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Abstract—This letter describes modifications to locally nor-
malized filter banks (LNFB), which substantially improve their
performance on the Aurora-4 robust speech recognition task using
a Deep Neural Network-Hidden Markov Model (DNN-HMM)-
based speech recognition system. The modified coefficients,
referred to as LNFB features, are a filter-bank version of locally
normalized cepstral coefficients (LNCC), which have been
described previously. The ability of the LNFB features is enhanced
through the use of newly proposed dynamic versions of them,
which are developed using an approach that differs somewhat
from the traditional development of delta and delta–delta features.
Further enhancements are obtained through the use of mean nor-
malization and mean–variance normalization, which is evaluated
both on a per-speaker and a per-utterance basis. The best perform-
ing feature combination (typically LNFB combined with LNFB
delta and delta–delta features and mean–variance normalization)
provides an average relative reduction in word error rate of 11.4%
and 9.4%, respectively, compared to comparable features derived
from Mel filter banks when clean and multinoise training are used
for the Aurora-4 evaluation. The results presented here suggest
that the proposed technique is more robust to channel mismatches
between training and testing data than MFCC-derived features
and is more effective in dealing with channel diversity.

Index Terms—Automatic speech recognition (ASR), Aurora-4,
channel mismatch, deep neural network (DNN), locally normalized
filter bank (LNFB).

I. INTRODUCTION

THE use of deep neural networks (DNNs) has produced
major improvements in the recognition accuracy of auto-

matic speech recognition (ASR) systems. DNNs have the ability
to learn internal features, which are robust to many sources of
variability in speech signals (e.g., [1] and [2]). In this context,
simple features like log-Mel filter banks (MelFB) favor the
DNN learning process and provide greater recognition accuracy
than traditional MFCC features [3], [4]. Nevertheless, when
mismatches between training and testing conditions are too
large, the learning ability of DNNs is limited and the recognition
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accuracy degrades significantly [1]. Well-known techniques for
reducing the train-test mismatch include the application of input
normalization such as mean normalization (MN) and mean and
variance normalization (MVN). MN assumes that the mean of
data is invariant, and MVN uses the stronger assumption that
the mean and variance of data are invariant, so standardizing
mean and/or variance removes irrelevant information [5]. These
techniques reduce the mismatch between features representing
clean and noisy utterances [6], [7], and they reduce distortion
introduced by linear filtering or spectral tilt [5]. MN and MVN
are also used for DNN input normalization [8] because DNN
training is sensitive to input scale [9]. Because un-normalized
features with greater variance would dominate the DNN
learning process, scaling each dimension of the input data to
a similar range improves DNN performance [8]. Another ef-
fective approach for reducing training–testing mismatches is to
employ multicondition training with noisy or distorted data, so
noise is present in both the training and testing data. However,
this strategy is not practical in some applications where the
channel between the speaker and the ASR system may vary
over time. Examples of such applications include human–robot
interaction, meeting transcription, lecture transcription, etc.

Locally normalized cepstral coefficients (LNCC) [10] were
designed to be robust to channel mismatches, and they provided
better accuracy than traditional MFCC features on a speaker
verification task with mismatches between training and testing
conditions [10], [11]. The development of locally normalized
filter bank (LNFB) features is motivated by the observations that
the performance of DNN-HMM ASR systems is typically better
when spectrogram-like features (such as MelFB parameters)
are used, rather than features in a pseudo-cepstral domain (such
as MFCC parameters), despite the fact that MFCC coefficients
are simply the discrete cosine transform (DCT) of the MelFB
parameters. Similarly, LNCC features are the DCT of LNFB
features.

In this letter we consider the use of LNFB parameters for
the Aurora-4 ASR task. The sections below discuss the appli-
cation of LNFB features to robust DNN-HMM-based ASR, the
development of LNFB delta and delta–delta coefficients, the
combination of static and dynamic LNFB parameters, and an
analysis and comparison of results obtained using speaker-based
and utterance-based based MN and MVN input normalization.

II. LNFB COEFFICIENTS AND DELTA COEFFICIENTS

A. LNFB Features

LNCCs are a set of cepstral-type features, inspired by
Seneff’s generalized synchrony detector (GSD) [12], which
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Fig. 1. Graphical representation of the mth numerator filter (solid line) and
the mth denominator filter (dashed line). The frequency axis is in the Bark scale
[13] as used in [10].

perform a local normalization in the frequency domain in each
auditory channel, and hence are relatively invariant to changes
in the frequency response of the transmission channel [10].
Accordingly, LNFB features are LNCC features before the
final DCT computation. The local normalization is achieved
in the filter-bank space by dividing the output of a triangular
frequency-weighting filter (which is similar to the triangular fil-
ter in conventional MFCC coefficients) by the output of a second
frequency-weighting filter [10]. This normalization removes
very coarse variations in the spectral shape that can be consid-
ered constant within both filters, such as overall tilt, which we
assume arise mostly from channel variability. We refer to these
two filters as the “numerator filter” and the “denominator filter,”
and their shape is an approximation to the frequency response
of the numerator and denominator of the Seneff GSD operator
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{
− 2

B
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where the frequency variable f is in the Bark scale [13]. The
shapes of these filters are shown in Fig. 1. Given a channel m
with center frequency fC

m and bandwidth B, the LNFB feature
m is defined as the log of the locally normalized energy for
channel m, LNm

LNFBm = log (LNm ) = log(LNNumm /LNDenm ) (3)

where LNNumm is the numerator filter energy and LNDenm

is the denominator filter energy.

B. Dynamic Features with LNFB

Delta and delta–delta features [14] represent the most com-
mon method for capturing the temporal evolution of the short-
term spectrum or cepstrum [15]. Delta and delta–delta dynamic
features are computed as polynomial approximations of the first-
and second-order time derivatives of the static features. If Cm (n)
is the static feature m at discrete time n, the delta features can

be expressed as [14]

ΔCm (n) =
∑K

k=−K kCm (n + k)∑K
k=−K k2

(4)

where 2K + 1 frames centered around frame n are used to
compute the numeric time derivative at frame n. The delta–
delta coefficients are obtained by repeating (4) using the delta
coefficients as input. Delta and delta–delta features represent the
dynamic characteristics of the speech spectra over time, and they
are usually employed in combination with static coefficients
such as MFCC, LPC, PLP, MelFB, etc.

C. Deltas Delta–Deltas for LNFB Features

Direct application of (4) to the LNFB features in (3) would
produce dynamic features according to the following equations:

ΔLNFB1m (n) = Δ log(LNNumm (n))

− Δlog(LNDenm (n)) (5)

ΔΔLNFB1m (n) = ΔΔ log(LNNumm (n))

− ΔΔlog(LNDenm (n)). (6)

Because LNFB features have already been normalized, we
believe that computing delta and delta–delta LNFB coefficients
using (5) and (6), as mentioned earlier, would not represent spec-
tral evolution properly, because independent delta operations
would be applied to both the numerator and denominator filter
of (1) and (2). It is not clear what the result of such an operation
might represent, but it would not be consistent with the original
motivation of dynamic features [14], [15]. Instead, we believe
that computation of dynamic versions of the LNFB features
should be accomplished by applying the linear regression of
[14] to the numerator filter only, using the following equations:

ΔLNFB2m (n) = Δ log(LNNumm (n)) (7)

ΔΔLNFB2m (n) = ΔΔ log(LNNumm (n)). (8)

The superiority of this approach to computing the �LNFB
features is confirmed by experimental results described later.
This strategy could be generalized easily to other self-
normalizing features.

III. DATA NORMALIZATION IN DNN-HMM-BASED ASR

MN and MVN are widely used to achieve robust ASR. In
applying these approaches to a DNN-HMM based system, the
means and/or variances could be evaluated over the training set
only or over both the training and testing data, and on a per-
speaker or per-utterance basis (e.g., [3], [4], [16], and [17]). The
optimal normalization could be dependent on the task and on
the degree of mismatch between training and testing conditions
due to the combined effect of these normalizations (acoustic
compensation and scale normalization). In this letter, four input
normalization schemes are considered: MN and MVN applied
on a per-speaker and on a per-utterance basis, normalizing both
the training and testing data in all cases.

Fig. 2 compares the amplitude distributions of MelFB and
LNFB coefficients with no normalization, with MN, and with
MVN. The plots compare the normalized histograms for fil-
ters with center frequencies of approximately 470 Hz using the
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Fig. 2. Histograms for filters with center frequencies of approximately 470 Hz,
from the Aurora-4 clean train set (in lighter gray) and the Aurora-4 Group D test
subset (in darker gray), for (upper row) MelFB and (lower row) LNFB features.
No normalization (left column), mean normalization (center column), and MVN
(right column) were applied to training and test data on a per-speaker basis.

Aurora-4 clean train set and the Aurora-4 Group D degraded
test set (as defined later), which includes both additive noise
and channel distortion. The MN and MVN normalizations were
applied on an utterance-by-utterance basis. As can be seen in
Fig. 2, the clean and noisy histograms of MelFB coefficients are
bimodal or multimodal while those of the LNFB coefficients
are unimodal. After applying MN or MVN, the clean and noisy
histograms remain clearly distinguishable from each other using
MelFB features, despite the fact that they are scaled to similar
ranges of variation. In contrast, the clean and noisy histograms
from LNFB coefficients are unimodal and very similar after
applying MN or MVN. While not shown in this letter, this be-
havior is observed for the vast majority of frequency channels.
This result suggests that LNFB should be more robust than
MelFB to additive noise and channel distortion and that MN
and MVN should be more effective for the LNFB coefficients.
We believe that the unimodal nature of the LNFB histograms
is a consequence of the normalization of the numerator by the
denominator filter energy according to (3).

IV. EXPERIMENTS

The effectiveness of the LNFB features was validated by per-
forming ASR experiments on the Aurora-4 corpus [18] using the
Kaldi Speech Recognition Toolkit [19]. Three training sets from
Aurora-4 were employed: the clean, multinoise and multicondi-
tions. Each training set contains 7137 utterances from 83 speak-
ers. The clean training set contains only clean data recorded with
the high-quality Sennheiser HMD-414 microphone. The multi-
noise set contains clean and artificially degraded utterances with
6 different noises added at SNRs between 10 and 20 dB. All data
in this training set were recorded with the Sennheiser HMD-
414 microphone. Finally, half the multicondition training set
was recorded by the Sennheiser HMD-414 microphone, while
the other half was recorded by one out of 18 different micro-
phones, with noise added as in the multinoise data. The evalua-
tion database is composed of 14 testing sets with 330 utterances
each, clustered in four groups, as summarized in Table I [18].

Three sets of features were evaluated: static and dynamic
Mel Filterbank features labeled as MelFB+ΔMelFB; static
and dynamic LNFB parameters, using (5) and (6), labeled as

TABLE I
DESCRIPTION OF AURORA-4 TESTING DATA SETS [18]

LNFB+ΔLNFB1; and static LNFB features combined with
dynamic LNFB parameters based on the numerator filters only,
using (7) and (8), labeled as LNFB+ΔLNFB2. Note that for
the rest of this letter, we use the labels �MelFB, �LNFB1, and
�LNFB2 for compactness; the appropriate delta–delta coeffi-
cients are always incorporated into all the three features. The
DNN-HMM models were trained making use of the same data
alignment obtained with a GMM-HMM recognition system
trained in clean conditions employing MFCC features, linear
discriminant analysis (LDA), and maximum likelihood linear
transforms (MLLT), according to the tri2b Kaldi Aurora-4
recipe [19]. This recipe begins by training a uniphone system,
uses alignments from that system for an initial triphone system,
and finally uses those triphone alignments to train the final
triphone system.

In a previous optimization step, the DNN-HMM baseline
system with multicondition training was tested with 24, 32,
40, and 56 MelFB filters. The lowest WER, 10.9%, was ob-
tained with 40 filters using MN on a per-speaker basis. This
WER is very competitive with current results in the literature
for the same task (e.g., [3], [4], and [20]–[25]). The number
of LNFB filters was also set to 40. The filter bandwidth for
each channel, B, was set equal to 5.2 Barks. The spacing be-
tween contiguous filters is a function of the number of filters
and is approximately equal to 0.40 Barks. Each DNN in the
DNN-HMM systems consisted of seven hidden layers and 2048
units per layer. The number of units of the output layer equaled
the number of pdfs of the corresponding GMM-HMM system.
The Aurora-4 databases dev_330_01 and dev_330 were used as
DNN cross-validation data for clean and multicondition train-
ing, respectively. For noisy training, datasets from dev_330_01
to dev_330_07 were employed for cross validation. Results are
shown in Tables II, III, and IV.

V. DISCUSSION

A. Dynamic Coefficients Based on the Numerator Filters

Table II compares the WER averaged over all test data for
the three feature sets described above. MN was applied on
a per-speaker basis. In all cases, the combination of static
LNFB features with delta and delta–delta parameters based
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TABLE II
COMPARISON OF ALGORITHMS FOR DELTA FEATURES FOR AURORA-4 DATA

Training MelFB + ΔMelFB LNFB + ΔLNFB1 LNFB + ΔLNFB2

Clean 32.66 49.21 36.73
Multinoise 16.00 18.42 16.06
Multicondition 10.90 13.97 12.26

TABLE III
DEPENDENCE OF WER FOR AURORA-4 ON MN AND MVN

Train Feature Set No MN MVN MN MVN
Type Norm per Spk per Spk per Utt per Utt

Clean MelFB + ΔMelFB 49.95 32.66 30.74 28.74 27.12
LNFB + ΔLNFB2 51.10 36.73 28.63 33.38 24.03

Multinoise MelFB + ΔMelFB 18.11 16.00 17.12 13.97 14.73
LNFB + ΔLNFB2 16.13 16.06 14.85 14.55 13.35

Multicond. MelFB + ΔMelFB 11.95 10.90 11.93 10.23 10.62
LNFB + ΔLNFB2 12.27 12.26 12.11 11.62 11.18

TABLE IV
SUMMARY OF RESULTS FROM AURORA-4 TEST SETS

Training Aurora Mel FB + LNFB +
Group ΔMelFB ΔLNFB2

Clean (as in Group A) A 2.39 2.65
B 19.70 19.26
C 21.69 14.10
D 39.55 34.02

Average 27.12 24.03

Multinoise (as in Group B) A 2.56 3.19
B 6.11 6.94
C 16.57 11.84
D 25.06 21.70

Average 14.73 13.35

Multicondition (as in Group D) A 3.42 3.62
B 6.35 7.19
C 7.12 7.38
D 16.68 17.06

Average 10.62 11.18

All-Condition Average 17.5 16.2

on the numerator filter energy, as defined in (6) and (7),
LNFB+ΔLNFB2, leads to average relative reductions in
WER equal to 25.4%, 12.8% and 12.2% for clean, noisy,
and multicondition training, respectively, when compared
with LNFB+ΔLNFB1. These results indicate clearly that the
dynamic �LNFB2 coefficients based only on the numerator
filters provide more useful information than coefficients based
directly on the original �LNFB1 features.

B. Effect of Input Normalization

Table III compares averaged WERs over all of the Aurora-
4 test sets, broken out by training type, obtained using MVN
or MN applied by utterance and by speaker. As can be seen,
MN and MVN always lead to lower WERs when applied ut-
terance by utterance rather than speaker by speaker. (The Kaldi
toolkit applies MN speaker by speaker by default.) The average
reduction in WER provided by normalization per utterance com-

pared to normalization per speaker is 9.1% for MN and 11.8%
for MVN. This could be due to the fact that the SNR in the
Aurora-4 database changes from one utterance to the next.

Table III also shows that the use of MVN rather than MN pro-
vides more effective normalization in the DNN-HMM system
with the LNFB+�LNFB2 features, with the difference being
particularly dramatic in the case of clean training. In contrast,
MN was more effective than MVN when MelFB features were
used in conjunction with multinoise and multicondition training.
This may be because LNFB features always produce unimodal
histograms (see Fig. 2), and hence, the use of MVN is more
helpful than with MelFB features.

C. Comparison With MelFB Features

Table IV compares results obtained using the LNFB +
�LNFB2 and MelFB+�MelFB features, broken out according
to training and testing conditions, all with MVN invoked per ut-
terance. The best feature set for a pair of train/test conditions is
indicated in bold when the difference is statistically significant at
the level of p = .001 or better, according to the NIST matched
pairs test for sentence segment word error (MAPSSWE) [26].

In interpreting Table IV, we focus on the subset of com-
parisons that are statistically significant. With clean and multi-
noise training, we believe that the LNFB+�LNFB2 features
provided superior performance for Aurora Groups C and D
because of differences in the microphones used between the
training and testing data. The only train/test combinations for
which MelFB+�MelFB features provided significantly better
performance than LNFB+�LNFB2 features were for the Group
B testing data with multinoise and multicondition training. For
the former case, training and testing conditions were completely
matched, so no benefit was expected from LNFB+�LNFB2
features. In the latter case, the training data had multiple mi-
crophones and additive noise while the testing data had additive
noise only. In this case, we suspect that any potential benefit
from channel mismatch would be vitiated by the dominance of
the matching noise. In general, the results of Table IV confirm
our previous observations that LNFB coefficients are especially
effective in compensating for the effects of channel mismatches,
as had been demonstrated previously for the related LNCC fea-
tures in speaker verification [10].

The global WER for LNFB-based features 7.4% relative
smaller than the average WER obtained from MelFB features.

VI. CONCLUSION

A filter-bank version of LNCCs, LNFB, is described and ap-
plied to the Aurora-4 robust DNN-HMM-based speech recogni-
tion task. It is shown that the “Delta” and “Delta–Delta” versions
of the LNFB features should be developed from the numerator
term only in the LNFB expression. In addition, it is shown that
MVN is more effective than MN for the LNFB features. The
relative global WER over all conditions for LNFB features was
7.4% smaller than the average WER obtained using MelFB fea-
tures. These results indicate that LNFB features provide better
recognition accuracy for DNN-HMM ASR systems compared
to Mel filterbank features, and that they are especially helpful in
providing robustness to channel mismatches between training
and testing data.
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