is consistent, therefore, provided A = ZoxXm (4 = ), (1 %Xm) = -}lxn. But
X,,,:(ﬁ)—1,50A(1—%+%%)=—§—%Q,or.4(l+ ) ﬁg—l A= nﬁ%,andhence
-k — m) 4 2o = p)m
B= y { [3(m-#)f — m] + R3(2ug+u)} qed

The extersor field is that of the central dipole plus that of the surface current, which, according to Prob. 5.36,
is also a perfect dipole field, of dipole moment

_4 _4 g3 )_2er3u2(uo—ﬂ)m_u(ﬂo—u)m
Myutaee = 3700w R) = 37 (2;«,35::5:%% T Th U BQumtr)  mCmt R

So the total dipole moment is:

(po — 1) 3pum

u_ B
Moy = ~—IM + m =
o Cuo+m) ~ Quo+a)

and hence the field (for r > R) is

lB:Z—;( Su )Tla[a(m.f)f—my‘

2p0 + 1

Problem 6.28
The problem is that the field inside a cavity is not the same as the field in the material itself.
(a) Ampére type. The field deep msxde the magnet is that of a long solenoid, By &~ oM. From Prob. 6.13:
{ Sphere: B = Bo — 2pM = 1p0M;

Needle: B oM = 0;
Wafer: B= m)M.
(b) Gulbert type. This is analogous to the electric case. The field at the center is approximately that midway

between two distant point charges B() ~ 0. From Prob. 4.16 (with E — B, 1/ey = o, P = M):

Sphere: B = Bo +EM= }.mM‘

Needle: B

Wafer: B= Bo + mM oM.
In the cavities, then, the fields are the same for the two models, and this will be no test at all.
with §1 M from the Office of Alternative Medicine.




Chapter 7

Electrodynamics

Problem 7.1
(a) Let Q be the charge on the inner shell. Then E =
SR Bdr=—ngQ = g2 (- 1)

_ _ _ Q_odre(Va—W)
I—/J~da—u]E~da—a€o—€n Ta-175)

%r in the space between them, and (V, — V}) =

4xm

el
WR="72=

(c) For large b (b > a), the second term is negligible, and R = 1/4noa. Essentially all of the resistance is in
the region right around the inner sphere. Successive shells, as you go out, contribute less and less, because the
cross-sectional area (4r?) gets larger and larger. For the two submerged spheres, R = ;-2 = 5255 (one Ras
the current leaves the first, one R as it converges on the second). Therefore I = V/R =|2noaV.
Problem 7.2

() V = Q/C = IR. Because positive I means the charge on the capacitor is decreasing,

9y 210150 Q) = Qe But Qo = Q(0) = OV, s0[@() = OV 7|

Hence I(t) = —ﬂ = CVoR e7t/RC =

(b) The energy delivered to the resistor is / Pdt = / I’Rdt = ‘% / e 2/ROGt =
o

3 _RC ~2¢/RC lCVuz_ v
R o 2
Vo = Q/C + IR. This ti itive 1 5 Q is increasing: 22 = 1 —L(CV-Q) 9
(c) o =Q/ ime positive / mean: is 4 ing: P = %o (] Q CVo

dt = In(Q - CV) = —Et+ constant = Q(t) = CVp + ke™#/"C. But Q(0) = 0 = k = —CV,, so

Q(t) =ow (1-e%) | 19 =22 _ oy, (Ee-t/m) =

125
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2
(d) Energy from battery: / V.,Idt—_ / etRC gt = i(—ch-‘/'w)| %’RC:

Since I(t) is the same as in (a), the energy delivered to the resistor is again The final energy in

the capacitor is also | 3

the energy from the battery goes to the capacitor, and the other half
to the resistor.

Problem 7.3
(a) I = [J - da, where the integral is taken over a surface encl the positively charged ductor. But
J = oE, and G ’s law says [E - da——Q,soI—afE da-—Q Bth CV,and V = IR, so

I=2ZCIR, or

(M) Q=CV=CIR= %=
time constant is 7 = RC =

Problem 7.4
I=J(s)2nsL = J y=1/2nsL. E=J/o =1/2nsoL =I/2nkL.

V:_/b E-dl=—-——(a-b). So H=b -

—35Q = Q(t) = Qoe 7|, or, since V = Q/C, V(t) = Voe~*/"C. The

2kL 27kl
Problem 7.5
£ 2 £2R dP 2[ 1 2R
I= . P=IR= | — - | = =2
YR GrRE R % |GrRE GRE COTTHRESIRS
Problem 7.6

E=§E-dl= for all electrostatic fields. It looks as though £ = § E - dl = (0/eo)h, as would indeed
be the case if the field were really just o /e inside and zero outside. But in fact there is always a “fringing
field” at the edges (Fig. 4.31), and this is evidently just right to kill off the contribution from the left end of
the loop. The current is

Problem 7.7

(8) €= -9 = -Bl% = Bly; E=IR =

direction of flow: (v X B) is upward, in the bar, so downward through the resistor.)

to the

(@ F=ma=mop=-—pv=> = (Rm)v:u vge” R L

(d) The energy goes into heat in the resistor. The power delivered to resistor is I2R, so

Never mind the minus sign—it just tells you the

(b) F=IIB =

aW _ o, B, B, 5 _B AW 2,20t
WAIR— i3 R_Tvoe ,wherea=ﬁ, 5 = omvie
0 —2at | 11
The total energy delivered to the resistor is W = amv§ / e~2tdt = amu? = amvﬁﬂ = §mv§. v
A =
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Problem 7.8
sta

. 1
() The field of long wireisB:’E‘géqS, so@:/B-d&:%]%(ads)

_ 4% _ polad s+a ds _ _bola 1 ds 1lds
O e=-F =g (a )’a"ddt‘"’s" 27 \s+adt sdt

The field points out of the page, so the force on a charge in the nearby side of the square is to the right. In
the far side it’s also to the right, but here the field is weaker, so the current flows

(c) This time the flux is constant, so | €
Problem 7.9
Since VB = 0, Theorem 2(c) (Sect. 1.6.2) guarantees that [B- da is the same for all surfaces with a given
boundary line.
Problem 7.10
@ =B-a= Ba®cosf
Here = wt, so
a Ba?(— sinwt)w;

(view from above)

& = Bwa®sinwt.
Problem 7.11

£ = Blv = IR = I = Bly = upward magnetic force = I!B = B, This opposes the gravitational force
R R
downward:

a

m, lezu—md—v~d—v— - wherecx=B—ZE —ou=0=u=2

S T L SEwmp ITmTITRE,

d —dt::»—lln( —av)=t+const. > g—ov=Ae ™ att=0,v=0,s0 A=
g—au_ 3 9 = =g = H =0, v=0, =9

At 90% of terminal velocity, v/v; =09=1-¢"% =5 e =1-0.9=0.1; In(0.1) = —at; In10 = at;

t=211n10, or

Now the numbers: m = 4nAl, where 7 is the mass density of i A is the ional area, and
1is the length of a side. R = 41/Ac, where o is the conductivity of aluminum. So

p=28x10"%0Qm

_ 4nAlgdl _ 16ng _ 16g7p al9=98 m/s®
U= 20B 0B . B ' 2" =27 x 10°kg/m?
B=1T

_ (16)(9.8)(2 7x10%)(2.8x10~%) — 12x1072 =
Sowy = T s0% = 1250 — In(10) =

|Ifthe loop were cut, it would fall freely, with acceleration g.]
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Problem 7.12

2 2
o= (5) B="5Bycos(w); € = J%’ = E‘Lsousm(w:) =£-

Problem 7.13

Q:/dedy:ktzf dz/ y3dy=lkt2a5, e=-%_
o ) 4 dt

Problem 7.14
Suppose the current (I) in the magnet flows counterclockwise (viewed from

above), as shown, so its field, near the ends, points upwaerd. A ring of
pipe below the magnet experiences an increasing upward flux, as the magnet
approaches, and hence (by Lenz’s law) a current (I,ng) will be induced in it
such as to produce a downward flux. Thus fing must flow clockunse, which is
opposite to the current in the magnet. Since opposite currents repel, the force
on the magnet is upward. Meanwhile, a ring above the magnet experiences
a decreasing (upward) flux, so s induced current is parallel to I, and it
attracts the magnet upward. And the fiux through rings nest to the magnet
is constant, so no current is induced in them. Conclusion: the delay is due
to forces exerted on the magnet by induced eddy currents in the pipe.

Problem 7.15

In the quasistatic approximation, B = { gonl Z, (s<a)
s

(s> a).
Inside: for an “amperian loop” of radius s < a,

& = Brs® = ponlns?; }{E-dl =E2rs= —d—‘f = —ponms®—

Outside: for an “amperian loop” of radius s > a:

& = Bra? —uaana EZns_-pDrma dt

Problem 7.16

(a) The magnetic field (in the quasistatic approximation) is “circumferential”. This is analogous to the current

in a solenoid, and hence the field is | longitudinal.

(b) Use the “amperian loop” shown. s

Outside, B =0, so here E = 0 (like B outside a solenold)

So§E-dl=El=-% =4 [B.da=-2 [’ #Lids /\ I \
a 3

o E=—#dl1n (2). But & = —Iowsinwt, s =

s): T .
so|E= MIDU) sin(wt) In (%) 2. \/ /
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Problem 7.17
(a) The field inside the solenoid is B = ponl. So @ = ma?uonl = € = —ma®pon(dI/dt).

In magnitude, then, £ = ma?ponk. Now & = IR, 50 | Lresistor = ma’ ponk.

B is to the right and increasing, so the field of the loop is to the leff, so the current is counterclockwise, or

to the right, [ through the resistor.

2
(b) A® = 2ra?ponl; I = % = % = —%% = AQ = 3A®, in magnitude. So |AQ = 2"_“1;‘0_"14
Problem 7.18
_ p_ kol o pla 2"d:? mlaln2 ﬂ __d® _  pealn2dl
Q_/B da’B_21rs¢"I>_ o Jo s 2m 3 €=hoopR=—R= dt or  dt’

ynahﬂ
dI
R =

aQ=-

The field of the wire, at the square loop, is out of the page, and decreasing, so the field of the induced
current must point out of page, within the loop, and hence the induced current flows | counterclockwise.

Problem 7.19 12
cpnys . . soNI @, (inside toroid);
= om P 5
In the quasistatic approximation, B { ,’f (outside toroid)

(Eq. 5.58). The flux around the toroid is therefore

o=

atw
T Lpas = woNTh (1
8 2

w) ~ poNhw dd uoth dar unthlc
2

@ 2ra  dt  2ma di  2ma

The electric field is the same as the magnetic field of a circular current (Eq. 5.38):

_pml__ a .
=S @ it

with (Eq. 7.18)

1 de Nhwk pn( thk) a? N o Nhwka
(

I= T dt =" 2ma SoE= F) 2ma ) (a® + 2%)3/2 “ 4m (a2 + 22)3/2

Problem 7.20
{a) From Eq. 5.38, the field (on the axis) is B = Eg!(,;z_x_‘fwi, so the flux through the little loop (area ma?)

(b) The field (Eq. 5.86) is B = 42 %(2cosf F +sind ), where m = I'ma?®. Integrating over the spherical “cap”
(bounded by the big loop and centered at the little loop):

&= /B da_ﬂ“_a/(stG)(r sinf df dg) = mla 21(/ cos@sinf df

4m
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where r = V/b% + 22 and sind = b/r.

22
e _ _ N _ __ poma®h
(c) Dividing off I (&1 = MizLy, &2 = Mu$h): | Miz = Moy = 302 + 2R

Problem 7.21

2
olre he same as in (a)!!

a
do dI
E=—cp=-Mo =Mk I"
a

It’s hard to calculate M using a current in the little loop, so, exploiting the equality of the mutual inductances,
Tl find the flux through the lttle loop when a current I flows in the big loop: & = MI. The field of one long

wire is B = 41 = &, = 4ol (2 1545 = sele 19 5o the total flux is

$ =29,

_ unI:m o M= unt;ln? > in magnitude.

Direction: The net flux (through the big loop), due to I in the little loop, is into the page. (Why? Field
lines point in, for the inside of the little loop, and out everywhere outside the little loop. The big loop encloses
all of the former, and only part of the latter, so net flux is inward) This flux is increasing, so the induced
current in the big loop is such that its field points out of the page: it flows | counterclockwise.

Problem 7.22 ‘

B = ponl = &, = ponInR? (flux through a single turn). In a length I there are nl such turns, so the
total flux is ® = pon?mR2IL. The self-inductance is given by & = LI, so the self-inductance per unit lengthis |
L = pon’®nR2.
Problem 7.23

The field of one wire is B, = &1, s0 & =2- "I -l f ds = %"ln (4¢). The € in the numerator is

negligible (compared to d), but in the denominator we mnnot let € = 0, else the flux is infinite.

L= Eﬂl In(d/€) | . Evidently the size of the wire itself is critical in determining L.

Problem 7.24 "
(a) In the quasistatic approximation B = % é. So& = ";LI/ Lyds= I‘Olh polhy /).

N h
This is the flux through one turn; the total flux is N times &;: & = "0

In(b/ a) Ip cos(wt). So

—7 —2
6= 7% = B9 1o ) o sim(t) = (“”—XL"—%‘}M ln(2)(0.5)(21r60) sin(wt)
— £  261x107*

= |2.61x 10 “sm(ut) (in volts), where w = 2w 60 = 377/s. I, = E= Tsm(wt)

=15.22x% 10‘7 sin(ut) (amperes).
(b) & = —Lﬂ, where (Eq. 7.27) L = £o¥% 1n(p/q) = Grx10)000(107%) 1y 9) — 1 39 x 10~2 (henries).

Therefore & = —(1.39 x 107%)(5.22 x 1077 w) cos(wt) =| —2.74 x 1077 cos(wt) | (volts).




131

. . 2.74 x 10~7 yry mN hw
Ratio of amplitudes: B0 = 1.05 x 10° In(b/a).
Problem 7.25

With I positive clockwise, & = ~L% = @Q/C, where Q is the charge on the capacitor; I = ‘7?, 50
€8 = ~5Q = —w?Q, where w = Zi=. The general solution is Q() = Acoswt + Bsinwt. At t =0,
Q=CV,s0 A=CV; I(t) = Awsinwt + Bwsinwt. At t =0,I =0, so B=0, and

If you put in a resistor, the oscillation is “damped”. This time —L% = —05 +1IR, so L%g + R% + éQ =0.
For an analysis of this case, see Purcell’s Electricity and Magnetism (Ch. 8) or any book on oscillations and
waves.

Problem 7.26
(a) W = JLI%. L = pon®*mR*l (Prob. 7.22) |W

I(t) = ~CVwsinwt =

on?rRAI* |

(b) W =1 §(A-T)dl. A = (uonI/2)R, at the surface (Eq. 5.70 or 5.71). So W; = L£22LR] - 21R, for one
turn. There are nl such turns in length I, so W = Lpon?rR2I2. v

QW= ﬁ [B%dr. B = ponl, inside, and zero outside; fdr = mR?l, so W = ﬁuﬁn”%ﬁt’"l =
Luon®TRAIZ. v

(Q) W = 5 [[B*dr — §(A x B) - da]. This time [B? dr = pi§n*I*r(R? — a?)l. Meanwhile,

AXxB= 0 outside (at s = b). Inside, A = &,"lai) (at s = a), while B = ponl 2.

AxB= n’I’aq&xz) L

po...:; snward (“out” of the volume)
fihxpyin Sy 2 [adpdx(9) = byt e, %— 2
25 (G2 P w(R? — @)l + pin?I*ma?l] = fpon®I*R?xl. v/ (4

Problem 7.27

wn?? 1 pon®I? b 1
2 - . O\ ol 202
/B dr = 2 hrdéds = =g —horin (a) =| go#on’ I*hIn(b/a)

47(2
;‘: n2hln (b/a) | (same as Eq. 7.27).

Problem 7.28

]f B-dl= B(2ns) = pplenc = ml(s’/R’) >B= é“’;,
_1 (1 WP 2 pol?l st ol 2 _ 1
W= /B dr= gt | Semstds = (G )L r=cir.

SoL= g_“z, and £ = L/ | independent of R!
28

Problem 7.29
dI dI
(a) Initial current: Iy = £&/R. So —L— =IR=> il —%I = [=Ipe BHL or

&
2
() P= PR = (&/R) e/ = B omamrn - T

_&8 [° —enyp & L orn)|” _
W—ﬁ/o € dt—E(—ﬁe )n—

't
& 0+ 1/2R) =
R
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(c) Wo = LLI} = } (€o/R)” . ‘
Problem 7.30
(2) By = 82 L 1;[3(a; - $)4 — &y}, since my = I1a;. The flux through loop 2 is then |

1
&, =B;-a, =~“:31,[3(a1 Nag %) —a1-ag) = ML | M= 43[3(31 #)(az -4) — a1 +ag).

(b) & =-M4z, L¥| = &1 = ML 42, (This is the work done per unit time against the mutual emf in
loop 1—hence the minus sign.) So (since Il is constant) Wy = ML I, where I, is the final current in loop 2:

W= 4fr%[:i(rm +%)(mg - 3) — m, - my].

Notice that this is opposite in sign to Eq. 6.35. In Prob. 6.21 we assumed that the magnitudes of the dipole
moments were fized, and we did not worry about the energy necessary to sustain the currents themselves—only
the energy required to move them into position and rotate them into their final orientations. But in this
problem we are including it all, and it is a curious fact that this merely changes the sign of the answer. For
commentary on this subtle issue see R. H. Young, Am. J. Phys. 66, 1043 (1998), and the references cited
there.

Problem 7.31
adV'I‘he displacement current density (Sect. 7.3.2) is Ja = €092 = & = L 2. Drawing an “amperian loop” at
radius s,

I 52 Is?
7{13..11=B-2m=,‘01dm=mm.ns’=un153=>3=§;s;;

Problem 7.32 . ‘

o(t) . Q) It
@E= ?E o) = T mad Tep

2
(b) I, = Jums? = snﬂ'ns }{ B-dl = poly,,. = B2rs= ,;012—2 =B

(c) A surface current flows radially outward over the left plate; let I(s) be the total current crossing a circle ‘
of radius s. The charge density (at time t) is

oft) = -1 (9)]t |

Since we are told this is independent of s, it must be that I — I(s) = Bs?, for some constant 8. But I(a) =0, |
50 Ba® = I, or B = I/a®. Therefore I(s) = I(1 - s*/a?).

B2ms = palene = poll = 1(5)] = o5 = m v |
Problem 7.33
(a) Ju= eo”“I" cos(wt) In (a/s) 2. But Iocos(wt) = I. So| Ty = muﬂnn(a/s) 5

(b) I.,:/J,,m;:-“%/ ln(a/s)(21rsds)=;toenw21/ (slna - slns)ds
[

= poeow?I [(lna)———lus+ ” = poeow? I [%a—%a+§]
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Since poeo = 1/c?, Io/I = (wa/2c)?. I a = 10°m, and & = {4, so that 42 = &,

w= g = TSI oy = 06 x 101 /s =
microwave region, way above radio frequencies.)
Problem 7.34

Physically, this is the field of a point charge —g at the origin, out to an expanding spherical shell of radius
vt; outside this shell the field is zero. Evidently the shell carries the opposite charge, +g. Mathematically,
using product rule #5 and Eq. 1.99:

= 3= ~ 10'° Hz, or 10* megahertz. (This is the

V.E=0(wt—r)V- (—Lii‘) - Lr—r Vvt —r)] = ——63(r)ﬁ(ut—r) = (i' ) —-ﬁ(vt~r)

dmep r2 4me, 41reg 7

But 6% ()6 (vt — r) = 8°(r)9(2), and 20(vt — ) = ~§(vt — ) (Prob. 1.45), s0

p=eV-E= |—¢®n)0(t) + —Ld(vt — 7).

4mr?
(For ¢ < 0 the field and the charge density are zero everywhere.)

Clearly V- B = 0, and V x E = 0 (since E has only an r and it is ind dent of 6 and @).
There remains only the Ampére/Maxwell law, V x B =0 = uoJ + poedE/dt. Evidently

OE
T=—og = { 41reor’ at fﬁ(vt - r)]}

(The stationary charge at the origin does not contribute to J, of course; for the expanding shell we have J = pv,
as expected—Eq. 5.26.)
Problem 7.35

From V-B = popm it follows that the field of a point monopole is B = £2424. The force law has the
form F o gm (B — v X E) (see Prob. 5.21—the c? is needed on dimensional grounds). The proportionality

constant must be 1 to reproduce “Coulomb’s law” for point charges at rest. So

Problem 7.36
Integrate the “generalized Faraday law” (Eq. 7.43iii), V X E = —poJm — m , over the surface of the loop:

/(VxE)-da:fEdl:E:—m/Jm da——/B da = —;q,I,,,m—%.
d[ dI 1d%® 1 . :
But & = d , 80 — = %Imm T - I= %AQ,,. + ZAcI’, where AQm, is the total magnetic charge

passing through the surface, and A® is the change in flux through the surface. If we use the flat surface, then
AQm = gm and A® = 0 (when the monopole is far away, = 0; the flux builds up to pogm/2 just before
it passes through the loop; then it abruptly drops to —pegm/2, and rises back up to zero as the monopole
disappears into the distance). If we use a huge balloon-shaped surface, so that g, remains nside it on the far
side, then AQy, = 0, but @ rises monotonically from 0 to pogm. In either case,
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Problem 7.37

- _ L 1.V 8D _8, . 8 [VocosCmut)] _ eVn
E= i J.=0E= pE = Ja= i Bt(EE) =e5 [—d —- [—2nvsin(2mwt)).
The ratio of the amplitudes is therefore:
J Yo d L

= [2m(4 x 10°)(81)(8.85 x 1071%)(0.23)] " =

1
7 ﬁ%ﬂ/eVﬂ " 2mvep

Problem 7.38
The potential and field in this configuration are identical to those in the upper half of Ex. 3.8. Therefore:

I:/J-da:ar/E~da

where the integral is over the hemispherical surface just outside the sphere.———

But I can with impunity close this surface:
(because E = 0 down there
anyway—inside a conductor).

S0l =0 [E-da= ZQenc = & [0.da, where o, is the electric charge density on the surface of the hemisphere—
to wit (Eq. 3.77) tf, = 3€pF cos f.

/2
I= €i3€nEn /cosaa’ sinfdbdg = 30Ena221r/ sinf cosf df = 30Egma’.
0 0
L

2
But in this case Fo = Vb/d, so|I = %.

/2

san’0
2 o

=1
2

Problem 7.39 z
Begin with a different problem: two parallel L
wires carrying charges +A and — as shown.
b b
Yy
Field of one wire: E = 2,,ms, potential: V = —h(o In(s/a). ot ’\
z

Potential of combination: V = z2-In(s—/s4),

or V(y,2) lﬂto In {%;%’}

Find the locus of points of fixed V' (i.e. equipotential surfaces):

2 2
AmeoViA = = —g’, + 22 = Wb ) =y 2 B 2

1
Plu—1) + 82— 1)+ 22 —1) = 2gb(u+1) =0 = y? + 22 + 1 — 2458 = 0 ( ”*)

1
(y—bB)% + 22+ 1% — 027 = 0 => (y — bj%) + 2% = B2(62 - 1).
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This is a circle, with center at yo = b8 = b(‘%) and radius = b/#2 -1 =1b. 1"7—*'2%?—]%“;—_2& = %
This suggests an image solution to the problem at hand. We want yo = d, radius = a, and V = V;. These
determine the parameters b, p, and A of the image solution:

d_ g _bEH) _p+1 d
a

== g = =a.
a  radius “_‘M N

d?p=(u+1=p? +2u+1=>p? + (24P )u+1=0;

402 22 /T 9aR)7 —4
u=%=2a2—1i\/1—4a2+4m— =2?-1420V/02—1;
4meoVo 4meoVo
——— =hp=—= A
A nH In (202 -1+ 2av0? -1

1=/J-da=g/E.da=ngm:1Az.
€ P’

That’s the line charge in the image problem.

I
The current per unit length is i = — = oA = 4wV Which sign do we want? Suppose

17 e« mIn(22-1x2av/e?-1)

the cylinders are far apart, d >> a, so that & > 1.

() =20% — 1% 20*/1-1/a% = 20* — 1 + 207 [1-%72‘

40® —2—1/20% +--- = 40® (+ sign),

1
:2&’(1;&1)—(&1);@1”.:{_1/4&2  sign).

The current must surely decrease with increasing a, so evidently the + sign is correct:

i= dnoVh where a = d
=— =-.
In (202 -1+ 2avo? - 1 a

Problem 7.40
() The resistance of one disk (Ex. 7.1) is dR = & = -£; dz, where r = (%32) 2 + a is the radius of the
disk. The total resistance is

L
R = E/ _._1—242=ﬁ<L) b_n'l
mJo [(%2)z+a] m\b—a/ | [(}3*)2+q]
_ pL b—a
R CE AN A
(b) In Ex. 7.1 the current was parallel to the axis; here it certainly is not. (Nor is it radial with respect to

the apex of the cone, since the ends are flat. This is not an easy configuration to solve exactly.)
(c) This time the flow ts radial, and we can add the resistances of nested spherical shells: dR = % dr, where

o
. o
A=/o 2sin6df dp = 2mr* (— cosb) |y = 2mr? (1 — cos). b
i) _
R e—

L

L oL 1 1

ozn(b—u)[ G-ata a
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e 1 _ P Th —Tq a _b_ .
2m(1 = cosb) /., rzdr_ 2w (1L — cosf) ( rars ) Ta 'E—smg‘

plb—a) sind o b-a _ L
Irab (1= cosb)’ But sinf = TG and cosd = N/ZEa T
ob—a)? 1

2mab [m,q .

1(6-a)? a) p(b—a)? 1
— 2 2 o d R = =
[Note that if b — e < L, then I+ (b—a)® = L [H ] 2mab (b a)?/2L

L
%, as in (a).]

Problem 7.41

Via(s,6) = Y s*busin(ke), (s<a);

From Prob. 3.23, =
Vour(5,6) = Y s *dysin(kg), (s>a).

k=1

(We don’t need the cosine terms, because V is clearly an odd function of ¢.) At 8 = a, Vin = Vour = Vog/2m.
Let s start with Vin, and use Fourier’s trick to determine by:

Za"bk sin(kg) = Vmb =>Za"bk/ sin(k¢) sin(k'¢) d¢— / ¢sin(k'¢) dp. But

k=1

/ sin(kg) sin(k'g) dp = méyr, and

/_ 1 sin(k's) dg = [ (13)2 sin(k'g) - —cos(k'¢)]| =D eosiig) = —2—’,'(—1)*’. So
— V" [ 2"( =N ] orby = -% (-%)k, and hence Via(s, ) = Z (—;) sin(kg).
Vn

Similarly, Vou(s, ¢) = lt (——) sin(k¢). Both sums are of the form § = Z (—m)" sin(k¢) (with
=1

z=3sfaforr <aandz = a/s for r > a). This serm can be summed exphut]y, using Euler’s formula
(e = cosf +isinf): S =1Im Z (—2)*e™d = Imz (—ze“‘)

But In(1+w) =w— %w + %ws - lw“ = —Z (—w)¥, 508 =—Im[In(1+ze*)].
k=1
Now In (Re*’) =In R +i0, so § = —6, where
tano = Im(1+ze?) g [(A+ze?) —(1+ze™)]  z(e¥-e) _ zsing
0= Re(T+ze9) - L[(1+ze?) + (1+ze?)] iB+z(Ed+e )] 1+zcosd



ssing
a+scos¢

Vals,d) = —tan-‘( ). G<ay

Conclusion:

Vou(s,8) = Dtan-t (%) (> a).

Wour ] 1 (-asing) | _ E[ asing
ds ™ [1_‘_(‘::;;5 )’] (s+acosg)? [~ 7 [(s+acosg)? + (asing)®

__h asing
~ " m \s®+2ascos¢+a?

Wout
8s

OV
s

(b) From Eq. 2.36, 0(¢) = —eo {

WV _ W 1 ((a+scos¢)sing — ssingcosg] | _ Vo asing
8s 0w ssing )’ (a+ scos ¢)? - (a + scos@)? + (ssing)?
1+ (n+:cnso)

1 asin ¢
T m \s®+2ascosp+a?)’

% OVout _ Yo ( sin ¢ eVo_ sing - GoVo
85 [,_y 05 |4y 2ma \1+cos ¢, » S0 0(g) = wa (1+ cos¢) tm(¢/2)

Problem 7.42

(a) Faraday’s law says VXE = —L soE=0= %5 =0 = B(r) is independent of t.

(b) Faraday’s law in integral form (Eq 7.18) says § E-dl = —d®/dt. In the wire itself E = 0, so & through
the loop is constant.

(c) Ampere-Maxwell=> V XB = o + poeo %%, 50 E =0, B=0=> J = 0, and hence any current must be
at the surface.

(d) From Eq. 5.68, a rotating shell produces a uniform magnetic field (inside): B = Zpoowaz. So to cancel

such a field, we need owa = —‘2&, Now K = ov = owasinf @, so [K = _3Bo sinf $.
2 po 20

Problem 7.43
(a) To make the field parallel to the plane, we need image monopoles of the same sign (compare Figs. 2.13

and 2.14), so the image dipole points
(b) From Prob. 6.3 (with r — 22):

3po m?

S gy = Mo h=




138 CHAPTER 7. ELECTRODYNAMICS

(c) Using Eq. 5.87, and referring to the figure: m
@
R\
41r (r ¥ {B(mz-#1) %1 — m2)+ [B(—m 2 £3) &2 + m2|}
3
41:;: % [(B-#1)#1 — (B-%2)%2]. But 2-% = —%-f, = cosf. r
3[‘0 N PO cpa
= (¢ . B =2 .
oy cosO(fy + £2). But £, + 2 = 2sind . N .
= 3"‘—smb‘cosb‘r But sinf = — ,cosﬂ— h,andr1=\/r2+h? 9
2m(ry)3 oY ™
3pomh r -m

2r  (r2 + h2)5/2 =

Now B = po(K x 2) = 2 x B = i x (K x 2) = o [K — 2(K - 2)] = poK. (I used the BAC-CAB rule,
and noted that K - 2 = 0, because the surface current is in the zy plane.)

_ 1. _ _3mh T (5w _ _Smh T N
K= B = C D =~ ey & el
Problem 7.44 z
Say the angle between the dipole (m,) and the z axis is § (see diagram). o+

The field of the image dipole (m;) is _

B(s) = f o 8(ma )2 — m)

for points on the z axis (Eq. 5.87). The torque on my; is (Eq. 6.1)
- __
N=m; xB= m[s(mz<i)(ml x %) — (m; x my)].

But m; = m(sin6% + cos6z), my =m(sinfd% — cosz), somy %= —mcosd, m; X2 =—msind§, and
m; X mp = 2m?sinf cos83.

25in 6 cosf § — 2m*sinf cosf§)] = sinfcos6y.

g —
41:(211 ¥ Lo 4n(2h)?
Evidently the torque is zero for 6 = 0, /2, or . But 0 and 7 are clearly unstable, since the nearby
ends of the dipoles (minus, in the figure) dominate, and they repel. The stable configuration is 6 = m/2:

parallel to the surface | (contrast Prob. 4.6).

In this orientation, B(2) = — g-{#{%y X, and the force on m, is (Eq. 6.3):

_ Spom® N

F=v [_ = Tn(2h)y

__pom®
am(h+2)3 ||,y
At equilibrium this force upward balances the weight Mg:

3ugm?

W:Mgah:
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Incidentally, this is (1/2)'/4 = 0.84 times the height it would adopt in the orientation perpendicular to the
plane (Prob. 7.43b).
Problem 7.45 N N .
f=vXB;v=wasindd; f =waBysinf(¢ X ). €= [f-dl, and dl=adff.
S0 £ =wa?By 'ﬂsmﬂ(d; x 2)-6d6. Butd-($x2) (@ xP)=2-F=cosh.

"/
S:wazBo/ sinf cos 8 df = wa?By [Sln 6] /2
0

o/* =|5wa’Bo | (same as the rotating disk in Ex. 7.4).

Problem 7.46

(a) In the “square” orientation (OJ), it falls at terminal velocity |vsquare (Prob. 7.11). In the

“diamond” orientation (<), the magnetic force upward is F = IBd (Prob. 5.40).

I 4
The flux is & = B [I? — (d/2)?], and d/2 =1/v2 -y,
s0®=B[?-(1/vVZ-y)]

£=-9 = 2B (1/V2—y) % But % = ~v.
Soé= 23" (l/‘/- y) =IR=1I= 25“ (1/‘/- ) =2- % (l/\ﬁ - !1)2 =myg (at terminal velocity).
Udiamon mgk .| (This works for negative y as well as positive, if you replace y by |y|.)
4B2 (1/V2
2
vquare _ (MgR\ 4B% (I/v2—y) - . i ‘
Thus s ( BTzz‘) TTmeRE At flrst (y ~ 1/v/3) the “diamond” falls faster;

toward the halfway mark (y ~ 0), the “square” falls twice as fast; then the diamond again takes over. The
total time it takes for the square to fall is:
1

1, =—
square
Vsquare

(assuming it always goes at the terminal velocity, which—as we found in Prob. 7.11—is close to the truth, if
the field is strong). For the diamond, ¢ is

-2 [ (vE) = 22 [ )|
vz

50 tsquare/tdiamond = 3/2v2 = 1.06. The “square” falls faster, overall. If free to rotate, it would start out
in the “diamond” orientation, switch to “square” for the middle portion, and then switch back to diamond,

8821 I3
ive = mgR3n/z

always trying to present the minimum chord at the field’s edge. z
(b) F IBl; ® =2B [Y, /&> —2%dz  (a = radius of circle).
£~ =-2B\/a? - % = 2Bv\Ja> — 2 = IR. 2
ZB"\/a?—y? 1/2—\/aT——yi So F =18 482 (a? — y?) = mg. z
Veircle = m,
N I 4B ey L )
teircte = e T ng (" y)dy-ng( Y 31’) . ng( )
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Problem 7.47
(a) In magnetostatics
B _ _m [J () x4 .,
VB—O,VXB—mJ:B(r)_M_/—,ﬂ dr’

For Faraday electric fields (with p = 0), therefore,
_ _ 8B _ 18 [B@E,t)x 4
V-E—O,VXE——W:E(r,t)_ w5 —,‘2—-—

(with the substitution J — — 128,

(b) From Prob. 5.50a,
_ 1 B ) x4t , _ oA
A(r,t)—H/ 7 dr,soE_—at.

Check: VXE———— V x A '—BB,audwerecoverFa:adayslaw
ko
c) The Coulom is zero inside ant Si= oinf £ outside. The Faraday field is — 92,
ThClbﬁeld ide and ”” 4“”“ —ry de. The Faraday field i

Tre

where A is given (in the quasistatic approximation) by Eq 5.67, with w a function of time. Letting w = dw/dt,

ml;””rsin&& (r<R),
E(r,0,¢,t) =
oR? [l.oR wo sinf -
eur2r+ 3 = —=¢é (r>R).
Problem 7.48 4B @
GBR = mv (Eq. 5.3). If R is to stey fixed, then gR= = md—lt} =ma=F =qE, or E = R— But
d® dd 1 de 1
fE-dl: - so E2rR = Bl it R—, orB=-2 (m ) + constant. If at time ¢ =0

1
the field is off, then the constant is zero, and B(R) = s\ {7) (in magnitude). Evidently the field at R
must be half the average field over the cross-section of the orbit. qed
Problem 7.49

Tnitially, 2% = ﬁ T=im? =} "(n gg After the magnetic field is on, the electron circles in a
new orbit, of ra,chus et and velocity vy:
mf _ 1 4Q 2_1 1 gQ
= B=T = _,,. 11 4@ B.
1 dmep 12 tm ! IS 2 me + 2(1011‘1

But ry =r+dr,s0 ()" =71 (1+ %)_l 2271 (1- £), while v; = v+dv, B = dB. To first order, then,

1.1 4Q dr\ 1 _ 1.1 4Q
T =t v (1——; +2q(w‘)dB, and hence dT' =T, — =2 dB 3 Iney 12 dr.
Now, the induced electric field is E = LTE (Ex. 7.7), so mf,—': =q¢E= 9,1%, or mdv = £-dB. The increase in
kinetic energy is therefore dT' = d(3mv?) = mvdv = 4LdB. Comparing the two expressions, I conclude that
dr =0. qed
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Problem 7.50

3
E= —%t- = —o. Sothecurrentin R, and Rpis I = ; by Lenz’s law, it flows counterclockwise. Now

R+ B/z
the voltage across R; (which voltmeter #1 measures) is V; = IR; =

(V is the higher potential),

and V = —IRy (Vs is lower).

Problem 7.51

dv d®v _ hBdI hB (hB & hB
£=vBh =—L— F=IhB=mz; EF—WE——;(T) o —wv, | with w= 7

Problem 7.52
A point on the upper loop: ra = (acos ¢z, asin ¢z, z); a point on the lower loop: r; = (bcoséy,bsin ¢y, 0).

T2 —11)? = (acos g — beosdy)? + (asin gp — bsingy)? + 2°
z(;oszzm—2111)4:054#24‘,05‘751 +b%cos? ¢y + a?sin «752-—211bsln¢lsiua$2—l-bzsinzt,tﬁl+z2
= a® + b + 2% — 2ab(cos ¢y cos ¢ +sin gy sin 1) = a? + b% + 2% — 2abcos(¢z — ¢1)

=(a® +5* +2°)[1 - 28cos(d — 41)] = %[l ~ 2B cos(d2 — ¢1)]-

=bdgy ¢y = bdgy[~sin g1 % + cos ¢y 7); dly = adgs B, = adgs[—sin g % + cos $2 3], s0
dl; - dly = abdgy deo[sin ¢; sin ¢z + cos @1 cos ¢] = abcos(de — ¢1) dps dg.

dly - dlz _po_ab cos(¢a — 1)
=y [ty i

Both integrals run from 0 to 27. Do the ¢ integral first, letting u = ¢2 — ¢1:

2m—¢1 2
cosu cosu

T=2eon = | VTP

(since the integral runs over a complete cycle of cosu, we may as well change the limits to 0 — 27). Then the
¢1 integral is just 2w, and

27
_ o /5a cosu _H o cosu
s abf2m o VI—2Bcosu du 2 abﬂ/o V1 ?ﬁcosu

(a) If @ is small, then 8 < 1, so (using the binomial theorem)

1 21+ fBcosu, and /2" oy ds "‘/hcosud +[3/21r<;os2 du=0+p
—_— u, —_—du = i udu = .
V1—-2Bcosu o VI—2Bcosu o o ’

and hence M = (pom/2)/abB®. Moreover, B = ab/(b? + 22), so M = (same as in Prob. 7.20).
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(b) More generally,

(1+e)~ ‘/241——e+ e I

1
16 V1—2Bcosu

3
:1+,@cosu+55’ws’u+g,@3cos3u+~-,

so

2 27 27 2m
M= %Mabﬂ{/ﬂ <:osudu+ﬂ/n coszudu+§ﬂ2/0 cos3udu+gﬁ“’A cos"udu+-~}
=%\/M[0+ﬂ(1r)+gﬂ’(0)+gﬂ’(gw)+-~]=\%W(l+§ﬂ’+()ﬁ‘+m)~‘ ged

Problem 7.53
Let & be the flux of B through a single loop of either coil, so that &; = N;® and &, = No®. Then
_ dd _ de & Ny
&= N[dt’ &= Nz——, 5051 =% qed

Problem 7.54 }
{2) Suppose current I; flows in coil 1, and I in coil 2. Then (if @ is the flux through one turn):

L M M
@ =hLi+ ML =N& & =D+ ML =N3, ord=1t +1,F1=12% +n M

In case I; =0, we have {L = £2;if I, = 0, we have £+ = AL. Dividing: £ = £, or L;L, = M*. qed
(b) ~61 =42 = L 4 + MM Vicos(wt); —€; = 402 = Loy 4fz + M—x =-LR. qed
(c) Multiply the first, equa,tlon by Ly: LiL,% + Lg"-’lM LyVi coswt. Plugin L4z = ~LR — M4,

LV

M"’%l ~ MRI, - M2 = L V; coswt = | Ip(t) coswt. | L4 + M (5% wsinwt) = Vi coswt.

MR

ah, Wi Ly . Vi (1. Ly
== — 22 L) =X (= puc3 .
" (ooswt 3 wsinwt | = | L(t) e sinwt + & coswt)
Vout LR ~LVicoswtR L, N, ) A N
=2t _TMRZPWRR 2 2 g 22,
(d) Vo = Vicosat Vi coswt i A he ratio of the amplitudes is A qed

Vi 1 Ly V1) 1. L
(€) Pn=Vinli = (Vi coswt)(L—ll) (— sinwt + 3 coswt) (ljx (;smwtcoswt + izcoszwt) ‘

L 2
¢ QVI) cos? wt. | Average of cos?wt is 1/2; average of sinwt coswt is zero.

2
So (P = 504" (72 )5 (o) = 50417 [ 20 ] = 300 [ ] ) = cpuy = G20 T2,

Pous = Vouslz = (I)?R =

Problem 7.55

(a) The continuity equation says g —2 = — V- J. Here the right side is independent of ¢, so we can integrate:
p(t) = (= V- J)t+ constant. The “constanl;” may be a function of r—it’s only constant with respect to ¢. So,
putting in the r dependence explicitly, and noting that V-J = —j(r,0), p(r,t) = p(r,0)t + p(r,0). ged
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(b) Suppose B = 71 [ dr and B = 42 [ 2% dr. We want to show that V-B = 0, VXB = o+ ioeg 25

Treo

VE= %p, and VXE = —%, provided that J is independent of ¢.

‘We know from Ch. 2 that Coulomb’s law (E =us/ ,%? dr) satisfies V-E = %p and VXE = 0. Since B is
constant (in time), the V-E and V X E equations are satisfied. From Chapter 5 (specifically, Eqs. 5.45-5.48) we
know that the Biot-Savart law satisfies V-B = 0. It remains only to check VX B. The argument in Sect. 5.3.2
carries through until the equation following Eq. 5.52, where I invoked V' -J = 0. In its place we now put
V.= —p

o R
VXB = o — i‘i / (3-V)2% dr  (Bgs. 5.49-5.51)
us 2 -
-3tV & (Eq. 5.52)
Integration by parts yields two terms, one of which becomes a surface integral, and goes to zero. The other is

4, 2,
FV' 3= 5(=4). So:

_ Mo B, oo a( 1 (g \_ 5E
VXB = poJ 4"/,‘2(I’)dT—UoJ+llo€nm{4—1rE“ ,L,d"'}—lln-]‘i'!‘nenm- qed

Problem 7.56

1 (=Ndz
dmeg 22

-y

(2) dB, = sinf

vt

no A / zdz A [ -1
" aney ] (24232 dmey | VR 4 82
A

1 1
E’:Ru{\/m‘\/m}'
®

vi—e

-
E_41ren o

2—’:; [\/(ut — P +a? = R T - (- o) + (v8)] I

@ 1 1 A o
i G et Vet

dép | A v(vt —€) v(vt)
=== =|s{ - ————+ 20 .
@ fa= a0 2{\/(ut—e)’+a2 N T
Ase— 0, vt < ealso — 0,50 Is & $(2v) = v = I. With an infinitesimal gap we i the ic field

to displacement current, instead of real current, but we get the same answer, qed
Problem 7.57

10 ( 0(zf) Bf) _zd ( df\ _ 4 (4N _ g _ =
(a) V2V = ——(s ) + 5 = (s—) =0= A (s ) =0=s A (a constant)
ds

A? =df = f = Aln(s/s0) (so another constant). But (i) = f(b) =0, so In(b/so) = 0, s0 sp = b, and
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V(s,z) = AzIn(s/b). But (i) = Azln(a/b) = —(Ipz)/(ma?), s0 A = ::2 ln(; T [V == 1’(‘;: ;::EZ:;
oy OV W I 1 Do), [ Ip 2, N,
O B ==V =~ S g = e T na? inla/b) L | 7 (/) (s S+in (b) 7).

200 = 0~ 80~ [ty () - - [

Problem 7.58

P
1
' / 'f/ - % /e |
h/
t T
() Parallel-plate capacitor: E= ~0; V= Fh= L 2p o= @
€0 € wl

= I SR _ ol _ koh
(0) B =pioK = o7 ® =Bl = lp = pr o p = B0y

(©) = (47 x 1077)(8.85 x 10712) ={1.112 x 107 §? /m?.

(Propagation speed 1/vLC = 1//finép = 2.999 x 108 m/s = ¢.)

(d) D=0, E=D/e=al/e, so just replace ¢ by ¢;
H =K, B=pH = pK, so just replace pg by p.

Problem 7.59

(a) J = o(E + v x B); J finite, 0 = 00 = E + (v x B) = 0. Take the curl: VXE + Vx(v x B) = 0. But
Faraday’s law says VXE = —%. So %= VXx(v xB). ged

(b) V-B=0= §B-da=0 for any closed surface. Apply this at time (¢ + dt) to the surface consisting of
S, 8, and R:

/ B(t+dt)~da+/ B(t+dt)~da—/B(t+dt)~da=0
s R s
(the sign change in the third term comes from switching outward da to inward da).

d‘I>=/S'B(t+dt)~da—/SB(t)~da=/s[B(t+dt)—B(t)]-da—/RB(t+dt)~da

%‘t—’dt (for infinitesimal dt)

dd = { A %‘; . da} dt — /RB(t+dt) [ x v)dt] (Figure 7.13).

Since the second term is already first order in dt, we can replace B(t + dt) by B(t) (the distinction would be
second order):

d@:dt/s%da—dt}i?«(d;(Z:dt{/‘g(%—]?)~da—/svx(va)-da}.
v X .



d® 0B
E—L[W—VX(VXB) ~da=0. qed
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Problem 7.60
@

V.-E =

V-B =

VXE =

VxB =

()

1 g

1
(V~E)cosa+c(V-B)sina=?pecosa+aunpmsiua
0
1 . 1 1 . 1,
—(pe cos@ + cpoeppmsine) = —(pecosa + —pmsina) = —pl,. v
€p € c €0
1 1
(V-B)cosa — Z(V - E)sina = popm cosa — b sina
0
1 N N
Ho(pm oS0 — ——p, sin @) = g (prm COS & — cpe SINQ) = poply. v
Clo€p
(V xE)cosa+¢(V x B)sina = (—ung - %3) cosa+c¢ (pn-], +m6n%3) sina

. 8 1. _ , 8B’
—o(Im cosa — cJ.sina) — s (Bcoscz~ zEsma) = —pody, — 5 v
1 . OE 1 8BY .
(V xB)cosa — Z(V x E)sina = (y.o.], +#n€n§‘) cosa - - (—qum - Ft‘) sina

1 2] B’
Ho(Je cosa + =T sina) + oo gy (Beosa + cBsina) = 2oJl, +m£n§é?~. v
4.(B'+v xB") + ¢, (B' - ;21—v x E')
(q,cosa+%qmsiua) [(Ecosa+china) +v X (Bcosa— %Es‘um)]
N 1. 1 .
+ (gm cosa — cge sina) | Beosa — zEsmzx - c_2v X (Ecosa + cBsina)
Qe[(Ecos2a+chixlacosa—chinozcosuz—bEsi.n’a)
+v x (Bcos’a - %Es’macosa + %Esimm‘,osuz—l~Bsi.n2 a)]
1. P 2 1.
+q,,.[ ZEsmacosa+len a + B cos’ a—ZEsmacosa
+v x (lBsinuzcosoz— -12-Esinzuz - l]:'J(;oszoz - lBsinacoscz)]
c c c ¢

q,(E+va)+qm(B—%vxE)=F. qed




Chapter 8

Conservation Laws

Problem 8.1
Example 7.13.
B=21g
2meo s B x B 5
_mwll __( *B) = 41r2es2’
T oms
Al 1 A
P= /S da= /S21r3ds_ pron /;d —Hln(b/a).
Bu:v=/E-dl_2m/ ds_—ln(b/a), so[P=1V.]
Problem 7.58. o
E=—2
€ 1
. S= ”(ExB) 9
= oK% =L 0
B=wKz= ” b3
olh o
P=[S-da= h=— = cdl= —
/ a = Swh = 2%, but v /E a=Zh, so[P=1V]
Problem 8.2

@e=2s g=%; Q) =TIt = B()

OE Ims?
B2ws = poeoﬁns = menm = B(s,t)

1 1 It \* 1 Is\®
(b) tem = 3 (EoE2 + EBQ) =3 [En <1ren_a"’) + n (;;ai) ] 2,,.201 [(‘11)2 (s/2)%].

1= hmem =& () (58) -

146
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Qe _ proI? _ _ I _ It Ottem
B e TV S G v (9= Pt~ B v
13‘ b
2 iy
(©) Uem —/uemw21rsds 21"”2'”’1:4,/ [(et)? + (s/2)® ]sds— 1ra4 4 4] R

ver a surface at radius b: B, = —/S-da: m[bs~ (2mbws)] =

2
= Pa. v (Set b = a for total)

Problem 8.3

F=4¢ T d 4 [sq
_f’l‘- a-—msna/ iT.

The fields are constant, so the second term is zero. The force is clearly in the z direction, so we need

1 1
(T-da); = Tdag+Teyday+Tsyda, = P (B,B,dat +B.B, da, + B.B, da, - ;B* da,)
o

1 1
= B,(B~da)—§B2da,]A

~ 4
Now B = %unxfﬁui (inside) and B = %(Zcosﬂi +5in06) (outside), where m = ZwR*(owR). (From
Eq. 5.68, Prob. 5.36, and Eq. 5.86.) We want a surface that encloses the entire upper hemisphere—say a
hemispherical cap just outside = R plus the equatorial circular disk.

Hemisphere:

B, = [2cose(r),+sma(é)] ™ [2cos?6 —sin?6] = ““’" " (3c0s?0—1).

44rR3
da = RPsinfdfdgf; B-da=1 ”“"‘

B = (f“}’;) (40?0 + sin? e):(;‘:}’;) (3cos26+1).

8. = 1 (pmm 29 _ 2 _1 2 2
(T-da), = E(«mm) [(3cos 6-1)2c086R?sinddf d — 3 (3cos* 0+ 1) R sin O cost d d

4mR3
(20056‘)122 sin@df d¢; da, = R’sm9d9d¢ cosf;

) [R"’ﬂuﬁcosﬁdﬂdq&] (12cos?8 — 4 — 3cos*6 — 1)

(9cos? 6 — 5) sin 6 cos 6 df dp.

/2 /2

= ko fow
) 3
R? swR2\*[ 9 5
( 3 ) (960536 5cosf) sinfdf = ‘Aoﬂ'( ) [—Zcos‘0+§coszﬁ]

3

(Phemi), =

©[E

0

I
=
S

owR? 5\ _  por (owR? 2
"( 3 ) (°+2‘§)‘"T(T :
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Disk:
B, = %ugo‘Rw; da=rdrdpd=—rdrdpz;
2 s (2 2
B.da = Ag,uovm;n'drcw; B* = 5,uor:er 5 da, = —rdrdg.
(T-da), = l(Z on)2 [—rdrd¢+ rdrdqs] L ( om) rdrdg.
2 = ™ 3#n 20 3110 .
owR\?, [ owR?\?
(Faisk), = *2;10( 3 ) 27r/rdr=—21r;.q,( ) .
o
Total:
F=-muo (U— agrees with Prob. 5.42).
Problem 8(._:1 .
(2) (T - da), = Ta dag + Toy day + T da,.
But for the zy plane da, = da, = 0, and da, = +a
—rdrdg (I'll calculate the force on the upper charge). 2
al
o 1 r\,&
(T -da), =€ | E.E, — 5E’ (~rdr dg). /\
aj
Now E = ——23 cos0%, and cos = 7, 50 B, = v
4meg 'L 2 —q
2
2 q T
0, E®> = (2“0) o +a2)3' Therefore
1 3 dr 217 o,
o= za (21ren) / 2 +a2] T’"i/ u+a’)3 (etting u = %)
o
e[ 1 e e b2
T 4dme2 | (u+a?) 2(u+.12)3 T dmeo 2 2a%
(b) In this case E = —4——2— sinf# %, and sinf = % S0
2
2 _m_ [ g 1 o __&( g rdrdé
E*=El= (—2“0) _(r"’ Ty and hence (T - da), = 3 (—-—-2“0) —('a sl Therefore
2 o0
__«wfqa rdr__ga® 1 _ ¢ _
= 2 (21reo) 2 (2 +a2)® “irey 4(,2 +a2)? R = Tire 0+ 4a‘ -
o
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Problem 8.5
(a) E; = E, =0, E, = —0/ep. Therefore
€ o? 1 & o2
Toy=Tez =Ty = =0 Toa= ”"=—?DE0=_§E.;; Ta=c (E’;’—EE”) =gE= 2

“1 0 o0
F= ;i 0 -1 0 |.
N0 0 +1

() F= }( "f‘ -da (8 =0, since B = 0); integrate over the zy plane: da = —dzdy?2 (negative because
outward with respect to a surface enclosing the upper plate). Therefore

2
F, = /T,, da, = —;T‘)A, and the force per unit area is f = F

is the momentum in the z direction crossing a surface perpendicular to z, per unit
area, per unit time (Eq. 8.31).
(d) The recoil force is the momentum delivered per unit time, so the force per unit area on the top plate is

(same as (b)).

. Problem 8.6
© () Pem = €0(E xB) =EBY; Ppem =
(b)I= / Fa‘t—/ I(1xB)dt = / IBd(2z x %) dt —(de)/ (——) dt

= —(Bd§)[Q(c0) — Q(0)) = BQdAY. But the original field was E = g /ep = Q/ep A, so Q = g EA, and hence
- I= as expected, the momentum originally stored in the fields (a) is delivered as a kick to the
capacitor.

© _7( E-a=-2_ —%u (for a length I in the y direction). —IE(d) + [E(0) = —ld—B =

E(d) - B(0) = dﬁ. F = —0AE(d)y + cAE(0)§ = —cA[E(d) — EQ)]§ = —aAd— g 1= / Fdt =

~(oAdy) / 22 dt = —(0Ad$)[B(o0) — B(0)] = 0 AdB §. But E = g sol= as before.

. Problem 8.7
B = ponli (for a < r < R; outside the solenoid B = 0). The force on a segment dr of spoke is

dF = I'dl x B = I'gonl dr(f x 2) = —I'uonl dr .
The torque on the spoke is

R
N= /r x dF = I’mm[/rdr(~f x )= I’mn]% (B2 - @) (-2).
H
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Therefore the angular momentum of the cylinders is L = / Ndt = —%unnl (R?—a?) 2 / I'dt. But [I'dt=Q,

80
lmle(R’ —a®)z| (in agreement with Eq. 8.35).

Problem 8.8
(2)
0, (r <R) 2poM 2, (r<R)
E= ;B= (Ex. 6.1)
9 BO Ty o508 4 5in 08

Tom® C>B) et [2wsar+smee], (r>R)

(where m = %nRsM); =¢e(E xB) = (41( (r x B)sinf, and (£ x ) = B, so
o _ ko Q
L=rxp= @y - smﬁr><$)

But (£ x ¢) = —0, and only the z component will survive integration, so (since (6); = —sind):

_ kom@ sin® 6 ",3 _4 fl _ (.1 °°_l
L= Ty Z = (?sin 6 dr df dg) . /d¢ 2m; /sm 9df = 3 = dr= .=
] 3

-fteen (5) (3)

(b) Apply Faraday’s law to the ring shown:

— Eomrsnd) = %  _reinoyt (Zuet™
}{E-dl—E(Zvrrsme)_ i m(r sin §) (S#Ddt)

sin @) ¢.
. poo dM .
The force on a patch of surface (da) is dF = cEda = ———(r sinf)dad (o=
The torque on the patch is dN = r x dF = b dM (r sing) da (£ x ). But (F x ¢) = —6, and we want

only the z component (6, = —sinf):
N= —Mﬂi/rﬁsmza (r2sin8dd dg).

3 dt
x 2

Here r = R; /s’m“ﬂdﬂ:%; /d¢=2ﬂ,SON_—%ﬂ R‘( )(21r

0 o

(same as (a))-

0
L=/Nd¢=—?§oﬂﬁi/w=
M
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(c) Let the charge on the sphere at time ¢ be g(t); the charge density is o = 43}22A The charge below

(“south of”) the ring in the figure is

I3

=0 (2rR?) /sine‘de’ = g (~cost)[F = %(1 + cosh).

o

So the total current crossing the ring (flowing “north”) is I(t) = —-2-&(1 + cosf), and hence
1 dg(1+cosf) . _

K(t) = 21rRsm9\ -0) = TEd snd . The force on a patch of area da is dF = (K x B) da.

3 M 5 M o

Baye = {spoM + i“’ 3"—(2cos9f +5in86) % =0 195 + 2cos7 +5in 0.6];
KxB=-L 1 dgpoM (1+cosﬁ)

@Rdt 6 [2(0 x ) +2cos 0 (6 x £)].

-4

_ N _ oM @ (1 + cosf) . A _ N D2 s
dN = RixdF= 2n (dt) ey 2[ Ex(@x3z) cosf (f x ¢)|R?sin 6d6 d¢
(¢ -2)—3(2-0) -6

oM _ BoMR?

127 6m

The z and y components integrate to zero; (), = —sin, so (using / do = 2m):

_ mMER® (dg /" oo _mME? (dg\ (s’ cos*9\|"
N, = T(E (2m) [ (1+ cosf)cos@sindf = el 3 3 A
0
_oMR? (de\ (2Y 2o pads [ 2oy poda .
3 \a)\3) =9 MEG |[N=-g MRg?

Therefore

(same as (a)).

0
L:/th:—%MRzi/dq
2

. same answer using either the inside field or the outside field.)

- (%) (1+ cos 0) R2[cos 6 6 + cos 6 6] df dp = (%) (1 + cos ) cos 00 des 6.

- (Lused the average field at the discontinuity—which 1s the correct thing to do—but in this case you’d get the

Problem 8. 9
(a)E——?{, & =ma®B; B = ponl,; £ =I.R. SolI, 7—v(un7m n)%
_ _dd _ A _ 1 dl, ; - _ mlr b
ﬂ:)fE-dl_—E = E(2ma) = —poma’n A =>E= 3 Fn ¢.B= ) (b2+22)3/2

_1 1 poan dl;\ ( pol. b? U ab’n :
5= M(E *xB) = E ( 2 dt ) (T (v? +12)3/2 (@ox2)= 4“01 dt (b2 +22)3/2

z (Eq. 5.38).
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Power:

~
I

oo
B 1, d
/ S-da—7[0 (S)(2ma) dz = ~mpoatnl, T2 / T 12)3 do

The integral 1s

z 1 2
bz\/;-frp[_w“b?_('b_z) ®
= (nuoa n%) I = (RI), = ,’R. qed

Problem 8.10
According to Egs. 3.104, 4.14, 5.87, and 6.16, the fields are

1
"3 b (r<R), %qu, (r <R),
E= B=
Hom A
prb [3(p #)&-p], (r>R), G Bm-Bf-m], (> R),

where p = (4/3)7R°P, and m = (4/3)rR*M. Now p = ¢ [(E x B)dr, and there are two contributions, one
from mside the sphere and one from outside.

Inside:
- ! 2 =2 =2 dep = B ponR®
P = en/ (_3_50P) x (EMDM) dr = guo(P x M)/dr— 9,un(P ><M)31rR = 27;.«,1rR (M xP).
Outside:

Dot = o= [ £ (30017 = pl x 30m - = i} dr.

Now £ x (pxm) = p(§-m)—m(#-p), so £ x [f x (p x m)] = (§-m) (£ x p) — (#-p)(F xm), whereas using the BAC-
CAB rule directly gives £ x [f x (pxm)] = #[f-(p x m)] - (pxm)(#-£). So {[3(p-F) - p] x [3(m-£)f —m]} =

—3(p-F)(Fxm)+3(m-F)(Fxp)+(pxm) = 3{E[f - (p x m)] - (p x m)}+(pxm) = —2(pxm)+3¢[F-(pxm)].

Ho 1 ofa N
Pout = W/rvﬁ {—2(p x m) + 3&[E - (p x m)]} r?sin 6 dr db d¢.

To evaluate the integral, set the z axis along (p x m); then # - (p X m) = [p x m|cosf. Meanwhile, =
sinf cos ¢ X +sin@sin ¢ § + cos @ Z. But sin ¢ and cos ¢ integrate to zero, so the % and § terms drop out, leaving

o 0 ] ) R .
Pow = i (/0 Fdr) {—2(pxm)/s:nadod¢+3|pxm[z/cos’esmodadas}
_ o (1T
T o16n2 \ 3% )|,

_ 3 4 _ o0 3
= 12”R3 (37&2 P) ( TR'M ) = Z2R(M x P).

[—2(p x m)4m + 3(p x m)%r] =-— P X m)

Ho (
127 R3

8
Pt = (57* 27) 1R} (M x P) =
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Problem 8.11
(a) From Eq. 5.68 and Prob. 5.36,
L E= _2 5 witho = —°:
r<R:E=0, B—Eumr}hu'z, wit] = R

=l eip_tom # +5in86), with m = —rowR!
r>R: E= e r2 ,B—41rr3(2ws€r+smﬁe), w1thm—31me.

The energy stored in the electric field is (Ex. 2.8):

L

W = 8meg R’

The energy density of the internal magnetic field is:

_ 1 on_ 1 (2 e _ pow?e? _ powtel 4 oy poe’w’R
v =208 = o (3“"3"’%}22) = 7o 0 VB = eyl 5ar
The energy density in the external magnetic field is:
1 2w Ry 1
2#0161r2 r‘ (4cos26‘+s1n 6) = WT—S(Sws’9+1), 50
2, ,2 pd
_ pectuR 2 /  poe?w?RY 1 oW’ R
Ws,, = —(18)(16)7r’ r dr/(scos 6+1)sinfdf | dp = e @ @)@2r) = —1[ .
?R ew’R 1 e2w’R
Ws = W & 1) = BCWR = Hoe’w’R
] B + W, @+1) ="~ Wg +Wp = o R + o

(b) Same as Prob. 8.8(a), with Q = ¢ and m — %euR2

; oe? I3 _ 97k (9)(m)(1.05 x 107%)
(¢) 5—=wR = :uR _m7 23 x 10"%m/s.

18w uoe2

1é wR 2 wR 2 (9.23 x 10102 "
=me’; =1+ (=] =210x1
BmR[hL (C)] me’; 1+9( ) 1+9( 3x 10° 0 x 10%,
(2.01 x 10%)(1.6 x 10719)2 9.23 x 10-10
= = = =313 x 1 1
B @m0 R 0@ x 105~ L2 x 10 2,95 x 10-11 3 x 10%! rad/s
Since wR, the speed of a point on the equator, is 300 times the speed of light, this “classical” model is clearly

unrealistic.
Problem 8.12

_ % T,
dmeg 3’
B = Hodm ' _ polm (r = d2)
4r 13 4r (r2 +d? — 2rdcos§)3/2”
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Momentum density (Eq. 8.33):

HoGedm (=d)(r x2)

=a(BxB)= (4m)? 13 (s2 + g2 — 2rd cos )/

Angular momentum density (Eq. 8.34):

H09egmd r % (rx%)

. Butrx(rxz)=r(r-2)—r?%=r?cosff -2
(n)2 13 (2 + & — 2rdcosB)/2 (e x2)=x(r-8) TeosTEm T

L= (rxp)=

The z and y components will integrate to zero; using (£), = cosf, we have:

H0Gedmd ./ rcos?9 1) 2y -
L = Z sin@drdfdg. Let u=cosf:
(4m)? 3 (r? + d2 — 2rdcos 6)*/
_ Hogegmd / / rl=v)
(4m)* (r2+ d2 2rdu)*/? ’
Do the r integral first:
rdr (ru—d) | u d u+1 1

@ wd) | Al - Wt E—Trdal,  d(-a)  dA-wd  d0-w)  di-u)
Then

2
du= HoGeGm

2 1
(14 u)du = 22eIm 5 (2] =
8 7)1,

Problem 8.13
(a) The rotating shell at radius b produces a solenoidal magnetic field:

B = oK £, where K = opuwpb, and 03 = —% SoB = "‘;ubQ zZ(@<s<b).
The shell at a also produces a magnetic field (uow,Q/2n1) Z, in the region 8 < a, so the total field inside the

inner shell is
B= I-mQ

T Wa—w) 2, (s<a).

Meanwhile, the electric field is ) o
1 N N
E= Smen s Zmegls

b= ao® xB) =co (72 )(—““‘”"Q)<exz)=“°“"02$; t=rxp=t®

2mepls 2wl 4m2[2s

(a<s<b).

(r 4.

47r’l2s

Nowr X ¢ = (88 +2%) X ¢ = 82 — z8, and the § term integrates to zero, so

Wi wpQ?
_“;’r;"z’ /d Bl - iz =




;
i
r
,
[
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(b) The extra electric field induced by the changing magnetic field due to the rotating shells is given by

de 1d
E27r3——E =>E7—%5¢,andmthereg10na<s<b

UﬂQWbW(sz_az) qu (wat® —ns?) ; B (3)=_LM ( 2dws

_HQ 2 _
8= W mwlma® -5 2ms 2 a

2rl
In particular,

_poQa (dwg dw,,) #OQ(den o dwp
Bla) = -7 ( & and By = —g (o* 5 -V 57 ) 6

The torque on a shell is N =r x ¢E = ¢gsE %, so

%) ¢

N, = ga(-t32) (ﬁ_dﬂ) 5 oL=[N ar= -0 s
4l
_ HoQ zdw . __/ _ 2 52\ .
Ny = Qb( Mb)( = L= [ Nea=9 ? (P — V) 5
Lt = La+Ly= Q (a%wa — b2wp ~ ®w, + a%wp) & =

Thus the reduction in the final mechanical angular momentum (b) is equal to the residual angular momentum

in the fields (a). v/

Problem 8.14 P
B=yponlz, (s<R); E= e 2 where 2 = (z — a,y, 2).
= B xB) = aunt) (7-) J0x2) = 20y 2 - (o - a)9].
Linear Momentum.
p = /pdT = %:I [(Iz);—);fy;_‘:zwdzdydz. The % term is odd in y; it integrates to zero.
—#‘ZI:I ¥y / [—(z——;)%m—z,‘,]a“dzdydz Do the z integral first :

z 2
- +12 /@ -+ + 22| (3= +4?

- #nqnl / = _zm);:)L A dzdy. Switch to polar coordinates :
z= scosqS, y=ssing, drdy = sdsdg; [(z —a)® +y?] = s* +a® — 2sacos¢g.

_ _pognl o (scos¢ —a)
T T y/(92—l~a2—2511(:05113)5“1844s

2" cos¢dp 2w
N°w/‘, (A+Bcos¢)‘§(1_

)A M dp o
’ A (A+Bcos¢) VAT-B?

Here A% — B? = (s? + a%)? — 4s%% = s* + 25%a% + o' —4s%® = (s — o), VAT — B2 =a’ - 5"

ugqnl _ a? + % qn)',./’"
T2 [l (a2—92 s"’) sds = o sds
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Angular Momentum.

/'Z)q,g rxfyx—(z—a)§] = {z(z )%+ 297 — [z(z — a) +¢*] 2} .

The % and § terms are odd in z, and mtegrate to zero, so

L = #oan / @ Ia):f y; 122]3/2 dzdydz. The z integral is the same as before.

ﬂoqﬂ

£ = rxp=

_ ,unqnl z2 4+ 4 —za _ an 8 —acos ¢
- /[(z a)? + 7] dody = @+a— 2sacos¢)s dsdd

a? 2 R 2 2
+ 8 _ 8% — g
T‘?Q—l-(l—az‘ﬁ)]sds:-poqn[z/o S geds=

= 'poqnlz/[a

Problem 8.15
(a) If we're only interested in the work done on free charges and currents, Eq. 8.6 becomes

d:;’ /(E I5)dr. ButJf——VxH—aa—]?(Eq.7.55),50E-J,=E-(VxH)7E-% From product
rule#G,V~(EXH):H(V><E)—E~(VxH),whileVxE:—%,so ]
E-(VxH)=-H gt V - (E x H). Therefore E-J; = —H - %—E %? V - (E x H), and hence

aw aD 5B
W__/V(E S +H- W)dr—?i(ExH)wia.

This is Poynting’s theorem for the fields in matter. Evidently the Poynting vector, representing the power per
unit area transported by the fields, is S = E x H, and the rate of change of the electromagnetic energy density

oD
5 =B g tH g

For linear media, D = ¢E and H = lB, with € and 4 constant (in time); then
i

is

Suem _ . OE 1 8B _
5 = F B G 2 t(E B+

50 tiem = 2(E-D +B-H). qed
(b) If we’re only interested in the force on free charges and currents, Eq. 8.15 becomes f = psE + J; x B.
D D
Butp,=V~D a.ndJ;:VXH»B—,sof‘—-E(V«D)qt(VxH) xB - (6_) x B. Now

ot ot
(D><B) —xB+Dx(—aE),:md?—]3=—VxE soixB~ D x B) + D x (V x E), and

2”&(13 B)= 26t(E D+B-H),

ot ot ot Bt(
hence f =E(V-D)-D x (VxE)-Bx (V xH) - %(D x B). As before, we can with impunity add the
term H(V - B), so
f={[E(V-D)-D x(VxE)]+[H(V B)-Bx(V xH)]}—%(DxB)A

|
The term in curly brackets can be written as the divergence of a stress tensor (as in Eq. 8.21), and the last ‘
term is (minus) the rate of change of the momentum density, p = D x B.
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Electromagnetic Waves

Problem 9.1
% = —24b(z — vt)e~t=%; —62f‘ = —24b ¢4 — 2b(z - vttt
ofh _ —b(a=ut)?, 32f1 —b(z—-vt)? 2 —ba—uty?] _ 20%h
L = 24bu(z - vhje =24bv [ ve +2bu(z — vt)%e ] =i
% = Abooslp(z - vt)}; 222 ‘9% = —AWsinfb(z - v)];
_ % = —Abvcosb(z — ut)], ati = —Ab*?sin[b(z — vt)] = v26 f2
Oy Me—v) B A 8Ab’(z~ut)2 )
1 0z | Bl—vt)Z+ 12 822 [lz—vt)+1P2 ' [b(z —vt)? + 1]’
Ofs _ _2Ab(z—vt) Ofs _ _ —24b* . 8Abv? (2 — vt)? ,a{f;
8 [pz—vt)2+ 1]2y B2 T blz—vt)2 + 12 Bz - vt)2 + 1P TN
% = _9 AR, p—b(b2P4ut). ﬂ — _9Ap2 [o—b(b22+ut) _ op2,2,-b(bz2+ut)] .
= -2z P = A [e %Ws2e E
aaﬁ = Abpet e, ézﬁ =Abzvae-b(b;=+m 7&“2321;4‘
it
% - Abcos(bz)cos(bvt)a, £ O fs A sin(bz) cos(but); af: = _3AB*0% sin(be) sin(but)’;
2
% = —6Abv*tsin(bz) sin(but)® — 9AbSUEH! sin(bz) cos(but)® # u’a /"
Problem 9.2
2
U = Akcos(ke) coslhur O <~k sinka) cos(lat)
of  _ - . L &f _ 2,2 _ 20
i — Akvsin(kz) sin(kvt); Fro Ak*v* sin(kz) cos(kvt) = v/ £
- Use the trig identity sinacos 8 = §[sin(a + ) + sin(a — f)] to write
= % {sin[k(z + vt)] + sin[k(z — ut)]};l

157
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which is of the form 9.6, with g = (A/2)sin[k(z — vt)] and h = (A/2) sin[k(z + vt)].
Problem 9.3
(A3 = (Ae*™) (Ase™™) = (A1 + Ape'®) (Ao + Age™"52)
(A1)% + (A2)® + Ay Ag (1672 4 e7016¥02) = (A1) + (A2) + A1 A22cos(6) — Ba);

I

A5 = (VT ) + 24 Ar cos(s — ).
Aset™ = Ag(cosds +isinds) = A1(cosby +isindy) + Ay(cosSp + isindy)
_ . . . _ Assindy _ Aisindy + Apsindy
= (A1c088) + Ay cosdy) + i(Aysind, + Azsindy). tands = Tycosds ~ Aycost F Apaoshy’
_1 [(Aisind; + Aysindy
_ 1
g = ten (A1 cosd; + Azcosdy )

Problem 9.4
8f  18%f

The wave equation (Eq. 9.2) says —% = Look for solutions of the form f(z,t) = Z(2)T(t). Plug

#Z _ 1, &T o er
this in: TEzT = ﬁzﬁ Divide by ZT : e The left side depends only on z, and the

right side only on ¢, so both must be constant. Call the constant —&2.
2 2 K — 1k
o = -k*Z = Z(z) = Ae'** + Be k2,
% = —(kv)®)T = T(t)=Ce*t 4 De kvt
(Note that k must be real, else Z and T blow up; with no loss of generality we can assume k is Ppositwe.)
f(2,1) = (Ae** + Be*%) (Cetkvt 4 Demikvt) = A, ilksthor) 4 g, oube—kut) 4 g oil=heskut) o g orl—ka=kot)
The general linear combination of separable solutions is therefore

0
Fz,t) :/ [Al(k)ex(kzﬂut) + Ag(R)e B0 L g (k)erl—ks+un +A4(k)ﬂ;(-k;-m)] dk,
0

where w = kv. But we can combine the third term with the first, by allowing k to run negatwe (w = |kjv
remains positive); likewise the second and the fourth:

oo
Fla,t) = / [A, (Ryertkston 4 Az(k)ez(lcz—u')] dk.
oo
Because (in the end) we shall only want the the real part of f, it suffices to keep only one of these terms (since

k goes negative, both terms include waves traveling in both directions); the second is traditional (though either
would do). Specifically,

Re(f) = /je [Re(41) cos(kz + wt) — Im(A, ) sin(kz + wt) + Re(4s) cos(kz — wt) — Im(A2) sin(kz — wt)] dk.

The first term, cos(kz + wt) = cos(—kz — wt), combines with the third, cos(kz — wt), since the negative k is
picked up in the other half of the range of integration, and the second, sin(kz +wt) = — sin(—kz —wt), combines
with the fourth for the same reason. So the general solution, for our purposes, can be written in the form

-
fz,t) / A(k)e**=“Y dk qed (the tildes remind us that we want the real part).
o
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Problem 9.5 dg; _ _18g: Ohr _ 10hg 8 19,
gr _ 2991, 0w _ 10k Ogr 1097
Equation 9.26 =>g1; tzﬂ)+hn(01t;h—(gr() t). Noaw ?z —) P TR Tl wot
. 1 dgr(—v1t) | 1 Bhr(uit 1 9gr(-vat _u
Equation 9.27 = P 5 R T = gr(-ut) — hg(nt) = EgT( vat) + 5
(where « is a constant).

2
Adding these equations, we get 2¢;(—vit) = (1 + %1) 9r(—vat)+k, or gr(—vat) = ( V2
2

nto )yl(—Ult)
). Now g1(2,t), gr(2,1), and hg(z,t) are each functions of a single variable u (in the

(where &' = —&- v
v+

first case u = z — vy, in the second u = z — vat, and in the third u = 2z + v1t). Thus

!i (v2+ )g,(ulu/v;»)+/c

Multiplying the first equation by v; /vs and subtracting, (1 — —) gr(~vit) — (l + ZJ) hr(uit) = & =
2

hr(nit) = (:f;:;)g,(—u,t)—m(ul’fw) or | ha(u) = (v -

[The notation is tricky, so here’s an example: for a sinusoidal wave,

%) ort-u) 4.

g1 = Arcos(kiz—wt) = Arcoslki(z—mt)] = gr(u) = Arcos(kyu).
97 Ar cos(kez — wt) Arcoslka(z —vat)] = g7(u) = Ap cos(kou).
hp = Apcos(~kiz—wt) = Agpcos(-ki(z+wni)] = hn(u) = Apcos(—kiu).

2  Ap_v-—
v +ve’ Ar v[+u

_ a2
)--27]

Here &' = 0, and the boundary conditions say % = L (same as Eq. 9.32), and —k1 =k
T
(consistent with Eq. 9.24).]

Problem 9.6

_of

(a) T'sinfy — T'sinf_ = ma =

r(%

dz 8z
(b) Ar + Ap = Ap; TlikpAr — iky (Ar — Ap)] = m(~w?Ar), or k(A - Ag) = (kz - ";w ) Ar.
. . M mw?\ < N 2k M
Multiply first equation by k; and add: 2k;A; = [k + ko — i Agp, or Ap = (m) Aq.

dp=Ar- A=

2= (b by = imo®/T) 5 (s — by o imw?/TY 5
Ty + kg — imw? [T 1= k1 ks —ima?/T )

- 2 -
If the second string is massless, so v; = \/T'/u2 = 0o, then ky/k; = 0, and we have Ar = (m) Ar,

o (1448 _mw? _ mkw)? _mk T ki @

An-—(l_iﬁ)AI,whereB_—le =TT ~ T m,or B= m” Ae'?, with
o (1+i8 l—iﬂ)_ _ 0 (1 +1ip) _1+2ig-p?

4 ‘(1—w Tvig) 17 A=L S =g = 1

tang =

2, _ 2,
(2D Thus Anen = e re br=dr vt (1225).
2 2 2 4 2
. = 10 2 - = — A=z ——.
Similarly, (_—1~i5) Ae® = A (l—iﬂ) (1+iﬁ) 1+52$ i




160 CHAPTER 9. ELECTROMAGNETIC WAVES

21+if)  _ 2(1+if)
1)1 +18)  (1+8)

1 2

VAp = —==—==Ay;||6r = 6; + tan™' 4.
2

! V1+p

Problem 9.7
>f of f 3f _ af
(a) F = TavAz—'y—Az_quaﬂ,or T0z7 #Btl e

Ae = = tan¢ = B. So Are®T = e Aret

2
ey

(b) Let f(z,t) = F(z)e™**; then Te'“‘"% = p(~w?)Fe™*! 4 y(—w)Fe™™* =

&F PE @ X - Aehs 4 Be—h®
Td = —w(uw + ) F, o —k*F, where k* = —(;u.u +i7). Solution : F'(z) = Ae"** + Be™***.
22
Resolve  into its real and imaginary parts: k = k +ix = 2 =k — k2 + 2ikk = —(uw +iv).
wy WY a2 g2 (wr\21 _ 4 p20,2 2
=— =l —k2=k - (= = k- - 2! =
the= T o= L K- =k (2T) k2 T B or (w?[T) = (wy/2T)? = 0 =

[(uwz/T) + /(o JT)? + 4(wry/2T) ] [1 +/T+ ('y/uw)2] But k is real, so k? is posmve 50
N I \/_ wy _ N ewcymn
we nced the plus sign k = w a7 1+ 1+ (v/pw)?. = 5T \/T [l + 1+ (v/pw) ]

Plugging this m, ' = Aelb+)z 4 Bemulktidz = ge=rzgthz | Bet2e="* But the B term gives an expo-
nentially increasing function, which we don’t want (I assume the waves are propagating in the +z direction),

s0 B =0, and the solution is | f(z,¢) = Ae **¢**2=“%)_| (The actual displacement of the string is the real part

of this, of course.)
(c) The wave is attenuated by the factor e~**, which becomes 1/e when

z= L_|V2Te \/ 1+ 1/1+ (y/pw)?; | this is the characteristic penetration depth.

K

(d) This is the same as before, except that ks — k + ix. From Eq. 9.29, Ap = (m) Ay

ki +k+uws
ﬂ)i Bi—k=w) (b —k+ie\ _ (ki —k)? + K2 N CEDETN
A ) T\rkrn) \Birkoin)  mrkr+r R\ ak2+r

(where ky = w/v; = wy/p1/T, while k and & are defined in part b). Meanwhile
(Ic] —k —m) _ (i —k—ig)(k ko in) _ (k) - K — &~ 2icky [,s,, - ((k )721“& ) ‘

ki +k+is (k1 + k)2 + &2 (ky + k)2 + &2 — k% —K?
Problem 9
(a) fyu(z, t) = Acos(lcz — wt)%; fa(z,t) = Acos(kz — wt + . ! ‘/(u =0
90°)§ = —Asin(kz — wt)§. Since f2 + f2 = A2, the vector ot (=0 — -~
sum f = f, + f; lies on a circle of radius A. At time ¢ = )

0, f = Acos(kz)% — Asin(kz)§. At time t = 7/2w, f =
Acos(kz—90°) %— A sin(kz—90°) § = Asin(kz) X+A cos(kz) ¥
Evidently it circles . To make a wave circling
the other way, use 8, = —90°.

4

(b)
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(c) Shake it around in a circle, instead of up and down.
Problem 9.9

(a)

w

w w
k-r=(-22) (cx+yp+22) =2z fi=-%x%=7.
- r ( Ei) (zX+yy+2%) E:c,kxn XXE=§

|E(z,t) Egcos( z+ut) B(z,t):%cos(%’z+wt)§.|

(b)

. | (Since 1 is parallel to the z z plane, it must have the form a % +2;

o
IS

W - . - - “ w o "N
k"=E(X+Y+Z)'(1X+yY+Zz)=75;(1+y+z)§ kxfi=

Sl-

[ Y
1]

E(z,y,2,t) = Egcos[‘/_ (z+y+2)— wt]( );
+2§ — i)
—wif | ——— .
J(7
Problem 9.10
I_13x10° wry Y O
P= T E0XI 4.3 x 107 N/m?2. | For a perfect reflector the pressure is twice as great:

8.6 x 1076 N/m?. | Atmospheric pressure is 1.03 x 10° N/m?, so the pressure of light on a reflector is

(8.6 x 107%)/(1.03 x 10°) =|8.3 x 10~*! atmospheres,

B(z,y,2,t) =
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Problem 9.11
1 /T
(fo) = —/ acos(k - r —wt + §g)bcos(k - T — wit + &) dt
a.b 1
= / [cos(2k - r — 2wt + 8, + &) + cos(d, — Jp)] dt = cos(& &)T = Eabcos(ba —8&).

Meanwhile in the complex notation: f = Ge* "t §=fe™* ™) where & = ae'®, b = be'®. So

1 1 1
_ iabe’(’s""“). Re (ifg‘) = §a,bcos(5n ~8) =(fg). qed

fg _ luc (k r—wt)fr g ol r—wt) _ %ab

Problem 9.12 1 1 1
Ty=e (E.E, - Eb‘JE’) +o (B,BJ - 56,,13’) .

With the fields in Eq. 9.48, E has only an & component, and B only a y component. So all the “off-diagonal”
(i # j) terms are zero. As for the “diagonal” elements:

Tea = € (EZEz - %E‘?) + ;1; (—%B’) = % (enEz - u—loBﬂ) =0
Ty = € (—%E’) + % (B,,B,, - %B’) = % (—enE2 + %B"’) =0
T = a(-3) + 2 (-18") =

So (all other elements zero).

e momentum of these fields is in the z direction, and
it is being transported in the z direction, so yes, it does make

sense that T;, should be the only nonzero element in Tj,. Ac-
cording to Sect. 8.2.3, =T - da is the rate at which momentum =z
crosses an area da. Here we have no momentum crossing areas

[E—

oriented in the z or y direction; the momentum per unit time
per unit area flowing across a surface oriented in the z direc-
tion is -7, = u = gpc (Eq. 9.59), so Ap = pcAAt, and hence
Ap/At = pcA = momentum per unit time crossing area A.
Evidently | momentum flux density = energy density. ] v

Problem 9.13

R= (%‘f)z (Eq. 9.86) =

smu g_an (B
(Eq. 9.82), where g = B0 7= 22 ( En,) (Eq. 9.87)

2
(Eq. 9.82). [Note that 222 = M1 &2ka e _ (3'-) B_Bh_g)
€11 l-le € V1 po UL v

T+R=———[48+(1— 6)2]-(1+ﬂ)2(4[3+1 2ﬂ+ﬁ)—(l+ﬁ)2(1+2ﬂ+ﬁ’)=l/

(1+ ﬂ)’
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Problem 9.14 _ ~ - - -
Equation 9.78 is replaced by Eo, X + Eo,fir = Eo,fir, and Eq. 9.80 becomes Eo,§ ~ Eg, (2 x fig) =

BEon (2 x fir). The y component of the first equation is Ey,sinfg = Ey, sinbz; the z component of the
second is Enn sinfr = —ﬁEnT sinfz. Comparing these two, we conclude that sinfp = sinfr = 0, and hence
fp=07=0. qed
Problem 9.15
Aet®® 4 Be'™ = Ce'°® for all z, so (using z = 0), A+ B =C.
Differentiate: iaAe'*® + ibBe'*® = icCe™?, so (using = 0), aA +bB = ¢C.
Differentiate again: —aAe*® — b>Be¥* = —c2Ce'**, so (using z = 0), a24 + b2B = c2C.
A +5°B = ¢(cC) = c(ad +bB); (A+ B)(aZA +b?B) = (A + B)c(ad + bB) = cC(ad + bB);
a?A% + b2AB + a®AB + b2 B% = (aA + bB)? = a®A? + 2abAB + b°B?, or (a® + b — 2ab)AB =0, or
(a—b)2AB = 0. But A and B are nonzero, 5o a = b. Therefore (4 + B)e'® = Ce'*.
a(A+ B) = cC, or aC = cC, so (since C # 0) a = c. Concluston: a=b=c. qed
Problem 9.16 _

E; = Eloe\(l(rr—ut)y,

B, = V—Eo,e'“‘""“"‘)(—cosb‘l:‘:+sin6‘12);
1

Bp = l"ioﬂe'(k" r—-wt)s;,

Br = U—Eo,e'("""‘”‘)(cosﬁl % + sin b, 2);
1

Br = Elor etller e-wt)g
Br = U—En,e‘("f""‘")(-— cosfz X + sin 6, 2);
2

(i) Bt = e BF, (i) Bl = EJ,

Boundary conditions:
i) Bt =B},  (v) 2B!= 1Bl

2
Law of refraction: ::; = :—2 [Note: kj 'r —wt =kp-r —wt =kg - — wt, at z =0, so we can drop all
1
exponential factors in applymg the boundary ditions.]

Boundary condition (i): 0 = 0 (trivial). Boundary condition (iii): | Eo, + Eo, = Eo,

T L 1= 1= = = vysinfy\ =
Boundary condition (ii): 0—1E°' siné; + v_,Eo" sinf; = EEUT sinfy = Fy, + Eg, = (u2 n,
But the term in parentheses is 1, by the law of refrat:tion, so this is the same as (ii).

Boundary condition (w) — —En,( cosfy) + —En,, cosﬁl] = ———Eo,( cosfz) =

b~ Fou = (S0 o= 22 o= 0| v By~ B, = e, |
Solving for Eo, and Eo,: 2By, = (1 + af)Eo, = Fop = (1 +aﬁ) Foy;
A _ @ B 2 1+ap\ & s _ (1=aB) 5
Bon = Bor E"'_(1+aﬂ 1+ap Lo = Eop = 1+af Lo
Since o and J are positive, it follows that 2/(1+ af) is positive, and hence the transmitted wave is in phase

with the incident wave, and the (real) amplitudes are related by | Ep, = (1 Ta ﬂ) Eyp,. | The reflected wave is
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in phase if @ < 1 and 180° out of phase if a8 < 1; the (real) amplitudes are related by

These are the Fresnel i for polarization perpendicular to the plane of incidence.
Y1-sin®6/6>  /gz —sing
To construct the graphs, note that o8 = 3 ey = oy , where § is the angle of incidence,
2
so,for 3=15,a8= % —sin’ 6
cosf

0710 20 30 40 30 60 70 30 90 6,

1

Is there a Brewster’s angle? Well, Eq, = 0 would mean that a8 = 1, and hence that

/1= (v2/v,)25in?6 2 2
o= —LL-— 1 22921 (U—a) sin?g = (w) cos? 4, so
) cosf B v’ v mvy

1= zﬁ) [sin” 6 + (u2/p11)? cos® 8] Since py % pa, this means 1~ (v/v:)?, which is only true for optically
1

indistinguishable media, in which case there is of course no reflection—but that would be true at any angle,

not just at a special “Brewster’s angle”. [If up were substantially different from g1, and the relative velocities

were just right, it would be possible to get a Brewster’s angle for this case, at

2 2
nN _ 2 b2 2 2 _ (/0)?—1 _ (pex/me) =1 _ (efer) = (i /pa)
(%) =r-coor (32) otommto = (T < G o1 ez bl

But the media would be very peculiar.]
By the same token, g is either always 0, or always m, for a given interface—it does not switch over as you
change 8, the way it does for polarization in the plane of incidence. In particular, if 3 = 3/2, then af > 1, for

.25 — sin’
cosd

aff = 0>1if2.25—sin2z9>cos2€, or 2.25 > sin?f + cos? = 1. v

In general, for 8> 1, ¢f > 1, and hence g = 7. For 8 < 1, aff < 1, and ép .
At normal mcidence, @ = 1, so Fresnel’s equatious reduce to Ep, = (1 +ﬂ) Eo,; Eop = ‘
consistent with Eq. 9.82.

e

Refl

2
and Tr ) .| Referring to Eq. 9.116,

(1+aﬂ
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o v
€v
R+T_(l—aﬁ)z+4aﬂ_1—2aﬁ+a252+4aﬁ (1+ozﬁ)2
R (T +ap)? 1T +ah)?
Problem

Equatlon 9 106 = 8 = 2.42; Eq. 9.110 =

a= o
_ _ Eo,\ _ a-B8 _ 08

@6=0=a=1 Eq.9.109=>(Em)_a+ﬁ_ o

1-242 142

T+242 342 04

(&) _ 2 _ 02

Ey, a+f 0 L1 P’y
(b) Equacion9112=>e,;:can4(242) ny s
(€) By, = Fo, > a—f=%a=f+2=1
(442)F cos? 6 = 1  sin’ 8/ (2.42)"; 04 ‘\/[Eo/E.
(4.42)%(1 — sin? 9) (4.42)% — (4.42)sin? @ 06|

= 1-0.171sin8; 19.5— 1 = (19.5 — 0.17) sin? 6
18.5 = 19.3sin’ ; sin®4 = 18.5/19.3 = 0.959;
sinf = 0.979; |6 = 78.3°.
Problem 9.18
(a) Equation 9.120 = 7 = ¢/o. Now € = epe, (Eq. 4.34), ¢, = n? (Eq. 9.70), and for glass the index of
refraction is typically around 1.5, s0 € & (1.5)2 x 8.85 x 10712 = 2 x 10711 C?/Nm?, while 0 = 1/p ~ 1072Qm
(Table 7.1). Then 7 = (2 x 10~11)/10712 = (But the resistivity of glass varies enormously from one
type to another, so this answer could be off by a factor of 100 in either direction.)
(b) For silver, p = 1.59 x 10~8 (Table 7.1), and € ~ €9, 50 we = 27 x 10° x 8.85 x 10-12 = 0.56.
Since o = 1/p = 6.25 x 107 >> we, the skin depth (Eq. 9.128) is

1 2 2 -7 -4
== _—= = 6. = 6. .
==V oen \/21r><101°x6.25><107><41rx10‘7 64> 1077 m = 6.4 x 10" mm

T'd plate silver to a depth of about there’s no point in making it any thicker, since the fields don’t
penetrate much beyond this anyway.
(c) For copper, Table 7.1 gives o = 1/(1.68 x 1078) = 6 x 107, wep = (2 x 10°) x (8.85 x 10~12) = x 1075,

Since 0 3> we, Eq. 9.126 = & & 4 /#, s0 (Eq. 9.129)

p / P o
A= e = T S X I X 6 X 10 xdm X107~ X 10T m=

In vacuum,

%:ix:xuzmxw-‘)xmsz

(From Eq. 9.129, the propagation speed is v =

8
A= -c— = 3x10 But really, in a good conductor the skin depth is so small,

108
compared to the wavelength, that the notions of “wavelength” and “propagation speed” lose their meaning.)
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Problem 9.19
(a) Use the binomial expansion for the square root in Eq. 9.126:

1/2
s fEli oy o, fELe _o fu
REw 2[1+2(ew) Y o=wWsBw Ve
1,2 [€
Eq. 9. =-xZ fE
So (Eq. 9.128) d . 0\/; qed

€=¢rep =80.1¢p (Table 4.2),
For pure water, { = po(l+Xm) = pto(1—9.0 x 107%) = yy  (Table 6.1),
o =1/(2.5x 10% (Table 7.1).

5\/‘80”(885“0 = - [119x10°m]
So d = (2)(2.5 x 10°) T x 107 1.19 x 10

(b) In this case (0/ew)? dominates, so (Eq. 9.126) k 2 &, and hence (Eqs. 9.128 and 9. 129)
A,T"zl_zmi ord=-

15 ~7Y(107
Meanwhile £ = wde"‘\) ,( =y o )(&”X (0% x 1071107 _ =8x10" d = — =
kT O8x 107

1.3x 1078 . | So the ﬁelds do not peuetrate far into a metalvwluch is what accounts for their opacity.

(c) Since k = &, as we found in (b), Eq 9.134 says ¢ = tan~!(1) = 45°. qed
)7 —7'
Meanwhile, Eq. 9.137 says =y /eu— ,) .| For a typical metal, then, Eo ao )(‘;: 10 )
(In vacuum, the ratio is 1/¢ = 1/(3 x 10®) = 3 x 10~°s/m, so the magnetic field is comparatively
about 100 times larger in a metal.)
Problem 9.%0 1 |
(@) u==(eE?+ —B’) = 58—2’“ [ €eE] cos®(kz — wt + 0) + ~B§ cos®(kz — wt + 0 + ¢)] Averaging

over a full cycle, using (cos?) = 1 and Eq. 9 137:

ﬁl—znzﬁz _1_2_1—2,” 1. 12_1—2“2 LAY
(W) = e | 5B + 5, B8] = 3o eE§+”Ens,u 1+(Ew) = eeRE 1+ 1+(Ew) .

2 2 2
55,50@ S

ena?
magnetic contribution to the electric contribution is
(umag)

2 2
—B"/" ,/1+ 1/1+ >1. qed
(Uelec)

2
But Eq. 9.126 = 14 /14 (5) = So the ratio of the

(b)S = l(ExB) = lEnBof’M cos(kz —wt+0E) cos(kz —wt+8p+¢) 2; (S) = ZEuBge’z"' cos ¢ 3. [The

average of the product of the cosines is (1/27) fo cos 8 cos(B+¢)df = (1/2) cos¢.] SoI = LEane"” cosg =

ﬁEge"’" (% cos ) , while, from Egs. 9.133 and 9.134, K cos ¢ = k, so
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Problem 9.21

. 1-8\ (1=-4" 5_ MUy

According to Eq. 9.147, R = =|— = h ="—k
coording to B4 : (1+ﬁ) (1+ﬁ')’wereﬂ paw

“‘"‘ B2y +i2) (Bas. 9.125 and 9.146). Since silver is a good conductor (¢ 3> ), Eq. 9126 reduces to
Ko ka—w\/&mq/ ”awm B um wm(lJrl)—u;v],/Qu (1+1).

_ (o _ [~ / 5 | (6x 107)(4m x 10-7)

Let y= 1 by Hoc by =c = (3 x 10%) DEx TREx0E =29. Then

_(l=vy—iy) (loa+iv) _ (1= ) . TN

= (1 Ty +z"y) (1 =) TPt Evidently 93% of the light is reflected.

Problem 9.22
(a) We are told that v = /X, where a is a constant. But A = 2r/k and v = w/k, so

w = aky/27]k = a/2rk. From Eq. 9.150, v, = % = ou/2_1r—1~

i(pz — Et) P ,_E_7P _&
B =i(kz —wt) > k= FY=E = Therefore | v

“’E

2mh~ 2m’

2
v = 5‘: 2’:: . So v= l .| Since p = mu, (where v, is the classical speed of the particle), it

follows that | Vg (not v) corresponds to the classical veloctity. ‘

Problem 9.23
1 qd 14 2 [
= = =—qE=-|—%= = - = —nmu Eq. 9. . = .
E = T = F = —qFE ( e z Kepring® %z (Eq. 9.151). So |wp Treoma?

—19)2
(1.6 x 10-9) —[7.16 x 10° Ha. | This is [ltraviolet.

_wo_ 1
N T 2n\/41r(s.85 % 10-12)(9.11 x 10-31)(0.5 x 10-10)3
;From Egs. 9.173 and 9.174,

ng® f { N = # of molecules per unit volume = A—‘;‘ﬁ%ﬁ = %’—:} = 2.69 x 10%,

2meo w2’ = # of electrons per molecule = 2 (for Hy).
0

(2.69 x 10%8)(1.6 x 10719)2 _ ry - '
= BITx 0-M) (885 x 1042)(4‘5 <10y = (which is about 1/3 the actual value);

8
B = (m) - (2” x 8 x 10 ) =[1:8 x 10 m? ] (which is about 1/4 the actual value).

wp 4.5 x 1016
S0 even this extremely crude model is in the right ball park.
Problem 9.24 N @ —?)
Equation 9.170 = n =1+ ~—— e m
i Ng (2w E’%“’) [2(w? — w?)(~2w) +7220] b = 0= 2D = (W} - w?) [2(w] - w?) — 7% 25
W) = 7uf = (wf —w?) = Fwoy;

A =

2
e Let the denominator = D.  Then

dw  2me | D

W2 —w?)? +920? = 2wk —w?)? A (wg —w?), or (W —w?)? = YA (w?+uwd —
o 0
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w? = Wl Fwoy, w=wo/TF v/wo = wo (1 F 7/2w0) = wp F ¥/2. S0 wy = wp + /2, w1 = wp — /2, and the
width of the anomalous region is

Ngw ~ . N
From Eq. 9.171, & = Twm' so at the maximum (w = wo), Cmax = s

megey”
2 2
At w; and wy, w? = Wy Fwpy, s0 @ = 1\1:15:; m Omax ( T o? ) But
0

w? wwwov_l(l?v/wn)g_(l;_)( alfiz 1)l
w2+wu 203 Fwoy  2(1Fv/2wo) 2 wo T2 2w -
Soa = 50‘"'“‘ at wy and wp. gqed
Problem 9. 25

w 1
k=Y =t
2meo Z - w’)] (dk/dw)

dk _ 1 w) (W2 +w?)
dw ¢ [ 2meg Z u/’) A Zf’ (w? ~w2)2] [ 2meo Zf’ W2 —w?)? |’

_ Ng (w’ +w) |7 | . . .
vg=c [1 + g Z f’(w}——w’-')’ .| Since the second term in square brackets is positive, it follows that

-1
w
whereas v = = [ 2men Z @ —w’ ] is greater than ¢ or less than ¢, depending on w.

Problem 9.26 N N
(a) From Eqs. 9.176 and 9.177, V x E = —%?1 = iwBgehwt); ¥ x B = clz‘;—f = ""E eithz—wt)
In the terminology of Eq. 9.178:

(VxE), = %E;- % = (350' ikEs, ) erlk2=w) 8o (if) % —ikE, = iwB,.

s 0B, 0B, _ (. = 0B\ (ta-wp S OE; _ .
(VxE), = 5 3 = (LkEnz —357) € . So (iii) kE; — 5 = iwBy.

o _ 0B, 0B, _ (0B, 0B\ -y .\ OB, _0F,

(VXE), = e 5~ \ o By e . So (i) B oy - =1iwB,.

5 _0B. 8B, (0B, . - s(kz—wt) 8B, . _ _iw
(VxB) = 5 - _< 5y~ ikBo. | ¢ - So(v) Bt - ikBy =~ FEx.
(VxB), = "’é{i’ - %i‘ - (ucé.,, - —"gz‘") &ks=o) S0 (vi) ikB, — f’ai‘ =-%g,

- _ 0B, 8B, 9By,  8Bo, \ uks-w .. 8B, 0B, i
(VxB). =2 a; = ( a: —a—;)e(" . So (iv) —3—2!,35=_2_;’E,.

B, _ 0B

This confirms Eq. 9.179. Now multiply (iii) by k, (v) by w, and subtract: ik?E, —k E 3
JE, 8 i
o Y ’“(‘)EFW”?( )

—w%{ = iwkB, —-—E,, =1 ( )

% }iwkB, =

zka,,+—E =>:(k2—%)Ez—k

Multiply (ii) by &, (vi)

3
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8E, 8B, ... i 8B,

ke gt or () By = e (k =
A 2 (o LW _wk oop 0B _ W, wk

Multiply (i) by w/e®, (vi) by k, and add: o8 — By 4+ KBy ~ kgt = i B, — i By »
) W\ . _ 0B, wdE, .. _ i 8B, wdE,
’(""rz)f’r’“az‘aza ’°‘<”‘)B—(w7r<’°oz azo,,)

Multiply (iii) by w/c?, (v) by k, and subtract: i‘Z—fE, - :’—23;;‘ a;y +ik?B, = sz,, + ﬁ B =

) .

2 w? _ wOE, 9B, i aB ia

i K = By =~ s + k—ay , or (iv) By = (w/c)’ = c’

This completes the confirmation of Eq. 9.180.

(b)v-i:—aaE aaEy ai‘: 35" f" e“’“‘-”‘)=0=%+%+;k&=.
Using Eq. 9.180, ('J/c)z—z (ka;:i‘ +w glg;) + m (k% »—wg;g—;) +ikE, =0,
or ";f; +Z E' + [(w/ﬂ)2 - K] E, =0.
28 a: +ikB, =0 =
. 2 2 .
W(k% 552) st (52 + 255) sm o
2l 2P (wior - #) B =0.

This conﬁrms Egs. 9.181. [You can also do it by putting Eq. 9.180 into Eq. 9 179 (i) and (iv).]
Problem 9.27
Here E; = 0 (TE) and w/c = k (n = m = 0), so Eq. 9.179(ii) = E, = —cB,, Eq. 9.179(iii) = E, = cB,,

aByz =i(kB,-5E) =i(k3,-2B,) = =i(kB, + 5E,) =

z 2
i(kBz - %B;) =0. So a;, = 665' =0, and since B, is a function only of z and y, this says B, is in fact

a constant (as Eq. 9.186 also suggests). Now Faraday’s law (in integral form) says fE cdl= —/%tB—- - da,
and Eq. 9.176 = %?— = —iwB, so § E-dl = iw [ B - da. Applied to a cross-section of the waveguide this gives
}(E4 dl = jwekz=wt) /B da = wB, ek~ (ab) (since B, is constant, it comes outside the integral). But
if the boundary is just inside the metal, where E = 0, it follows that - So this would be a TEM mode,
which we already know cannot exist for this guide.

Problem 9.28

Here @ = 2.28cm and b = 1.01cm, 50 vip = 2iw,o = i = 0.66 x 100 Hz; vy = 2i = 1.32 x 10" Hg;

vip = 30 = 1.97 x 10'°Hz; vy, = = = 1.49 x 10'°Hz; vy = 25 =297 x 10" Hz; 1y =
2a 2b 2b

1.62 x 10'° Hz. Evidently just four modes occur: | 10, 20, 01, and 11.

To get only one mode you must drive the waveguide at a frequency between vyg and voq:

0.66 x 10'0 < v < 1.32 x 10'°Hz.| A= g, 50 Ao = 2a; dgp =a. [2.28cm < )\ < 4.56cm.
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Problem 9.29 1
From Prob. 9.11, (S) = 2—(1'3 x B*). Here (Eq. 9.176) E = Ege**=+8, B* = Be~k2=1)  and, for the
0
TEm» mode (Egs. 9.180 and 9.186)

B; =

B = wlor-m\ %
Bl = Bocos (o) cos

B o= (w/c)? — k2 (T) Bo cos (T) sin T) i
(

E, =
E, = 0.

So

= el () (7)o () (%)
o () (752)in () e ()
(5 o () () (2 () o (23]
(2 ()]

In the last step I used
8o (/e — KT [ P

/(S)~da =

Jo sin®(mnz/a)ds = [ cos®(mnz/a)dz = a/2; fnh sin®(nmy/b) dy = fnbcosz(nwy/b) dy =b/2.
Similarly,

W = (q,i:,ﬂwiﬁ@)
o i [(5)" o (2 s (52) + (3)" oo (P52) o (52)]
k(s (22) o (52

(3 o () (75) o (2) s (72 e (252)] )

2,232 2 2.2 B2
Jwra=|2{e o [y (2y] g R [y (2]

Mé" A
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These results can be simplified, using Eq. 9.190 to write [(w/c)? — k2] = (wmn/c)?, €opto = 1/c? to eliminate ey,
and Eq. 9.188 to write [(m/a)? + (n/b)?] = (wimn/mc)*:

/ (S)-da = “;"Z“"cz / (w)da = : fab_ o

Evidently

energy per unit time _f(S)wia_E__g T _
energy per unit length  J(u)da w w " w? —wh, = v, (Eq. 9.192). qed

Problem 9.30

Following Sect. 9.5.2, the problem is to solve Eq. 9.181 with E, # 0,B. = 0, subject to the boundary
conditions 9.175. Let E.(z,y) = X(z)Y (y); as before, we obtain X (z) = Asin(k;z) + B cos(kyz). But the
boundary condition requires E. = 0 (and hence X = 0) when z = 0 and z = a, so B = 0 and k, = mn/a.
But this time m = 1,2,3,... , but not zero, since m = 0 would kill X entirely. The same goes for ¥ (y). Thus

E, = Epsin (mmp)sin (mry) with n,m =1,2,3,....

The rest is the same as for TE waves: Iw,,.,. =cmy/(m/a)? + (n/b)? I is the cutoff frequency, the wave
velocity is v = ¢/v/1— (Wmn/w)?2, and the group velocity is vy = ¢y/1— (Wmn/w)2. The lowest TM mode is
11, with cutoff frequency wy; = cwy/(1/a)? + (1/b)2. So the ratio of the lowest TM frequency to the lowest
emy/(1/a)? + (1/b)?

(em/a)

TE frequency is

Problem 9.31
OE, h——l-%i _ _ Boksin(kz — wt)

»

198 b
(8 VB = {65 =0 (39 B = [5(Be) =01V xE = G 6 L — ¢
_9B_ @M(gusmwk:w/a);va: 9B, ‘”‘+~——~(B)‘ Dok sin(kz = wt) 2
ot e 8 c s
laE_Eowsm(kz—ut)g‘/ L . El=E,=0v;Bt=B,=0v.

2o & s . 7
(b) To determine A, use Gauss’s law for a cy].mder of radius s and length dz:
§ra= =D s~ Lo, = Daa s
To determine I, use Ampére’s law for a cnrcle of radius s (note that the displ;

loop is zero, since E is in the & direction): }{B-dl = 12“ cos(

current through this

kz —wt) _ _ 2nEy
A (27s) = polenc 3!1 s

cos(kz——ut).‘

The charge and current on the outer conductor are precisely the | opposite | of these, since E = B = 0 inside
the metal, and hence the total enclosed charge and current must be zero.
Problem 9.32

f(z,0) = / - AR)e* dk = f(2,0)* = / “ A(k)*e *** dk. Let | = —k; then f(2,0)* =
0 —o

/ T Ay et () = / A(=lyet= dl = / A(=k)*e** dk (renaming the dummy variable I — k).
eo oo

f(2,0)=Re [f'(z,o)] = % [f' 2,0) + f(2,0) ] 7_” % [A(k) +,«i(—k)'] &'*# dk. Therefore
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[A(L) +A(— k)

1
2

/ F(2,0)e™** dz.

Meanwhile, f(z t) =

A(k)(—w)e‘“‘""‘) dk = f(2,0) =

CHAPTER 9. ELECTROMAGNETIC WAVES

[ —iwA(k))e** dk.

(Note that w = |k|v, here, s0 m does not come outside the integral. )

fz0r = / fiwA(k)* e~ dk = / [ilkloA(k)*le™ dk = / [ililvA(—1)*]e* (—di)
= / ik A(=k)*e™* dk = / iwA(—k)*]e* dk
0 = Re[fe0)] = 3 [7e00+ 0] = [ Jiwh) +iwd(-RyIes dk.
{A(k) — A(- k) / f(2,00e"*2 dz, or = [A(k) A(-k)* ] = /ee [if(z 0)] o=k gy
Adding these two results, we get | A(k) = / [f 2,0) + — f(z, ) ek dz. ‘ qed
Problem 9.33 oF
(a) (1) Gauss’s law V-E = rsilnﬁTt; =0.v
(ii) Faraday’s law:
9B 1 9, . 190 5
5 = vV x m%(&n9E¢)r— ;E(rE.g)O
in2
= ﬁ% [E‘,S“; 6 (cosu— %sinu)] - ror [Eus‘mﬂ (cosu— El;sinu)] 0.
SU.

But —cosu = —ksinu; ——sinu =k co:
ar oar

—E°2sm6‘cosb‘ (cos
rsing r

u—lsinu)i—lEosinﬂ(
kr T

1 o
ksinu+ Fsmu - —cosu) 8.

N 1. . 1
Integrating with respect to ¢, and noting that / cosudt = —gsinu and / sinudt =  cosu, we obtain

2Eocos€

wr

B=

' (smu+ k—cosu) i

+Ensi.n€
wr

( kcosu + k—lzcosu+lsmu) é.

(iii) Dewvergence of B:
1d

v-B B)+r sinf 96

(sm 6Bg)
2Ey cosf ( 1 1
sinu + — cos

oosu)] +

1
kcosu»k—Qcosu— ~sinu

S

5
a
7 [
Encosﬁ
w

1
rsinfd

‘L{ ~ "»I = ".ei

2Eysinf cosf
wr

+

kcosu+k—2<;os

rsin6 86

8 [EB sin? 4

wr

)

=

[

1
u+—smu

-

kcosu + —cosu + —smu)]
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2Ep cos§ (

1 1
o lccosu——cosu——sinu—kcosu+—cosu+lsmu):0./

kr? r kr?

(iv) Ampére/Mazwell:

_ 170 0B,] -
vxn = [gem -] é
_ 1 8 [Eosinf 1 8 [2Epcosf 1 .
= r{a[ > (kcosu+Foosu+vsmu)] @[ or? (smu+k—cosu)]}¢
Eysiné 1. 1. k 2 . 2 N
= T<k251uu——k—3cosu —smu—T—Zsmu+;cosu+r—25mu+mcosu)¢
= EM(ksinu—blmu)J):iM(ksiuu+lcosu)43,
w T r c T r
10E lEns‘mﬂ . w 2 _ lwEgsing . 1 -
% - 2 (wmnu—bﬁcosu)qﬁfc—ﬁz . (ksmu+;cosu)¢

= 1Bsind (ksinu+lcosu) $=VxB.v
c T T
(b) Poynting Vector:

s = i(ExB)=E"Sing cosu—-l—si.nu 2Bpcosf siuu—l-icosu. [
Ho kr kr

or wr?
Eosi
N usm9(
wr

—kcosu + —cosu+ lsmu) (~i‘)]

kr’ 2
E}si 2 N
= Dgsind [2cosd sinucoqur—-(coszu—sinzu)————smucosu ]
powr? I 2r
— sin6  —kcos® +Lcos + smucos +lsmucosu sin osu—L in®
vt s u u k7r3 uC Fasin’u

-

E} smﬁ{2c059

1 N 1 2 ) ]
Lo [(1 k*r*) sinucosu + kr(ws u — sin’ u)] 6

Er2

2 1
+ sinf [(—; + W) sinu cosu + kcos® u + 7(sm2u— cos? u)] f}.

Averaging over a full cycle, using (sinu cosu) = 0, (sin?u) = (cos? u) = }, we get the intensity:

E3smng
powr?

I=(8)=

It points in the £ direccion, and falls off as 1/r?, as we would expect for a spherical wave.
47r Eq

nc

g P= /1 da_m?c s"r‘ 4 2smeawd¢_ﬂ21r/ sin®9do = | 4T
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Problem 9.34

z2<0: { gl( t) = Epeti=en g, By(s1) = -—Ele'““" w0y

R(z,t) = Epel—hi—wt gz Bp(z,t) = Ene’( kiz-wt) 5

) B, (2,t) = Bre2s=o0 %, B,(z,1) %Ere‘(kzwat)s,
0<z<d: { E‘(z, f= Epe(—kaz—wt) % Q,(z’ )= iélﬂl(fl:zsztj 3.

{ Br(eit) = Bretor—=0%, Br(at) = Lhretssn .
Bg, at each boundary (assuming p1 = p2 = ps = po):

z>d:
Boundary conditions: E" E" B"
Ej+Ep=FE, +FEy;

2=0: 9 1. 1. 1. o o .
LBy - —Fp=—F— —F = By — B = BB, - Fy), where §= v /v
v V1 V2

Frethad 4 Fe~thad = Fpethad,

z=d:
1 - 1=
et _ L Femthad =
2 v2

1 = = = -

v—E‘Te""d = Eettrd — Ere~*2d = qFire'd, where a = vy /vs.
3

We have here four equations; the problem is to eliminate Eg, E,, and Ej, to obtain a single equation for

Er in terms of El. N
Add the first two to eliminate Eg :
Add the last two to eliminate £ :
Subtract the last two to eliminate & :
Plug the last two of these into the first:

2Br = (1+ B)E, + (1~ A)B;
2,1 = (1 + o) Brethsd,
2ot = (1 — o) BT gthsd,

28 = ( +ﬂ)%ﬂﬁm(1 +a)Bretsd 4+ (1 —ﬁ)%e"“"‘(l — a)Bpett
4B = [(1+0)(1+Be™™ + (1 - a)(1 - B)e*»] Bres?
[(1+a,@) (Eﬂkzd +Elkz¢) +(a+h) (e—ma _em.t)] ETelkad
2((L + aB) cos(kzd) — i(a + B) sin(kzd)] Brets?.
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vses B, ErP v |Erf?
Now the transmission coefficient is 7' = 1;3:—E2T° =5 (M) 1Bz 1 L] ﬁIETl
1€1 57,

e ) |Ef2 vs|E:|2‘ (B> ™

= %ﬁ{(Haﬂ)’cos’(kzd)+(a+ﬁ)’sin’(k2d)]. But co(kad) = 1 — sin*(kad).
= 40143 [(1+aB)® + (o + 208 + B — 1 — 208 — a®B2) sin® (kyd)]

= m [(1 4+ aB)? = (1 - ®)(1 - £%) sin® (kad)] .

c n3 ne
ng=— s00a=—, =

c c
Butng = —, np = —,
U1 V2 U3 n3 m’

4ning

[(m +n3)? + @}~ "gl(%"g ~n}) sinQ(IQd)] I

Problem 9.35

T =1=sinkd = 0= kd = 0,7,2n.... The minimum (nonzero) thickness is Ly But k =wfv=
2mv/v = 2mvnfc, and n = \/ep/eopo (Eq. 9.69), where (presumably) p ~ po. So n = \/e/eo = /&, and hence
e c 3 x 108
= = =049 x 10"%m, or
2rufe  2v/e 2(10 x 10925 ©

Problem 9.36

From Eq. 9.199,
WZ‘)O) {[(4 /3) 417 + [(16/9)—((9//4);[1—(9/4)] ssn2(awd/2c)}
- 1‘1 [49 —-—————(‘17/(26/1()‘ 514 G0 (30d/2) ] t 48?(36) sin? (3wd/2c).
Since sin®(%wd/2¢) ranges from 0 to 1, Timin = Py (85 75%) - [0:935;] Tnax = 7= = [0.980.] Not much
variation, and the transmission is good (over 90%) for all fr ies. Since Eq. 9.199 is unch d when you

switch 1 and 3, the transmission is the same either direction, and the | fish sees you just as well as you see it.l
Problem 9.37 j j

(2) Equation 9.91 = Ep(r,t) = Ep,e®7"Y; ky . r = kp(sinfrx + cosfrz) - (zX + y§ + 28) =
kr(zsinfp + zcosfr) = zkysinfp + izkpy/sin® 87 — 1 = kz + ikz, where

k= kTsmeT=(‘”—:2):;sma —%sma,,

. wn: N w N
k= kr\/smzﬁrvl=~ﬂ—2\/(ﬂ1/n2)25m291—1=Z\/n{sm29,—n§. So
Br(r,t) = Boye et ged
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) R= E"" lz:g Here  is real (Eq. 9.106) and  is purely imaginary (Eq. 9.108); write & = ia,
. ia— 8 _ad+p
with a real: R = (m+[i) ( a2+ﬂ2
—off _|1=aB* _[1=1B[* _ (1-iaf)(1 +iap)
(c) From Prob. 9.16, Eo, = 1+aﬁ By, s0 R= |30 _|1+m5 = T in i s

(d) From the solution to Prob. 9.16, the transmitted wave is

E(r,t) = B e "3, B(r,t) = %Eo.,e‘(kf"_“‘)(— cosb7 % + sinfr 2).

Using the results in (a): kr - r = kz + isz — wt, sinfy = —k, cosfr = z—m
B(r,) = Bopee®e0 5 B(r,1) = Ly, e—rretbemon ;08 g k5

! " ! T wny " T wng )"

‘We may as well choose the phase constant so that ER,T is real. Then
E(r,t) = Eoe™ cos(kz — wt)§;
_ Lo ok C _ - _ EPPPENEN
B(r,t) = P Fye wane{[cos(kx wt) +isin(kz — wt)][-ik X + k2]}
= L-‘)l—Ene"“ [k sin(kz — wt) X + k cos(kz — wt) 2] .

(T used vz = ¢/n» to simplfy B.)

(€ () V-E = a% [Boe™"* cos(kz — wt)] = 0. v
(i) V-B = % [% "k sin(kz — u/t)] + ai [%e”“kcos(kz — wt)
= % [e="*xk cos(lcz — wt) — ke~ kcos(kz —wt)] = 0. v
2 v
i) VXE = | 8/0s 8/5y 6/3: =—%)‘c+%i
0 E 0 z o
= kEpe™" cos(kz — wt) X — Boe “ksin(kz — wt) .
—%3 = —&e_’“ [~&w cos(kz — wt) % + kwsin(kz — wt) 3]
= ;che‘” cos(kz — wt) & — kEge™"*sin(kz —wt)2 =V x E. v
% v Z
(iv) VxB = |8/dz djoy 8/0z |= ("’aﬁ - a;a,) 7
B. 0 B z o

= [—%m’e"“ sin(kz — wt) + &e"“kz sin(kz — wt)] ¥=(k- m’):e"“ sin(kz — wt) §.

naw) 2

Eq. 9202 = k? — k% = (Z) [nf sin® 67 — (ma sin 61)* + (na)?] = ( x ) =t
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= epawFoe” " sin(kz — wt) 3.

E
uzez%t = poesFpe ™ wsin(kr —wt)§ =V xB V.
% I 2
® s = —(E xB) = 1 E“ ez 0 cos(kz — wt) 0
xsin(kz — wt) 0 kcos(kz — wt)

m ue'“‘ [k cos? (kz — wt) % — ksin(kz — wt) cos(kz — wt) 2] .
2

=‘ﬂ

~2nz 4

Averaging over a complete cycle, using (cos?) = 1/2 and (sin cos) = 0, (S) = 2E“2 k . On average,

then, no energy is transmitted in the z direction, only in the z direction (parallel to the interface). qed
Problem 9.38
Look for solutions of the form E = Eq(z,y,2)e”™*, B = By(z,y, z)e™™*, subject to the boundary condi-

tions El = 0, B = 0 at all surfaces. Maxwell's equatnons in the form of Eq. 9.177, give

V-E=0 =V -E=0 VxE=-2 = VxE;=iwBg

V-B=0 =>V-By=0; VxB= ‘% = V xBo = —%E,.
From now on I'll leave off the subscript (0). The problem is to solve the (time independent) equations

V-E=0; VxE=iwB;

V:-B=0; VxB=-%E.
From V x E = iwB it follows that I can get B once I know E, so I'll concentrate on the latter for the moment.

Vx(VXE)=V(V-E)-VE=-V’E=V x (wB) = iw (~?E) = P-E. So

2 2 2
V2B, = - (2) By V2B, =~ (%) Ey; V2E, = — (%) E;. Solve each of these by separation of variables:
&X &Y &z w 1d°X 1d%Y  1d°Z
E(o,9) = XY 0)2() = Y g +EX G+ XV g = (—) XYZ 0 x Oty g

—(w/c)®. Each term must be a constant, so ‘j;—X = —k2X, Libd = -k, ﬂ = —k2Z, with

s
K2+ k2 + k? = — (w/c)’. The solution is
Ea(z,y,2) = [Asin(k:z) + B cos(kz2))(C sin(kyy) + D cos(kyy)]|[Esin(k;z) + F cos(k.2)].

But El = 0 at the boundaries = E; =0aty =0and 2=0,s0 D= F =0, and E; =0 aty =band z=d, s0
ky =nm/band k. = Ir/d, where n and [ are integers. A similar argument applies to Ey and E,. Conclusion:

Ez(z,y,2) = [Asin(kzz)+ Bcos(k:z)]sin(kyy)sin(k.2),
Ey(z,y,2) = sin(k.z)[Csin(kyy) + D cos(kyy)]sin(k.z),
E.(z,y,2) = sin(k7)sin(kyy)[Esin(k.2) + F cos(k.2)],

where k; = mm/a. (Actually, there is no reason at this stage to assume that k., ky, and k. are the same for
all three components, and I should really affix a second subscript (z for E;, y for E,, and z for E;), but in a
moment we shall see that in fact they do have to be the same, so to avoid cumbersome notation I'll assume
they are from the start.)

Now V-E = 0 = kg[A cos(k,z)—B sin(k,z)] sin(kyy) sin(k. z)+k, sin(k-z) [C cos(kyy)—D sin(kyy)] sin(k:2)+
k. sin(k.z) sin(kyy)[E cos(k.z) — Fsin(k.z)] = 0. In particular, putting in z = 0, k; Asin(kyy) sin(k.2) =0,
and hence A = 0. Likewisey = 0 = C = 0and z = 0 = E = 0. (Moreover, if the k’s were not equal for different
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components, then by Fourier analysis this equation could not be satisfied (for all z, y, and z) unless the other
three constants were also zero, and we'd be left with no field at all.) It follows that —(Bk, + Dk, + Fk,) =
(in order that V - E = 0), and we are left with

E = B cos(k:z) sin(kyy) sin(k,2) X + D sin(k, ) cos(kyy) sin(k.2) § + F sin(kez) sin(kyy) cos(k.2) 2,
with k, = (mn/a), ky = (nm/b), k: = (ir/d) (I, m, n all integers), and Bk, + Dk, + Fk, = 0.

The corresponding magnetic field is given by B = —(i/w)V x E:

5 - -L(52- = G2} = = £ Pk in(t) cos(y) co() ~ Db sinle) sty ) o],
B, = i (‘?ti %}i ) = —hl; [Bk. cos(ka) sin(kyy) cos(k,2) — Fk, cos(ke) sin(kyy) cos(k2)],
B = =L (G- T) = - 1Dk cos) conlly) sin(hez) — B, co(la) cosl)sin(t ).
Or:
B = —ui)(Fky — Dk,) sin(k,z) cos(kyy) cos(k,z) X — 5(Bk — Fke) cos(k) sin(kyy) cos(kz2) §

e o o e iy

- é(Dk, — Bk,) cos(k,z) cos(kyy) sin(k.z) 5.

These automatically satisfy the boundary condition B+ =0 (B, =0 at =0 and z = q, By, =0aty=0and
y=b,and B, =0at z2=0and 2z =d).
As a check, let’s seeif V-B=0:

1
:
3
:

V.B = -[:—'(Fk,, — Dh.)ks cos(kez) cos(kyy) cos(ksz) — 5(31:, — Fl)ky cos(kez) cos(kyy) cos(ks2)

- 5(131@, — Bky)k; cos(k,) cos(kyy) cos(k, z)

= —L(Fksky — Dkoks + Bk, — Fhaky + Dok, — BEyk,) cos(ks) cos(kyy) cos(k2) = 0. v

The boxed equations satisfy all of Maxwell’s equations, and they meet the boundary conditions. For TE
modes, we pick E; =0, so F = 0 (and hence Bk; + Dk, = 0, leaving only the overall amplitude undetermined,
for given I, m, and n); for TM modes we want B, = 0 (so Dk, — Bk, = 0, again leaving only one amplitude
undetermined, since Bk, + Dky + Fk; = 0). In either case (TEymn or TMimn), the frequency is given by

WP = 2+ K+ ) = & [(mn/0)? + (/B2 + (i /d)?], o [w = e /Gm]al + o7 + (P ]




Chapter 10

Potentials and Fields

Problem 10.1
%V 8 8V 8 1
2 — V2V — — (V- =V —(V-A)=——p.
DV+6t = VIV pcog + (VM) +por's = VIV + (VA = —=p. v
o v
O?A-VL = V?A- pnenW-V(V-A+uoenE)=—mJ.»/
Problem 10.2

) W=%/<50E2+L32)d7-.Attl=d/c, 23> d=ch,50B=0, B=0,and hence [W(t) = 0.]

At Ty = (d+h)/c,cta=d+h:

BE=-220d+h-2)2, B———(d+h 299
mB’:.l.Eﬁ and
e .
(eoE2+ -—B‘A’) =€ (E’ __232) = 2o E>.
Ho Hoeo ¢
Therefore
“ ath
2,2 Py _ o
W) = 005 / (- h— )2 do () = 820 [_(@th—2)
2 4 1 3
d

1 1 Lo 1
) S(e) = --(B xE) = Bl x )] = B

(plus sign for z > 0, as here). For |z| > ct, S =0.
So the energy per unit time entering the box in this time interval is

aw _ . _ | poo?tw _m

Note that no energy flows out the top, since S(d + k) = 0.

179
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(d+h)/c
2 (d+h)/c
© W= /Pdt uoa 2lw / (ct—dPdt= poa lw [(ct d)? ] _
3c dfe
d/z

Since 1/¢% = pg€o, this agrees with the answer to (a).

Problem 10.3
B=VxA=

This is a funny set of potentials for a | stationary point charge | ¢ at the origin. (V = *4:5 g, A =0 would, of
0

course, be the customary choice.) Evidently | p = ¢6°(r); J=0.

Problem 10.4 [

-VV - 8—A- = —Ag cos(kz — wt) §(~w) = | Aow cos(kz — wt) J, i

E

B =

Hence V.-E=0v, V-B=0V.

VxE=12 % [Apw cos(kz — wt)] = — Agwk sin(kz — wt) 2, —% = —Agwksin(kz — wt) £,

éB
so VXE = B V.

= Aow? sin(kz — wt) .

OE
at

VXB=-3 % [Aok cos(kz — wt)] = Aok® sin(kz — wt) §,

So VXB = #oEniWE provided or, since ¢ = 1/uo€o,

Problem 10.5

o _
V—a 0

dmep 72 e

AN=Arva=— sy (—iqt) (~rl,‘> =[0]

This gauge function transforms the “funny” potentials of Prob. 10.3 into the “ordinary” potentials of a sta-
tionary point charge.
Problem 10.6

Ex. 10.1: V-A =0; %—V =0. [Both Coulomb and Lorentz.
Prob. 10.3: VA_—'?—”V.(') =~qt63(r), =0.

4meg r2
Prob. 10.4: V-A =0; a@‘t’ 0.
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Problem 10.7 oV v
Suppose V-A # CL (Let V-A + Moo 5 = $—some known function.) We want to pick A such

1
that A’ and V' (Eq. 10.7) do obey V-A' = —unen%A

v 2
V-A'+ uoéoaal = VA + VA + ppeg—— Fn uneng? =&+ 02\

This will be zero provided we pick for A the solution to 02X = —&, which by hypothesis (and in fact) we know
how to solve.

We could always find a gauge in which V' = 0, simply by picking A = f‘: V dt'. We cannot in general pick
A = 0—this would make B = 0. [Finding such a gauge function would amount to expressing A as — VA, and

we know that vector functions cannot in general be written as gradients—only if they happen to have curl
zero, which A (ordinarily) does not.]

Problem 10.8
iFrom the product rule:

v. (%) = %(VJ) +3- (vf) . v (:JT) - %(v'.J) +31- (v'%) .
1

But V; = —V'%, sincea=r—r'. So

v. G) =lvn-3 (v'i) =lvn+iwn-v. (%) .

But
i vz 00y B) 010 01,0 010
Ox ' 8y ' 0z Otr Oz ' Ot Oy = Otr 8z’
- d_ 1% o 15 10
8z ~ cdx’ By By 8z  cdz
80
__1[0k8  0h o 8L &s]_ 181
va=— Bt os T o oy T o 0s) ~ ody, (U
Similecly, 9 103
=29 _191 g
v’.J 3% " ooL (V'a).

[The first term arises when we differentiate with respect to the ezplicit r', and use the continuity equation.]

e Q) e e ) e )

(the other two terms cancel, since V2 = —V's). Therefore:

=) Lar_ v () ar| == 2_1_/2 _ﬂfl.
VA= [ /"dT /V ('ﬁ) dT]_ Moeoat [41ren adT ar | 2 da.

Th= last term is over the suface at “infinity”, where J = 0, so it’s zero. Therefore V-A = —ppeo— %V v
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Problem 10.9
(a) As in Ex. 10.2, for t < r/c, A =0; fort > r/c,

amy = (3)2 Me=Vri+ o), pok, ), / dz 1 dz
T \4r N ?= on 4 Viiya2 ¢ 4

o
= (’;L: 2) [tln (L——— '(:t)z_rz) - %\/(m:)2 —r’] . Accordingly,

E(nt) = —% = -%“;r—ki {m <°‘L— V(fm_'z) +

() (2) (o s ) - 2
a+\/®f——r2 (2) (e e e

_wok, [ @y=r ot

& e =

= _Mln(————"”“i“)z"z)i
T

2

(or zero, for t < r/c).

B(rt) = — é

_tok } T
2 ct+ /()2 —r2

= V = V ; =t (\/EQFHQ)
Y. e S S - LAY/ Py
2 {r T G = e e =1 21r7' ety —r*¢.

0 -
(b) A(r,t) = Z—:r i/ EM dz. But 2 = V1% + 22, so the integrand is even in 2:
—o0

-Lm tg

72 2¢/(ct)? — 12

) [’%‘f%i? —ot- ‘/(C_t)m] 1 (=2)

A(rt) = (“;;;’" z) 2/0°° Mdz.

1 2d 2dn
Nowz:\/42—r2=>dz=§m=‘/,ﬁ__.p.,andz=0=>a=r,z=oo=>a=oo. So:

podo , 1 2\ adp
A =t2s [2(-3) =
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o
Now §(¢ —/¢) = cd(a— ) (Bx. 115); therefore A = 22 / o) o

T
A(rt) = ”—;}aﬁ % (or zero, if et < r);

E(nt) = —66—? = _;%:::_c (—%) ﬁ z= (or zero, for t < r/c);
B(rt) = nfS —”02'11:0 (—%) W $ (or zero, for t < r/c).

Problem 10.10
At (1), ok [(E=2/c) » llnk /dl 1/
an 2 4m 2

But for the complete loop, [dl =0, s0 A = ”“kt { /dl+ /cﬂ+2x/ —} Here [, dl = 2a% (inner
circle), f,dl = —2bx (outer circle), so

ot [L 1 P oA
A= e [a(2a)+b( 2b)+21n(b/a)]x=> A= In(b/a)%,| E En

The changing magnetic field induces the electric field. Since we only know A at one pomnt (the center), we
can’t compute V x A to get B.

Problem 10.11 i
In this case p(r,t) = p(r,0) and J(r,t) =0, so Eq. 10.29 =

b = ﬁ [p(r',0)+ﬁ(r',0)t, +ﬁ(r;;0)]

Adr', but tp =t — ;ﬁ (Eq. 10.18), so

47rzo

r',0) +4(r',0)t _ H(',0 p(',0)] 1 o).
- /[p( +P(l‘ )t _ 4G ,‘2("/0)+P(l;4 )]adf=m/p(4z)4dr< qed

Problem 10.12 j .
In this approximation we’re dropping the higher derivatives of J, so J(¢,) = J(¢), and Eq. 10.31 =
Bt = f“—; / 1 [J(r',t) + (6= 03,0 + 236, 1)] xadr!, but b, — ¢ = =2 (Bq. 1018), 50
_ / I’ t) x2 t) xa qed

Problem 10.13

At time ¢ the charge is at r(t) = a[cos(wt) % + sin(wt) §], s0 v(t) = wa[—sin(wt) X + cos(wt) §]. Therefore
4=z — afcos(wt,) % + sin(wt,) §], and hence 2% = z% + a® (of course), and » = V22 + a®.

hov= —(a v) —{ wa?[~ sin(wt,) cos(wt,) + sin(wt,) cos(wt,)}} =0, so (l - ;‘—CV) =1
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Therefore

|t 7. -
Vet =| et }A(z,t)—

Problem 10.14
Term under square root in (Eq. 9.98) is:

qua L N -
4megc®VzE + a2 sin(wtr) & + cos(wtr) §), | where

I = 2 =22 (r-v) + (r-v)? +c2r? — M2 — o 4+ 02?2
= (r-v)2+(c® —v))r? + cA(vt)? — 2c3(r-vt). putinvt=r-R2
= (cv)2+(E-v)r?+A(r?+ R? —2r-R) - 23(r? —r-R) = (r-v)? — r?v® + ®R?.

but
(r-v)2—r2® = ((R+vi) v)?—(R+vt)?
= (R-v)? + 92 +2(R - v)v?t — R%0% — 2(R - v)tv? — v?t%0?
= (R-v)? - R%? = R%?cos? 0 — R%? = —R* (1 — cos* )
—R%?sin%6.
Therefore N
I= —R%?sin’§+ c2R? = 2 R? (1 - L sin? 0) .
Hence 1
Virt)= I E— qed

o g [1- Zein

Problem 10.15

Once seen, from a given point
z, the particle will forever remain
in view—to disappear it would
have to travel faster than light.

[Light rays m + + durection]

Graph of w(t)
A person at pomt
& first sees the

particle when this point s reached
1e.atr=-ct or
t= 1/c

Region below wavy hme represents space-time
pomts from which the particle is mvisible
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Problem 10.16
First calculate t,: t, =t — [r — w(t,)|/c =
ety —t) =z — /B2 + 212 - = VB2 + e
cltr—t) ==z B2 + 22 = ot — 1) + 7 = /b2 + 2t o .
Btf. —2c2t,t + 12 + 2zct, — 2zct + 22 = b2 4 c’tf; w(t) P
%tr(z — ct) + (22 - 2zct + Pt2) = b%; —
b — (z —ct)?
—ct) = b2 — (z — ct)? ="
2ty(z — ct) = b% — (z —ct)?, or t, ez —cf)
e =a(c—v); 2=c(t —
Now V(z,t) = mm, and 2¢ —2-v =2(c—v); 2= c(t —t,).
1 1 2%t c*t, Pt -v) = At telz—ct) =Pt c(z—ct)
NCEY b G —Niz () - gz,+(34cz) Tt t(z—ct)’
o=tz —ct) _ At—t)(z—ct) —(z—ct)? _ b+ (z—ct)?,
remmv= ctr+(z—ct)  ctr+(z—ct) ' P+ @—cl) = (z—ct H-a)= 2(z —ct)
_, _d@—ct) -+ (@—ct) _ (@—ct)z+et) -1 _ (22 -2 —DP)
t-tr= 2¢(z — ct) - 2¢(z ~ ct) T 2e(z—ct) Therefore
1 [PH(-a)? 1 2¢c(z — ct) _ b2+ (z —ct)?
w—n-v | 2z—ct) | cHz—ct)Retlz—ct) =02+ (z—ct)?] clz—ct)[2ct(z —ct) — b2+ (z — )]

The term in square brackets simplifies to (2ct +z — ct)(z — ct) — b = (z + ct)(z — ct) — b? = 2% — 22 —b?

b+ (z —ct)?
So|Vizt) = 41ren (z — ct)(z? — c?i2 — b2) "
Meanwhile

_ —et)?
A = Kv: A, V. [ —(z zyt)2 2(z — ct) q b+ (z — ct)

2 Tt @o e | 2e@— P+ (@ — cf)? dmep (z — i) (@2 — B2 — b7)
q b — (z — ct)? 2
Ireoc (5 — )@ — AL —50)

Problem 10.17
From Eq. 10.33, ¢(t — t;) =2 = c*(t — t,)* =4 =22 Differentiate with respect to &:

9r) g, 02 _ o id _
2;2(t—t,)<1—ﬁ)—21 at,oro%(l at)—a 5 Now 2 =r — w(t,), s0

o w dw Bt Bt Oty Bty Bty Ot

2__ow_ _owor _ L L 2. . 10.64)

&~ e oot "az*‘”(l Bt) a vy 0= gy lermaev) = Fpleou) (Bg. 1064)
8 o

ﬂndhenceﬁ—"—“. qged
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Now Eq. 10.40 says A(r,t) = %V(r,t), s0

OA 1 (év v Ov Bt, v
- §<6tv+v6t) a(zw‘”"ﬁ)

_ 1 ot 1 ge 1 —qc 8
- 02[ 3t41rq)ipu+ 4meg (a- u)*&t\ * v)]
- lefad v (& 5 _ 0
T C4ne [2udt (p-u2\ 8t ot at)]”
& LAY o _ ot
Buta—c(t—u)ﬁa—c(l—w),4—r—w(t,)=>§——vﬁ(asabove), and

o _ovon _ o
ot ot, ot o
= — 2 [ O, a8t O
- 41rsnc(»-u)’{a('“3t v[c’(l 8t)+v % et

= m{ —v+ [(2-u)a+(—v? +2-2a)v] 8t}
= 4—“002”‘.“)2 {—(_'2V+ [+ wa+ (2 = v? +4-2)v] E}

= m [~c*v(x-u) + ex(2 - w)a + aa( — v* +2-a)v]

= %—(u—lmv)’ [(u—a~v) (—v+ ,—:a) +’£(c2 —u2+a.a)v] . qed

Problem 1(‘}.18

-9 _* 2 _ 2 = .
= Tatwr (G u)u+4x(u)fa)]. Here v s - .

v%, a = a%, and, for points to the right,2 = X. Sou =
(c—v)%, uxa=0, and2-u=2(c—v).
_a q 1(c+v)(c—v)*, g 1 fct+v)
E = - - =4 BT gL (%) g
41ren 43(c-v)3( e-v)%= dmega?  (c—v)8 * 4meg 22 \c—v X

B = ;4xE=0. qed

For field points to the left, 2= —% and u = —(c+v) %, s0 2- u =2(c +v), and

_ 2 _F- %= 1
4"5043(0.*”)3(62 ")(c+v)x—

Problem 10.19
dz

) . B=0.
A R
@ E=(1-v/) / R___ &
4me R? [1 - (v/e)?sin? 0] 3/2
The horizoptal components cancel; the vertical com- y
ponent of R is sing (see diagram). Here d = Rsin#, so
1 _sin®0 =z _ _ N _d . R‘,{
mEE d—cotﬂ,sodz— d(— csc’ 6‘)d0—siuzgd9, A‘ x

2
pix dq=Ndr
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1 d sin®f df
BY =g @ =g The
A ¥y sin 8 .
E = —(1-v%/c% (‘)/ ——————————df. Let z=cosh, so sin?f=1- 22
4meo @) Jo [1-(v/c)2sin? 6]

A1 -*/H)y 1
Treod /_x (1= (v/0) + (v/)222P7? =

_ M-y 1 z !
- 4megd (w/e)¥ (2/v2 — 1)\ /(cJo) —1+22 ||
—_ 2
A1 =v?/c%) e L 2 (same as for a line charge at rest).

inad  v(L- /) S =131’

(b) B= l(v x E) for each segment dg = Adz. Since v is constant, it comes outside the integral, and the
same formula holds for the total field:
1 1 2) 1 2\, Mo 2Au

Vg @ F X = e e = oo

1
B=E—2(vxE)

But w=1,s0(B (the same as we got in magnetostatics, Eq. 5.36 and Ex. 5.7).

Problem 10.20
w(t) = R[cos(wt) % + sin(wt) §];
v(t) = Rw[—sin(wt) X + cos(wt) §];
a(t) = —Rw?[cos(wt) % + sin(wt) §] = ~w?w(t);

A= —[cos(ut,) % + sin(wt,) §);

A= v(t;) = ~c[cos(wt,) % + sin(wt,) §] — wR[~ sin(wt,) X + cos(wt,) §]

u =
= —{[ccos(wt,) — wRsin(wt,)] % + [csin(wt,) +wRcos(wt,)] §};
2x(uxa) = (2-a)u—(2-u)a; 2-a=-w-(—w'w) = w?R%
2-u = R [c cos?(wt,) — wRsin(wt,) cos(wt,) + csin® (wtr) + wRsin(wt,) cos(wt,)] = Re;

v* = (wR)®. So (Eq. 10.65):
g R g cu—Ra
Ireo (Re)® fua Irey (Ro)?

= iﬁ {~[c? cos(wt,) — wResin(wt,)] % ~ [¢? sin(wt,) + wRecos(wt,)] §
0

+ R%w? cos(ut,.) % + R%w?sin(wt,) }

E = ® - w*R?) + u(wR)? - a(Re)] =

= ‘ 47'35 & {[(«*R? - &) cos(wt,) + wResin(wt,)] % + [(0?B? — ) sin(wt,) — wRecos(wt,)] ¥} .
0
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B - lixE=l(izE,,—;lyEx)i ‘

= 14:5 ®E {cos(wt,) [(w?R? — ¢?) sin(wt,) — wRccos(wty)] ‘
o

— sin( ut,) [(w*R? - ¢?) cos(wt,) + wResin(wt,)] } 2 ‘

= - [~wRecos? (wty) — wResin?(wt,)] & = 4L

1 5=
" 4reo R%" Ten Rzéchz -

Notice that B is constant in time. ‘

To obtain the field at the center of a circular ring of charge, let ¢ — A(2wR); for this ring to carry current, ‘

I, we need I = Av = MAwR, s0 A = I/wR, and hence ¢ = (I/wR)(2wR) = 2rI/w. Thus B = Tne chg 3, or, ‘
0

since 1/c? = eopo, | B ,| the same as Eq. 5.38, in the case z =0.

Problem 10.21

A(@,t) = Ao|sin(8/2)|, where 6 = ¢ — wt. So the (retarded) scalar potential at the center is (Eq. 10.19)

1 a1 P g lsin[(¢ — win)/2)| v
ve = 4meo / = 4meg A a adg

e [ Y P P

= = /o sin(9/2) o = 2% [~2cos(6/2)] o

(Note: at fixed ¢, dp = df, and it goes through one full cycle of ¢ or 6.)

Meanwhile I(¢,2) = Av = Awa [sin[(¢ — wt)/2]| ¢. From Eq. 10.19 (again)

A®) = /I.a' 23 hﬁw wds.
Butt, =t— a/c is again constant, for the ¢ integration, and $=—singk+cosdy.
- %‘f‘— /n "7 lin{(é — wt,)/2]] (— sin 6% -+ cos $3) d.  Again, switch variables to 8 = ¢ wtr,
and integrate from 8 = 0 to 6 = 2 (so we don't have to worry about the absolute value).
Hodowa

2
= todows / Sin(6/2) [ sin(@ + wt,) % + cos(8 + wt,) §) df. Now
0
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/ i (0/2)sin(@ + wi)d = % / ¥ 005 (0/2 + wty)  cos (362 + wt)] 8
0 0

2m
o

= % [2 sin (8/2 + wty) — %sin (6/2+ ut,)]
= sin(m + wt,) — sin(wt,) — % sin(37 + wt,) + % sin(wt,)
= —2sin(wt,) + % sin(wt,) = —% sin(wt,).

/ " i (0/2) cos( + whi) b = % / = sin (02 + wt) + sin (36/2 + wtn)] 40
0 0

Hodowa

A= e

2
= Macos(8/2+wtr) - Zoos(30/2 + wty)
2 3 N
= cos(m + wt,) — cos(wt,) — %cos(s'n +wt,) + %cos(wt,)

= —2cos(wi,) + gcos(wtr) = —%cos(ut,.).

(;) [sin(wt,) % — cos(wty) §] = | “";\;’r“’“ {sinfw(t - a/c)] % — cosfw(t — a/c)] 7} . '

Problem 10.22

POTENTIALS
V.A

(v-3=% 2

SOURCES
0.3

9
(v3=-22)

[ ] =*evaluate at the retarded
time.t,

FIELDS
E.B

8B
(VB =0 VXE=57)

I .
E=-VV-35:B = VXA
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Problem 10.23
Using Product Rule #5, Eq. 10.43 =

V-A = Z—;qcv SV (Pt =1 V)2 + (2 = v?)(r? - c*t2)] i

4
= —% [(t—r-v)* + (2 —v*)(r? — %) Sy {-2(t -1 - v)V(r v) + (¢ —v})V(r)}.

= B, {-% [(@t—r-v)? + (@ = 2)(? = )] V (Pt -1 v)2 + (2 —v?)(r? — 2::2)]}

Product Rule #4 =
V(-v) = vx(Vxr)+ (v V)r, but Vxr=0,
(v-V)r = (v,%+v,,[fy+u,a )(a:x+yy+zz)_uzx+v,,y+uzz—v, and A
V(?) = V(r-r)=2 x(Vxr)+2(r- V)r = 2r. So 4
?
V.-A = —% [t —1-v)? + (& —v?)(r? —cztz)]_sﬂv~ [<2(*t —r - v)v + (c* —v?)2r] 3

% [t —x-v)? + (& =) = %)) - {(Pt—r-v)o* = (& =) (r-v)}.
But the term in curly brackets is : ¢3tv? — v*(r - v) — (- v) +0*(r - v) = (vt —r - v).
1ogc? (v?t—r-v)

T ((c2t — 1 v)2 + (2 —v2)(r2 ~ Eztz)lﬂll'

Meanwhile, from Eq. 10.42,

_”oeooa—‘t/ = —menﬁqc (——%) [(@t—r-v)? + (& —v?)(r? - )] ™
% [(@t—r1-v)? + (¢ = ®)(? - )]
= ,uoqc [Pt —r-v)* + (& —v?*)(r* — )] s [2(c*t —r - v)® + (¢ — v?)(=2c%)]

,uoqn3 (c*t—r-v—ct+v*)

= =V AV
4T [(2t—r-v)? + (2 —v?)(r2 — Cztz)]-‘*/‘b’
Problem 10.24 )
9142 1 q, °

(a)|F 0 @ % 2

(This is just Coulomb’s law, since g is at rest.)
Qe 1 _ae [l Qe 1 a1
O k=ga ) T % tney [bc tan™ (ct/ ")] , o Treghe [tan™(00) — tan™" (00)]

- - (5]
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1 fee
() From Prob. 10.18, E = — 2 — (=%} 3 Here z
4meg 22 \c+v

and v are to be evaluated at the retarded time t,, which is 4 0

given by c(t—t,) = z(t,) = /B2 + 212 = 62— 2ctt, +c*2 = !
12 —

b +c*2 = t, = ————. Note: As we found in Prob. 10.15, ¢

g first “comes into view” (for g;) at time ¢ = 0. Before that it

can exert no force on g;, and there is no retarded time. From

the graph of ¢, versus ¢ we see that ¢, ranges all the way from

—00 to 0o while ¢ > 0.

22282 -2+ 0 B + 22 1 2% c*t
z(t,) =t —t;) = e = (for t >0). v(t) = W il 50
2 —b? 2ct At - b
v(ty) = ( % ) (b2+n2t2) = c(£2t2 +b’) (for t > 0). Therefore
(PR 48 — (@2 -0 _ 2 B @ 4 B

b -
T T PEIR T @P ) — e~ ap >0 B ey ap 1

0, t<0;
Fi=( a4

“ameo (B2 + a’t2)2 >0

@h= ‘1“1’41;2 1. The integral i
h=———— m . The integral is

4meg
hed 1 1
+A G/ + 20 dt} =3ow (%) = op

c«/ <b/—+t1 1(;:2){(b/c):+t2:

Do ™
So |I
° ! 4meg be

(e) Fy # —F2, so Newton’s third law is not obeyed. On the other hand, I; = —I, in this instance, which
suggests that the net momentum delivered from (1) to (2) is equal and opposite to the net momentum delivered
from (2) to (1), and hence that the total mechanical momentum is conserved. (In general, the fields might
carry off some momentum, leaving the mechanical momentum altered; but that doesn’t happen in the present
case.)

Problem 10.25
s= i(E xB); B = < (v x E) (Eq. 10.69). E
& )

SoS— 2[E><(v><E)]=en[E‘2v—vE)E] ¢

The power crossing the plane is P = [ S - da,
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and da = 277 dr % (see diagram). So

P = eo/(Ezu — E2v)2nrdr; E = Ecosf, so E* — E2 = E2sin®4.
= 21r50v/E2 sin®§r dr. From Eq. 10.68, E = L%~—————R———aﬁ where y = —1
4meo 7 R2 [1 - (v/c)? sin? 6]

V1-22/c

2 s

1 e

= 2mev -q—) 7/ %dﬂ Nowr=acan9=>dr=aLdﬁ; l:ﬂ
dreo) 7*Jo  R[1- (v/c)?sin?6) cos?2§ 'R a

2 /2 .3
= LAL}; Lososdﬁ. Let u = sin®4, so du = 2siné cos§ df.
2ytdmeoa® Jo  [1 - (v/c)2sin? 6]

_ vg® /1 u du vg? 7\ _
T 16meoa®yt Jo [1— (v/c)u 16meatyt \ 2/

Problem 10.26

(b) From Eq. 10.68, with 6 = 180°, R = vt, and R = —#:
1 ael-v/d) ‘

Fa(t) = -

dmeq (vt)?

Newton'’s third law does not hold: Fi3 # Foy,
because of the extra factor (1 —v%/c?).

(c) From Eq. 8.29, p = ¢ [(ExB) dr. Here E = E;+Ej, whereas B = Bz, 50 ExB = (E; xBy)+(EyxBy).
But the latter, when integrated over all space, is independent of time. We want only the time-dependent part:

p(t) = 0 / (Ex x By) dr. Now Ex = —— %3 while, from Bq. 10.69, By = (v x Ez), and (Eq. 10.68)
4meg 2 c?

@ (=) R e n RPo 2 2p . rsing
> ™ dmeo (1 — v2sin’ 07/ 2)3/2 - BUR=r—v B =1 +v 2 — 2rvt cosf; sinf =1 s
a0 (1—v?/c?) (c—vt) . . R
E; = —_— 7 > — 7 Finally, noting that v x (r — vt) = v x r = vrsinf ¢, we get
7 dneg [1—(ursin€/Rc)2]3/2 R v & ( ) b, we g
B, = a1 —v?/c?) vrsinf $.S0pt) =€ q @l—v?/Ew [1 rsind (F x )

4meoc®  [R2 — (ursin g/E)Z]S/Z 4meg  4megc? 2 [R? — (vrsin /)21

But # x ¢ = —0 = —(cosfcos p% + cosfsin§ — sinf2), and the = and y components integrate to zero, so:

q1g2v(1 —U’/ﬂ2)i/ sin® § 2.
t) = 7 sin @ dr df d
r(®) {ncPe T + (vt)? — 2rutcosd — (vrsin8/c)2 T ¢

agv(l —v?/c?)i rsin® @

drdg.
8mc2eo / [r2 + (ut)2 — 2rvt cos B — (vrsin 8/c)?]*/%
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T’ll do the r integral first. According to the CRC Tables,

oo z s 2(bz + 2a) < _ 2 b 2_41]
/o (a + bz + cz?)3/2 (4ac— b?)Va + bz + ez, 4ac — b? \/E Vva
2 (2y/ac—
ey V) = ey o) ~ o ).

In this case z = r, a = (vt)?, b= —2vtcosf, and ¢ =1~ (v/c)?sin®6. So the r integral is
2 1

\/1 — (v/c)?sin* @ [th\/l — (v/c)?sin? @ — 2vtcos(;‘] - vt\/l — (v/c)?sin* 8 [\/1 — (v/c)?sin®g — cos(;‘]

[m+a] L [ cos0 }

oy1- @/t 6 [1 - (o/csin? - costg]  UtSn 00 =0/ | T o onte

So
a1gv(l = v*/*) 1 /" 1 cosf -
= e | = |1 ————
p(t) 8rcleo A=) J, se |1t R sin® 6 dg

3 x
83:;1:2 / sin0d0+£/ _ cosfsinf
et | Jo v 4/ (¢fv)? — sin 0

But f;"sinfdf = 2. In the second integtal let u = cosf, so du = —sin§d6:

" ;
/ __cosfsing / . — = du =0 (the integrand is odd, and the interval is even).
o 1/(c/v)2~—sin20 4 (c/v) 14

Conclusion: | p(t) m:;ltqz (plus a term constant in time).
(d)
1 ae, 1 ae —02/82) Qg o) Qe . _ hag
F F. = - -1+~ )2=-—"T"12= 5
12+ Fay 4rmeg v2t2 “ 4rey v242 41re v2t2 + Z) 4megc?t? EF Tz ©
_dp _ o,
% = ampe E=Fr+Fa ged

Since ¢; is at rest, and g, is moving at constant velocity, there must be another force (Fmech) acting on
them, to balance F15 + Fa1; what we have found is that Frmech = dpem/dt, which means that the impulse
imparted to the system by the external force ends up as momentum in the fields. [For further discussion of
this problem see J. J. G. Scanio, Am. J. Phys. 43, 258 (1975).]
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Radiation

Problem 11.1 1
From Eq. 11.17, A = ltopow sm[w(t —r/c))(cosf & —sin 6 8), so

w [1 2] 2,1
VoA = o {r, w[r’—sm[u(t—r/c]cosﬂ] Tsmoaa[~—sm20—sm[w(t—r/c)]]}
_ Hopow

= i {r’ (sm[w(t —rfd)] - — cos[w(t - r/c)]) cos — %ﬁ%ﬂ sinfw(t — r/c)]}
= [heo {4“5 (r_7 sinfw(t —r/c)] + ;Z cosfw(t — r/c)]) cos@} .
Meanwhile, from Eq. 11.12,

2
& - 1’4“7:? {-h-;—cos[w(t = rfe)) = sinfu(s - r/c)]}

| - _pw 1 - w - A= e,V
li = o {r’ sinfw(t — r/c)] + = cosfw(t r/c)]} cosf. SoV:-A=—pe TR qed
| Problem 11
_ Po _ . __How Po _
“ Eq. 11.14: | V(x,8) = 4“06 - sm[w (t —r/c)).|Eq. 11.17: | A(x,t) = T sm[w(t r/c))- |

| Now pg x & = posinf ¢ and # x (po X ) = posin6(F x §) = —posinf 6, so
I Bq 1118 |E(r,8) = ““’ﬁ(“—"l

cosfu(t - /). | Eq. 11.19: | B(z,8) = °:c B0 X8) cosfute ~ /)

. How* (pnxr)’
Eq. 1121: | (8) = 50y

Problem 11.3

= IR = gjw? sin®(wt)R (Eq. 11.15) = (P) = }¢jw*R. Equate this to Eq. 11.22:
1o 2p_ Moggd?w! Hod®
ql k= 12mc dli 6mc

_ tod? dn?3 _ 2 (d)’

N 2mc
| or, since w = —=,

2 —7" )8 d ? 2 d 2 2
=3rirx107)B x10%) () =807 () Q=[7896(d/N0

195

brc a2 3H0°
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For the wires in an ordinary radio, with d = 5x 10~2m and (say) A = 10m, R = 790(5 x 1075)2 = 2 x 1076,
which is negligible compared to the Ohmic resistance.

Problem 11.4
By the superposition principle, we can add the potentials of the two dipoles. Let’s first express V (Eq. 11.14)

in Cartesian coordinates: V(z,y,2,t) = — sinfw(t—r/c)]. That’s for an oscillating dipole

Do z
dmege \ 7% + y2 + 22
along the 2z axis. For one along z or y, we just change z to z or y. In the present case,

P = pocos(wt) X + cos(wt — m/2) 7], so the one along y is delayed by a phase angle /2:

sinfw(t — r/c)] = sinfw(t — r/c) — 7/2] = — coslw(t — r/c)] (just let wt — wt — m/2). Thus
Pow z . Y
vV = ~Tnee {msm[w(t—r/c)]— st[w(t—r/c)]}
= ‘ f:’:c SI:G {cos ¢sinfw(t — r/c)] — singcoslw(t — r/c)]} . ‘ Similarly,
A = | ,uopuw {sinfw(t —r/c)] % — coslw(t — r/c)] ¥} . I

We could get the fields by differentiating these potentials, but I prefer to work with Egs. 11.18 and 11.19,
using superposition. Since Z = cos@f — sin 8, and cosd = z/r, Eq. 11.18 can be written

2
E=4 ‘;’;ﬂ: cosfw(t —r/c)] (2 -2 f). In the case of the rotating dipole, therefore,

T

m;pow {cos[w(t —r/c)] ( - ;i) + sinfw(t —r/c)] (S' -y x") } s ‘

r

S:i(ExB)=L[Ex(i-xE)]:—[E‘z‘—(E E)E] = —-r(notlcetha,tE # = 0). Now
ko HoC

B (‘”:’:;”2 ) ’ {a? cos?[u(t — /0)] + VP sin[u(t — /)] + 2(a - b) sinfu(t — /d)] cosfu(t — r/d)]} »

where a = % — (z/r)f and b = § — (y/r)f. Noting that X-r =z and § - r = y, we have
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2 2 2
2 z? @ 22, ¥ yz Ty wy_ 3y
R e e N =%
‘ ¢ te e 2’ rrorr o 12 r2

‘ 2
B = (ﬂf:rﬁ) {(1 - f—:) cos?lult — /)] + (1 - lg) sin?{uw(t /)]
- 2:—3 sinfw(t — r/c)] cosfw(t — r/c)]}

_ [ popo?
- 4nr

)2 {1- 5 @ ol — o+ 2mysinote = e cosots = /) 4.2 silote = /) }

(#‘Z;ﬂfa)g {1 — =5 (zcos[w(t — r/c)] + ysinfw(t — r/c)]) }

Butz = rsinecosd) and y = rsinfsin ¢.

2
= (%) { 1= sin? @ (cos ¢ cosw(t — r/c)] + sin gsinfuw(t — r/c)])“}
2\ 2
= (%w_) {1 — (sinf cosfw(t — r/c) — ¢>])2}.

z
Intensity profile
(1-4 sin26)

v

Ho ( pow? 2{1_
c \ 471
2y 2
‘ © = “—c“(’;“;) [1—%sin20]i-.
P = /(S)-da:ﬁ pu_wz 2/1 1—-sm6‘ 72 sin 6 df d
c \ 4n r2 2

_ mopget / __/ _ popget (1 4
= Tontc 2#[ A sin§ df sin® 0.do e 53

1
This is twice the power radiated by either oscillating dipole alone (Eq. 11.22). In general, S = M_(E xB) =
o

1
LBy 4+ B2) x (B, + Ba)] = - [(B x By) + (Bz x By) + (By  Ba) + (Ba x By)] = ; + S cross terms.
0

In this particular case, the fields of 1 and 2 are 90° out of phase, so the cross terms go to zero in the time
averaging, and the total power radiated is just the sum of the two individual powers.

Problem 11.5
Go back to Eq. 11.33:

A= “047:0 (M) {;cos[u(t —rfc)] - %sin[w(t - r/c)]} é

T



198

Since V = 0 here,

CHAPTER 11. RADIATION

B = 24 wm (s‘:‘ 9) {r( ) snfu(t = /)] ~ Luscosft ~ r/c)]}
= E‘L‘.T;‘ﬂ (sx:ﬂ) {;sm[w t—r/o)]+ —-cos[w(t—r/c)]}(fb
B = VxA= rsmew(Ad,smo)r———(rAé)O
= ”‘Z:u {-——‘r silne 2sinfcosf szmse [% cosjw(t —r/c)] — - sin[w(t - r/c)]] i
- [A%cos[w(t = /9] + L sinfult — r/] - 2 (=) coslu(e ——r/c)]] a‘}
| [t [ cosu(t — 7/6)] - sinfu(t - r/c)]] #
—ﬁrﬂ [—— cosfw(t — r/c)] + ~sm[w(t —rje)] + ( ) cos[w(t — r/c)]] l?}.

These are precisely the fields
the solution to that problem) is

we studied in Prob. 9.33, with A — “‘T—"w

The Poynting vector (quoting

2.3 /a1
pomaw® (sinf\ [2cosf e\ c 2 a2 n]a
S 167287 (";T) {T 1- 5 ) sinucosu+ — (cos® u —sin®u) | §
sin 6 (__+u’ 3)smnu:os«u——cos u+——(sm’u—cos u)] }
here u = ~w(t — r/c). The intensity is | (S) = ““"‘"’“’AS‘“ the same as Eq. 11.39,
where u = —w r/e). y 392 e sam q. 11.39.
Problem 11.6
2p _ 72 2 L. pomdw® _ pon®bt Bw!
I’R = I§Rcos®(wt) = (P) = I R= oA = o

pomb? 167%ct
6c3 A1

Because b < A, and R goes like

g(ns)(&n x 1077)(3 x 10%)(b/A)* =

the fourth power of this small number, R is typically much smaller than the

electric radiative resistance (Prob. 11.3). For the dimensions we used in Prob. 11.3 (b = 5cm and A = 10°m),
R =3x10%(5 x 10~5)* = 2 x 10712 Q, which is a millionth of the comparable electrical radiative resistance.

Problem 11.7
With a = 90°, Eq. 7.68 = E

! =B, B' = -E/c, g}, = —cge = Mo = gjpd = —cged = —cpo. So

E = c{_”“(+“°c/c)w2 (sma) cosfw(t —r/c)]qS} % (Sme) cosw(t —r/c)] . |
B = —% {—7“0(_7:;/‘:”2 (smb‘) cosfw( t—r/c)]ﬂ} ‘ E‘:—;—'cﬁ (sm&) cosw(t —r/c)] f. ‘
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These are tdentical to the fields of an Ampére dipole (Eqs. 11.36 and 11 37), which 1s consistent with our
general experience that the two models generate identical fields ezcept right at the dipole (not relevant here,
since we’re in the radiation zone).
Problem 11.8

p(t) = po[cos(wt) X + sin(wt) §] = p(t) = —w?po[cos(wt) % + sin(wt) §] =

[B(t)]* = wipdleos? (wt) + sin®(wit)] = piw. So Eq. 11.59 says |S

with the answer to Prob. 11.4. The reason is that in Eq. 11.59 the polar axis is along the direction of p(to);
as the dipole rotates, so do the axes. Thus the angle 6 here is not the same as in Prob 114.) Meanwhile,
2,4

. | (This appears to disagree

Eq. 11.60 says (This does agree with Prob. 11.4, because we have now integrated over all angles,

6me
and the orientation of the polar axis irrelevant.)
Problem 11.9

At t = 0 the dipole moment of the ring is

2m 27
/)\rdl = /(Aosin¢)(bsin¢y+bcosqsfc)bdd» = Aob? (y/ sin2¢d¢+:‘(/ sin¢cos¢d¢)
0 0
= AP(n§+0%) =nb?A §.
As it rotates (oounterclockwise, say) P(t) = polcos(wt) § — sin(wt)R], so p = —w?p, and hence (p)? = wipd.

Therefore (Eq. 11.60) P = 4(1rb’»\°)2

Problem 11.10
P=—ey¥, y= g2, sop=—Lget?§; p = —ge§. Therefore (Bq. 11.60): P = G‘%(ge)z. Now, the time

it takes to fall a distance h is given by h = gt? = t = /2h/g, so the energy radiated in falling a distance h
2
is Uraq = Pt = Muéﬁz) V2h/g. M ile, the ial energy lost is Upot = mgh. So the fraction is

(4m x 1077)(1.6 x 10719)2 [(2)

_ (4r x 1077)(1.6 x 10777)° /(2)(9.8) _ —
= on(9.11 x 10313 x 10%) || (0.02)

Evidently almost all the energy goes into kinetic form (as indeed I assumed in saying y = 3 gt2).

_ Unad _ pog®e® [2h 1 _
" Upt  6mc || g mgh
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Problem 11.11

[ .
@V = TR (T) sinfu(t — ra /o)) Viow = Vi + V.

ry = /r2+(d/2)? F2r(d/2)cosd = r\/1F (d/r)cosf =r (1 F % cosb‘) .

1
o (1 + 2_7‘6059)

rcosf F (d/2)
T+

14

d d d o d
cosfy —r(cos@:F 5) (I:i: cosa) =cosf + gcos 0:;:§
- L1 _cosh) = in?
= cosfF 2r(l cos® §) = cosf F erm 6.
. . T d . wd
sinfw(t —r&/c)] = sinqw t——z l:Fgcosﬂ =sin | wig + Ezoosa , where to =t —r/c.

5 wd . (wd . wd
= sin(wtp) cos (EE cos()) = cos(wtp) sin (-i cos 0) = sin(wto) £ N cos 6 cos(wio).

_ Pow d d . 5 . wd

Vi = 41rsuc'r {(1 + br cos@) (cosﬂ F 3y sin @) |sin(wto) £ % cos  cos(wto)
- Pow 4. 25,4 2 . wd
= Fire oo (cos(;‘ F 5, sin E3 o7 €08 9) [sm(wto) + % cos 6 cos(wtp)

cos fsin(wto) + w_d cos® f cos(wio) = i (cos’ 6 —sin’g) sin(wto] .

e
[

qu cos?  cos(wto) + — (cos 6 —sin* ) sm(uto)]

41regc1'
— _pw'a *d 2 < 20 o20)
= | incr [cos 8 cos(wio) + o (cos? 8 — sin”§) sm(wtu] .
5 . pow?d o
In the radiation zone (r > w/c) the second term is negligible, so|V = — e 8 cosfw(t —r/c)).
0
Meanwhile
w -
Ay = *‘:501 sinfw(t - ra/c)] 2
_ g Hopow 4 wd P
= Fo- {(1 + 3 cosa) [sln(utg) + % cosﬂcos(uto)] } 2

w [ . wd d N 5
= :Fﬂzf:‘ [sm(wtu) + cos@cos(wtu) + P cos@sm(wto)] Z.

Awe = Ajp+A--— l-tupnlu' [— cosf cos(wito) + — d oosﬂsm(wto)]

_ HoPow ?d
dmer

cos @ | cos(wto)




In the radiation zone,

A= ;mp:w 'd cosf cos[w(t —r/c)) 2.

o simplify the notation, let @ = ———. en
b) To simplify th jon, I ““‘;":d Th

2
vV = acos ecos[u(t —r/o)};
V.. 18V . 1 w . -
vV = it ;%ﬂ acos 6‘{ r—,cos[w(t —rfe)]+ Esm[u(t —r/c)]}r
”‘M cosfw(t —r/c)) 6 = aicos 9 sinfw(t —/c)]# (in the radiation zone).
A = gﬂ cosfw(t —r/c)] (cosb‘r - sm@ﬂ) Z—? = _acu cosf sinfw(t — r/c)] (cosﬂr - smaé)
- _yy_9A_ _aw _ 205 _ cos?0F + si )
E = -VV %= o sinfw(t —r/c)] (cos 8% — cos’ 0r+sxn0c0500)
= | —-% sin @ cos @ sinfw(t — r/c)] §.
170 4,7 -
B = Vx“::[a( ae]¢
afd . d [cos?d -
= & {— (cos @ cosfw(t — r/c)}(—sin b)) — % [ - cosfw(t — r/c)]] } ]
= —( sin @ cos ) — sm[w(t —r/c)] $ (in the radiation zone) = |—%sin0cosﬂsin[w(t -7/ .
Notice that B = %(f xE)and E-#=0.
S = L(BxB)= —Ex(xE)=—[B#(B-HE] = —¢
Ho HoC HoC
1 fow . 2. _ 1 row . 2
= lTuE{Tc-smﬂcosasm[w(t—-r/c)]} i ‘I m(;—sm@cosb‘) )
2 -
P = /(S)~da: ﬁ (%) /sm fcos® sin0df dp = m (n:) 27{/0 (1 - cos®6) cos® fsin § df.
. L _cosffm cosPfT 2 2 4
The integral is : — 3 Io 5 |0—§—§~ﬁ.

1 W pd 4
T 2uc lﬁnz(pud v 2"E

Notice that it goes like w®, whereas dipole radiation goes like w?.
Problem 11.12
Here V = 0 (since the ring is neutral), and the current depends only on ¢ (not on position), so the retarded

vector potential (Eq. 11.52) is A(r,t) = % f M dl'. But in this case it does not suffice to replace 2 by




r in the denominator—that would lead to Eq. 11.54, and hence to A = 0 (since p = 0). Instead, use Eq. 11.30:
% o ; (1 ¥ gsinacosqﬁ’). Meanwhile, dl' = bdg'd = b(—sin¢' % +cos¢' ) dg, and
I(t —2/c) = I(t~r/c+ (b/c)sinBcos ') = I(to + (b/c)sinfcos¢') = I(to) + I(tu) sinfcos¢’

(carrying all terms to first order in b). As always, to = ¢t — r/c. (From now on I'll suppress the argument: I,
1, etc. are all to be evaluated at tp.) Then

Ay = b }4' ; (1 + Esinﬂcos#) (I+i'—’ sin0c05¢>’) b(—sing' & + cos ' §) d’

ES Z::/ [I+I sinfcos ¢’ + I smacow](—smﬂ +cos¢' §)d¢'.

27 27
But / sin¢'d¢'=/ cos ¢’ d¢'=/ sin ¢’ cos ¢’ d¢' = 0, while / cos® ¢ d¢' = .
0
= Mob("y) [I sinf + I~ smo] = —bsxn0(1+ I)

In general (i.e. for points not on the z 2 plane) § — ¢; moreover, in the radiation zone we are not interested

in terms that go like 1/r2, so | A(r,t) = ‘u"b [I(t r/c )] sinf é- ‘

2
E(r,f) = _%= pob
B(r,t) = VxA= rs‘neae(A¢sln9)r———(rA¢)9
A .
T L o 125m00050rv—‘1 Dsinoo
4c |rsinfr c
11ob? :sin@
S = (EXB) uuc(4clr)(¢xg) 1663(I

P = /s-da=1~6§(b’f) /S‘n 0,2 sln@dﬂd¢=——~(bz) (27r)( ) ’(‘i‘;;' (b’“

(Note that m = I7b?, so 7 = Irb%.)

Problem 11.13
202
(@) P= l“gr: , and the time it takes to come to rest is ¢ = vg/a, so the energy radiated is Urag = Pt =

tog’a’ ) . The initial kinetic energy was Uyin = 2mvo, so the fraction radiated is f = h
6mc Uian
1 v} v A
2 _ 2% _ % =%
(b)d= at =300 T 500 S00= 55 Then

_ g’ v _ pedtuo _ _ (4n x107T)(L6 x 1071)2A0°) o
£ = Srmvoc2d = Gwmed ~ 6m(9.11 x 10-31)(3 x 10°)(3 x 10-9) —
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So radiative losses due to collisions in an ordinary wire are negligible.
Problem 11.14
1 ¢ 2

q i
F=—==ma=m—=>v=
4meo 2 r

At the beginning (ro = 0.54),

v_ (1.6 x 10-19)2 !
¢ [4n(8.85 x 10-12)(9.11 x 10-31)(5 x 10-11) 3x 108

= 0.0075,

and when the radius is one hundredth of this v/c is only 10 times greater (0.075), so for most of the trip the
velocity is safely nonrelativistic.

6mc \ 6me \ 4meg mr?

2 2 2\ 2
¢From the Larmor formula, P = —— "—) - (Lq—) (since a = v%/r), and P = —dU/dt,
where U is the (total) energy of the electron:

1o P_1/1 ¢ 14 1 ¢

U = Usin + Upor = 7™ - (41reo r 4dmeg v 8meg T

dU 1 ¢*dr g2 1 ¢\ dr 1 2 \1

W1 gd_p_ 1 ¢ dhence o= —— (=2 =
So dt 8meq rz dt =P 6megc® \dmegmr? ) and hence c ( ) 2

92, 0
.nz_ac(w) zdm__sc(M) [ra=
q I3 o

2n(8.85 x 10-12)(9.11 x 10~%1)(3 x 10%)]? T
{16 x 10-)2 (6x 107

= (3x 10“)[

Problem 11.15
According to Eq. 11.74, the maximum occurs at

4
df | (1~ Bcosb,
) e
%—%?:0:2cosﬂ(l—ﬁcosﬂ)=5ﬂsin’9=5ﬂ(1—coszﬂ);

2cosf — 28 cos® = 58 — 50 cos?d, or 3Bcos?f+2cosf —58=0. So

-2+ /1605 _

8 = iﬂ (:l:\/l +1562 - l). ‘We want the plus sign, since 0, — 90°(cos 8, = 0) when
2
=0 (Fig. 11.12): | fpmax = cos™ (—V”;ﬂl) .
Forvasc, B~ 1; write B = 1 — ¢ (where € < 1), and expand to first order in e:
JiTE-1\ _ — 1]k —
(T = e) [\/1+15 -0z 1] F1+9) [\/1+15(1 20) 1]
= §(1+e) WIE=B0e-1] = §(1+e) [si- e - 1] Yise [ (1ﬂ —e) - 1]

1 15 5. 5 _ 1
= §(1+s)(3-—~1-6)—(l+e)(l—ze)=1+e—ze—1 7©

cosf =

Evidently Omax % 0, 50 COSOmax = 1 — 362, =1 — e = 02, = }¢, or Omax =
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Let f =

(dP/ds,, ) _ 5in® Omax ] ey
P (= Beosta ] o 5 e /2, 0d
/2 4\° 1
(1 Bcosbmax) 21— (1-e)(1—te) &1 - (1—e—Le) = e s°f=(5€/W= (g) 5+ But
1

1
y=—t = 1 o L o e= 1. Therefore

V1= 1-(1-¢? \/1—(1—25) s

2 51(272)‘=
(5) 3

f

Problem 11.16
¢ Jix(uxa)f

dQ 16m2eg  (-u)®

u:cﬁ~v=c72~v2=:»4~u:c—v(fvi)=c—vcos€=c(l—%cos€) =c¢(1 - fBcosh);

Equation 11.72 says — Let B=v/c.

a-u=ac(k-4) —av(k-2) =acsinfcosg; v =u-u=c?—2cv(t2)+v>=c?+v? - 2cvcosh.

Ax(uxa) = (i-a)ju—(i-u)a
Jax(uxa)l? = (b-a)*u®—2(u-a)(i-a)(k-u)+ (i-u)’e® 3
(c* +v* — 2cv cos§)(asin 8 cos ) ~ 2(acsin b cos ¢)(asin § cos ¢)(c — v cos 8) + a2c3(1 — Beosf]
= a®[c*(1 - Bcosb)? + (sin® 0 cos® ¢)(c* + v* — 2cvcosf — 2¢? + 2cv cos b]
a?¢? [(1 - Bcosh)® ~ (1 - B*)(sinf cos ¢)?] .
pog?a® [(1 = Beosd)? — (1 — %) sin’ O cos? ¢] ‘
16m2c (1 - Bcosh)s :

dP

dQ

The total power radiated (in all directions) is:

dP [ dP . _ Hog?a® [(1 = Bcos)? — (1 — B%)sinfcos® ¢] .
—ﬁdﬂ_/a—lmnOd@dq&— m// A= Boost)s sin@df do.

P

27 21
But/ d¢ =2m and/ cos? pdp = .
0

Muqzﬂzﬂ,/ [2(1 = Beos6) - (1 - F)sin’6]
0

16m2c (1 - Bcosh)s ods.

Let w = (1 — Bcosf). Then (1 —w)/B = cosf; sin®f = [#* — (1 — w)*] /6%, and the numerator becomes

2u? — (1‘ Qo) trow—u?) = L wtf o (1- ) 21 = B + (1 — B
iz ]

7 (0= - 20 - Py + @+ ]
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=ﬂsin0d0:sin0d9:%dw‘ When 6 =0, w=(1-8); whenf=m, w=(1+f).

g’ 1 / (48 1 212 2 23,2 : .
P = - 1-— —-2(1-Bw+ 1+ dw. The int
Torc £° Ju—p) w [a-p% (1- %) 1+ B*w’] e integral is

Int = (1—132)’/$dw—2(1—B”)/Fdw+(1+ﬁ“)/%dw

1448
- () a0 () oo ()
irw _ 11 _(1-284+8)-(1+20+8%) _ 48
g T (1482 (-8 (1+p)*(1-pB) Toa-pr
L|‘+" _o 1 1 _(1-384387 -6 - (1+38+367+6°) _ _26(3+5°)
#li-p a+p® 1-p7 (1+8y°1-p8)* Toa-r
e _ 1 1 _(1-48+68° 4B+ B~ (1+48+66° +46° + %) _ 86(1+5%)
s (148 (-8 (1+p8)*a-p5) BN D

. 2 o —
It = (1-p4%)? (—41) __(8113£1;2£) —2(1- 4% (,%) —(211’(3;2;3 ) +(1+p) (—v) a _452)2
A+ - Je++ 0+ =

ﬁ’)’

28
a-/2 [
g 18

16mc B°3(1— B2)2

Is this consistent with the Liénard formula (Eq. 11.73)? Here v X a = va(z x X) = va §, so

2_(¥ 2_2 _f 12 Lg2 16 _uuq’"r“ﬁ
a (Cxa) =a (l c,)—(l B)a’ —72a,sotheLxenardformulasaysP_ Brc 77

Problem 11.17 )
(a) To counteract the radiation reaction (Eq. 11.80), you must exert a force F, = ~——a.
For awrcular motion, r(t) = R [cos(wt) X + sin(wt) §], v(t) = & = Rw[—sin(wt) & + cos(wt) ¥];

a(t) = v = —Rw? [cos(wt) % + sin(wt) §] = ~w?r; a= —w = —w’v. S

w?v?.| This is the power you must supply.

Meanwhile, the power radiated is (Eq. 11.70) Praa = “%3::2, and o? = w'r? = w'R? = wh?, so
Paa= %q:wzvz, and the two expressions agree.

(b) For simple harmomic motion, r(t) = Acos(wt)2; v = = —Awsin(wt)2; a = v = —Aw? cos(wt)z =
-w’r; 4 = —w? = —w?v. So|F, = lg]—'fwzv; P, = S—:Cw w2, | But this time a? = w'r? = w*A? cos?(wt),
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whereas w?v? = w!A? sin?(wt), s0

Praa = 2% 0 42 o2 ut) 4 P =

nod® 2 gin2 .
e T * A% sin? (wt);

6:
the power you deliver is not equal to the power radiated. However, since the time averages of sinz(wt) and
cos?(wt) are equal (to wit: 1/2), over a full cycle the energy radiated is the same as the energy input. (In the
mean time energy is evidently being stored temporarily in the nearby fields.)

(c) In free fall, v(t) = 3gt*§; v = gt§;a = g§; a = 0. So |F. = 0;| the radiation reaction is zero, and

hence But there is radiation: | Pag = ’:Tq:gz. Evidently energy is being continuously extracted from

the nearby fields. This paradox persists even in the ezact solution (where we do not assume v < ¢, as in the
Larmor formula and the Abraham-Lorentz formula)—see Prob. 11.31.
Problem 11.18

(a) v = w’r, and 7 = 6 x 10~2*5 (for electrons). Is y K w (i.e. is 7 < 1/w)? If w is in the optical region,
w = 21w = 2m(5 x 10M) = 3 x 10'%; 1/w = (1/3) x 1071% = 3 x 10718, which is much greater than 7, so the
damping is indeed “small”. v’

(b) Problem 9.24 gave Aw = v = wir = [2m(7 x 10'%)]2(6 x 10~2¢) =|1 x 10'°rad/s. | Since we're in the

region of wp & 4 x 10! rad/s, the width of the anomalous dispersion zone is very narrow.
Problem 11. 19F o o F o 1

(a)a—ra+—=z—1'$+— —dt»r —dt+ /th
[v(to + €) — v(to — €)] = T[a(to +€) —alto —€)] + %FM, where Fye is the average force during the inter-
val. But v is continuous, so as long as F' is not a delta function, we are left (in the limit € — 0) with
[a(to +€) — a(to — €)) = 0. Thus a, too, is continuous. qed

() (1)a41'a—1'z—': %:—dt /d“ /dt=>lna*—+c0nsta.nt. = | a(t) = Aet/", | where A

is a constant.
da F da

1 t F
(u)a_ra+—=:»rz—a—;n-=:»m:;dt:ﬂn(a—F/m):;+conscanc=>a—;:

Bet'™ = where B is some other constant.

(iii) Same as (i): |a(t) = Cet/", | where C is a third constant.

() At t=0, A= F/m+ B; at t = T, F/m + BeT/” = CeTI" = C = (F/m)e~T/" + B. So

[(F/m) + Bet/", t<0;

at) = [(F/m) + Be‘/'] , 0<t<T;

[(F/m)e‘T/' +B] e, t>T.

To eliminate the runaway in region (iii), we’d need B = —(F/m)e’T/ ; to avoid preacceleration in region
(i), we’d need B = —(F/m). Obviously, we cannot do both at once.
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(d) If we choose to eliminate the runaway, then

Ffm) 1= e, e 0;
a(t) =1 (F/m) [1 - e“'”/’] , 0<t<T;

0, t>T.

(i) v = (F/m) [l - e‘T/"] /e‘/"dt = (Fr/m) [1 - e‘T/’] e!/™ + D, where D is a constant determined
by the condition v(—c0) =0= D =0.

(i) v = (F/m) [t - Te("T)/’] + E, where E is a constant determined by the continuity of v at ¢t = 0:
(Frfm)[1- *T/f] = (Fjm) [-r¢"7/"] + E= E = (Fr/m).

(iii) v is a constant determined by the continuity of v at t = T: v = (F/m)[T + r — 7] = (F/m)T.

(Fr/m) [l - e‘T/’] e, t<0;

v(t) ={ (F/m) [t +r— re(‘-T)/'] , 0<t<T;
(F/m)T, t>T.
(e)
mlrh.«‘\rgul particle.
“ (no radiation reaction) «0
charged particle
. L/
T
e h
\
1
T charged particle '
e leration /‘_/(vu!h radiation reaction) '
ncharged parucle |
t ! t
0 T T
Problem 11.20 - - ) A
(a) From Eq.11.80, FZf = Mla, 50 Fraq = Fitt 4 2Fend = K0T 5 |2 4 9 (2) ] 00,
erc - [27°\3 6rc
®) Fus = 1224 / { / 2,\4,,2} 2Ady;. (Running the y Y
(]
integral up to y; insures that y; > y2, so we don’t count the w
Iy,

same pair twice. Alternatively, run both integrals from 0 to L—
ntentionally double-counting—and divide the result by 2.) )y,
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Fuo = 222 000) [y = 222w % = Jo e b0l
Problem 11.21
(a) This is an oscillating electric dipole, with litud po = gd and w = /k/m. The (averaged)
24
Poynting vector is given by Eq. 11.21: (S) = (“;ZPTO:JC) Sl: i , so the power per unit area of floor is

4 02
I = (s)‘iz(ﬂ‘opgw)sm”_m”_ Butsin9=§,cosa=9,andr2=R=+h2.
7

32n2c r?
o | (meddety __ RBh
- 32n%c ) (R + h2)S
ar R 1. 2R 5 R B
&7 [(Rz | =0 mEapn @@yl =0

(R? +h?) — gR =0=>h%= —gR2 =| R = 1/2/3h, | for maximum intensity.
(b)

o(gd)?w? © R _
P = /If(R)da=/If(R)2md}z=2n (U&T hL Wdﬁ. Letz=R?:
/°° B R- 1/“’ T - LI@UQ/2) _ 2
o (R2+h2P72 2)y (@+h2)? 2n° T(5/2)  3h°

Pd?wt 2
pogtd?wt 2 _
2"( 32n%c )hsh

I

which should be (and is) half the total radiated power (Eq. 11.22)—the rest hits the ceiling, of course.
(c) The amplitude is zo(t), so U = }kzf is the energy, at time ¢, and dU/dt = —2P is the power radiated:
1.d pow? How'q? . -
5 dt(zu) =— 12“11 23 = — (1(2,) = _W(E“) = —kal = 1 = d’e™ or zo(t) = de™*/2.

_ 2 _ 12xke_, |12 2

PRy =k

Problem 11.22 - 2y
_ [ pomdw*\ sin’ _
(a) From Eq. 11.39, (S) = 32m2G8 ) = . Here sinf = ‘

Rfr, r = VEETHE, and the total radiated power (E- u

2, 44
q 1140) is P = ";’;"—"“ So the intensity is I(R) =
R
() o[ 2
32r ) (RE+h2)? | 8m (R2 + h2)*
(b) The intensity directly below the antenna (R = 0) would (ideally) have been zero. The engineer should

have measured it at the position of mazimum intensity:

dr _ 3P [ 2R 2R? 2R
(

=53 2R

T e = sy (0 2R 0= (R

4R~ 8r
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3P h*
At this location the intensity is I(h) = B @ hz)7
3(35 x 10%) y - — -
(€) Imax = —32"(200)2 =0.026W/m? = | 2.6 uW/cm | |Yes, KRUD is in comphance.l

Problem 11.23
(a) m(t) = M cos® % + M sinp[cos(wt) % + sin(wt) §]. As in Prob. 11.4, the power radiated will be twice
that of an oscillating magnetic dipole with dipole moment of amplitude mg = M sint. Therefore (quoting
20,8 gin?

Eq. 11.40): | P .| (Alternatively, you can get this from the answer to Prob. 11.12.)

6nc?

(b) From Eq. 5.86, with 7 =+ R, m — M, and 6 = 7/2: B_r%,so

4m(6.4 x 10°)3(5 x 1075)
— T = 1.3 x 10?3 Am?,

(47 x 1077)(1.3 x 10%3)2 5in?(11°) 2 ‘_ =
©F= 6r(3 x 10°) 2x60x60) (no much).
110(4n R3B /o) *w* sin® % _ 87r
@Pp= 6mc?

B e

Problem 11.24

(a) Az, 1) = %/@da

0% K(t,
= L —,1‘2(4"_')221"-«17‘
_ Muz/K t—m/c)
B ViZ+a?
The maximum r is given by ¢t — vrZ + 22/c=0;

Tmax = V ¢2t2 — z? (since K (t) = 0 for t < 0).

(szaB sin ¢) Using the average value (1/2) for sin®+,

®

_ Koz _ MoKz o poKoZ = _ )= poKolct —z)
A(z,t) = 3 /o -—————‘/mdr— - Vr? 4+ , =3 (\/rm z z) =y
E(z,t) = —% = for ¢t > z, and 0, for ¢t < z.

B(z,t) = V><A=—(9 for ¢t > z, and 0, for ¢t < z.
9z
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(i)
5 [ (t— JITTRE P -
Ay = MeE [ -V L ot [t/ ;d,_lj ,d,]
2 Jy VrZ g a? 2 o VrZ+az? cJo
- ot liap_ 2] mad , 2y _ poalz —ct)?
= [t(ct z) @t - a )] o e (2? - 2tz + %) = = .

E(z,t) = -5 = for ¢t > 2, and 0, for ct < z.

z o

Bzt = Vxa=-24

F v for ¢t > z, and 0, for ct < z.
Y e I T I r
(b)Let.u:—( T2+ o 1),sodu_ 2\/ymh'dr PV
pocZ z
_.t—z~u andasr:0— o0, u:0 - oo. ThenA(zt)« 2 /o K(t—;~u)du.qed
_ 8A _ uucz T _ k2 _z_ K2 _z
E(z,t) = e / 3t (t— u) du. But BtK(t u)_—a K( —u)
- #ﬂ" _r_ _/“’c A gy — — K(—oo)]2
- / 5ok (=S -u) du=2a K (- 2= o)]|” = 22 (re (s - /) - K(-co)ls

= —TK(t — 2/¢) %, | [if K(~00) = 0].

Note that (i) and (ii) are consistent with this result. Meanwhile

B(z,t) = —%y= [ / t—————u)du But%K(t~—:——u)_—%K(_Z_)
s [ (2 ) e 2] - Bt oy

[if K(—o00) = 0].

s = #lu(E xB) = ”ia ("—;f) (’?) K(t—z/c)[-2 x 9] = "‘%c[K(t-z/c)]zi

This is the power per unit area that reaches « at time ¢; it left the surface at time (t — z/c). Moreover, an
equal amount of energy is radiated downward, so the total power leaving the surface at time ¢ is # K@P.

Problem 11.25

_ S I P T T poc*®
() =22(t); § =25 F=mi= dmeg (22)2° 2= dmeg 4mz? ~ 16mm2?’ B= 8rma?’
2 3
_ b _ o (_p@@\ _ i | [ pocd® 1
Using Eq. 11.60, the power radiated is P = e~ bme ( 8,"”12) = Gl izt = = i

Problem 11.26 1
With o = 90°, Eq. 7.68 gives E' =¢B, B' = _ZE’ @ = —cge. Use this to “translate” Eqs. 10.65, 10.66,




and 11.70:
E = ¢ (%/2 x E) =4 x (—cB') = ~c( x B').
o 1o 1 g
B = - B=- 04"60(403[(02 )+ x (uxa)]
1 (= 2
= _Z( ;{”;({c) e [ =v)u+ax(uxa) = ‘u“i"‘( 7 [(c® —v*)u+ax (uxa).
2 2
_ #o@® o mea® (1 poa?
P o= 6mc % = brc ( cd'") 6mc® a4
Or, dropping the primes,
B(r,t) = ”‘E{m ﬁ [ =P u+ax(uxa)].
E(r,t) = —c(AxB).
2 42
—  Pogmo
| P 6w
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Problem 11.27

T
(2) Wext = / Fdz=F / v(t) dt. From Prob. 11.19, v(t) = % [z +7 n,e(tm/r]' So
o

F? 2 T
W = — / tdi+T / dt— 're’T/’ et dt Srie Tevr/rre»/r]
m | Jo o
2
= % [%T” +1T = 2T (T - 1)] = fm_. (‘T ST Tﬁe—T/T) _
(b) From Prob. 11.19, the final velocity is vy = (F/m)T, s0 Wiin = %m } = %m%Tz

2
(c) Wraa = [ Pdt. According to the Larmor formula, P = l-‘%%’ and (again from Prob. 11.19)

{ (F/m) [1—eT/7] etl, (t<0)
at) =

(F/m)[1—et=D/7],  (0<t<T).
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2 F2 2 [0 T 2
_ He? _ o=T/T 2t/ _ t=T)/r
Wraa = B mE {(1 e ) [ € dt+/ [1 e ] dt}
T
- TF__Z{(I_B—T/T) (T 2t/r / dt — 28—1‘/7/ et dt+e“”/’/ Q2T dt}
m o

_ TF? [% (1 _ E'T/") LT — 9~ TI7 (Tez/r) A +e=2T/7 (‘;_'ezg/f) :}

-7 [% (1 —2eT/7 4 e-"/’) +T = 2reT/7 (eT/’ -1)+ %‘"/’ (e - 1)]

- A N 1/ T _Tomrmyr] 2| T2 (p T
= [2 TE +26 +T =27 +27e +2 3¢ ]— poe (T T4 TE )

Energy conservation requires that the work done by the external force equal the final kinetic energy plus
the energy radiated:

P72 1F? F? (1
Wian + Wrad = —m % (T—T +Te'T/') = (ETZ +1T =72 +‘rze_T/’) = Wext. v/

Problem 11.28
(a)a=T1a+ %6(15) = /_i a(t)dt = v(e) —v(—€) =7 3 —dt+ —/ 8(t) dt = rla(e) — a(— e)]+ -

k
If the velocity is continuous, so v(€) = v(—¢), then

When ¢ < 0, a = 74 = a(t) = Ae"™; when ¢t >0, a=71d = a(t) = Be!/"; Aa=B-A= _%
_ k N _ [ Aetm t <0);
=>B=A- et 50 the general solution is | a(t) = { - (k/mr e, (t S0
To eliminate the runaway we’d need A = k/m; to elimi pr leration we’d need A = 0. Obviously, ‘
/T .
you can’t do both. If you choose to eliminate the runaway, then a(t) = { ék/ mr)etlT, g ; g;' ‘
t k[t k(e k
= kK r gt = & (ret/T _ E .
olt) /_Na(t)dt mr/_ﬂe = (rerr) = et ors <oy
_ ‘ _ k (kfm)et/™, (¢ <0);
for ¢ > 0,v(t) = v(0) +/o a(t)dt =v(0) = g So |v(t) = { (k/m), >0,
0, (t<0);

t
For an uncharged particle we would have a(t) = Eﬁ(t , u(t) = a(t)dt =
m oo (k/m), (¢>0).

The graphs:
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charged
.
7

neutral neutral
| (b)
“ Wees / Fdz= / Fudt =k / (et dt = ko(©) = &

1 1

“ Wk"‘ = _mv, - _m (m) 27"

2 0 2 0 2 2
- uoq 24— k / pr gy BT\ KT _ R
| Weu / Paqdt = / [a(®) dt =7m ( ) LA = (3 o 5
Clearly, Wext = Wiin + Wrad. v/
Problem 11.29

| Our task is to solve the equation a = 76+ %:— [-6(2) + 8(z — L)], subject to the boundary conditions
| (1) z continuous at z =0 and z = L;

| (2) v continuous at ¢ = 0 and z = L;

| (3) Aa = +Us/mrv (plus at £ =0, minus at = L).

| The third of these follows from integrating the equation of motion:

do g _ o fdag Vol _
| S = T/dtdt+m/[ 5(z) + 8(z — L)) dt,
‘ Av

rda+ 2 [(-sta) + oo - D) L da =0,

i Aa = =Z—u’r/%[-5(z)+6(z—l/)]dz=iﬂ.

mry
In each of the three regions the force is zero (it acts only at z = 0 and z = L), and the general solution is
|

| a(t) = Aet™; o(t) = Aret/” + B; x(t) = Ar?et” + Bt + C.

('l put subscripts on the constants A, B, and C, to distinguish the three regions.)

Regron iii (z > L): To avoid the runaway we pick As = 0; then a() =0, v(t) = Bs, z(t) = Bst + C3. Let
the final velocity be vy (= Bj), set the clock so that ¢ = 0 when the particle is at & = 0, and let T be the time
it takes to traverse the barrier, 50 z(T) = L = v4T + C3, and hence C3 = L — vsT. Then

|a(t) =0; v(t)=vs, o(t)=L+vp(t— T),| t<T).
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Region i (0 < £ < L): a = Azet/™, v = Agre!/™ + By, © = Agr?e!/ + Byt + C.

@) = 0-petrr=_ P g Vo oy
mrvs mry
() = v=dere™ "+ By = Y pun vy -2
= muy muy

T
M) > L=t 4+ BT+ =2" oy r UL i Yy
muy muy muy

- Vo
Cy=L—vuT+ o T -7).

o) = %e("j‘ V7

f
o) = v+ mLs! e 1] ©0<t<T).
z(t) = L+v(t-T)+ mU_:f [‘re(’_T)/' —t+T—1'] H

[Note: if the barrier is sufficiently wide (or high) the particle may turn around before reaching L, but we're
interested here in the régime where it does tunnel through.]
In particular, for ¢ = 0 (when z = 0):
0=L-vT+ Lo [TE_T/' +T—1'] = L=vT— Yo [‘re_T/’ +T—T] . qed
muy muy
Regoni (z < 0): a= Ae¥”, v=Are"" + By, z = A;re!/™ + Bit + C\. Let v, be the incident velocity
(at t = —00); then By = v;. Condition (3) says

U . Uo
mTvg mrvp’

where vo is the speed of the particle as it passes £ = 0. From the solution in region (ii) it follows that

vo = Vs + —[—];L (e-T/" - l), But we can also express it in terms of the solution in region (i): vg = A7 +v,.
mug

Therefore

U

- Yo (o~Tir 1\ _ ayr = ~T/r _ Yo _ Vo 1yr
v, = vf+ vy (e 1) AT =vp+ vy (e l) + €

mv,  mug
Uy Uo Uo ( 'Uf) Uo vf
L NP RSP I CC/ & DSOS N L/ S
U ey e muy w) =" muy vg + (Uo/muy) [e=T/7 1]

Uo 1
= v —{l-——————— . qed
U vy { 1+ (Uo/mw}) [e~T/7 — 1] } a
I %mv:‘} = LUo, then

L=v;T —vy [TE_T/"+T—T] =uf [T—TE_T/T—T+T] =TV (l—e‘T/’);
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_ 1 _ T/7) = yreT/T
v, = vy —vf 1—m] =vs (1—1+€ ) =vge /T,
Putting these together,
L _ o wpr T L Ty 1 _ v
Frriak il d =i Sl puy oy mevm B vy e Ml
) _ v 4 KE, _imv! _(u\*_16
In particular, for L = vs7/4, v, = ey 396150 _KEf = %mu} =\5) =79 =
161 8
KB, = GKB; = 55Ua = cUp
Problem 11.30
(/2 =

(a) From Eq. 10.65, E; = ey (2 0

v=vgk,a=aX,s02-v=1Iy,2-a=la, 2-u=om—2-v=o0—Ilv. We want only the z component. Noting
, that uz = (¢c/2)l — v = (cl — v4) /2, we have:

[(~v*)u+(2-a)u—(2-u)a]. Hereu=ch—v,2=1%+d¥,

81rso (on —

B, #@ﬁ 1(cz—m)(c2—.;2+za)—a(m—1u)]
= s:eo W [(cl = )(c? = v?) + ci?a — wila — acs® + alw] . But 2% = i 4 2.
= Erq?;(?f—?ﬁ [(cl = va)(¢* = v?) — acd?] .

Fearr e 1u)3 [(cl =) (c® —v?) — acd®] . (This generalizes Eq. 11.90.)

Now z(t) — z(tr) =1 =vT + §aT? + 2aT® +---, where T =
retarded time ¢,.

tr, and v, @, and @ are all evaluated at the

(TP =R =P+ d=d+(T+y Lore, aTﬂ)’ & +0*T? 4 vaT® + —vdT" ¥ %MT‘;

PT2(1 —v?/c?) = *T?/y* = d&® + vaT® + (%vd + %a2) T*. Solve for T as a power series in d:

- ks : 2d AL
‘ T_T(1+Ad+Bd2+~~):?—cz—(l+2Ad+2Bd’+Ad’) d’+vacs (1+34d)+ 3+ c,d‘.

3 i a?\ 4t
‘ Comparing like powers of d: 4 = —va-c?, 2B+ A% = 3":37 A+ (""’ + "_) iy

vyl 4 1 4ol wayt 4% (1 2 3v2a%yS
| 2B = ot — = 2 = X (- 4
‘ 3 2 & 4 52 2 8
4 O 2,2 2 2 2 A 5 2,2 2
va | aly v’ v v _ 7t [va | AP v
[€+ ( —c—z—c—z+6-2)]:3_~[ + (l+4c—2)].

X
‘ ct
~d vayd ot [va  2a v? L
T = - 1+ +og |+ 1+4 &} +()d! +--- (generalizing Eq. 11.93).
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6
?{14—%%: % %+#(1+4 )] }+%a [1+'uaz—:d]-i—ﬁa'y—3a!a
= (%)d+g§(l—g+:—:)d2+{;z'; [— #(1%4 )]+;agvazs—a+%d';—a}ds
i R e e
- (?)“(ig;)du;%[g%”f]f (a4 .-
a~y® 7 242 2
v = cT:vd{1+7§d E[a” (Z —2)]d}+()d“+
-l = c'yd+u;;d L;[s+7a( g)] A"—zid “;;42 = [d+§”7;“2]n"+
B ) R
= 2d+%d3+()d‘+
d-w = d*zi + cﬁ(g"'gvcz )ds_”"d‘u%‘f uﬁ[;”z"z(i‘“g)]"a
(2 2 ()
- @B D on”
= (F) e (§+57) e r0ae
e - [ 22T - @ (o)
R = iy %)’(Hw (%) #+3a (557 ] 2 - oot}
B R ()
= 8‘711'500’:;2[ nc+7(h D7n)d+ Y +-- ]
= 4:1:0[ 34;d+ i (i’ o ")+()d+ ])"((generalizingEq.ll.BS).
Switching to #: v(t;) = v(t) + o(t)(tr — ) + - v(t) — a(t)T = v(t) — aryd/c. (When multiplied by d, it

doesn’t matter—to this order—whether we evaluabe at tor at t,.)




o ] [, o) ()
y= [1 - (*2) ]_m =0 1- "Zfd) ; alts) = aft) — T = a(g) ~ 21

Evaluating everything now at time ¢:

2

Far = £ [ i 5 (1=3v07°d/c") (a— dydfe) | +* (a v'ya)+ O+ }

e 42d B\3" @ *
2 3 2,
_ & [ e (07 37)07’)

W
41rso "t aa w@w\3t )”)‘” ]
,Y 2

- e
= I [ prris 4(:3 itg+s
2 3
q ya valy
_ _ x Eq. 11.
Tnes [ reris 353 (a+3 = ) Yd+-- ] (generalizing Eq. 11.96).

The first term is the el ic mass; the radiation reaction itself is the second term:

2
ant _ HO9” 4
Frad 12nc”

2,2
wy ) (generalizing Eq. 11.99), so the generalization of Eq. 11.100 is

va:z'y’) )

6mc

2,2
(b) Fraa = Ay* (ﬁ+ 37(; v) where A = qu‘: P = Ad®+® (Eq. 11.75). What we must show is that

t t2 t t
/ Fraqvdt = — Pdt, or / (av+3v a’y ) dt:—/ a%y®dt
& t u 4

(except for boundary terms—see Sect. 11.2.2).
2 2 da ta g,
Rewrite the first term: / ylavdt = / (Yov)—-dt = 'y‘val - / —(y*v)adt.
- 't dt o Jyy dt

dosy_aady 4. dy_d 1 _ 1 1 _2va\ _ vay®
Nowdt(’rv)—""‘rdtv-f-’ya, & - &\ JisvjE) - 2= /PR Z)=—a %

2 2 2
« _ .8 v A v
+ 7 a_7a(1—c—2+4§)_7 a(l+3?)4
t 2 t2 o2
/7“iwdt='y‘va| -—/ 7%a? (1+3—-) dt, and hence
b

"l 2 cz
3

/ b (m]+3'yav ) dt = ~va

i

i 4,8 — 3""73
) =45
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t2 t2 - v? sa2v? s ta
yoa? (1432 GV g =t ~/ Sa? dt. qed
h+/h [ ¥ a ( +307)+3’y 2 7va|h A ~7°a’ qe
Problem 11‘3} 26 2
(@) P= % (Eq. 11.75). w = /62 + 3¢ (Eq. 1045); v =1 =

Ny
& 2t(ct) B 4 Pt - ) = (32

c?
Virar @y - @raa

a=b= [CETaE
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PO 1 _ B 1
T1ovE T I- (@B eB)] Rict-cf B

_wer? M @adey [ g i
P= 6mc (b2 + c2e2)? 3 =| Greot? Yes, it radiates | (in fact, at a constant rate).

2.4 2. 2 2, 4. 2,2,
_mod®yt (., 3%\ 3 BlP(2dt) 3b2ctt . 3yav\ _
O) Fraa =T = \64 =5~ )3 4= sty apypn ~ " wrorpn Ut @ ) =
3b%cit 3 (B +c?)  bict At

R N T T

(* +¢*?). So

=0. |F}.d = 0.1 |No, the radiation reaction is zeroA|




Chapter 12

Electrodynamics and Relativity

Problem 12.1
Let u be the velocity of a particle in S, @ its velocity in S, and v the velocity of § with respect to S.
Galileo’s velocity addition rule says that u = @ + v. For a free particle, u is constant (that’s Newton’s first
law in §).
(a) If v is constant, then it = fi—v is also constant, so Newton’s first law holds in &, and hence & is inertial.
(b) If § is inertial, then 1 is also constant, so v = u — i is constant.
Problem 12.2
(a) maus +mpup = meuc + mpup; u, = &; +v.
ma(@a + v) +mp(ip + v) = me(ic + v) + mp(lip + v),
maiia + mpiip + (ma + mp)v = meiic + mpiip + (me +mp)v.
Assuming mass is conserved, (m4 + mg) = (me + mp), it follows that
matig + mpilip = mgie + mpip, so momentum is conserved in S.
(b) 3mau? + impu} = fmeou + ympu} =
Ima(@ +284 - v +0?) + tmp(@}h + 28 - v +97%) = Ime (@} + 2ic - v + %) + imp(8} + 26p - v + %)
Lmatd + impi} + 2v - (Matia + mpls) + $v2 (M4 +mp)
= imcu} + imp@l + 2v - (mofic + mpiip) + $v2(me + mp).
But the middle terms are equal by conservation of momentum, and the last terms are equal by conservation
of mass, so  ma@} + smpiy = ymeul + ympth. qed
Problem 12.3
(8) vg = vaB +vBC; vp = PARLIEC, ~ yg (1 - 24BpRQ) o 2a=YE - vamgmc,

BYBC/C

In mi/h, ¢ = (186,000 mi/s)  (3600sec/hr) = 6.7 x 10° mi/hr.

sveme = G — 6.7 x 1071 = 6.7 x 107149 ervor, | (pretty small!)

®) (ze+e)/(1+3-3)

still less than c).
(c) To simplify the notation, let 8 =wvac/c, Bi =vags/c, B2 = vec/c. Then Eq. 12.3 says: = %, or:

o= BE+260+0 _ 1+24:5+ 08 (+ BB - -F) _, (-BH0-6) _,_,
TO+2B5+ BB T (2B + B (1+26:6 +ﬂ’l’§) 1+ B182)? ’

219
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where A = (1~ 2)(1 — 3)/(1 + B1fB2)? is clearly a positwe number. So B2 < 1, and hence Jvac| <c. qed
Problem 12.4
(a) Velocity of bullet relative to ground: jc+ y¢= 3¢ = 1c.

Velocity of getaway car: 3¢ = c. Since v; > v,, | bullet does reach target

(b) Velocity of bullet relative to ground: 3244 = &¢ = fo= K.
1

5

Zlc. Since vy > s, | bullet does not reach target.
Problem 12.5

(a) Light from the 90th clock took g’x“—‘ﬁ]‘x"vm‘“; =300s = 5 min to reach me, so the time I see on the clock is

(b) I observe |12 noon.

Problem 12.6

Velocity of getaway car: 3¢

light signal leaves a at time t(; arrives at earth at time £, = t; +da/c,
light signal leaves b at time #,; arrives at earth at time #, = £, + dy/c.
(ds — —vAt' cosf)
c

q
At=ty—ta =ty -t B ) ap

< =At [1—%5056‘].

(Here d, is the distance from a to earth, and d, is the distance from b to earth.)

vsinf At

= oAt singd =
As = vAt'sing = T=vjccost)

is the the velocity.

du _ w[(1 = 2 cos §)(cos #) — sin §(% sin )] —o

_r = Ysin?
- Zcost)? =1 Ccosﬂ)cos&—csm [4

&|

= cosf = z—(siu’0+cos7 ) = %

22 _
Ly CaY ey

As v = ¢, [u = o0, | because the denominator — 0, even though v < c.

Problem 12.7
The student has not taken into account time dilation of the muon’s “internal clock”. In the laboratory, the
muon lasts y7 = 7%, where 7 is the “proper” lifetime, 2 x 10~¢ 5. Thus

1-v2/c?

Omax = cos "1 (v/c). | At this maximal angle, u

d d
v= W = ;\/1—v2/c7, where d = 800 m.
UZ

2 ™2 1 1
G) v=1-% 2[(7) +zl=1 #= I + (1o
v Te _ (2x107°)3x10%) 6 _ 3 v? 1 16

1
T 1+ (refd?’ d 800 8§81 & 1+9/16 25’

2
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Problem 12.8
. - i
(a) Rocket clock runs slow; so earth clock reads vt = e 1 hr. Here y = \/T’/? m
. According to earth clocks signal was sent | 1 hr and 15 min | after take-off.

(b) By earth observer, rocket is now & distance (Z¢) () (1 hr) = chr (thre&quaxbers of a light hour) away.
Light signal will therefore take 3 hr to return to earth Since it leﬂ 1 hr and 15 min after departure, light

signal reaches earth | 2 hrs after ta.keoff.

(c) Earth clocks run slow: trocket =7 - (2 hrs) = % - (2 hrs) = | 2.5 hrs.
Problem 12.9

13
LomtilmbisotetaIoPoyhdot-Bodib=1-4 == 2
Problem 12.10

Say length of mast (at rest) is I. To an observer on the boat, height of mast is /sin 6, horizontal projecnon
is lcos§. To observer on dock, the former is unaffected, but the latter is Lorentz contracted to - lcosa

Therefore:
=~ lsinf [4
tanf = T 9=7tan9, or | tan
yicos /
Problem 12.11

Naively, circumference/diameter = %(21[12) /(2R) = n/y = n\/1— (wR/[c)? — but this is nonsense. Point
is: an accelerating object cannot remain rigid, in relativity. To decide what actually happens here, you need a
specific model for the internal forces holding the disk together.

Problem 12.12

+ %. Put this into (i), and solve for z:

s=re—o(E+ ) =na(1- %) ==y —vi=E ok [r=oG T ]/

Similarly, (i) = z = £ + vt. Put this into (iv) and solve for &:

Fomie 2(E ) =nt(1-2) = 2z =
F=qt B(7+m)_7t(1 cz) Sa=
Problem 12.13 <
Let brother’s accident occur at origin, time zero, in both frames. In system S (Sophie’s), the coordinates
of Sophie’s cry are z = 5 x 10°m, ¢ = 0. In system S (scientist’s), £ 'y(t - %z) = —wz/c’ Since

So

mI:

this is negative, lSophle 's cry occurred before the acclderﬂ in8. 4= m _mg =
F=— () (2¢) (5 x 10°)/c* = ~12 x 10°/3 x 10° = 4 x 1072, |4 x 10~%s carlier.
Problem 12.14

(a) In S it moves a distance dy in time dt. In &, meanwhile, it moves a distance dj = dy in time dt =
7(dt — %dz).

L . S T B Y ——— R —
d - y(di=Gdo) oy (1- %) v(-%) (1-2%)
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]

uy/ [y (1 - %)) _ 1 (uy)
e -v)/(1-%%) 7(-0)

In this case u, = —ccos6; uy = csing = tanf = (,—:fmij%%;) .

g=_Y%
(b) tanf = 7

tan 1 nd .| [Compare tan § = 5in& sin 9 in Prob. 12.10. The point is that velocities are sensitive
7 \cosb +v/c o8

not only to the transformation of distances, but also of tumes. That’s why there is no universal rule for
translating angles—you have to know whether it’s an angle made by a velocity vector or a position vector.]
Problem 12.15

Bullet relative to ground: %c, Outlaws relative to police:

Sc— % _ =(/28)c _

1-3.37 (3/m) 13
of B relative to A4, so all entries below the diagonal are trivial. Note that in every case vbuliet < Voutiaws, SO 10
matter how you look at it, the bad guys get away.)

i 55 (1/4)e _

1- 5/8) 5”’

Bullet relative to outlaws: [Velocn.y of A relative to B is minus the velocity

Speed of |
relative to J || Ground | Police | Outlaws | Bullet || Do they escape?
Ground 0 3c ic sc Yes
Police —4c 0 2c ic Yes
Outlaws -3¢ -2 0 —de Yes
Bullet ~5c —1c e 0 Yes

Problem 12.16
(a) Moving clock runs slow, by a factor v = \/#—/5? = $. Since 18 years elapsed on the moving clock,
$ x 18 = 30 years elapsed on the stationary clock. | 51 years old.

(b) By earth clock, it took 15 years to get there, at ic, so d = 5¢ % 15 years =

(c) | = 15 years, z = 12c years.

(d) |Z =9 years, z = 0. [She got on at the origin in §, and rode along with S, so she’s still at the origin. If
you doubt these values, use the Lorentz transformations, with z and ¢ from (c).]

12 light years).

(e) Lorentz transformations: [ & =¥(z+t) | (note that v is negative, since & is going to the left).
t=1(t+ %z)

SE= (1 chrs+‘c 15yts)=§-24cyrs=
E=3(15yrs+ 5 - 12c yrs) = 3 (15 + 48) yrs = (25 + 16) yrs

(f) Set her clock | ahead 32 years, | from 9 to 41 (£ — £). Return trip takes 9 years (moving time), so her clock

will now read years at her arrival. Note that this is § - 30 years—precisely what she would calculate if the
stay-at-home had been the traveler, for 30 years of his own time.

(g) () =9 yrs, z =0. What is ? ¢t = ;"114—% =%.9= % = 5.4 years, and he started at age 21, so he’s
26.4 years old. | (Younger than the traveler (!) because to the traveler it’s the stay-at-home who’s moving.)
(i) £ = 41 yrs, z = 0. What is t? ¢ = % = 2.41 = 128 = 246 years, and he started at 21, so he’s

45.6 years old.
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(h) Tt will take another of earth time for the return, so when she gets back, she will say her

twin’s age is 45.6 + 5.4 years—which is what we found in (a). But note that to make it work from

traveler’s point of view you must take into account the jump in perceived age of stay-at-home when she changes
coordinates from S to S.

Problem 12.17

—a%8 4+ @' + @25 4 B = —2(a® — Bal)(5° — BbY) +~2(a" — Ba®)(b* — Ba®) + a2b® + a%h?
= (@ ‘ﬁyp@l —-ﬁ}z/b“ + Bttt — albt +ﬁy4“ +/3,a"f7‘ — B2a%°) + a®¥? + a%5®
= _,YQaﬂbﬂ(l _BZ) +72alb‘(1 _ﬂZ) +a2b2 +a3b3

= —a%° +a'd' +a%? +a®b®. qed [Note: v*(1-§%) =1]

Problem 12.18

ct 1 000 ct
(a) ; = _OB 3 ? g z (using the notation of Eq. 12.24, for best comparison).
z 0 001 z
¥y 0 —yB 0
01 0 0
b)[A=
OA=t s 0 4 o
0 0 0 1
7 0 -3 0 " 8 0 0 W -8 -8 0
. i A | 0.1 0 O)|-y8 v O0O|_||8 ~_ 0 O
(c) Multiply the matrices: A = 58 0 3 0 0 0o 1 0] “Y‘Yﬂ ’Y’Yﬁﬂ 5 0
0 0 0 1 0 0 01 0 1

the order does matter. In the other order, “bars” and “no-bars” would be switched, and this would give
a different matriz.
Problem 12.19

() Since tanh @ = £808 and cosh® @ — sinh? § = 1, we have:

1 1 cosh @
= = = = coshfl; ¥f = coshftanh § = sinh 8.
K 1-v2/c2  \/—tanh®¢  +/cosh? @ — sinh”6
coshf —sinhd 0 O .
—sinh@ coshd 0 0 cosg  sin ¢ 0
A= .| Compare: R= | —sin¢ cos¢ 0
0 0 10 0 0 1
0 0 01
u—v u (u/c) (v/c) tanh ¢ — tanh 6 _
(b) = = = - - )( j = tanh¢ = —tanh¢tanh0’Wheretanh¢_“/c’ tanh@ = v/c;
tanh ¢ = @/c. But a “trig” formula for hyperbolic functions (CRC Handbook, 18th Ed., p. 204) says:

tanh ¢ —tanhg _ _ . - _ .
T tanh g tanh 0 tanh(¢ — 6). .. tanh @ = tanh(¢ —6), or:
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Problem 12.20
(a) (i) I = —c?At2 + Az? + Ay? + Az = (5~ 15)2 + (10— 5)2 + (8 — 8)2 + (0— 0)? = —100 -+ 25+ 25 =

(i)

(In such a system Af = 0, so I would have to be positive, which it 1sn’t.)

(iii) B =
8 S travels in the direction from B toward 4,
making the trip in time 10/c.
6
—5% ~ 5y
4 10/c
2 Note that, §=}+%=%,sov:7‘5c, safely

less than c.

E=A(ct)._(3——l) _2

2 2 G5 So in the 42 direction.

(iii) (In such a system Az = Ay = Az = 0 50 I would be negative, which it tsn’t.)
Problem 12.21
Using Eq. 12.18 (iv): Af = (At~ $Az) = 0= At = %Az, orv = 4L

(4

Problem 12.22
(a) ciy

Truth is, you never do communicate with
the other person right now—you communicate
with the person he/she will be when the mes-
sage gets there; and the response comes back
to and older and wiser you.

world line

of player 1™~ world line of

" player 2

It is true that a moving observ-
er might say she arrived at B before she left
world line of A, but for the round trip everyone must agree
the ball that she arrives back after she set out.
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Problem 12.23

T Tet
(@)1 | | YWy, I/ 1v/ oy
- A0, P
[ i i/ 1l %) &
| ' L a=r
' = P ,¢\
1 = v ’gﬂ
3%
3
&
T
93 | _| L |
§/$/‘ : + T ], === i
LA, / gt RN |
Problem 12.24
@ (-5 =1+ %) =
1 — 1 - cosh@ = 3 = 1 =|esi
O) Jma7a = s ~ Temsvams ~ O 1= et = coshfctanhd

Problem 12.25

(a) us = uy = ucos45® = %%c

b) Jromrm = v = A=V "—Vﬁ/’?f’m

5 a= s [ T=VEE=0
® Vi@E - Jie@m (2/3 =VE a=V3i= { fly =38y = V2c. v

Problem 12.26 1 a 5 cz)
P =~ + 77 = m(—f +uf) = _02(1——32;?27 =
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Problem 12.27
(a) From Prob. 11.31 we have v = $vB% + c222.

= f 38t = b [ gplirs = Lin(ct + VB + PP) + k; at
L-t+\/b2+c2t2]

(b) Va2 = B2 + z = beT/b; /57 = b7 = be™/® — z; 2® — b? = b2€27/5 — 2hec™/b + &%; ubecT/b = bA(1+ e2T/b);

z = b(<ZL4e=%) — [} cosh(er/b). | Also from Prob. 11.31: v = c2/+/B + c2¢2.
c _ Afoosh2(cr/b)=1 _ sinn _
v= ST = gty cosh®(er/b) ~ b2 = VU CTIT  pinbler/i)

(c) n* = 7(¢,v,0,0); v = & = cosh &, s0 n* = cosh § (¢, ctanh &%,0,0) =|c cosh—,smh 0,0
b

t=0wewantr=0:0:%1nb+k,sok=—glnb;

Problem 12.28

+v
(2) maua + mpup = meuc + mpup; U, = m
ia+v ms g +v _ c+v +mo Up +v
ATH( (Zav/c?) 1+ (@pv/c?) 1+(ucv/c2) P14 (@pv/e)”

This time, because the denominators are all different, we cannot conclude that

mats +mpip = mcilc + mpip.

As an explicit counterexample, suppose all the masses are equal, and ua = —up = v; uc = up = 0. This
is a symmetric “completely inelastic” collision in S, and momentum is clearly conserved (0 = 0). But the
Einstein velocity addition rule gives &4 = 0, &p = —2u/(1 + u?/c?), #ic = @p = —u, s0 in S the (incorrectly

defined) momentum is not conserved:
mf =2 # —2mu.
1+u?/c? .

(b) mana + mpns = menic + mpnp; 7 = (7 + Bi°). (The inverse Lorentz transformation.)
may(iia + Biy) + mpy(iis + i) = mcy(iic + Big) +mpy(Ap + A7D). The gamma’s cancel:
mafla +mpilp + B(maily +maily) = meiic + mpilp + B(moT +mpi)-
But m,n? =20 = E,/c, so if in § (Ea + Ep = Ec + Ep), then so too is the momentum
(correctly defined):
Mafla + mpils = mofic + mpip. _ged
Problem 12.29

yme2 —me® =nme? = y = n+1~ﬁ§:l IWIIT’

%= 1- i = T = 2 |u —“7;(:?2)
Problem 12.30
Er=FEi+B+-; pr=pi+p+---; br=v(pr—pEr/c)=0=f=v/c=prc/Er.
v=cpr/Br =[(p + 2+ ) /(Fr 4 Bat ).
Problem(12f31

‘m?2 + m2) (m? + mz) 1 v 1
By=—1 P =ym,c?=y= = 1 — =
' omy Y My = 2m,,m,, '_l—v’/cz' z2= 7
v -l 4miml  omi+2mim? +mi —dmimd  (m-m2)? m} —m?
& T (mEAm2)? (m2 +m2)? T (mz+ mz)zv m2 +m2




227

Problem 12.32
Initial momentum: E? — p?c® = m2c? = p?c? = (2mc?)? — m2c* = 3m?ct = p= V3me.
Initial energy: 2mec? + mc? = 3mc?.

Each is conserved, so final energy is 3mc?, final momentum is v3me.
E? —p*? = (3m®)? — (VBme)® S = 6mPct = M2t = ~ 2.5m.
(In this process some kinetic energy was converted into rest energy, so M > 2m.)

_1.7_{:3_\/§mcc2
T E T 3me

Problem 12.33
First calculate pion’s energy: E? = p>c® + m2c* = Sm?ct + m?ct = Bm?c! = E = $mc?.
Conservation of energy: Sme =Es+Ep

Conservation of momentum: 3mc? = pa +pp = Z4 — B2 = 3me? = B4 — Ep }2EA =2mc?.

1
Ep= 4—mc24

Problem 12.34
Classically, E = ymv®. In a colliding beam experiment, the relative velocity (classically) is twice the
velocity of either one, so the relative energy is 4E.

2, Let S be the system in which @ is at rest. Its
@_E, }i@ @_E_® speed v, relative to S, is just the speed of @
inS.
S S

P =7(° - Bp') = % =1 (£ - Bp), where p is the momentum of @ in S.
E'=yMc, 50y = 35 p = —YMv = —yMpe; E =7 (Z + ByMpe) c=y(E + YM*B?).
et W R s (M S I

E=i+ - M
For E = 30 GeV and Mc?
Problem 12.35

Ea
One photon is impossible, because in the “center of mo- 60°
mentum” frame (Prob. 12.30) we’d be left with a photon ,%_" 3 0
at rest, whereas photons have to travel at speed c. Ep

(before) (after)

horizontal: po = %4 cos60° + %ﬁ cos§ = Ep cosf = poc — 3 Ea,
vertical: 0= 24 5in60° — Z2 5inf = Fpsinf = Y2 Ey;

{ Cons. of energy: /poc® + m?c? + me® = E4 + Ep.

Cons. of mom.: { }square and add:
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Ep(cos® 0 + sin® 8) = poc® — pocEa + %E,’, + 23}

2
= E% = poc® — pocEa + E% = [./p§c7+m7c‘ +mc2—EA]

= poc® +m?c* + 21/p3c? + m2ct(mc? — Ea) + m?c! — 2Eame?® + E. Or:

~pocEy = 2mc* + 2mct[p3e? + mict — 25\ [phc? +mict — 2Bame’;

Ea(me® + 1/p3c? +m2ct — poc/2) = m*c* + me?y/poc? + micd;
(mc® + /PAcZ + mich) L (md — VPR + m2cE — poc/2)

Ba=md (e +/RE + M2 —poc)2)  (mcE — /PR T mEeE — poc/2)
e (mz/c‘ — pc? — 1;;2/4 — ipome® — B\ /phc + m’c‘) mc’ (me + 2py + \/PE + m2c%) l
(19t — pome® + BE — e — s (me + 3po)

Problem 12.36

_dp _d mu _ du +u i) —L2u- &
Tdt T dt JT-u?]E =m Vi-weje 2) A=w2j)2 .
+“(“_~=*>}~ qed

_L{a
VT (c —u?)

Problem 12.37
At constant force you go in “hyperbolic” mo-
tion. Photon A, which left the origin at ¢ < 0,
catches up with you, but photon B, which
passes the origin at ¢ > 0, never does.

Problem 12.38

o_dnp _dpdt _|d c 1
@) T Tawa a\icere) | Vimee

_ c 1\ (-%)2u-a

‘\/1#1‘2/&( 2) A —u2/@)PR ~

a_ﬂﬂ_ﬂd_"_ 1 d u _ 1 a +u(~1‘ —g2u-a
Tor T wd ficjed\Ji—wje) Ji-wd | J/I-d@ 2’ (1—u?/c)3
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1 2 1 2\ 1 2
(b) aﬂa”z—(au)’+a~a:—02%+m [a(1—Z—,) +c—2u(u-a)]

2 2
=W{~§(u-3)’+a’ (1~%‘2~) +% (I»u—) (u~a)2+21;u’(u-a)’}

:W{ (1—3) +(“ 2)? (-142- 2— c:)}
1-)

. a)2
a+ —(S:_azz)] ‘

_ 1
C|a-wep [

(¢) n*nu = —c?, so £ (*m,) = atn, + nPay, = 207, =0, so

(d) K = 22 = & (mp¥) = K*n, = matn, = 0.

Problem 12.39
K,K* = —(K%? +K - K. From Eq. 12.70, K - K—mm From Eq. 12.71:

Kﬂflﬁ_ 1 d mc? _ me [ 1 (-1/H) P (u-a)
Tedr o fi—wRd\\i-w]E) J1-w]@ | 2(1-u?/P) T a-wlay

But (Eq. 12.78): u-F = uFcosf = .a) + oo *(u-a) ] mlu-a)

m
N [‘“ E-w/@)] ~ T-w e

R e e e b e L
Problem 12.40
Fo 1+u2/& [a+:2(“ ”)] —qE+ux B)=>a+% =L /T=w73E +uxB)
Dot in u: (u-a) + 02(12(.;.;/)&) a—}%:i’;m[uﬂw-(ux B)];

=0
. uu-a) g u(u-E) q 1
@ = m 1—u2/2C—,. Soa=;x/l—u2/c2[E+uxB—C—zu(u~E)].

Problem 12.41

One way to see it is to look back at the general formula for E (Eq. 10.29). For a uniform infinite plane of
charge, moving at constant velocity in the plane, J = 0 and = 0, while p (or rather, o) is independent of ¢
(so retardation does nothing). Therefore the field is exactly the same as it would be for a plane at rest (except
that o itself is altered by Lorentz contraction).

A more elegant argument exploits the fact that E is a vector (whereas B is a pseudovector). This means that
any given component changes sign if the configuration is reﬂecbed ina p]aue perpendicular to that direction.
But in Fig. 12.35(b), if we reflect in the zy plane the is d, so the z of E would
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have to stay the same. Therefore it must in fact be zero. (By contrast, if you reflect in a plane perpendicular
to the y direction the charges trade places, so it is perfectly appropriate that the y component of E should
reverse its sign.)

Problem 12.42

(2) Field is oo /o, and it points perpendicular to the positive plate, so:

Eo= ?(cesw:‘c +5ind5°§) =
0

(b) From Bq. 12.108, B, = Eeo = ~ s B, = 7B,y = 7585 Som

(c) From Prob. 12.10: tand = 7y, 50

(d) Let 4 be a unit vector perpendicular to the plates in S—evidently

fi=—sinf %+ cosfy; |[E| = 7";\1{:1/14.72_

So the angle ¢ between 4 and E is:

cosf

2y
———cos = sin@ +ycosd, tanf + ) =
AT o= it + oot = B (ano )= 2

- @ - =
But'y—tau(;‘_ = it g = 72 +1=>cosf = \/1+_'

Evidently the field is - perpendicular to the plates in S.
Problem 12.43

1 g1-?/¢) R
(8 E= Tl T (Eq. 12.92) =

2.
/E-da: q(1 —v%/c?) R?sinfdfdp

drey R2(1 - Y sin® 0)3/2
2 x .
Y G /é)zn/ S00d) Lot w=cost, so du = —sinfd8, sin?0 = 1 — o,
dmeg (1 - % sin®9)3/2
l—vz/c’) / du q(l—v’/cz) ( ) / du
- EA gt T % ) L@ ea
u ]+l 2

The integral is: = = (2)3 2
S 02 Trw B-DE ) T

_ a1 =v%/c) re\3 ruy3 2 -
So /E'd"_ 2% ) (c) (1~v2/c2) =ev
1 1 pog*(1—v*/c*)’vsind -
12.92,S = —(E x B gU-v/jc)vsml s
(b) Using Eq. 12.111 and Eq. ( X B) = o Ineg 4 R Zan?0) g’_)
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S= ¢ @ —v’/cz)zvsme 5
" 16n%e RA(1 - % sin )3 o
Problem 12.44 Y,
v
(a) Fields of A at B: E= W;’_
— ]
v qA
i om Eq. 12.68: ote: here the particle is at rest in S.
b) (i) From Eq. 12.68 Note: here the particle i in8.)
Pl L gt/ 1
- SY 0000 B gall ~v'/c = a4
. _ (ii) From Eq. 12.92, with § = 90°: E = Tres -/ d29 4”60 2

(this also follows from Eq. 12.108).

B # 0, but since vg = 0 in &, there is no magnetic force anyway, and | F = :e q,;zg ¥ | (as before).

Problem 12.45
Here 0 = 90°, 4=, ¢ = %, 2 =r, 50 (using ¢ = 1/poeg):

7 7, 7 vy, 1
=-4 1y B=-_21 %1 here y = .
b= e 24 4meg c? 12 % wherey=- /1—v2]3
Note that (E2 — B2c?) = (w”)’yzu ~ %) = (5%;)" is invariant, because it doesn’t depend on v. We can

use this as a check.

2.
System A: vsz,soE_ﬁAt_ﬁ
v?
F =g[E+(-v%) X B] = +ﬁ)y'
v+v 2u
B: =—
System vB T707/@ = T+ o7/
1 (L+v2/) (+v/) w2 »
= = = =7 (1+ ) ; ws = 207"
iy fiazen VD a
LR q 2'07 5
wB=s 416072'72(1+02)y,B- Trg

(O 70 = (18" 2+ 5 48) = (e = (a4
T+

F=qE=_41regr’

1:2) (+q at rest = no magnetic force). [Check: Eq. 12.68 = F4 = £Fp. v]

: vg= _ 415 p_g Pogg=-T 1,
System C: vec=0. E= Tnes y, B=0; F=¢E= Tre 7T
[The relative velocity of B and C is 2'0/ (1+v2/c?), and the corresponding v is 32(1 + v%/c?). So Eq. 12.68
= Fo = grgoryen - ]
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Summary:
(~mam )1y (=) 1+ 5)3 | (-5%m)y
(-w&=) &2 (~m&=) B2 0
- — ——
() 1+ 5)7 | 552"+ 2)7 | (&)

Problem 12.46
(a) From Eq. 12.108

E.B, +7%(E, - vB;)(B, + %E;) +7(E. +vB,)(B: — % E,)

v v? v v?
= B,B, +V*{E,B, + C—Z}E,,/E, ~oJ{B. = 5 F.B; + B.B. — S BF. +{B. - 3E,B,)

v? v?
= E,B, +7 [E,B, (1-%) +EB.(1- g)] = B,B, + E,By + E,B, =E-B. qed

(b) E? - ¢*B? = [E2 ++*(Ey — vB:)? +v*(E: +vB,)?]

— &[B2+12(B, +—E‘z) +92(B. — %E,,)z]

= B2+ 7 (E} - 2E,0B. +v2 B} + B} + 2B4B, + v B} - B} - 24
- f':;E; -+ ayh

2
o2 [ 5) 50 -oml-2) e %)

= (B2 + E2 + E2) - *(Bl + B + B?) = E* - B%*. qed

yE:

82"2 2 252
v = FEy)_ B;

(c) For if B = 0 in one system, then (E? — c¢2B?) is positive. Since it is invariant, it must be positive in
any system. Therefore E # 0 in all systems.

Problem 12.47
(a) Making the appropriate modifications in Eq. 9.48 (and picking § = 0 for convenience)

k;(z,y, 2,t) = Egcos(kz —wt)§, B(z,y,2,t)= % cos(kz —wt)Z, wherek= %

(b) Using Eq. 12.108 to transform the fields:

E,=E.=0, E,=v(E,—vB:)=vE [oos(kz —wt) — %cos(kx —wt)] = aEq cos(kz — wt),

B, =

S
I
k4

B, =+(B.— %E ) =vEy [ cos(kz — wt) — Fcos(kx wt)] = aﬁ cos(kz — wt),

_ vy [1-v/c
where a:'y(l——)— TTv/c
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Now the inverse Lorentz transformations (Eq. 12.19) = z =y(Z +vf) andt=17 (f + c%j)’ 50

Ic:——wt:7[k(i+vt)—u(?+%i)] :'y[(k—%)i—(w—kv)f} = kz — o,

where (recalling that k = w/c): k=7 (ls - ﬂ) =7vk(1-v/c) =ak and @ = yw(l —v/c) =

2
B(z,,2,8) = Eocos(kz — @) 9, 50 = & —-cos(kz - wi)2,
Conclusion:
(c) D=u1l1+v/ .
wavein §is o = —/\A

same in any inertial system)

(d) Since intensity goes like E2, the ratio is

Dear Al,

The amplitude, frequency, and intensity of the light wave will all as you
run faster and faster. It’ll get so faint you won’t be able to see it, and so red-shifted even your
night-vision goggles won’t help. But it’ll still be going 3 x 10® m/s relative to you. Sorry about
that.

Sincerely,

David

Problem 12.48
2 = AQA2EA = AJAZEO? + AJARH? = 4102 4 (—y Bt = (0% — Bt'?).
\t‘“ = AQA2 = AQAZEO% + AQAJHES = yt% + (—yB)t1% = (%% — Bt!3) = 4(£°% + Bt!).
23 = A3AS 7 = AZAJS =13,
— ASA] t)\ﬂ = A3Alt30 AGAItGI = (_,YB)tSﬂ +“[t:“ —_ ,Y(t(ﬂ + Btoﬁ)
B2 = ALAZM = AJAZHO2 4 ATAZH2 = (—yB)t02 + 4112 = (12 — Bit02),
Problem 12.49
Suppose t“* = £t# (+ for ic, — for anti: ic)

= Al
Pe= AﬁA’,ft“" = AJAfE [Because  and v are both summed from 0 — 3,
it doesn’t matter which we call 4 and and which call v.]
= AjjAﬁ(:kt“") (I used the symmetry of t*”, and wrote the A’s in the other order.]
="}, qed
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Problem 12.50
F"F,, = FOOF00 _ [0l Ol _ p02 02 _ 03 03 _ prl0 10 | 20 p20 _ 30 (230
+F11F11 +F17F17 +FI3FI3 +F21F21 + F22F22 +F23F29 +F31F3l +F32};‘32 +F\33F33
= ~(Ba/c)* — (By/c)’ — (E:/c)* ~ (Bu/c) ~ (Ey[c)* ~ (E:[c)’ + B + B} + B + B + B} + B}

=2B% - 2E%/c?

which, apart from the constant factor —%, is the invariant we found in Prob. 12.46(b).

G* Gy, = 2(E*/c* — B*)| (the same invariant).

F[MIG Y = -2 FolGﬁl +F’02G02+F03Gﬂ3 +2 F‘ZG‘2+F13G13 +F73G23
1
1 1 1
= -2 (;E,Bz +15,8,+ zE,Bz) 2BL(=E./) + (=By)(Ey /o) + Bu(—E./d)]

2 2
= ~2(E-B)-~(E-B)=

which, apart from the factor —4/c, is the invariant of Prob. 12.46(a). [These are, incidentally, the only
fundamental invariants you can construct from E and B.]

Problem 12.51

0 ¢ 0 0

F“”:M - 0 0 —v
27z | 0 0 0 O

0 »v 0 0

Problem 12.52

8,F# = poJ*.  Differentiate: 8,8, F* = uod, J*.

But 8,8, = 8,8, (the combination is symmetric) while F¥# = —F*” (antisymmetric).

. 8,8,F#” = 0. [Why? Well, these indices are both summed from 0 — 3, so it doesn’t matter which we
call g, which v: 8,0, F* = 8,0,F"* = 8,0,(—F*") = —=8,0,F*". But if a quantity is equal to minus itself,
it must be zero.] Conclusion: 8,J* = 0. qed
Problem 12.53

We know that 8,G*¥ = 0 is equivalent to the two h Maxwell equations, V-B =0 and VXE =
—%A All we have to show, then, is that OxF, + 8,F,x + 8,F, = 0 is also equivalent to them. Now this
equation stands for 64 separate equations (1 =03, =03, A\=0— 3, and 4 x 4 x 4 = 64). But many
of them are redundant, or trivial.

Suppose two indices are the same (say, 4 = v). Then 8xF,, + 8,Fyx + 8,Fy, = 0. But F,, = 0 and
F,» = —F», so this is trivial: 0 = 0. To get anything significant, then, g, v, A must all be different. They
could be all spatial (u,v,A = 1,2,3 = z,y,2 — or some permutation thereof), or one temporal and two spatial
(6 =0,v,x=1,20r 2,3, 0r 1,3 — or some permutation). Let’s examine these two cases separately.

All spatial: say, p =1, v =2, A =3 (other permutations yield the same equation, or minus it).

O3F1y + 01 Fp3 + 02 F31 = 0= %(B;)+%(B,) B,)=0=V-B=0.

+6%(
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One temporal: say, p =0, v =1, A = 2 (other permutations of these indices yield the same result, or minus
it).

con O (LB, o ().
32F01+50F12+8|F20-0=>ay( c) F B+ Bz(c)_o‘

or =88 4 (%‘ - STE;‘L) =0, which is the z component of —8 = VXE. (f p=0,v =1, A =2, we get the y
component; for ¥ = 2, A = 3 we get the z component.)

Conclusion: OzFuy + 8,Fu + 8 Fau = 0 is equivalent to V-B = 0 and % = — Vx E, and hence to
8,G** =0. qed
Problem 12.54

K = gn,F% = q(m F°! + 1 F°2 + 13 F%%) = g( - E)/c = %'yu +E.|Now from Eq. 12.71 we know that

K°® = 14¥ where W is the energy of the particle. Since dr = 1dt, we have:

This says the power delivered to the particle is force (¢E) times velocity (u) — which is as it should be.

Problem 12.55
Fge g 10, 1060t 0005 D60y 090:
8z cot’ T Tc\Gtot Gz ot 6y3t Bzal
Bt bs_ By _o:
From Eq. 12.19, we have: =Y mET ET A
S0 37 = —Ly(2

b _;7(— +v—) or (since ct = 2% = —z): 3% =‘Y(

=0.

2208 =y (0 - pE0).

il

g 0, 080t 080z 060y 060 _ vis o9 _ 06 _voe ) .
09 =559 = 50s T 5s0z T By 0z T 0,05 = @0t T o5 = V\Bay " 5Bz,) = 7 (09 A9
g 00 _ 080t 060s 060y 080: 0 _

=95 " 9oy Tozoy oyoy T aog dy oY
S5 00 _ 000t 060s 080y 000 _ 08 .

9z Otdz  0z0z  Oydz 020z 0z
Conclusion: 8¢ transforms in the same way as a* (Eq. 12.27)—and hence is a contravariant 4-vector. ged
Problem 12.56
According to Prob. 12.53, ag‘:,v = 0 is equivalent to Eq. 12.129. Using Eq. 12.132, we find (in the notation
of Prob. 12.55):
OF,,  OF,  0F,

o> oar T 0z

= \Fyw +8,For + 8, Fa,

= 00(OuAy — BvAL) + B (BuAx — O\AY) + 8, (OrAp — BuAn)
= (Br0u Ay — BuOrAy) + (BuBy A — 8,0, AN) + (BOnAy — N8 A,) =0. qed

824, %4,

[Note that 80,4, = 500 = Baigr

= 8,0\Ay, by equality of cross-derivatives.]
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Problem 12.57
Step 1: rotate from zy to XY, using Eq. 1.29:
X =cos¢z +singy
Y = —singz +cosgy

Step 2: Lorentz-transform from XY to X¥, using
Eq. 12.18:

X =y(X —vt) = y[cosdpz +sinpy — Bt
Y=Y = —singz+cosdy
Z=
ct = y(ct — BX) = y[ct — B(cos =z + sin ¢ y)]

Step 8: Rotate from XY to 7, using Eq. 1.29 with negative ¢:

z=cos¢pX —sing¥ = ycosg[cos gz + sin py — Bet] — sin p[—sinpz + cos ]
= (ycos® ¢ +sin? @)z + (y — 1) sin ¢ cos gy — B cos ¢ (ct)

g =sin¢X +cosp¥ = ysinp(cos = + sin py — Bet) + cos p(—sin ¢ ¢ + cos py)
= (y—1)singcospz + (ysin® ¢ + cos® ¢)y — vBsin ¢ (ct)

3 v ~yBcos ¢ —yBsing O\ | fet
. |z | _||-vBcosp (ycos®@+sin*¢) (y—1)singcosg 0 z
In matrix forms 7| || -1Bsing (y-1)singcosd (ysin®p+cos®¢) 0 y
z 0 0 0 1 z
Problem 12.58
In center-of-momentum system, threshold occurs when incident ener- J_. <_% before (CM)
gy is just sufficient to cover the rest energy of the resulting particles,
with none “wasted” as kinetic energy. Thus, in lab system, we want 0 after (CM)
the outgoing K and X to have the same velocity, at threshold: Kz
o— O oO—
™ P KX
Before After

Initial momentum: p,; initial energy of m: E? — p?c? = m?c* = E2 = m2c! + p2c2.
Total initial energy: myc? + /m2ct + pZc?. These are also the final energy and momentum: E? — p?c? =
(mk +mz)2ct.

(m,,c’ +/m2ct +p?,c2)’ —p2c? = (mg +mg)*ct

migf + 2"::(‘2 VmEE + PR e+ midt + gie — B = (mi +myp)’*

2m,
T’H/mic’ +p% = (mk +mz)? —mj —m}




4m?
(m2c? +p,2,)7 = (mk +ms)* ~ 2(m2 + m2)(mk +ms)? + mj + m} + 2mZm2

4m?
7’101 = (mk +mg)* — 2(m} + m2)(mk +mz)® + (m2 - m2)®

Pr= ﬁ\/(m,( +mp)t - 2(m2 +m2)(mx +mz)? + (m3 — m2)?

= ke (M +mec)t ~ 2[(myc?)? + (mec?)?] (mucc? + mpc?)? + [(mpc)? ~ (mac?)?]?

= m\/(mo)* — 2[(900)2 + (150)2] (1700)2 + [(900)2 — (150)2]*
= 1552 V/(8:35 X 1012) — (4.81 x 10'2) + (0.62 x 10'2) = 3k:-(2.04 x 10°) = 1133 MeV/c.
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Problem 12.59

Yy
) 4 P (p = magnitude of 3-momentum
In CM: ©° O z in CM, ¢ = CM scattering angle)
Before

Kl
After
Outgoing 4-momenta: r* = (%,pcosqi,psind), 0); s*=(£,-pcos¢,—psing,0).

i

In Lab: o— O <€ Problem: calculate 0, in terms of p, ¢.

Before 5n
Lorentz transformation: 7y = 7(rz — Br°); 7y =1y; 52 = Y(sz — Bs°); 8y = 5.

Now E = ymc?; p = —ymwv (v here is to the left); E2 — p*c® = m?c!, so f = — 2.
7o =1 (pcos¢ + B E) = yp(1 + cos ¢); 7 = psing; 5. = yp(1~ cos ¢); 5, = —psing.

- 72p*(1 — cos? ¢) — p*sin’ ¢

5 \/[72177(1 + cos ¢)2 + p? sin ¢] [y2p?(1 — cos¢)? + p? sin® ¢]
- (- 1)sin’ ¢

B /B + cos g)2 +sin® ] [12(1 — cos ¢)* + sin? ¢]

(*-1 (-1

otz e+ Vorert et
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w

\/(1+cot2£+umt2$)(1+canzg+ut&n’%)

cosf =

(where w =42 - 1)

_ w _ wsingcosg2
csc? $ + weot? £) (sec? £ + wtan® ¢ 1+weos? $)(1+wsin? ¢
2 2 2 2 2 2
_ Jwsing sing
I+ St + cos@)] [1 + bl — cos g)] \/[(2 +1) +cosd] [(2+1) —cosg)
sm¢ sin ¢ 4 4
where 7% = — 4 —.
\/(2 +1) —cosz(i’ \/’!+ +sin’ ¢ \/1+(7/sm¢)7’ w?
. 0
sinf = Lo 7% = (1 +w) = et so tand = R k‘\,\“ +/sing
& “
g 2 _1)=~2(1-1)=,222 _ 2 y
Or, since (y* — 1) =« (1 ;,) =%, [tanf = g pZal T

Problem 12.60
2 = K (a constant) = £ & = K. But &

@ =K But = oo p= B
. - K . dt __ 1,
%(\—/ﬁ.ﬁ) = £ /T=u?/c%. Multiply by £ = L:

ﬂi( u ) d( u ) K\/I—u2/c2
dz dt\ \/T=u?/c? dz \ /1= u2/c? m
dw K1  dw_1d , k duw?

.Letw =

T mw Y& &Y Tm A Sm

~w?= 2Kz constant. But at t =0,z = 0 and u =0 (so w = 0), and hence the constant is 0.

wre 2K, ur u2 = 2Kz 2Kz W w1+ 2Kz) 2Kz
T omT T 1-ddfE “Tm T ma” me ! =
2Kz/m c dz _
2
w? = = < — B ct-/ 1+
1+ 2 T (BE) \/1+ =) 2Ka:

Let%’-a % ct= [YER dp.  Letz=y% dr=2dy; VT =y.

/uy2 2
ct:/y—yM-Zydy:2/\/y2+a2dy: [y y2+a2+azl.n(y+\/y7+a2)} + constant.

Att=0,z=0=y=0,500=a%lna+ constant = constant = —aZlna.
ot= gy T+ fiar 1) =a[(4) /(L) ERVIEAN
et =yvVy? +a? +a’ln(y/a+ /(y/a) +1)_a[(a) (a) +1+In(=+ (a) +1}].
Let: 2 = y/a= z/ 2 = /2K, Then

*z\/1+22+1n (z+V1+22%).
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Problem 12.61

@ ot) = £ [, /T (ot — 1], where @ = . The force of +gon /2
~—q will be the mirror image of the force of —g on +¢ (in the z axis), d /;
so0 the net force is in the z direction (the net magnetic force is zero).
All we need is the z component of E. —d/2
The field at +¢ due to —q is: (Eq. 10465)
9
41rco (n u

5 [u(c® —v*) +u(2-a) —a(z- u)]
u=a-vau,=ci-v=i(c-w)ru=a-r-v=(a-l)ra=la So:
2 2
B = ‘ﬁm[ﬂ" — (@ —?) + %(d - 9A)le ~ alor —0)]
jca(l® —2?) = —cad®/n
—%ﬂ]ﬁ[(d—m)(c’—v’)-md?]

The force on +q is qE;, and there is an equal force on —g, so the net force on the dipole is:

S G S
4meg (or — )3

2 N It remains to determine 4, [,
(G ) - v?) - cad®]%. v, and a, and plug these in.

dr _cl 1 cat cotr
=== o’t = ; w v 2
v(t) @t 32 ‘/1 T )2" t \/1 @ sv=u(ty) = - here T = /1 + (at,)2.

dv  ca 1\ 20%t, _ ca co
aft;) = T =T et (—5) = F[l + (aty)? — (at,)?] = 7
Now calculate ¢,: c2(t —t,)2 =42 =12+ d% | = o(t) — z(t,) = £[/1+ (ab)? - /1 + (at,)Z],
P2ty + = B [1+ (off? + 14 (a2 — 2/T+ (at)2/T+ (at,)2) + (d/c)?

(%) I+ (@B /T (ab)? = 1+ 6?tt, + L (24)*. Square both sides:
) ) , od ) ady\? |, rad\?
X+ (at)? + (o) + R =+ ol (7) + 2%ty + (%) + o (%)

2482 —ott, —tt,("d) - (%)2 - 5:-(%)‘ =0.

At this point we could solve for ¢, in terms of ¢, but since v and a are already expressed in terms of ¢, it is
simpler to solve for ¢ (in terms of t,), and express everything in terms of ¢,:

) M)
- 3l (] o)+ ()] - ()

ot 3(2) ]i o+ el (2]
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Which sign? For small a we want ¢ & t, + d/c, so we need the + sign:

t=t,[1+ (“d) ]+éTD, where D= /1+ (5
c c
Soz=c(t—t,) 2= “—;ﬁ("Td)2 +dTD. Now go back to Eq. (%) and solve for /1+ (a)2:
1 ad 1/ad\?\ | d
2 = — = 2 (= =
T+ (at) _T{1+ (c) +at,[t,(l+2( ))+CTD]}
1 2 1rad\?] | o’td 1rad a*t,d
—7{1+(atr) [1+2(C)]+ TD} [1+ ( )]T+TD
T2

= S [VirEm - vir@ar] = [+ (%) |r + Lo -7} = aa( S+ 10).

c

Putting all this in, the numerator in square brackets in F becomes:
(1= fona(ger o) = 2[5 (5) warn]} (2 - ”"’:ﬁ) -t

T
el o0 482015 -
ctad®[1
=8

2
= q_ﬂsg' It remains to compute the denominator:
4meo [(cr — 10)T)

_ cty fad\2 _ i cat,
(m—lv)T_—{c[T(T) +dTD] ad T+t,D) c }T

[-T2 (at,)’—l] "’[1+(m,)2 (ate)? — ]=- o

1 ot,)
= [Ea/z(n“ +cdlD - a//dz D]T:cdD[ T2 - (at,)® | = deD.
L(g#)2 ~ (g2
_ ¢ Fda | & o N _F
" 4meg 3d3D3 x= 4reg cd1+ (ad/2c)2]3/2 x ( - mc)'

Energy must come from the “reservoir” of energy stored in the electromagnetic fields.

_ _14 o ad\23/2 _ ¢ pog?
(b) F = mea = %4#60 ed[1 + (ad/2c)z]3/2 = [1 + (Zc) ] ~ 8megme?d  8wmd’

(force on one end only)
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Problem 12.62

(a) 4* = (V/e, Ag, Ay, 4;) is a d-vector (like z# = (ct,2,y,2)), so (using Eq. 12.19): V = 4(V + vA,). But
V =0, and

Ho (M X )z

ir

Now (m X T); = m,

Ho (myz = msy)

V'yv 7

Now Z = y(z — vt) = YRs, § =y = Ry, Z = z = R,, where R is the vector (in &) from the (instantaneous)
location of the dipole to the point of observation. Thus

P =9RI+ R+ Rl =y R+ R+ R)+(1-+")(RI+ RY) = ’(Rz——stm )
(where 0 is the angle between R and the z axis, so that R2 + R2 = R?sin® 6).

=t _vylmyRemmaRy) oy (m X R) = v(m X R); = v(myR; — m:R,), so

AT A3 R3(1 ~ 2 sin® 0)3/2 '

_ v (mxR)(1-%)
4r B3 (1- % sin?6)**’

. 1 ﬁ.'(VXm)(l—'—';)
1 <

or, using pio = oy and v+ (m X R) =R+ (v X m): V=

© 4meg c2R2(1 - ¥ sin®0)

(b) In the nonrelativistic limit (v? < c?):

1 R (vxm) 1 R.p . v Xm
T Ine  ER? " 4ney R? '

which is the potential of an electric dipole.

Problem 12.63

(2) B=—4Ky (Eq. 5.56); N =m x B (Eq. 6.1), so N = —=£&mK (2 x ).
oKk | = B2 (i) (o) = B2 AoV 2R

(b) v Charge density on the front side: Ao (A =7X0);
v Charge density on the back side: A =)o, where 7 = W =
1 (1+0%/c?) _ 1+0%/ (1+*/P) v?
(1+%)

'7: = — =
\/l‘u%//—ffﬁ Vie2g o4z ioamen (-0

Length of front and back sides in this frame: /. So the net charge on the back side is:

(1+c,)fy‘l (1+';2—’),\z.
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Net charge on front side is:

i
g- =Xo=
°y

So the dipole moment (note: charges on sides are equal):

i ' Wyl 1 1] A2, o2 N
Pp= (Q+)§ —(Q—)EY— [(1+§)/\15—?)\I§]y_ T(1+§-1+c_2)y
.
N N2 o
E = {22, where 0 =700, 50 N=p X E= = m(yxz)_

So apart from the relativistic factor of v the torque is the same in both systems—but in S it is the torque
exerted by a magnetic field on a magnetic dipole, whereas in & it is the torque exerted by an electric field on
an electric dipole.

Problem 12.64

Choose axes so that E points in the z direction and B in the yz plane: E = (0,0, E); B = (0, B cos ¢, Bsin ).

Go to a frame moving at speed v in the z direction:

E = (0,—yvBsing,7(E + vBcosg)); B = (0,7(Bcosg+ %E),w sing).

.. . —ywBsing _ y(E+wvBcosg¢)
(T used Eq. 12.108.) Parallel p: Y Beosps 2E) - Bsng

2
—vB%sin? ¢ = (Bcos + %E)(E«I—UBCOE({)) = EBcos¢ +vB?cos® ¢ + %E’ + %EBCOS:{),

2
0=uB=+§E2+EBcos¢(1+"—); v EBcos

2/ Tyeje - Bt EBE
£ ¥ H
v ExB
NowExB=| 0 0 E |=-EBcosgR. S0 ——— = —5———. qed
0 Bcos¢ Bsind Lo/~ B2+ B2/c

here can be no frame in which E L B, for (E - B) is invariant, and since it is not zero in S it can’t
be zeroin §.
Problem 12.65

Just before:

Field lines emanate
from present position
-9 7 of particle.




Just after: Field lines outside sphere of radius ¢t emanate from
position particle would have reached, had it kept going on its
original “flight plan”. Inside the sphere E = 0. On the sur-
face the lines connect up (since they cannot simply terminate

E o in empty space), as suggested in the figure.
T + T This produces a dense cluster of tangentially-directed field
E lines, which expand thh the spherical shell. This is a plc-
torial way of und the ion of electr
radiation.
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Problem 12.66

Equation 12.68 assumes the particle is (instantaneously) at rest in S. Here the particle is at rest in S. So

F, = ;f‘l, Fy = F). Using F = gF, then,

i -1 1
Fp=F,=qB, F=_F-= ,Yny Fz:;

L

Y
Invoking Eq. 12.108:
1 1

F, =qE, F,= ;‘W(Ey —vB;) =q(By —vB:), F,= ;q’y(E, +vBy) =q(E; +vB,).

But vxB=—-vB.X+vBy% so F=¢E+vxB). qed

Problem 12.67
z Rewrite Eq. 12.108 with z = y, y = 2, z = =:

E,=E, E,=+(E;,—vB;) E, = 7(E; +vB)
- = v 5 v
B,=B, B.= 7(13: 5 gE,) B, = 7(3, - C—ZE,)

Now E = (0,0, Ey); B = (Bo,0,0), s0 By, =0, &, = v(Ey — v
If we want B = 0, we must pick v so that En —vBy =0;ie.

With this, B, =0, B, =0, B; =+(Bo — %Eo) =vBo(1 - —,)

The trajectory in S: Since the particle started out at rest at the origin

in &, it started out with velocity ~v¥ in S. According to Eq. 12.72
it will move in a circle of radius R, given by Ob
%

=¢BR, or ymv = q(%Bu)R =

The actual trajectory is given by I:F: =0; §= —Rsinwi; z= R(1 — coswi); | where

This gives the fields in system S moving in the y direction at speed v.
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The trajectory in S: The Lorentz transformations Eqs. 12.18 and 12.19, for the case of relative motion in
the y direction, read:

I=z

(7 + i)

2=z
F=(t- 3v) t=r(f+37)
So the trajectory in S is given by:
z=0; y=~y(-Rsinwi+oi)= 'y{—Rsin[w-y(t - %y)] +v7(t - %y) }, or
2
y(14+7°5) = vt —aRsinfun(t- 5v))] } (v —vtyy = Rsin[w (s - )]
Y- +7)=r2y

z = R(1 —cos’wi) = R[l —oosw'y(t— %y)]

So:

2= y=ut=Banlon(e= 2)]s = R- menfin(i- 20)]

‘We can get rid of the trigonometric terms by the usual trick:

R S )
z—R——Rcos[w”’(t——;y] =|v*(y —vt)* + (2 - R)> = R%.
Absent the %, this would be the cycloid we found back in Ch. 5 (Eq. 5.9). The 42 makes it, as it were,
elliptical cycloid — same picture as p. 206, but with the horizontal axis stretched out.
Problem 12.68
(a) D= ¢FE+P suggests B — L e T N . " s .
He —B M suggests B — IloH but it’s a little cleaner if we divide by o while we're at it, so that

E - ;2D =¢"D, B —» H. Then: 0 cDs cDy D

o pw_)=cDa O H -H,
=4{-cD, -H, 0 H,
—D, H, -H, 0

Then (following the derivation on p. 539):
]

d 14
ov _ - w10 - .
o =—D eV-D=cps=Jf; o DY = cat( ¢Dz) + (VXH)z = (Jy)s ; so

where| Jf = (cps,35). | M hile, the h Maxwell jons (V-B =0, E = —%B) are unchanged,
and hence iCiad =0.

dz”
(b) 0 H, H, H,

g _)-H. 0 b, oD,

~-H, -cD, ¢D; 0
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(c) If the material is at rest, 7, = (—¢,0,0,0), and the sum over v collapses to a single term:
DHng = FeF*ong = D0 = PeFH0 = —D = —czeg =D =¢E (Eq. 4.32), v
Hopy = Lomopy s g~ Low o _po _lpw- 1l (Bq.631). v
u " u "
(d) In general, 7, = y(—c,u), so, for p = 0:
D%n, = Dy + D%ny + D%n3 = cDe(yus) + eDy(yuy) + eD(yu:) = ve(D - u),
E, E, E.
FOqy = Folay + FOmp + g = =2 (yug) + =2 (ymy) + ~(yuz) = %(Ewl), so
D%, = 2eF™n, = yo(D - u) = e ('Z’) (E-u)=D-u=eE-u). ]
H%ny = Hoy + HO% + H%ns = Hy(yug) + Hy(yuy) + Ha(yus) = 7(H- ),
G™n, = Gy + GP1a + G%1s = B, (vus) + By(yuy) + Bi(yus) = ¥(B - u), so
B, = 260 = (H-w) = Z()(B-w) > Hou= (B w). &l

Similarly, for = 1:

Dq, = D'mo+DYne + D'ns = (—cDa)(~v¢) + Halyuy) + (—Hy)(yus) = 1(* Da +uyH — u:Hy)
7 [*D + (u x H),,
-E,

FY¥n, = F'o + F + Fins = —=2(=70) + Ba(yuy) + (- By)(vs;) = 7(Ez +uyB: — u.By)
v[E + (u x B)],, so D'n, = c*eF'¥y, =

7[@D+ (ux B)], = e(y) [E+ (u x B)], > D+$(uxn) =¢[E+ (uxB). )
H'g, = H'%+Hp+ H s = (~Hz)(~7¢) + (=eD:)(uy) + (eDy)(7u:)
= ye(Hy —uyD; +u:Dy) = yc[H— (ux D)),
G = G+ G 4G = (B (29 + (-22) () + () ()
= %(c’B, —uyE; +u.E,) = % [*B - (uxE)],, so HY 5, = ‘%Gl"n., =
eH-(uxD), =2 [?B—(uxB)], > H-(uxD)=> [B_l(uxE)] 0
v T 2 Tk o ’
Use Eq. [4] as an expression for H, plug this into Eq. [3], and solve for D:
D+%ux {(uxD)+% [B—%(uxE)]} =¢[E+ (uxB)]};

1

D“'g[(“'D)“—“zD]=€[E+(uXB)]—“ch(uxB)+%[ux(uxE)],
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Using Eq. [1] to rewrite u-D:
@\ _ _fgp B 1 B+ L (B 2
D 1—0—7 = _F( ~uw)u+€[E + (ux )——(u>< )+—4[( ‘u)u — u’E]

e{[l—;ﬁ; E—cz[ W,](E u)u+(uxB)[1—%]}

Then

o) e

Now use Eq. [3] as an expression for D, plug this into Eq. [4], and solve for H:

H—ux{—%(uxH)+e[E+(uxB)]}=%[B-—%(uxE)];

H+é[(u»ﬂ)u—ulﬂ]=‘l‘[B—%(uxE)]+e(uxE)+e[u><(u><B)]A
Using Eq. [2] to rewrite u- H:
H(l—g) - ——(B wutt [B———(uxE)]+e(u><E)+c[(B —

= ;{[l—uﬂ"]B+ (=) 1@ x®)+ @ wul}.

=2 {(-5)p+ ood) e o]
Problem 12.69

We know that (proper) power transforms as the zeroth component of a 4-vector: K° = L 4% The Larmor
formula says that for v = 0, "w = g’ #od & (Egq. 11.70). Can we think of a 4-vector whose zeroth component
reduces to th)s when the veloclty is zero’

Well, a2 smells like (@’ ), but how do we get a 4-vector in here? How about 7*, whose zeroth component
is just ¢, when v = 0? Try, then:

= lluq
K =g (ee)r

This has the right transformation properties, but we must check that it does reduce to the Larmor formula
when v — 0:

aw _1dw _ 1 1

s = ;CKO 7 ”oq (a a,)n°, but 7° = ¢y, so
us that the power itself (as opposed to proper power) is a scalar. If this had been obvious from the start, we
could simply have looked for a Lorentz scalar that generalizes the Larmor formula.]

. | [Incidentally, this tells
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In Prob. 12.38(b) we calculated (o”a,) in terms of the ordinary velocity and acceleration:

. (v-a) i
a’a, =4* [a2+ (—6—2:,2—)] s[az'y 2«i—*(v-a)’]
iy 1 1
=7° [a2(1 - F) + ?(v . 3)2] = 75{a2 - g[v’ﬂz —(v- 3)2]}.
Now v -a = vacosf, where 6 is the angle between v and a, so:

v2a? — (v - a)? = v2a?(1 - cos? §) = v?a?sin® 6 = |v X a|.

ara, =(a - |22,

4
AW _ pod®
dt _ 6mc

Eof 5 (a2 |VTmlz),lwhich is Liénard’s formula (Eq. 11.73).

Problem 12.70
(a) It’s inconsistent with the constraint 7, K* = 0 (Prob. 12.38(d)).
(b) We want to find a 4—vector b# with the property that (42 +b#)n, = 0. How about b* = ;e("‘iq,,) n#? Then

(% +b#) 7, = 229, +£%2n, (nn,). But 7#n, = =%, so ) this becomes (4n,) — c?x (%", ), which is zero,
"
if we pick x = 1/¢%. This suggests ‘ Khy= %(dﬂ :2 d; nm“) Note that n* = (c, v)y, so the spatial

components of b* vanish in the nonrelativistic limit v << ¢, and hence this still teduces to the Abraham-Lorentz
formula. [Incidentally, o 7],, =0= £ " (a ) =0= —n,, + a"i”i 0, so ~—n,, = —a”ay, and hence b* can
just as well be written — (o, a,,)r]“ ]
Problem 12.71

Define the electric current 4-vector as before: J# = (cp.,J.), and the magnetic current the same way:
JE = (cpm,Im)- The fundamental laws are then

BF = polt, 8,6 =Run Kr= (a4 I2ew)y, |

The first of these reproduces V-E = (1/e)pe and V xB = pioJ. +poe00E/0t, just as before (p. 539); the second
yields V- B = (uo/c)(cpm) = popm and —(1/¢)(8B/8t + V X E) = (po/¢)Im, or V x E = —poJ.,, — OB/t
(generalizing page 540). These are Maxwell’s equations with magnetic charge (Eq. 7.43). The third (following
the argument on p. 540) says

_ ge —c . U, _& Uz E‘_
K' = _:—"1—442/&[E+(“XB)] 4 Im [\/1 S B,)+\/ _"uz/cz( C)+\/1_“2/02(c”)].

K = ﬁ{%mﬂuxmn% [B——(uxE)]}
F qe[E+(uxB)]+qm[B——(uxE)]

I

which is the generalized Lorentz force law (Eq. 7.69).
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e Page 4, Prob. 1.15 (b): last expression should read y + 2z + 3z.

e Page 4, Prob.1.16: at the beginning, insert the following figure

N 4 7

ANV

——— o —

I'd \ 4 N
N3

Page 8, Prob. 1.26: last line should read
From Prob. 1.18: V x v, = —6x2%X + 22y + 3222 =
V- (V xv,) = £ (—632) + a%(22) +2(32%) =—62+62=0.V

Page 8, Prob. 1.27, in the determinant for V x (Vf), 3rd row, 2nd column:
change 3% to y2.

Page 8, Prob. 1.29, line 2: the number in the box should be -12 (insert
minus sign).

Page 9, Prob. 1.31, line 2: change 2z> to 22°; first line of part (c): insert
comma between dx and dz.

Page 12, Probl 1.39, line 5: remove comma after cos 6.

Page 13, Prob. 1.42(c), last line: insert Z after ).

Page 14, Prob. 1.46(b): change r’ to a.

Page 14, Prob. 1.48, second line of J: change the upper limit on the r
integral from co to R. Fix the last line to read:

= 4 ()

+dme B =4rx (—e_R + e_o) +dre B =dr. v

Page 15, Prob. 1.49(a), line 3: in the box, change z? to 3.



e Page 15, Prob. 1.49(b), last integration “constant” should be i(z, z), not
Uz, y).

e Page 17, Prob. 1.53, first expression in (4): insert 0, so da = rsin 0 dr d¢ 6.

e Page 17, Prob. 1.55: Solution should read as follows:
Problem 1.55
(VDz=2=0,dr=dz=0;y:0-1. v-dl=(yz?)dy=0; [v-dl =
(2)x=0; 2=2-2y; dz2=—-2dy; y:1—0.
v-dl= (y2?)dy + (3y + 2) dz = y(2 — 2y)? dy — (3y + 2 — 2y)2 dy;

/ vioap ‘
/V'dl=2/(2y3—4y2+y—2)dy=2[7—T+7—2y]
1

14

1

B)z=y=0;dre=dy=0; 2:2—0. v-dl=By+2)dz=2z2dz.

0
2
z
/v-dl—/zdz— 5
2
. — 14 —_18
Total: §v-dl=0+3% —2=[§]

Meanwhile, Stokes’ thereom says § v - dl = [(V XV) - da. Here da =
dy dz X, so all we need is
(VXV)e = 5 93y +2) — &(yz?) =3 —2yz. Therefore

J(Vxv)-da = [[(3- 2yz)dydz—f0 { 2 2y(3—2yz)dz} dy

= [1[32- 2y —2yl2- 2y)]dy= [ (—4y® + 8y — 10y + 6) dy
= [+ 5P -5+ 6yl =-1+8-5+6=5 v

0
=-2.
2

e Page 18, Prob. 1.56: change (3) and (4) to read as follows:
(B)p=1%; rsind=y=1,s07 = g1y, dr = =35cos0d, 0: % — 6y =

sin 6 sin
tan=1(3).
20 0 fsin6
v-dl = (rcos®6) (dr)—(rcos@sin@)(rd0)=Csc;ie (—%) d —%d@
3 2 .2
_ c?sge 9050 dez_c?se cos ?4;51n0 d0=—C_OS30 0.
sin°@  sinf sin 0 sin” 0 sin” 0
Therefore
? cosd 1 |% 1 1 5 1
cos
-dl=— df = = - =——_=2
/V /sin30 2sin®0|,,, 2-(1/5) 2-(1) 2 2
/2




Total:

3
fv-d1=0+7”+2—2= ar |

Page 21, Probl 1.61(e), line 2: change = 2% to +2 2.

Page 25, Prob. 2.12: last line should read

Since Qior = 37R3p, E = ﬁ%r (as in Prob. 2.8).

Page 26, Prob. 2.15: last expression in first line of (ii) should be d¢, not
d phi.

Page 28, Prob. 2.21, at the end, insert the following figure

Vi)

1.6
1.4

1.2

1 = - =

o o o o
N oA O ®

Pl -———— — —

0.5

In the figure, r is in units of R, and V'(r) is in units of 1.
€0
Page 30, Prob. 2.28: remove right angle sign in the figure.
Page 42, Prob. 3.5: subscript on V in last integral should be 3, not 2.

Page 45, Prob. 3.10: after the first box, add:

¢ LIPS SO 1
Time | 202 @27 T Ve )

where cos@ = a/v/a? + b2, sinf =0b/v/a? + b2,

Py ~

F

[cos@fc-l—siney]},

F = q2 a — i X+ #_ l Y
T T6meo | | @+ 0222 a2 (@2 + 0232 12 i




wol 1 —q2+—q2+ ¢ | & 111
Cddne [(20) T () Va2 + 7)) |37 [Va2+B2 a b

Page 45, Prob. 3.10: in the second box, change “and” to “an”.

Page 46, Probl 3.13, at the end, insert the following: “[Comment: Tech-
nically, the series solution for ¢ is defective, since term-by-term differen-
tiation has produced a (naively) non-convergent sum. More sophisticated
definitions of convergence permit one to work with series of this form,
but it is better to sum the series first and then differentiate (the second
method).]”

Page 51, Prob. 3.18, midpage: the reference to Eq. 3.71 should be 3.72.

Page 53, Prob. 3.21(b), line 5: A3 should be ﬁ; next line, insert 72 after
1

2R"

Page 55, Prob. 3.23, third displayed equation: remove the first .

Page 58, Prob. 3.28(a), second line, first integral: R should read R2.

Page 59, Prob. 3.31(c): change first V to W.

Page 64, Prob. 3.41(a), lines 2 and 3: remove ¢ in the first factor in the

expressions for E,y.; in the second expression change “p” to “q”.

Page 69, Prob. 3.47, at the end add the following:

Alternatively, start with the separable solution
V(z,y) = (Csinkz + D coskz) (Ae®¥ + Be ).

Note that the configuration is symmetric in z, so C = 0, and V(z,0) =
0= B = —A, so (combining the constants)

V(z,y) = Acoskzsinh ky.

But V(b,y) = 0, so cos kb = 0, which means that kb = £7/2, £37/2,---,
or k=(2n—1)7/2b = o, with n =1,2,3,... (negative k does not yield
a different solution—the sign can be absorbed into A). The general linear
combination is
(o)
V(z,y) = Z A, cos apz sinh oy,
n=1

and it remains to fit the final boundary condition:

(o]
V(z,a)=Vy = Z A,, cos a,x sinh apa.

n=1



Use Fourier’s trick, multiplying by cos o,y and integrating:

b o0 b
Vo/ COS Qi X dx = E A, sinh ana/ COS Qi X COS QA X A
—b

n=1 -
28in q,r b e
Voa—" = Z Ay, sinh ana (b0ym) = bAy, sinh aya;
n’ n=1

9 i 2n—1
So A, = &@—aw. But sin a;,b = sin n ) =—(-1)" so
b apsinhana 2

Vie,y) = 2Vy i( 1y sinh o,y
Ly = b~ o, sinh aa €08 An-

Page 74, Prob. 4.4: exponent on r in boxed equation should be 5, not 3.

Page 75, Prob. 4.7: replace the (defective) solution with the following:

If the potential is zero at infinity, the energy of a point charge @ is
(Eq. 2.39) W = QV(r). For a physical dipole, with —¢ at r and +g¢
at r+d,

r+d
U=QV(r+d)—qV(r)=q[V(r-|—d)—V(r)]=q[_/ E.dll.

For an ideal dipole the integral reduces to E - d, and
U=—-qE-d=—-p-E, since p = ¢d.

If you do not (or cannot) use infinity as the reference point, the result still
holds, as long as you bring the two charges in from the same point, ry (or
two points at the same potential). In that case W = Q[V(r) — V(ro)],
and

U=q[V(r+d) = V(re)] —¢q[V(r) = V(ro) = ¢q[V(r+d) - V(r)],
as before.
Page 75, Prob. 4.10(a): % should be .

Page 79, Prob. 4.19: in the upper right box of the Table (o for air) there
is a missing factor of €.

Page 91, Problem 5.10(b): in the first line 112 /27 should read pgl?a/27s;
in the final boxed equation the first “1” should be 2.

Page 92, Prob. 5.15: the signs are all wrong. The end of line 1 should
read “right (2),” the middle of the next line should read “left (—%).” In
the first box it should be “(n2 — n1)”, and in the second box the minus
sign does not belong.



Page 114, Prob. 6.4: last term in second expression for F should be -I—Z%

(plus, not minus).

Page 119, Prob. 6.21(a): replace with the following:

The magnetic force on the dipole is given by Eq. 6.3; to move the dipole
in from infinity we must exert an opposite force, so the work done is

U=—/():F-dl=—/o:V(m-B)-dl=—m-B(r)-l—m-B(oo)

(I used the gradient theorem, Eq. 1.55). As long as the magnetic field goes
to zero at infinity, then, U = —m - B. If the magnetic field does not go
to zero at infinity, one must stipulate that the dipole starts out oriented
perpendicular to the field.

Page 125, Prob. 7.2(b): in the box, ¢ should be C.
Page 129, Prob. 7.18: change first two lines to read:

~ s+a /
@:/B-da;B=”LI ;q)zﬂofa/ d_szuofaln(era);
S

27s 2m s’ 2m s
dQ d®  poa I
€ =ToopR=—"R=—— 5, n(l+a/s)—
Hoa woal
dQ 5rE n(l+a/s)dl = |Q 5 R n(l+a/s)

Page 131, Prob. 7.27: in the second integral, r should be s.

Page 132, Prob. 7.32(c), last line: in the final two equations, insert an [
immediately after uyg.

Page 140, Prob. 7.47: in the box, the top equation should have a minus
sign in front, and in the bottom equation the plus sign should be minus.

Page 141, Prob. 7.50, final answer: R? should read Ra.
Page 143, Prob. 7.55, penultimate displayed equation: ¢p should be -.

Page 147, Prob. 8.2, top line, penultimate expression: change a? to a?; in
(), in the first box, change 16 to 8.

Page 149, Prob. 8.5(c): there should be a minus sign in front of o2 in the
box.

Page 149, Prob. 8.7: almost all the r’s here should be s’s. In line 1 change
“a <r < R’ to “s < R”; in the same line change dr to ds; in the next
line change dr to ds (twice), and change # to §; in the last line change 7
to s, dr to ds, and ¥ to § (but leave r as is).



Page 153, Prob. 8.11, last line of equations: in the numerator of the ex-
pression for R change 2.01 to 2.10.

Page 175, Prob. 9.34, penultimate line: o = ng/ng (not ng/ns).

Page 177, Prob. 9.38: half-way down, remove minus sign in k2 + kg +k2 =

—(w/e)?

Page 181, Prob. 10.8: first line: remove ;.

Page 184, Prob. 10.14: in the first line, change (9.98) to (10.42).
Page 203, Prob. 11.14: at beginning of second paragraph, remove .
Page 222, Prob. 12.15, end of first sentence: change comma to period.

Page 225, Prob. 12.23. The figure contains two errors: the slopes are for
v/c=1/2 (not 3/2), and the intervals are incorrect. The correct solution
is as follows:

Problem 12.23.

(a)

>
ct % &%
/N, -z £ = =225
Wi\ aon (b) = slope = 575
S5V P 8.75 35
c:&//x =V =§5c= 37¢
C//‘L
7 &7 fotlc
/:/ﬁ/ 34 (c)v’:ic,sovzf%;é%‘-
L (75 |35 v
A % A =@y | 37¢
Va0 s
g iatsd, iR
N '
SLIATST | o
A
. 15
i

e Page 227, Prob. 12.33: first expression in third line, change ¢ to c.



