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Abstract: An algorithm is adaptive if ‘easy’ problem instances are solved
faster than ‘hard’ instances. Here we give a tutorial overview of the field of
adaptive sorting, considering in turn each of the three main paradigms for
the design of sorting algorithms. We show that each of these paradigms
leads to a corresponding family of adaptive algorithms.
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1 Introduction

The problem of sorting is one of the most fundamental in computing, and has
been intensively studied for many years. Moreover, it is also a very practical
problem, and even trivial interactions with a computer system often involve
sorting. For example, obtaining a directory listing or querying the current
users of a system will probably involve sorted output.

Here we concentrate on adaptive sorting algorithms. An algorithm is said
to be adaptive if ‘easy’ problem instances are solved faster than ‘hard’. For
example, the ‘easiest’ possible instance of the sorting problem is probably to
‘sort’ an already sorted list:

X1 = (10, 11, 16, 18, 21, 27, 45, 64, 65, 67, 84, 85, 86).

As ‘human computers’ we have no difficulty in recognising the special nature
of list X1, and can quickly output—write down—the sorted equivalent. Not so
‘easy’ to process is list X2:

X2 = (67, 10, 65, 16, 64, 21, 85, 18, 84, 27, 45, 86, 11),

and somewhere in between, ‘nearly sorted’, is list X3:

X3 = (10, 11, 18, 21, 27, 45, 16, 64, 85, 65, 67, 84, 86).

An adaptive algorithm attempts to capture and act upon in some analytic
manner this intuitive notion of ‘nearly sorted’. To be of interest, an adaptive
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sorting algorithm should, as a minimum specification, consume1 O(n) time on
a sorted list, and never more than O(n log n) time on any list, where it is sup-
posed that the list contains n items and the only operation permitted of the
algorithm is pairwise comparison of items. We would also hope that the transi-
tion between these two extremes of permitted behaviour should be ‘smooth’ in
some sense. The Ω(n) requirement comes from the straightforward observation
that no algorithm can claim to sort its input without every item being involved
in at least one comparison; and the Ω(n log n) worst case requirement is devel-
oped from an argument based upon the minimum depth of a binary decision
tree with n! leaves, where each leaf of the decision tree represents one possible
input permutation [14, p.183].

The interest in adaptive sorting is motivated by two concerns: first, a purely
academic curiosity, to see (asymptotically) just how fast certain categories of
list can be sorted; and second, by an empirical observation that many lists to
be sorted in practice are already nearly sorted, and applications requiring such
sorting can be made to execute faster. For example, if a large sorted file of
records is to be edited (old records altered or deleted, new records appended)
and then re-sorted, it is likely that the number of records in the file that must
be moved to regain sorted order is small, and the use of a Θ(n log n) sort
might be unnecessarily expensive. An understanding of adaptive sorting and the
requirements of a particular application might lead to significant performance
improvements.

2 Measures of Presortedness

To formalise the notion of ‘nearly sorted’ several different measures of presort-

edness [19] have been proposed. Perhaps the most intuitive of these is the
number of ascending sequences or Runs in the input. For example, if Runs(X)
is the number of ascending runs in list X, Runs(X1) = 1; Runs(X2) = 7; and
Runs(X3) = 3. The maximum number of runs appears in a reverse sorted list:

X4 = (n, n − 1, n − 2, . . . , 2, 1).

An algorithm that is adaptive with respect to Runs has a running time that is
a function both of the number of items n in the list and the number of runs in
the list. As we shall see below, the best bound that can be achieved in terms
of adaptivity with respect to Runs is2 Θ(n log Runs(X)); an algorithm which
attains this bound is said to be optimally adaptive (with respect to Runs).

Another obvious measure of presortedness is the number of inversions—
pairs of items that are out of order. If xi is the i’th item of the list X, then the
number of inversions Inv(X) in X is defined as

Inv(X) = |{(i, j) : i < j and xi > xj}|.
1A function f(n) is said to be O(g(n)) if f(n) ≤ c · g(n) for some positive constant c and

all sufficiently large values of n; is said to be Ω(g(n)) if g(n) is O(f(n)); is said to be Θ(g(n))
if f(n) is O(g(n)) and g(n) is O(f(n)); and is said to be o(g(n)) if f(n) is O(g(n)) and f(n)
is not Θ(g(n)).

2It is convenient to assume, within the big-O notation, that log x = log
2
max{2, x}.
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Using the same example lists, Inv(X1) = 0 and Inv(X3) = 7. It is straightfor-
ward to demonstrate that Inv and Runs are ‘independent’ (in some sense) by
considering the two lists X5 and X6:

X5 = (n/2 + 1, n/2 + 2, n/2 + 3, . . . , n, 1, 2, . . . , n/2)

X6 = (2, 1, 4, 3, 6, 5, . . . , n, n − 1).

List X5 has a small number of runs, and so, according to Runs , is nearly sorted.
However at Θ(n2), X5 has an almost maximal number of inversions, and so is
completely unsorted according to Inv . Conversely, Inv(X6) is O(n) and so
X6 is judged to be nearly sorted, while Runs(X6) = n/2 + 1: that is, almost
completely unsorted.

The third of the ‘obvious’ measures of presortedness is Rem: the minimum
number of items that must be removed from the list such that the remaining
items form a sorted subsequence. Using the same examples, Rem(X1) = 0, and
Rem(X3) = 2 (remove 16 and 85). It is straightforward to verify that Rem and
Inv are independent: list X6 is unsorted according to Rem (but nearly sorted
according to Inv); and list X7

X7 = (
√

n + 1,
√

n + 2, . . . , n, 1, 2, . . . ,
√

n)

has Rem(X7) =
√

n (which is low) and Inv(X7) = Θ(n1.5) (that is, high).
More difficult to analyse is the relationship between Rem and Runs . List X7

has only two runs, but is two runs ‘better’ than a Rem value of
√

n? More
generally, a list of k runs must have k − 1 pairs of items xi, xi+1 such that xi >
xi+1. In each of these pairs at least one of the items must contribute to Rem ,
since they cannot both remain in the sorted subsequence. Hence Runs(X) ≤
Rem(X) + 1 for all X, and we might be tempted to conclude that Runs is, in
some sense, a ‘more accurate’ measure than Rem .

However it is important to note that simple relationships such as Runs(X) ≤
Rem(X) + 1, and indeed, Runs(X) ≤ Inv(X) + 1 do not necessarily imply
that Runs is a better measure than Rem or Inv (or vice versa). In the latter
case it is perhaps obvious that we are comparing apples and oranges, since
1 ≤ Runs(X) ≤ n and 0 ≤ Inv(X) ≤ n(n − 1)/2; that is, the measures have
different ranges. Similarly, even though Runs and Rem have almost identical
ranges, it is erroneous to compare their values. It is not the numeric value that
tells how close to sorted a measure judges a list, but the number of lists that
are regarded by the measure to be at least as sorted as this particular list.

This notion was formalised by Mannila [19]. Let M be some measure of
presortedness. Using a slightly different notation he defined

belowM (n, k) = {π ∈ Sn : M(π) ≤ k},

where Sn is the set of all permutations of {1, 2, . . . , n}. That is, the set
belowM (n,M(X)) contains all n-permutations that are regarded by M as being
at least as sorted as X.

Next, we introduce a notation for the number of comparisons needed to sort
the permutations in a below -set [28]. Let M be a measure of presortedness, and
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Tn the set of comparison trees for the set Sn. Then, for any k ≥ 0 and n ≥ 1,

CM (n, k) = min
T∈Tn

max
π∈belowM (n,k)

{the number of comparisons spent by T to sort π}.

That is, CM (n, k) tells us the best bound that we can hope for when presented
with a list X with M(X) = k. Consequently, we say that a comparison-based
sorting algorithm S that uses TS(X) steps on input X is M -optimal , or optimal

with respect to M , if TS(X) = O(CM (|X|,M(X))).
Proving that a sorting algorithm is optimal with respect to a measure M is

done in two parts. One part is an upper bound on the time consumed by the
algorithm, expressed in terms of the measure. The other part is a lower bound
on CM (n, k), which is obtained by using the fact that [28]

CM (n, k) = Θ(n + log |belowM (n, k)|).

Hence, it suffices to bound the cardinality of the below -set from below.
Let us give an example based upon the measures Runs and Rem . To give

a lower bound on the size of belowRuns(n, k) we must estimate the number of
permutations in Sn that have k or fewer runs.

Consider any partitioning of {1, . . . , n} into k subsets X1, . . . ,Xk each of
size n/k, where, for simplicity, we assume that k evenly divides n. Let π be
the permutation corresponding to the concatenation of the sorted sets, taken
in order. Then Runs(π) ≤ k, and so π ∈ belowRuns(n, k). It is easily seen that
each partitioning gives rise to one and only one permutation π. Counting the
number of different ways of performing the initial partitioning gives

|belowRuns(n, k)| ≥ n!/

(

n

k
!

)k

, (1)

which after taking the logarithm yields

CRuns(n, k) = Ω(n log k).

Mannila [19] also gave this result, but with a more complex combinatorial con-
struction.

Hence, an algorithm taking O(n log k) time to sort a list of n items and
k runs is optimal with respect to Runs. As we shall see in Section 4, such
algorithms do exist.

Let us now establish a similar bound for Rem . Let π be any permutation
obtained by permuting the first k + 1 items of the identity permutation in Sn.
By construction, removing any k of the first k + 1 items in π leaves a sorted
list, and hence, Rem(π) ≤ k. As there are (k + 1)! different π’s that can be
constructed this way, we have

CRem(n, k) = Ω(n + log((k + 1)!)) = Ω(n + k log k).

Cook and Kim [5] described an adaptive sorting algorithm that runs in time
O(n + Rem(X) log Rem(X)), and so it is Rem-optimal.
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We now return to the question of which is better, Rem or Runs. Consider
the list X8, a slight variant of X7:

X8 = (
√

n + 1,
√

n + 2, . . . , n,
√

n,
√

n − 1, . . . , 2, 1).

We have Rem(X8) =
√

n and Runs(X8) =
√

n+1. But according to the results
above, a Runs-optimal algorithm may spend Θ(n log Runs(X8)) = Θ(n log n)
time, while a Rem-optimal algorithm must complete the sorting of X8 in O(n+
Rem(X8) log Rem(X8)) = O(n) time. List X5 suffices to complete the demon-
stration that Runs and Rem are independent.

The considerations outlined in the preceding paragraphs led us to make
these further definitions [28]. Suppose that M1 and M2 are two measures of
presortedness. Then

• M1 is superior to M2, denoted M1 ⊇ M2, if

CM1
(|X|,M1(X)) = O(CM2

(|X|,M2(X)));

• M1 is strictly superior to M2, denoted M1 ⊃ M2, if M1 ⊇ M2 and M2 6⊇
M1;

• M1 and M2 are equivalent, denoted M1 ≡ M2, if M1 ⊇ M2 and M2 ⊇ M1;

• M1 and M2 are independent if M1 6⊇ M2 and M2 6⊇ M1.

There are two important consequences of these definitions. Firstly, if al-
gorithm S is M1-optimal, and M1 ⊇ M2, then S is M2-optimal. Secondly, if
algorithm S is not M2-optimal and M1 ⊇ M2 then S cannot be M1-optimal.

We now briefly describe a number of other measures that have been dis-
cussed in the literature (see, for example, [14, 19, 26]).

The measure Exc(X) counts the minimum number of exchanges of arbitrary
items necessary to sort the input list; the measure Block (X) counts the number
of contiguous blocks of items in X that remain together in the sorted output
(i.e., one more than the minimum number of ‘cuts’ that must be made if we were
sorting the list using scissors and paper); and Max (X) is the maximum distance
any item in X is from its correct sorted position. For example, Exc(X3) = 7;
Block(X3) = 7; and Max (X3) = 4. The relationships between these measures
and the measures already described will be discussed in Section 7.

Given these definitions, and the notions of optimal adaptivity and superiority

there are several problems to be addressed:

• We should attempt to order (using ⊇) existing measures, so that algorithm
designers can know which measures or combinations of measures pose
‘challenges’;

• We should attempt to categorise current adaptive algorithms in terms of
this ordering of measures;

• We should attempt to develop new measures that are strictly superior to
current measures or combinations of current measures, to better capture
the behaviour of particular algorithms. (We would also, however, like any
new measures to still be ‘natural’.)
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In the sections that follow we give examples of each of these lines of investiga-
tion. We start by giving an overview of the main paradigms for the construction
of sorting algorithms, and then show how each paradigm can also be applied to
the development of adaptive sorting algorithms.

3 Sorting Paradigms

General purpose comparison based sorting algorithms fall into three broad cat-
egories.

Merge-based sorts subdivide the input list into a set of two or more sorted
sublists, and by repeated merging of these lists reduce the set to one sorted
list. A recursive formulation is often particularly convenient for describing the
sequence of merges that take place. The standard example of this paradigm is
Straight Mergesort, which sorts a list by recursively splitting the input list into
two sublists of equal size, and then merges the two sorted halves using a straight-
forward linear time merge. Straight Mergesort requires at most n log2 n−n+1
comparisons and Θ(n log n) time.

Selection sorts repeatedly select an item from its input and place it into its
correct location. Most selection sorts store the input list in a priority queue,

and select the maximum item remaining. The simplest such algorithm is Linear

Selection Sort, which uses the input array as priority queue, and takes Θ(n2)
time. Slightly more complex, but much more efficient, is Heapsort , which stores
the items in a heap. As a heap can be built in linear time and supports ex-
traction of the maximum item in logarithmic time, Heapsort runs in Θ(n log n)
time. An algorithm that does not select the maximum item, but any item, is
Quicksort, which partitions the input about one of the items and then recur-
sively sorts the two partitions. Quicksort consumes Θ(n2) time in the worst
case, but is Θ(n log n) on average, and is widely held to be the best general
purpose sorting method, because of its small implicit constant factor and the
fact that it requires only O(log n) extra space.

The third of the three standard paradigms is sorting by insertion. These
algorithms maintain the first i−1 items in some kind of sorted list, and repeat-
edly insert the i’th item, with i growing from 1 to n. The sorted list is initially
empty, corresponding to i = 1; when i reaches n all of the items have been in-
serted into the sorted list and the algorithm is done. A well known example of
this paradigm is Linear Insertion Sort, where the sorted component of the list
is simply maintained in the first i−1 positions in the array being sorted. Linear
Insertion Sort is normally regarded as being ‘an O(n2) sorting algorithm’. More
accurate is to say that Linear Insertion Sort requires Θ(n + Inv(X)) time, and
so on a sorted list will take linear time. However, in the worst case—a reverse
sorted list—Linear Insertion Sort spends Θ(n2) time.

Descriptions of these algorithms and further examples of the three para-
digms can be found in Knuth [14].
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4 Adaptive Merge Sorting

The essence of the merging paradigm is loosely captured in the following pseudo-
code:

procedure Adaptive Merge Sort (X: list)
Divide X into ascending lists X1,X2, . . . ,Xk

Let Q be a queue containing the k lists
while Q contains more than 1 list do

Remove the first two lists from Q, and merge them
Append the resultant list at the tail of Q

endwhile

return the single list in Q
end

The adaptivity of a merge sort depends on how the division and the merging
is performed. One of the oldest adaptive sorting algorithms, Knuth’s Natural

Mergesort [14], differs from Straight Mergesort only in how the division is car-
ried out. Rather than merging a set of lists each initially of length 1, as is done
by Straight Mergesort, it first scans the input list locating the ascending runs.
This pre-scan requires linear time, and will identify the starting point of each of
the k = Runs(X) ascending sublists in the input. Then the first run is merged
with the second, the third with the fourth, and so on, resulting in dk/2e longer
runs. These longer runs are then repeatedly merged pairwise until there is just
one run left, which is the sorted list. Since the number of runs is approximately
halved in each pass, each item takes part in dlog2 ke merges. Moreover, each
item causes no more than constant cost per merge, and hence, Natural Merge-
sort runs in O(n log k) time, which is optimal with respect to Runs . Harris [11]
describes a number of experiments in which Natural Mergesort is compared
empirically with other sorting algorithms.

Carlsson, Levcopoulos, and Petersson [3] demonstrated that the adaptivity
of Natural Mergesort can be extended significantly by applying an adaptive
merging algorithm. This merging algorithm runs in sublinear time if the lists
taking part in any particular merge are disjoint, or ‘easily’ merged in some
other way. Their algorithm achieves optimality with respect to Runs , Block ,
and Max , but is not Inv -optimal.

Moffat [22] described an adaptive mergesort—Margesort—that attains Runs-
optimality without pre-scanning the input identifying runs, instead making use
of an adaptive merging algorithm similar to that of Carlsson, Levcopoulos, and
Petersson. Moffat, Petersson, and Wormald [24] further analysed the behaviour
of Margesort, and showed it to be optimal with respect to Inv and Rem , and
also gave a counter-example that showed it to be not optimal with respect to
Block .

The merging paradigm also leads to adaptive algorithms for other measures.
Levcopoulos and Petersson [16] and Skiena [31] have developed algorithms that
identify ascending subsequences where the items in each subsequence are not
necessarily adjacent in the input. The behaviour of these algorithms is captured
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by a number of new measures. One such measure is SUS (X), defined as the
minimum number of shuffled upsequences into which X can be decomposed.
For example the lists X5 and X6 of Section 2 can both be formed by the shuffle
of two upsequences. In the case of X5 there is no shuffling required; and in
the case of X6 the shuffle is ‘perfect’, with items in X6 being drawn alternately
from each of the two shuffles. Since a list with k ascending runs is, de facto,
a member of belowSUS (n, k), we have CSUS (n, k) = Ω(n log k) by eq. (1). Here
we briefly describe an SUS -optimal algorithm that attains this bound.

The algorithm operates in two phases as follows. In the first phase each
item in the input list is considered and appended to the j’th of a set of sorted
lists Xk, chosen to be the smallest j such that xi is greater than or equal to
the item most recently appended to Xj . If xi is less than all of the tail items,
a new list is started, and xi becomes the first item in that list. Item x1 will
always be the first item into X1.

Then, in the second phase, the lists are merged, exactly as for Natural
Mergesort.

Suppose that at the end of the first phase there are k lists. Each of the
n items was appended to one of the lists; this takes O(1) time per item. To
identify the list takes longer. However the set of tail items in the lists always
form a decreasing sequence, and if pointers to the tails are kept in an array, the
correct list for xi can be identified with a binary search in O(log k) time. Over
all items, this totals O(n log k) time.

The merging of the second phase will also require O(n log k) time. To
demonstrate that this algorithm is SUS -optimal all that remains is to show
that k = SUS (X). Consider the last item in list Xk. At the time it was ap-
pended to Xk the last item in list Xk−1 was larger, and appeared earlier in
the input list X. Similarly, there must be an item in Xk−2 both larger than
this item (in Xk−1) and earlier in X. Continuing in this fashion, there must
be an item in X1 larger than all of these items, and appearing before any of
them. These k items, one in each list Xk, form a decreasing subsequence in
the original list X, and so must of necessity appear in different shuffles. Hence
SUS (X) ≥ k. Since the lists Xi are a decomposition of X into upsequences, we
must have SUS (X) = k.

This algorithm is thus optimal with respect to SUS . Furthermore, since
SUS (X) ≤ Runs(X) for any list X, we have

CSUS (|X|,SUS (X)) = Θ(|X| log SUS (X))

= O(|X| log Runs(X))

= O(CRuns (|X|,Runs(X))).

That is, we have shown that SUS ⊇ Runs . It is not difficult to show that
SUS ⊃ Runs. Consider the list X6 described earlier. This list must be sorted
in linear time by an SUS -optimal algorithm, but since Runs(X6) = n/2 + 1, a
Runs-optimal algorithm is permitted to spend Θ(n log n) time.

Skiena’s Melsort [31] is also optimal with respect to these two measures,
as well as the superior measure Enc, where Enc is the number of ‘encroaching
lists’, defined operationally to be the number of sorted lists in the decomposition
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produced by the first pass of Melsort. Levcopoulos and Petersson’s Slabsort [16],
a hybrid of Melsort and Quicksort, is optimal with respect to all three, as well
as the superior measure SMS , the number of shuffled monotone (i.e., either
ascending or descending) sequences. Margesort has also recently been shown
to be optimally adaptive with respect to SMS [25]. The merging paradigm can
thus be seen to lead to a whole family of efficient adaptive algorithms.

Other merge-based adaptive sorting algorithms have been described by Chen
and Carlsson [4], Estivill-Castro and Wood [8, 9], and Levcopoulos and Peters-
son [17, 18].

5 Adaptive Selection Sorting

For selection sorts that repeatedly select the maximum item there are essen-
tially two different ways to take advantage of existing order within the input.
The first possibility is devising an adaptive data structure for implementing
the priority queue. That is, a data structure that does not always attain its
worst-case bound, but for which the time complexities of the operations depend
on some ordering in the original list. The first algorithm in which this idea was
adopted is Dijkstra’s Smoothsort [6]. Smoothsort implements a priority queue
by an ordered forest of complete heaps, which is computed in linear time, where
the roots are in ascending order and the sizes decrease exponentially. Dijkstra
claimed that Smoothsort is adaptive without mentioning with respect to what.
The adaptivity of Smoothsort was later investigated by Hertel [12], who proved
that it was not optimal with respect to the number of inversions. In fact, to date
it is not known whether Smoothsort is optimal with respect to any known mea-
sure of presortedness. Recently, however, Chen and Carlsson [4] demonstrated
that Inv -optimality can be obtained by spending linear time rearranging the
input before building the forest of heaps.

The second way of achieving adaptivity is motivated by the observation
that instead of storing all items in the priority queue, only the ones that can
possibly be the maximum of the remaining items, the max-candidates, need to
be stored. To support this scheme we employ some data structure that provides
max-candidates and interacts with the priority queue. The following describes
a generic adaptive selection sort algorithm based on this approach:

procedure Adaptive Selection Sort (X: list )
Construct a data structure S(X) to support the priority queue
Insert max-candidates from S(X) into priority queue P
for i := 1 to n do

Extract the maximum item from P
if new max-candidates are needed then

Retrieve max-candidates from S(X)
Insert max-candidates into P

endif

endfor

return the list of items extracted from P
end
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Suppose the priority queue is implemented by a data structure that supports
the operations in logarithmic time, e.g., a heap. If the input is close to being
sorted, the supporting data structure will economise on the number of supplied
items. Hence, the priority queue will contain few items during most operations,
and the algorithm will complete in o(n log n) time. On the other hand, in the
worst case the priority queue will consist of a linear number of items during
most operations, in which case the algorithm runs in Θ(n log n) time.

In the following we outline two adaptive selection sorts that are instances
of the above generic algorithm.

Multiway Mergesort [14] is a sorting algorithm that adapts to the mea-
sure Runs . Presented with a list X, it starts by finding the ascending runs in X
in linear time. These runs constitute the data structure S(X). It then builds
a heap consisting of the maximum item from each run. After the extraction
the max-candidate is the next item from the run to which the extracted item
belonged. It is easy to see that the heap will never contain more than one item
from each run, and thus, Multiway Mergesort runs in O(n log Runs(X)) time,
which, as we have seen above, is Runs-optimal. Petersson [27] showed that,
if one is careful when implementing the heap operations, Multiway Mergesort
becomes optimal with respect to Block as well.

Inspired by the sweep-line technique in Computational Geometry [21], Lev-
copoulos and Petersson [15] devised a more sophisticated adaptive selection
sort, called Adaptive Heapsort. This algorithm uses a Cartesian tree [32] to
support the heap. The (max-)Cartesian tree for a list X of length n is the bi-
nary tree with root xi = max{x1, . . . , xn}. Its left subtree is the Cartesian tree
for (x1, . . . , xi−1) and its right subtree is the Cartesian tree for (xi+1, . . . , xn).

After building the Cartesian tree in linear time, Adaptive Heapsort inserts
its root into a heap. Then, each extraction of the maximum item is followed by
the insertion into the heap of the children of the extracted item in the Cartesian
tree; that is, these are the max-candidates. Levcopoulos and Petersson [15]
proved that Adaptive Heapsort runs in O(n log(Osc(X)/n)) time, where

Osc(X) =
n
∑

i=1

|{j : 1 ≤ j < n and min{xj , xj+1} < xi < max{xj , xj+1}}|.

Moreover, they showed that COsc(n, k) = Ω(n log(n/k)), and so the algorithm
is Osc-optimal, and thus optimal with respect to several other measures as well
(see Section 7).

Another adaptive selection sort that is optimal with respect to the measure
Max is described by Igarashi and Wood [13].

Finally, let us briefly mention the status of adaptive selection sorts that do
not select the maximum remaining item. Adaptive variants on Quicksort have
been proposed [7, 30, 33], but the analysis of these has tended to be empirical
rather than analytic, and no optimality results have been shown. Recently,
Estivill-Castro and Wood [9] investigated the adaptivity of a Quicksort that
uses the median as pivot, and that invokes a sorting check prior to each recursive
call. They proved that it runs in O(n log Exc(X)) time; however, this is not
Exc-optimal since CExc(n, k) = Θ(n + k log k) [3].
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6 Adaptive Insertion Sorting

The insertion paradigm is described as follows:

procedure Adaptive Insertion Sort (X: list )
Construct an empty dictionary D
for i := 1 to n do

Insert xi into D
endfor

return the (sorted) set of items in D
end

It has also provided many adaptive sorting algorithms. Linear Insertion
Sort is adaptive with respect to Inv (but not optimally adaptive), and this
behaviour has meant that it is often used in tandem with Quicksort for practical
in-memory sorting [1, 29].

Guibas et al. [10] and Mehlhorn [20] described Inv -optimal insertion sorts.
Both algorithms are based upon finger search trees—dynamic data structures
that allow searching and insertion in a set of n items in O(log n) time; but
also allow any item to be ‘fingered’ for fast access. Searching from a finger
in the tree requires O(log d) time, where d is the number of keys between the
finger and the accessed item. Finger search trees also provide insertion adjacent
to a fingered node in O(1) amortised time [20]. One possible implementation
of finger search trees using level-linked 2-3 trees was described by Brown and
Tarjan [2]

Given the operations possible on a finger search tree, a number of adaptive
sorting algorithms follow. Mehlhorn’s A-Sort fingers the largest item in the tree,
and then, using this finger, searches for the insertion point of the next item to
be inserted. The cost of the i’th search will be O(log hi), where hi is the number
of items preceding xi that are larger than xi. Since Inv(X) =

∑n
i=1 hi, the total

cost is proportional [20] to

n
∑

i=2

log hi = log
n
∏

i=2

hi = n log

(

n
∏

i=2

hi

)1/n

≤ n log

∑h
i=2 hi

n
= O(n log

Inv(X)

n
)

with the inequality following because the geometric mean is never greater than
the arithmetic mean. To show that A-Sort is Inv -optimal we must give a lower
bound on the size of below Inv (n, k). Let h = k/n, and partition the numbers
1, 2, . . . , n into subsequences of length h. Let Xi be any permutation of the i’th
of these subsequences. For example, X1 is a permutation of 1, 2, . . . , h; and X2

is a permutation of h + 1, h + 2, . . . , 2h. Finally, take X = X1X2 · · ·Xn/h. By
construction, each item in X has fewer than h larger items preceding it, and
so Inv(X) ≤ nh = k. Moreover, there were h! possible permutations in each of
n/h subsequences, and so

log |below Inv (n, k)| ≥ log(h!)n/h = Ω(n log
k

n
).
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Mannila [19] improved this algorithm by making the simple observation that
nothing is lost if the finger is moved to the most recently inserted item rather
than left on the largest item. This gives rise to Local Insertion Sort , which has
running time proportional to

∑n
i=2 log di, where di is the number of (previous)

items between successive insertions:

di = |{xj : j < i and min{xi−1, xi} < xj < max{xi−1, xi}}| + 1.

Mannila not only showed that
∑

di ≤ 2Inv(X), and thus that Local Insertion
Sort is Inv -optimal; but also that it is both Runs and Rem optimal. Peters-
son [26] has shown Local Insertion Sort to be Block -optimal.

Local Insertion Sort is fast when the list being sorted exhibits spatial lo-

cality—when most of the insertions are not too far (in space) from the most
recently inserted item. In [23] we introduced the orthogonal concept of temporal

locality, in which a list is judged to be nearly sorted if most of the insertions
are adjacent to an item that was itself inserted ‘not too long ago’ in time. For
example, the list X9:

X9 = (1, n/2 + 1, 2, n/2 + 2, 3, . . . , n/2 − 1, n − 1, n/2, n)

has no spatial locality, but does exhibit temporal locality, since each item after
the second is inserted adjacent to an item that was itself inserted just two
operations previously.

This definition leads naturally to the notion of historical searching , where
we require fast access to items that have recently been accessed. For example,
a move-to-front list provides reaccess to recently accessed items in O(t) time,
where t is the number of distinct items that have been accessed since the most
recent access to this item. In [23] we introduced a data structure we call a
Historical Search Tree that provides O(log t) reaccess to recently accessed items,
and allows insertion of new items in O(log t) comparisons, where t in this case
is the number of items that have been accessed since the most recent access
to either of the neighbours of the new item. By repeated insertion into a
Historical Search Tree we arrived at a Historical Insertion Sort that is sensitive
to temporal locality. We also introduced two measures Loc and Hist to capture
the notions of spatial and temporal presortedness, and to precisely model the
running times of Local Insertion Sort and Historical Insertion Sort respectively.

It is also possible to combine these two assessments, and to accept as nearly
sorted any list in which most of the insertions are not too far away (in space)
from an item that was itself inserted not too long ago (in time). This is a very
natural definition. For example, if we lose our car keys, we search not only in
the immediate vicinity of where we first notice that we no longer have them,
but also in the vicinity of where we have been recently, both tracing our steps
further and further backward in time and also searching in a wider and wider
radius from each intervening point.

Our Regional Insertion Sort [23] does exactly that. Perhaps in part because
this is a particularly ‘intuitive’ searching strategy the associated measure of
presortedness—Reg—can be shown to be superior to all previous measures [28],
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and so a Reg-optimal algorithm will be optimal with respect to all of the mea-
sures of presortedness described here.

Both Historical Insertion Sort and Regional Insertion Sort require efficient
historical searching. The Historical Search Tree [23] supports fast reaccess to
items recently inserted, but to date we have been unable to implement all of
the desired operations in the necessary time bounds, although we can meet
the requirements in terms of comparisons. The development of such a data
structure remains an important open problem, and to date Hist-optimal and
Reg -optimal (in terms of running time) algorithms have not been completely
described.

7 A Partial Order on Measures of Presortedness

The relation ⊇ allows the construction of a partial order on the set of measures
of presortedness. The relationships in the partial order are best illustrated
with the Hasse diagram of Figure 1, where an upward edge from M2 to M1

indicates that M1 ⊃ M2. For example, there is an upward edge to show that
SUS ⊃ Runs. Details of the relationships between measures, and, where there is
no relationship and the measures are independent, of the lists that are counter-
examples, may be found in [26, 28].

Since ⊃ is transitive, each edge in the diagram is a containment relation on
optimality, with all optimal algorithms for the higher measure automatically
inheriting optimality for any connected lower measures. For example, the edge
from Rem to Block reflects the fact that every Block -optimal algorithm must
be Rem-optimal. Conversely, the presence of upward paths from Block to Loc,
Hist , and Reg means that an algorithm that is not Block -optimal cannot be
optimal with respect to any of the higher measures.

Each adaptive sorting algorithm corresponds to a descriptor line across the
diagram. For example, the descriptor for Local Insertion Sort crosses (immedi-
ately) below Hist , Reg , and SUS—it is not optimal with respect to any of these
three, but is optimal with respect to everything below [19, 23, 28].

To establish lower bounds on the location of the descriptor corresponding
to some algorithm we need proofs of optimality, such as the example proof
given here for Natural Mergesort. To establish upper bounds on the location of
the descriptor for an algorithm we need to describe lists that are nearly sorted
according to the measure, but for which the algorithm is not optimal.

The partial order on measures of presortedness can thus be used as a yard-
stick to measure the importance (or otherwise) of new adaptive algorithms; and
as well serves as a framework within which new measures of presortedness can
be evaluated. The goal of the algorithm designer must be to show that any
new algorithm is optimal with respect to the highest possible combination of
measures; and an algorithm will only be of interest if its descriptor lies above
all other algorithm descriptors at at least one point in the partial order.
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Figure 1: Partial order on measures of presortedness.

8 Summary

We have shown that each of the three main sorting paradigms leads naturally
to corresponding adaptive algorithms. We have also surveyed a wide range
of measures of presortedness, and shown how measures of presortedness can,
in some cases, be compared. This relationship leads to a partial ordering on
measures of presortedness, and provides a framework not only for the evaluation
of new measures of presortedness, but also for the evaluation of all adaptive
sorting algorithms.
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