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A SIMPLE ALGORITHM FOR MERGING TWO DISJOINT
LINEARLY ORDERED SETS*

F. K. HWANG AND S. LIN]"

Abstract. In this paper we present a new algorithm for merging two linearly ordered sets which
requires substantially fewer comparisons than the commonly used tape merge or binary insertion
algorithms. Bounds on the difference between the number of comparisons required by this algorithm
and the information theory lower bounds are derived. Results from a computer implementation of
the new algorithm are given and compared with a similar implementation of the tape merge algorithm.
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1. Introduction. Suppose we are given two disjoint linearly ordered subsets
A and B of a linearly ordered set S, say

A-- {a < a2 <"" < am},
B {bl < b2 <"" < b,,}.

The problem is to determine the linear ordering of their union (i.e., to merge A
and B) by means of a sequence of pairwise comparisons between an element of
A and an element of B. Given any algorithm s to solve this problem, we are inter-
ested in the maximum number of comparisons, K(m,n), required under all
possible orderings of A U B. An algorithm s is said to be M-optimal if K(rn, n)

K(m,n), where K(m,n)= minx K,(m,n). In this paper, we give a simple
algorithm for solving this problem, called the generalized binary algorithm g,
and derive some bounds for K,(m, n)- K(m, n) which are substantially better
than two other known algorithms.

o has

S

2. Some preliminary discussions and results. Let the cardinality of A and B
be rn and n respectively. We assume rn =< n. Let 9o be the set of all possible order-
ings of A [.J B and k be the subset of 9o consistent with the results of the first
k comparisons we have made thus far. It is clear that, after making the ith compari-
son, 1, 2, ..., k, one of the two possible outcomes must have 1i1 _>_ 1/2[i-11
and that merging is achieved if and only if k contains exactly one element. Since

m + n
elements, or as we say, data points, we must have, for any algorithm

K(m, n) >= og2 m+m n)] =I(m’n)"

I(m, n) is usually called the information theory bound.
For m 1, the binary insertion algorithm is optimal and hence

(1) K(1,n) I(1,n)= [log2 (n + 1)].

Received by the editors August 30, 1971.

" Bell Laboratories, Murray Hill, New Jersey 07974.
As usual, we let Ix] denote the smallest integer >= x and Ix/the largest integer < x.
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32 F. K. HWANG AND S. LIN

In a recent paper [1], the authors constructed an M-optimal algorithm for
m 2 and thereby determined the values of K(2, n). It can also be shown that [2]

(2) K(m,n)=m+n- 1 for3 < m__< n=< m+ 3

and

(3) K(m,2m)=< 3m-2 form>__3.

The determination of K(m, n) for m >= 3 appears to be a very difficult problem.

3. Two existing algorithms. For the purpose ofcomparing with the generalized
binary algorithm to be presented in the next section, we mention two existing
algorithms.

I. The "tape merge" algorithm t. The "tape merge" algorithm is the com-
monly used procedure to merge two tapes or lists of sorted items. It can be described
by the following steps (details of storing and stop conditions are omitted):

TM1. Compare am with b,.
TM2. If am< b,,setn =n- l and go to TM1.
TM3. If a > b,, set rn m 1 and go to TM1.
It can be easily shown that

Kt(m,n) rn + n- 1

and hence the "tape merge" algorithm is M-optimal for n =< rn + 3 [2].
II. The "simple binary" algorithm s. The "simple binary" algorithm can be

described by the following steps"
SB1. Merge % into B by the binary search procedure.
SB2. Pull out % and elements of B > am. (These are already in order and

larger than the rest of the elements ofA U B.) Set m m 1 and redefine m and n.

(The new n _>_ new m.) Go back to SB1.
It is clear that under the worst possible outcome, % is always larger than

b, and hence no element of B is discarded. Therefore,

Ks(m, n) rn [log2 (n + 1)].

For m 1, we have

Ks(m, n) K(m, n).

However, we shall show in the next section that

Ks(m, n) > K(m, n) form> 2.

The distinctive feature of these two algorithms is their simplicity, although
in general, they are quite inefficient in the sense that both Kt(m, n) K(m, n) or
Ks(m, n)- K(m, n) can be very large. In the next section, we shall present an
algorithm which matches the two abovementioned algorithms in simplicity and
yet improves a great deal on their efficiency.

4. The generalized binary algorithm g. For the sake of simplicity, we shall
assume that whenever we are required to merge two disjoint linearly ordered
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A SIMPLE ALGORITHM 33

sets with cardinalities x and y respectively, n will always refer to max (x, y) and
m, to min (x, y), so that n > m.

The generalized binary algorithm may now be described as follows (again,
details of storage and stop criteria are omitted)"

GB1. Let [log2 (n/m)J and x n 2 + 1.
GB2. Compare am with bx. If am < bx, pull out the set of all elements in

B __> b, say C. We are then left with the problem of merging two disjoint sets A
and B C. Redefine m and n and go back to GB1. (Note that B C has n 2
elements and we need to interchange the role of m and n if and only if n m.)

GB3. If am > bx, merge a,, into the set C bx by the simple binary algorithm.
Note that C b has exactly 2 1 elements and am can be merged into the set
in exactly e more comparisons. Pull out % and the set D of all elements in B > am.
We are then left with the problem of merging the set A am with the set B D.
Redefine m and n and go back to GB 1.

For this algorithm g, Kg(m, n) is given by the following theorem.
THEOREM 1. Let [log2 (n/m)]. Write n 2m + 2p + O, where p and 0

are uniquely determined nonnegative integers satisfying 0 <= p < m, 0 < 0 < 2.
Then Kg(m,n) (2 + e)m + p 1.

Proof. If e 0, n m + p, and it is clear that the worst possible data forces
the algorithm g to be identical with the algorithm discussed in the previous
section.

Hence Kg(m, n) Kt(m, n) m + n 1 2m + p 1.
If m 1, p must be zero and n 2" + 0. It is clear that a > b is the worst

outcome and hence Kg(1, n) K(1, n) 1 + e.
We now prove Theorem 1 by induction on m + n. Assume the theorem true

for all m’, n’ such that m’ + n’ < m + n, and for all m, n with e 0, or m 1. We
prove the theorem true for m, n with e > 0 and m > 1. The theorem is trivially true
form+ n 2.

After making the first comparison of % with b, we have two possibilities"
(i) a < bx, and we are left with the problem of merging two sets with m

and n 2" elements.
(ii) a > bx. After merging a into the set C b in e more comparisons,

we are left, in the worst case, with the problem of merging two sets with m 1
and n elements. Hence

Kg(m, n) max [1 + Kg(m, n 2), 1 + + Kg(m 1, n)].

Now,

Hence by induction,

Kg(m

2"m+2(p- 1)+ 0

2-1m + 2-1(m- 1) + 0- 2

2-1m + 2-1(m 2) + 0

(2+ e)m+(p- 1)-

(1 +e)m+(m- 1)- 1

(1 +e)m+(m-2)-

ifp 4: 0,

ifp 0 and 0 >__ 2"-1,

ifp=0and0<2-1.

ifp - 0,

ifp 0 and 0 => 2-1

ifp=0and0<2-1
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34 V. K. HWANG AND S. LIN

Similarly,

n

2(m- 1)+2(p+ 1)+0

2x+(m- 1)+ 0

2 l+’(m- 1)+2+0

ifp<m-2,

ifp=m-2,

ifp=m- 1.

Hence by induction,

1 n)= (2+)(m- 1)+(p+ 1)- 1
Ke,(m [(3 +)(m- 1)- 1

ifp<m-2,

otherwise.

Therefore,

(2 + )m + p- 2
1 +Ke,(m,n-2)=

(2+)m+p- 1

ifp 0 and 0 < 2"-1

otherwise,

and

1 ++ Kv,(m- 1,n)= {(2(2++e)m)m++pp--21 ifp=m- 1,

otherwise.

Since the conditions p 0 and p m- 1 are mutually exclusive for m > 1,
we have

Kg(m, n) max [1 + Kg(m,n 2), 1 + + Kg(m 1,n)]

=(2 + )m+ p- 1,

and hence the theorem is proved.
Comparing the general binary algorithm g with the tape merge algorithm

and the simple binary algorithm s, we have

K,(m,n)- Kg(m,n)=(m+n- 1)- [(+ 2)m+p- 1]

=m+2"m+2p+0- 1-(+2)m-p+ 1

=(2-- 1)m+(2- 1)p+0.

Hence Kt(m, n) Kg(m, n) only if 0, or 1 and p 0 0. Otherwise,
Kt(m, n) Kg(m, n) n ( + 1)m p > 0. Similarly,

K(m,n)- K,(m,n)= m[log2 (n + 1)] [( + 2)m + p 13
__>m(+ [log2(m+p)] + 1)- [(+2)m+p- 1]

=m(/log2(m+p)- l]-p+ 1.

Hence Ks(m, n)= Kv,(m,n only if m 1, or m 2, p 1. Otherwise K(m, n)
-Kg(m,n) >= m([log2 (m + p)] 1)- p + 1 > 0.

It is often convenient to refer to a set of numbers n(m, k) as the largest n
such that Kl(m, n) <= k. Table 1 gives some of these numbers for the algorithms
t, s and g. Also we have for k (2 + e)m + p 1,
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A SIMPLE ALGORITHM 35

ng(m, k)= 2(m + p + 1)- 1,

nt(m, k) (1 + a)m + p,

ns(m, k) 2 + 2 1 provided 2 + 2 l>m.

(m, k) (2, 4) (2, 24)

ng(m,k) 3 4095

n,(m,k) 3 23

ns(m,k) 3 2047

TABLE

(4,14) (4,90)

15 223

11 87

7 222-

(10 10

256,511

9,001

1,023

5. Bounds on K(m,n)-I(m,n). Let n=2m+2p+ 0 with 0=<p <m,
0_<_0 <2,_>_0;andk=Kg(m,n)=(2+)m+p- 1.

THEOREM 2. Kg(m, n) I(m, n) <= m 1.

Proof. We have

I(m, n) og2
m

and

m+n (n + 1) (2m + 2p + 0 + l)
m! m!

[2m(1 + p/m)]" 2"m"(1 + p/m)" > 2m+ +p

m! m!

since

Hence

m! <= ram2x-m and (1 -at- p/m) >= 2p.

log2
m+

>(o+ 1)m+p- 1,

and

log2
rn

_>_(e+ 1)m + p.

Therefore,

Kg(m, n)- I(m, n) <= m 1.
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36 F. K. HWANG AND S. LIN

COROLLARY 1. For m > 1 and 0 2 1,

Kg(m, n)- I(m, n) <= m- 2.

Proof. For m > 1 and 0 2 1, we have

m + n (n-+- 1) [2m(1 -+-(p-k- 1)/m)]
> >

m m! m!

and the proof parallels the proof of Theorem 1.
For larger m, a much sharper bound for Kg(m, n)- I(m, n) can be derived

by means of Stirling’s formula. First we prove a lemma.
LEMMA 1. Let 0 (1 + m/n)mm and Xm be defined by

Then

since

Therefore,

(n -Ji- Xm)m-- (n + m)(n + m- 1)... (n + 1).

Xm max I1,0(n + m) n1e

Proof. It is clear that Xm >= 1. From Stirling’s formula, we have

(n + m)!
(n + x,,)m= (n + m)(n + m- 1)... (n + 1)= n!

x(n + m)n+m+ 1/2 e-(n+m)+O1/(12(n+m))
0<

F/n+ 1/2 e-n+Oz/(12n)

> 1 + (n + m) e- /(n

01 <1

> m(n q- m) e

+ n
1 + > 2 x/(2n) 41/(4n) > e a/(a2n)

X >-(n + m)- n m
e

Some typical values of xm/m are given below in Table 2.

TABLE 2

n/m

>0.4715

2.25

>0.4831

2.594

>0.4907

100

2.705

>0.5065

1000

2.717

>0.5279
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A SIMPLE ALGORITHM 37

THEOREM 3. Let e (0 + Xm)/2 and min (p + e, m). Then

I(m,n) log2
m

=> (1 + e)m + [-t + qm],

where

qm (log2 e 1)m
log2 e

12m
1/2 lOg2 (2rcm)

0.12
0.442695m 1/2 log2 (2m).m

n+ m) (n +
m!
Xm)m

(n + x,.)

2%mm e-m+ 1/(12m)

(2m + 2p + 0 + Xm)" e 1/(12,,)

Nm
(2m)m(1 + (P + g,)/m) em-1/(12m)

m
> 2m+ + (log2e)(m 1/(12m)) log2q/-n:m.

Therefore

[ (m+I(m,n) log2
rn n]>(l= +a)m+ [t+qm],

which is to be proved.
Since K(m, n) >= l(m, n), we have the following corollary.
COROLLARY 2.

Kg(m, n)- K(m, n) <= Kg(m, n)- I(m, n) <= rn + p 1 It + qm]"

Table 3 gives some values for

qm (log2 e 1)m
log2 e

12m
1/2 log2 (2rcm).

TABLE 3

qm 2.08 1.0005 --0.832 --0.585 --0.299

16

0.179 3.65

1024

446.9
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38 F. K. HWANG AND S. LIN

Note that > p and qm > 1 for m => 3 so that Corollary 2 implies Theorem 2
for m => 3. For m => 6, qm > 0 and hence Corollary 2 also implies the conclusion
of Corollary 1 regardless of the value of 0. For large m, say m > 100, we have
Kg(m, n) l(m, n) < 0.6m 1, and the "best" bound occurs when e 0, p 0.52m,
x,, 0.48m, qm ’ 0.44m and this gives Kg(m, n) I(m, n) 0.08m.

6. Computational results. In this section, we discuss the storage requirements
when the generalized binary algorithm g is implemented by a computer program
and compare its running time with a similar program implementing the commonly
used tape merge algorithm t. We assume that the sorted lists Am and B, to be
merged are stored on tapes (or other external devices) if they are too large to be
accommodated in core. These can then be read in sequentially in sorted order
as needed and the elements of the merged list C,,+, written in similar sorted order
onto output devices as-soon as they are sequentially determined. As can be seen
from the description of the algorithm g, for efficient comparison we need the
elements a, and those in B from bx to bn in core. This requires a storage space
of 2 elements ( llog2 (n/m)J) which is approximately equal to n/m. In general,
this will not be excessive. For example, if n 107 and m 10’, an average of
103 elements of B are required to be in core and this ratio will be approximatelY
maintained if the data in B, and A,, are uniformly distributed in some interval.
If n/m becomes too large, a slight modification of the algorithm can be made,
say, to compare a,, with bx, where x n 2a + 1 for some smaller fl, without
substantially affecting its efficiency.

Assuming the data in Am and B, are uniformly distributed in some interval,
the expected number of comparisons Et(m, n) required by the tape merge algorithm
can be seen to satisfy the following recurrence relation:

m g/
(R) Et(m n) 1 + Et(m 1, n) + Et(m, n 1); E,(1,1) 1.

m+n m+n

Solving (R), we have

m

1
E(m, n) mn ++1 n+l

=m+n- +
+1 m+l

which is only slightly less than K,(m, n) m + n 1.
When n/m is large, as in the case of updating telephone directories or library

materials, we see that E,(m, n) , m + n n/m can be considerably larger than
Kg(m,n) (3 + [log2 (n/m)J)m, the maximal number of comparisons required
using the algorithm g. Even when the logic involved in making one comparison
using the proposed algorithm g is more involved than making one comparison
using the tape merge algorithm t, substantial savings in computer time can be
achieved. A computer program (FORTRAN, GE-635), implementing both the tape
merge algorithm and the generalized binary algorithm g (hopefully with equal
degrees of efficiency), was written to test our assertions on some problems with
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A SIMPLE ALGORITHM 39

randomly generated data. The results are presented in Table 4. As can be seen,
the saving in time is great when n/m is large.

TABLE 4

150
100
100
20

n/m C, C T T

1500 10 1649
2000 20 2099
10000 100 10069
3000 150 2873

784 75.6 40.2
620 94.8 32.6
765 462.0 58.0
180 131.5 13.5

Ct number of comparisons made by the tape merge algorithm t;
Cg number of comparisons made by the generalized binary algorithm g;
T, time (in milliseconds) spent in making the comparisons using t;

T time (in milliseconds) spent in making the comparisons using g.

1/2
1/3
1/8

1/10
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