
Significant Improvements to the Hwang-Lin
Merging Algorithm

GLENN K. MANACHER

University of lllmms, Chwago, lllinms

ABSTRACT The Hwang-Lin mergmg algorithm is the best general-purpose merging algorithm that has been
found Many improvements to ~t have been devtsed, but these are etther for special values of m and n, the
number of ~tems being merged, or else zmprovements by a term less than hnear m n + m when the ratm n/m ~s
fixed

A new methodology is developed m which, for fixed ratio n/m, It ts possible to decrease the number of
comparisons by a factor proporUonal to m, m fact m/12, provided n/m _> 8 and m >_ 24 It is shown that the
coefficient ~ s not best possible, and a techmque for lmprowng it shghtly to ~ is sketched

KEY WORDS AND PHRASES mergmg, Hwang-Lm algorithm

CR CATEGORIES' 5 25, 5 31

1. Introduction

In [4], H w a n g and L m present a merging a lgor i thm that combines the virtues o f binary
insert ion and l inear merging. It is the best s imple genera l -purpose merging a lgor i thm
known for arbi t rary list size.

Let m and n be the n u m b e r o f i tems being merged, with m _< n. This lists " smal l " and
" large ," contaimng, respectively, m and n items, are supposed sorted, so that the least i tem
has the lowest index. As an i tem is located in the evolv ing merged hst, it is deleted f rom
the list or iginal ly conta ining it. Indexing, as we define it, is a little unusual; we wdl say that
the first remaining element in a list has index 1, the next index 2, and so forth.

Linear merging consists in running down both lists, looking for the least e lement by
compar ing e lement 1 o f both lists. The process cont inues untd one list is exhausted,
whereupon the remaining elements o f the other list are merged onto the bot tom o f the
merged hst. In the worst case, m + n - 1 compar isons are needed.

Binary insertion ts the best me thod for merg ing one e lement into n. In the simplest case,
n ffi 2 k - I. The singleton e lement ts first compared with e lement 2 ~l - 1; i f the singleton
e lement is smaller, it belongs in the upper half, so the next compar ison is with e lement
2 k2 - 1, etc. In the worst case k compar isons are required, and this is best possible when
merging one e lement into n, 2 kq _< n _< 2 k - 1.

The H w a n g - L i n a lgor i thm (HLA) [4] breaks the big list into blocks of size T -=
2 tl°gtn/m}j. The first e lement o f the small list, denoted smal l (l) is compared with large(T) .
I f the first e lement o f the small list ts larger than large(2*), then T elements f rom the large
list are annexed, i.e., r emoved from the large list. I f the first e lement o f the small list ts less
than or equa l to la rge(T) , smal l (l) is merged into {large(l), large(2) l a rge(T - l)} by
binary insert ion in ¢ comparisons. (We are using a mode l in which only compar isons are

Permission to copy without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the ACM copyright noUce and the title of the pubhcatlon and its
date appear, and notice ts gwen that copying is by permission of the Association for Computing Machinery To
copy otherwise, or to repubhsh, requires a fee and/or speofic permlss,on
Author's address, Department of Information Engineering, UntversRy of Illmots at Chicago Circle, Computer
Center, Box 4348, Chicago, IL 60680
© 1979 ACM 0004-5411/79/0700-0434 $00 75

lourna! of/he Assoczauon for CompuCmg Machinery, Vo! 26, No 3, July 1979, pp 434-4,40

Significant Improvements to the Hwang-Lm Merging Algorithm 435

computationally relevant.) Then element 1 Is removed from small, and the elements in
large that are smaller than small(l) are annexed. The same process is iterated until one hst
is exhausted In the companion paper [7] we state the algorithm formally and indicate that
we shall use a "static" variant in which z is computed only once. We also provide the
explanation for a diagrammatic convenUon for the algorithm, in which the iterated core is
illustrated as a simple, stylized flowchart. The diagram for the static Hwang-Lin algorithm
is shown in Figure 1.

In Figure 1, no annexation is shown in connection with an insertion because in the
worst case, no elements will be annexed.

In [7] we analyze the static variant of the algorithm and discover that the number of
comparisons in the worst case is identical to the number reqmred [6] by the HLA. The
idea is that m the worst case there will be m insertions requiring z + I comparisons each,
together with [n / T j - 1 annexations requiring 1 comparison each. Therefore, if HL(m, n)
Is the number of comparisons required by the HLA or its static variant, then

HE(m, n) = m(r + 1) + [n / 2 q - 1. (1)

Definition. Let the HLA operate on lists of size m (the small list) and n (the large list).
The operation of the algorithm will be called a complete run if at the end, no element of
the small list is uninserted and, at most, one block of the large list is unannexed.

Clearly, for every m and n, there exist orderings of the small and large lists that will
produce a complete run of the algorithm. This fact ammates a simple characterization of
worst-case runs, namely:

PROPOSITION 1. Among the complete runs there is always at least one worst-case run.
To prove Proposition 1, we require a few simple observations First, we note that

insertions of one element of small Into 2" - 1 elements of large may in themselves produce
the annexation of between 0 and 2" - 1 elements of large, depending on where the insertion
is made into the 2" - 1 elements. Clearly, annexing more than 0 elements cannot serve to
mcrease the total number of comparisons; it must either reduce it or leave it unaltered.
Therefore, if we consider only worst-case runs, we may safely assume that an insertion
produces no annexation.

Second, we note that a merge, in order to run to completion, may leave one or more
elements "uninserted" from small or unannexed from large, but not both.

We are now ready to prove the proposition. Consider a purportedly worst-case run in
which, at the end, there are k > 1 elements remaining in small, and none in large.
Necessarily, the last step (Figure 1) must have been the annexation of the last block of
large (or fragment, if the number of elements in large is not a mulUple of 2 ~) by the first
(remaining) element of small. There clearly exists an alternaUve run, with different data,
which is identical to the first run up to the insertion of the first m - k elements of small but
which, at greater cost, then inserts k - 1 elements and finally annexes the last block or
fragment of large with the last element of small. Hence the former run is not worst case.
An essentially identical argument shows that runs in which no element of small, but more
than one block of large, remains, also cannot be worst case. Last, consider the case in
which just one element of small is uninserted, and no elements of large are unannexed.
The last step was necessarily the annexation of the last block or fragment by the last
element of small. If this last block or fragment contains more than one element, then
insertion of the last element of small will cost more than annexation. I f it contains exactly
one element, then insertion and annexation will cost the same, namely, one comparnson.
This complete the proof. []

~ annex 2 z elements wlth 1 comparison

1:2 T

"M~"~ lnse r t 1 e l e m e n t i n T+ 1 c o m p a r i s o n s

FIG 1

436 G. K MANACHER

Our main tool for making the analysis of our merging schemes tractable is a variant of
cost accounting appropriate only to complete runs. Its relevance to worst-case analysis is
guaranteed by Proposition 1 The idea is that since both the number of annexations and
insertions in a complete run are known, the total cost of annexations may be averaged
over each element of small and "charged" at the time the element is inserted. This zs
counterbalanced by setting the "cost" of an annexation to 0. Mutatis mutandis, the original
charging scheme is transformed into one vastly easier to analyze. We shall call costs
reckoned in this way effective costs.

Specmllzlng now to the case n = 2am, the number of annexations m a complete run
equals the number of insertions minus 1. Hence assigning an effective cost of 1 to each
insertion to cover the aggregate cost of insertion, we shall overcalculate the total number
of comparzsons by just 1. Our objectwe is an analysis correct to order m, so thzs is
acceptable.

This effectwe cost for each step of Figure 1 is then

Step Cost

"Annex 2 d " Zero
"Insert one element " d + 2

This method, trivial for Figure 1, wdl permit easy analysis of the more complex schemes
m this paper and its companion [7]. In the sequel and m [7], the term "cost" applied to
diagrams like that of Figure 1 will be understood to mean effectwe cost.

2. Slgntficant Improvements

We now introduce the notion of a significant improvement over the HLA. Let M(m, n) be
the number of comparisons required to merge lists of length m and n. We note that to date,
improvements in the HLA, in the sense that they yield smaller results than (1), have been
presented either for spectal values of m or n (or both), or are similar to Hwang and Lm's
demonstration [5] that M(m, 2m) _< 3m - 2, or else [2] have been achieved for a broad
spectrum of values of n and m wRhout achieving sigmficant improvement in the sense of
this paper. By a significant improvement, we mean an improvement that for fixed n/m
increases linearly with m. Such schemes have not been demonstrated, It is the purpose of
this paper to show that they exist.

For constant n/m, if an algorithm can be found that requires 6(n/m)m comparisons (to
order m), then easy information-theoretic arguments show that [6]

HL(m, n) - ~(n/m)m < m, (2)

so that if HL(m, n) = h(n/m)m - c, for some constant c, then 6(n/m) can differ from h(n/
m) only by some number less than one. Thus the margins for improvement are not very
great.

A significant improvement for n/m = 8 was presented m [7]. Its diagram is shown m
Figure 2. This diagram depends on the fact that M(2, 8) = 6 and M(3, 8) = 8. M(2, 8)
comes from the exphcR formula

M(2, n) = [log(-~)(n + 1)] + [log(~-)(n + 1)] (3)

derived first by Graham [1] and then by Hwang and Lm [3]. M(3, 8) ts easily derivable
from M(3, 6) = 7, which was derived by Hwang and Lin (see [6] for their proof). The
diagram indicates that the first three elements of the small list are compared, respectively,
to the eighth, ninth, and ninth elements of the large hst The costs are now calculated by
assuming that an inserted element should annex eight elements in order to be at "pa r"

"Par" means that no annexauon cost is factored m If the second step read "insert 1 m 5 and annex 8,'" its cost
would be 5 "Insert I m 5" would cost 6, the extra comparison compensating for the unperformed annexation
that must be averaged in

Significant Improvements to the Hwang-Lm Mergmg Algorithm

/ ~ - a n n e x 8 in 1 comparison

1:8 " x ~ ~ / i n s e r t 1 in 5 [comparisons]
7

2:9

and annex 9

• insert 2 in 9 and annex 9

3:9

%insert 3 in II

437

FIG 2

The step "insert 1 in 5 comparisons and annex 9" now has cost o f only 4~ because it
annexes not only its "pa r " but also one-eighth o f the next group of eight. The costs (per
e lement) o f Figure 2 are thus

Step Cost

"Annex 8 " Zero
"Insert I 478
"Insert 2 "' 4 ~
"Insert 3 43

The highest cost is that o f "insert 2 " It is clear that for n /m = 8 and m sufficiently,
large, we will obtain for H(m, n) 4-~ comparisons per e lement rather than the 5 r eqmred
by the H L A where H(m, n) is the number o f comparisons required by the new algori thm, z

We would now hke to generalize this construction in four ways:
(1) To find analogs to Figure 2 for n/m = 2 d for d > 3 (none are known to exist for

d < 3)
(2) To generalize further to n/m not a power o f 2.
(3) To find just how big m must be to make H(m, n) smaller than HL(m, n).
(4) To discover whether for sufficiently large n/m there exists a single a lgor i thm for

which 6(n/m) is larger than some fixed constant, and if so to find the constant.
The main result is contained m our

THEOREM. For n /m _> 8, there exists a merging algorithm, which we present exphcttly,
requiring H(m, n) comparisons, where

HL(m, n) - H(m, n) = m/12 - e (4)

13 where - ~ < e < 2.
We now develop the p roof o f the theorem.
LEMMA 1. M(2, 2 d) = 2d for d _> 3.
PROOF. Equat ion (3). []
LEMMA 2 M (3 , 2 d) _ < 3 d - l f o r d _ > 3 .
Note. HL(3, 2 a) = 3d for d_> 2.
PROOF. Figure 3, together with the fact that M(3, 8) = 8. []
LEMMA 3. For d _> 3,
(a) M(3, 31 a [(~) 2] - - l) _ < 3 d - 1,

2 This is achmved by combining "insert 2 "and annexation in just the right proportion and sequence to produce
a complete run Clearly th~s m possible and wdl produce a run with the largest possible coefficient of m We
should also mention that the problem of maximizing the number of comparisons for Figure 2 has an alternative
formulation In terms of integer programming to find values of integer variables xa, x2. x3 and x4 that wdl
maximize the value of xl + 5x2 + 9x3 + 1 Ix4 subject to the constraints m = xz + 2x3 + 3x4 and 8m = 8xl + 9xz
+ 9x3

438 o . K . MANACHER

(b) M(3, t (~)2q - 1) ~ 3d,

(c) M(3, t (~)2q - 1) _< 3d + l,

(d) M(3, Lq2aJ - 1) <_ 3d + 2for ~ _< q _< 2.
PROOF. (d) is almost trivial, if q = 2 then by Lemma 2, M(3, 2 a+l) _< 3(d + 1) - I =

3d + 2. The inequality obviously holds for lesser q. To prove (c) from (d), we use Figure
4. We then prove (b) from (c) using virtually the same scheme as that of Figure 5. To
prove (a) from (b), we use Figure 5. []

LEMMA 4. M(4,[(~)2dJ - 1) ~ 4d -- 1.
PROOF. The HLA. []
It turns out that for the case n/m = 8, a highly efficient a lgor i thm--considerably more

efficient than that of Figure 2-- involves four elements from the small list rather than three.
(The reader should consult [7] for details.) We now generalize this four-element diagram,
using also the fact that 17 d M(2,[(-~)2 J - 1) = 2d, as can be derived directly from (3). The

,, 23 Following similar analysis in highest cost is for the "insert 3 ... step; the cost is d + ~ .
[7], it can be shown that when m rood 3 = 0, then the worst case is realized when all the
elements in the small list are inserted by means of this step. Let HB(m, n) be the number
of comparisons required. Then

HB(m, n) ---- (d + 4 g)m + [(n - [(~)2aJ(m/3))/2dJ. (5)

By using [a] = a - 0, where 0 _< 0 < l, we obtain

11 ns (m, n) ---- (d + -~)m + n/2 a - 81 (Sa)

which reduces to (d + 23 ~) m - 01 when n = 2din.
We now consider n/m not a power of 2. Suppose we consider n m the range n ~ oa =

[2dm, 2am + 1 2a+lm -- 1}. Clearly, ¢ = [log n/raJ will be just d for all n in this range.

1:2 d-2

/ ~ j . M (1 , 2 d - 2 - 1) = d - 2; M(2,2 d) = 2d f o r d > 3

~ M(1,2 d-2 - 1.)

1 :2 d-1

= d - 2 ; M(2, (3 /4)2 d) = 2 d - 1 fo r d _> 3

~ M (3 , 2 d - l) <
M(3,8) = 8.

3 (d - 1) f o r d _> 4 by HLA;

FiG 3

• . . • M(1,2 d-1 - 1) = d - 2; M(2 , [(3 /2)2 d] - 1) = 2d+ 1

1:2 d-2

~ .~.~.~.~ M(1,2 d - 2 - 1) = d - 2; M(2, [(5 /4)2 d] - 1) = 2d+ 1

1:2 d-1

\
N(3,2 d - 1) < 3 d - 1

FIG 4

Significant Improvements to the Hwang-Lin Merging Algortthm 439

Now the HLA can be reexpressed as

HL(m, n) = m(d + 1) + n/2 a - 1 - 02 (6)

in the same range. We need to have a formula for HB(m, n) when m is not a mult iple of 3.
I f m is congruent to 1 mod 3, then the worst case for Algori thm B is realized when all but
one of the elements are inserted by means of "insert 3 ..." and one is inserted by means of
"insert 1 " I f m is congruent to 2 mod 3, then all but 2 are inserted by means of "insert
3 " and 2 are inserted by means of "insert 2 " The net effect is to reduce expression
(5a) for Algor i thm B by a small constant, which is zero when m -= 0 mod 3 and nonzero
but qmte a bit smaller than 1 when m # 0 mod 3. We will denote this constant E; it proves
easy to show that ¢ _< i~ We then have

HL(m, n) - HB(m, n) = m/12 - 1 + 01 + ~ -- 02, (7)

so that in this range, the difference is just m/12 - e, where - 2 < ¢ < 1 + e
Conmder now n in any range aa, d-> 3. The analyms just given is still exact, since [(~)2dj

---- (~)2 a when d > 3. Consequently, (7) still holds in every range oa for d > 3.
Final ly, we observe that (7) must yield a pomtive result whenever m _> 24. This completes

the proof of the theorem.

3. A Still Better Improvement

It is possible to improve (7) so that the term m/12 may be tmproved to 3x (-~g)m. The proof

~J~M(i,2 d-2- 1) = d- 2; M(2,[(31/28)2 d] - 1) = 2d

1:2 d-2

.~[_~M(1,2 d-2- i) = d- 2; M(2,[(6/7)2 d] - 1) = 2d- 1

1:2 d-I

~ M(3,[(17/28)2dj - i) = M(3,[(17/14)2 d-l] - I) = 3d- 3

FIG. 5

~.------annex 2 d
1:2 d ' - ~

• . _ ~ i n s e r t 1 in d + 2 and annex [(17/14)2dl

2:[(17/14)2dj

~ ~ i n s e r t 2 in 2d + 3 and annex [(5/4)2d1

3 : [(5 / 4) 2 d j

~ i n s e r t 3 in 3d+4 and annex [(5/4)2 d]

4 : [(5 / 4) 2 d]

i n s e r t 4 in 4d+ 3

FIG 6. Algorithm B

4 4 0 G. K. MANACHER

will only be sketched, since this improvemen t is marginal .
LEMMA 5. For d _> 3,
(a) M(3, al a [(-~)2 J - 1)_< 3 d - l,

(b) M(3, t((~) + (~))2d] -- 1) _< 3d,

(c) M(3, L((~) + (~-))2d] -- l) _< 3d + 1,
31 (d) M(3, 1. q2a] - 1) _< 3d + 2 f o r (~-) <_ q _< (-i~)"

PROOF (sketch). Ins tead of proving (d) f rom L e m m a 2, we observe that it is jus t a
res ta tement o f L e m m a 3(a). W e then prove (c) f rom (d) and (b) f rom (c), using the same
d iagrams as those for the cor responding steps in L e m m a 3. At t empt ing the same thing for
(a) f rom (b), we discover that we cannot improve (a). []

LEMMA 6
3 d (a) m(4, L(I + ~-)2 J - 1) _< 4d - 2.

8 d (b) M(4, L((~) + (-i-i~)) 2 J - 1) _< 4 d - 1.
PROOF (sketch). (a) m a y be proved by means of essential ly the same d iagrams as those

o f Figures 4, 5, etc.; one needs to put in 3's for 2's and 4's for 3's. By using L e m m a 3(a)
and 3(c) careful ly and not ing that m(4 , L(({) + (~))2a] - 1) = m(4, L(l + ~)2a-l] - 1) _<
M(4, [(~)2a~] - 1) _< 4 d - 5 by the HLA, one completes the proof. (b) follows f rom (a) in
the same fashion that L e m m a 5(c) is der ived f rom 5(d) []

One now uses L e m m a 6(b) to subst i tute 4: [((~) + (-i~))2 a] for 4: [(~)2dj in Algor i thm
B. The result is to decrease the cost per e lement inser ted by -iT~.~ The coefficient of m m

1 31 (7) is then improved to ~ + ~2 - aa6"

4. Concluding Remarks on Another Class o f Algorithms

Anothe r a lgor i thm in the l i terature domina tes the H L A for p robab ly more values o f m and
n than the present a lgori thm. This is the a lgor i thm of Hwang and Deutsch [2], which is
op t imal over a class of Algor i thms R, all of which i terat lvely pe r fo rm the fol lowing steps:

1 Determine dynamica l ly which a r ray ~s smallest, call it small and the other large
2 Compare small [l] large [y], or large [1] small Ix]
3 If small [l] were compared with large [y] in step 2, and small [1] < large [y], then insert small [1] into {large

[1], , l a r g e [y - l]}, if small [l] _> large [y], then annex y elements A symmetrical operation is performed if
large [I] us compared with small Ix] m step 2.

4 Perform steps 1 through 3 until one of the hsts is exhausted

Hwang and Deutsch show (a) that the op t imal a lgor i thm in R always per forms smal l
[1]: large [y], and (b) that for this op t imal a lgori thm, it is possible to specify y induct ively
in terms o f m and n.

The d o m a i n o f dominance over the H L A appears to be as robust as ours, if not more so.
However , the improvemen t for f ixed n /m over the H L A increases more s lowly than
l inear ly in m [8].

R E F E R E N C E S

l GRAHAM, R L O n s o n m g by compar isons Proc Second Atlas C o n f , 1971
2 HWAlqG, F K , AND DEUTSCH, D N A class o f merging a lgor i thms J ACM 20, l (Jan 1973), 148-159
3 HWANG, F K , AND LIN, S Opt imal merging o f two elements with n elements Acta InformaUca 1 (1971),

145-158
4 HWANG, F K, AND LIN, S A simple algorithm for merging two dlslolnt hnearly-ordered sets SlAM J

Comptng 1, 1 (1972), 31-39
5 HWANG, e K, AND LIN, S Some optimality results in merging two disjoint hnearly-ordered sets Internal

Memo, Bell Laboratories, Murray Hill, N J, 1972
6 KNUTH, D The Art of Computer Programmmg, Vol 3 Sorting and Searching Addison-Wesley, Reading,

Mass, 1973, pp 181-207
7 MAtqACHER, G The Ford-Johnson sorting algorithm is not optimal J ACM 26, 3 (July 1979), 441--456
8 HWANG, F K, Private CommunicaUon

RECEIVED AUGUST 1977, REVISED AUGUST 1978

Journal of the Association for Computing Machmely, Vol 26, No 3, July |979

