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Universal Codeword Sets and Representations 
of the Integers 

PETER ELIAS, FELLOW, IEEE 

Abstract-Countable prefix codeword sets are constructed with the 
universal property that assigning messages in order of decreasing prob- 
ability to codewords in order of increasing length gives an average code- 
word length, for any message set with positive entropy, less than a 
constant t imes the optimal average codeword length for that source. 
Some of the sets also have the asymptotically optimal property that the 
ratio of average codeword length to entropy approaches one uniformly as 
entropy increases. An application is the construction of a uniformly 
universal sequence of codes for countable memoryless sources, in which 
the nth code has a ratio of average codeword length to source rate 
bounded by a function of n for all sources with positive rate; the bound is 
less than two for n = 0 and approaches one as n increases., 

I. INTRODUCTION 

T HERE ARE problems of interest to a theory of 
concrete computational complexity dealing with the 

flow, storage, and manipulation of information in which 
information-theoretic considerations are dominant. The 
number of binary comparisons required to sort a list into 
order is an example in which the obvious informational 
lower bound of log N ! is closely approached by a number 
of schemes [12]. The rate at which strictly equiprobable 
independent random bits can be derived from a biased 
and possibly a Markov binary sequence is a more far- 
fetched case, of possible interest for simulation, in which 
the obvious informational lower bound is approached [3]. 
Floyd’s problem of rotating a binary matrix available row 
by row has an informational flavor, and he uses an entropy 
of m ixing to find a lower bound that his algorithtis es- 
sentially attain [7]. M insky and Papert’s discussion of 
exact and approximate match uses information-theoretic 
bounds [14], as do other analyses of related problems of 
information storage and retrieval [16], [3], [4], [6]. It 
seems less likely that informational arguments will be as 
important in the analysis of computation per se. Nonethe- 
less it seemed worthwhile to explore the strictly informational 
restrictions on the performance of computers, allowing the 
freedom of choice of representations for the input and 
output that is characteristic of information theory but is 
avoided by Turing theorists. Such an investigation is carried 
out in [5]. This paper presents some byproducts that have 
communications applications. 
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Turing theorists are usually interested in functions the 
domain of which is the positive integers N+ = { 1,2,3, * - *} 
or the nonnegative integers N = {0,1,2,3,. . . }. To represent 
the integers as strings of symbols on the tape of a Turing 
machine requires the variable-length encoding of an in- 
finite message set, called an encoding or a representation of 
the integers. Many such representations are possible but 
few have been discussed concretely. 

In the usual noiseless source coding approach, one chooses 
a particular representation of the integers so as to m inimize 
the average codeword length for some specified probability 
distribution on the integers. There is no obvious distribution 
to assume and no convenient source of experimental data. 
It was, therefore, a pleasant surprise when it turned out that 
certain countably infinite prefix sets of codewords have the 
universal property that given any countable set A4 of 
messages and any probability distribution P defined on M , 
assigning messages in order of decreasing probability to 
codewords in order of increasing length gives an average 
codeword length that is bounded above by KI -!- K,H(P), 
where KI and K, are constants 2 1 and H(P) is the entropy 
of the distribution P. 

The first such universal codeword sets were discovered 
in [IS]. This paper gives a more systematic treatment and 
introduces the new class of asymptotically optimal universal 
codeword sets, which can be used to encode all discrete 
memoryless sources with an efficiency that approaches one 
uniformly as source entropy increases. Section II gives 
definitions and variable-length noiseless coding results for 
the countable case. The results are standard (see Gallager 
[lo, ch. 3 and problem 3.71 for the extensions to the 
countable case) except for some obvious facts about effective 
encoding and decoding, which are not relevant to the finite 
case. Section III defines and constructs universal and 
asymptotically optimal sets for ali alphabet sizes. Theorem 3 
is essentially in [5] ; the rest is new, and strengthens a result 
due to Wyner [ 171 on the entropy of decreasing distributions. 
Section IV reviews the standard representations of the 
integers and shows that some are universal but that there 
are no universal binary representatiohs among them. 
Section V constructs three new simple universal binary 
representations of the integers, two of which are asymptotic- 
ally optimal. Section VI gives an application to a com- 
munications problem, using universal sets to construct a 
code that is quite simple to implement and which gives a 
ratio of codeword length to entropy of - 1.6 for any 
discrete memoryless source with finite nonvanishing en- 
tropy. Using an asymptotically optimal (a.o.) set and 
adding another step to the coding procedure gives a sequence 
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of universal codes for all memoryless sources in which the 
ratio of codeword length to entropy is uniformly bounded 
for each member  of the sequence and the bounds approach 
one. 

The  fact that regular sets have finite-state acceptors is 
used in discussing the complexity of the various representa- 
tions. Kohavi [13] gives a  brief presentation of the relevant 
notation and results. Go lomb [9] discussed a  class of 
probability distributions on  the integers in which the 
integer j has probability j-‘, s > 1, properly normalized. 
The  optimal encodings of such distributions are universal 
sets but are not asymptotically optimal. Universal coding 
schemes for sources with unknown parameters are reviewed 
by Davisson [l]. 

II. COUNTABLE SOURCES AND MINIMAL CODES 

A countable source (M,P) is a  countable set M  of mes- 
sages and a  probability distribution function P: M  -+ (O,l] 
that assigns a  positive probability P(m) > 0 to each message 
m E M. 

Let B be  a  finite set of symbols of size [Bl (for example, 
B = {O,l}, (BI = 2). Let B* denote the set of all finite 
sequences of symbols, each symbol selected from the fixed 
set B. A (variable-length) lBl-ary code for the source (M,P) 
is a  codeword set C E B* of size 1  Cl = lM1 and a  one- 
to-one function y : M  -+ C, which assigns a  distinct code- 
word r(m) E C to each message m E M . The  set C and the 
code y are said to be  uniquely decipherable iff every con- 
catenation of a  finite number  of codewords from C is a  
distinct sequence of symbols in B* so that the extension 
9: M ” + c* of y, which maps a  sequence of messages 
into the concatenation of the corresponding codewords, 
is also a  one-to-one function from M ” to B*. A uniquely 
decipherable set C c B* is said to be  complete iff adding 
any new sequence c’ E B*, c’ 4 C, to C gives a  set C’ = 
C u  {c’} that is not uniquely decipherable. 

A codeword set C 4  B* is said to be  a  prejix set, and  a  
one-to-one code y : A4 + C is said to be  a  prefix code, iff 
no  codeword in C is the beginning of another. A prefix 
set is uniquely decipherable since any concatenation of 
codewords in C* has only one prefix that is a  codeword 
in C. 

A codeword set C s B” is said to be  eflective iff there is 
an  effective procedure (e.g. a  Turing machine) that can 
decide whether a  given sequence in B* is a  codeword in C 
or not. If C is uniquely decipherable, there is an  effective 
procedure that distinguishes concatenations of codewords 
in C* from other sequences in B* iff C is also effective. 
For if C is not effective no  algorithm can distinguish C 
itself from B*, while if C is effective an  algorithm can 
partition a  given sequence in B* into segments in all possible 
ways and test the segments for membership in C. 

Index the numbers of C = {c,,c,,c,; . *} in order of 
increasing length, and  define the length function L of the 
set C by setting 

L(j) = kjl S Uj + 1) = Icj+iJ, 1 I j < ICI 

where lcjl denotes the length of the sequence Cj. Theorem 1  
relates properties of the length function L to properties of 
the set C. 

Theorem 1: 

I. Let C c B* be a  uniquely decipherable set with 
length function L. Then 

i) L is an  increasing function 

-W + 1) 2  X0, 1 I j < ICI; 

ii) L satisfies the Kraft inequality 

=Fc (BI-“’ = f I B(-L(J’) I 1; j=l 

iii) if there is equality in ii), C is complete; 
iv) if C is effective, L is an  effectively computable 

function. 
II. Let L satisfy I i) and  I ii) for some integer ICI E Nf 

or ICI = IN+1 = co. Then 
i) there is a  prefix set C c B* with length function L; 

ii) if the prefix set C in II i) is complete, then every 
sequence in B* is either the prefix of some sequence 
in C or has some sequence in C as prefix. If in 
addit ion ICI is finite, there is equality in I ii); 

iii) if L is effectively computable, the prefix set C in II i) 
is effective. 

Proof: I i) is a  matter of the definition of L. I ii) is 
standard (see [lo]). I iii) follows since if there is equality in 
ii), adding c’ to C adds a  term to the sum and violates the 
inequality. I iv) follows since generat ing B* in order of 
increasing length and testing for membership in C gives an  
algorithm that can compute L. II i) is in Ga llager, as is an  
algorithm that generates all members  of a  prefix set having 
length k when all shorter codewords and the number  of 
codewords of length k are known. Thus if L is computable, 
C is effective, proving II iii). If C is effective, testing each 
prefix of c for membership gives an  algorithm that halts 
on  the rightmost symbol of any c E C. II ii) follows since 
if some c’ E B* is neither the prefix of any member  of C 
nor has any member  of C as a  prefix, it can be  added to C 
to give a  prefix set C’, which is, therefore, uniquely decipher- 
able. The  necessity of equality in I ii) for a  complete finite 
prefix C is in Ga llager, but there are infinite complete 
prefix C with arbitrarily small Kraft sums. 

Let (M,P) be a  countable source and let C c B* be a  
uniquely decipherable set of size ICI 2  IMl. Index M  = 
h,m2,m3,~ * *> in order of decreasing probability 

P(ml) 2 P(m,) 2 P(m,) 2 . * * 

and recall that C = {c1,c2,c3;*~} is already indexed in 
order of increasing length 

lql I lczl 5  ICJ I * **. 
Then no  one-to-one code from M  into C has a  smaller 
average length than does the encoding m j + cj, which 
assigns longer codewords to less probable messages and 
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has the minimal average codeword length 

(1) 

determined by C and P alone. Such a code from A4 to C 
is called minimal. The average codeword length (1) of a 
minimal code does not depend on the details of the set C, 
but only on its length function L and is just the average 
value of the function L averaged with respect to the given 
distribution P, denoted by E,(L) 

By Theorem 1, if any uniquely decipherable code for a 
source (M,P) is minimal, there is a prefix code with the 
same average codeword length, and the prefix set is effective 
if the uniquely decipherable set is also. There is, therefore, 
no advantage in either average codeword length or effective 
decipherability to be gained by using a uniquely decipherable 
set that is not a prefix set. Theorem 2 gives well-known lower 
and upper bounds to E,(L) for uniquely decipherable and 
prefix sets. 

Theorem 2: Let B be a finite set and let (M,P) be a 
countable source with entropy H(P) = H, where the 
entropy 

IMI 
H(P) = C P(mj) log L 

j=l P(m j) 

is computed using logarithmic base IBI. 

i) If C E B* is uniquely decipherable with length 
function L and size ICI 2 1441, 

E,(L) 2 ” 
H=O 

max {W}, O<Hjco. 

ii) There is a prefix set C(P) c B* with length function 
L, given by 

LP(j) = 
log 1 1 1 PO’ 

1 I j 15 ICI 

(where TX] is the least integer not less than x) and 
minimal average codeword length 

H=O 
3 O<H<co. 

The proof is standard (see [lo]). Note that H(P) = 0 
iff M has only one member A4 = {m}, in which case 
P(m) = 1. Then the null string A of no symbols is in B* 
and will do for the single codeword, with length IAl = 0. 
The set C = {A} satisfies the prefix condition by default. 
For H > 0 there must be more than one message. Then 
A is not a codeword since for any c E C, AC = c so {c,A} 
is not a uniquely decipherable set. Thus all codeword 
lengths (and their average) must be 2 1. The upper bound 
1 + H, for H > 0, in ii) is the best possible in the sense 
that for every H > 0 and E > 0 there is a distribution P 
with H(P) = H and with E,(L) > 1 + H - E, for every 
L that satisfies the Kraft inequality. 

For a source (M,P) with entropy H, 0 < H c co, the 
average codeword length bound 

Ep(Lp) I 1 + H 

satisfied by the set C(P) gives a bound R,(H) on the ratio 
of that average codeword length to its minimal possible 
value 

Ep(Lp) 5 R,(H) = 
max {l,H} 

i 

1 + H, O<H<l 

l+i 
H’ 

l<H<co 

where the function R,(H) is itself bounded by a constant 

and 
R,(H) I Kp = 2 

lim R,(H) = lim R,(H) = 1. 
ff+m H-+0 

The limit R,(H) + 1, for large H, gives the (block to 
variable-length) noiseless source coding theorem for a 
stationary memoryless source, which generates an infinite 
sequence of messages selected from the set M, selecting 
successive messages with statistical independence from the 
fixed probability distribution P. Let P, : M” + (0,l) be 
the probability distribution on n-tuples of messages. Then 
H(P) > 0 and 

H(P,) = nH(P) 

and encoding P,, into the set C(P,) of Theorem 2 ii) gives 

lim R,“(H(P,)) = lim R,“(nH(P)) = lim 1 + 1 = 1 
“‘CC n-m “-+‘ZI nH(P) 
so that for any E > 0 choosing n > l/&H(P) gives an 
average codeword length <(I + c)H(P,). 

III. UNIVERSAL CODEWORD SETS 

The upper bounds 1 + H, R,(H), and Kp in the last 
section need not be satisfied by a minimal code for the 
source (M,P) unless the codeword set chosen is the set 
C(P) of which the length function Lp is specifically designed 
to match the distribution function P of that particular 
source. We next consider a different situation in which a 
single set C,, G B* is used for the minimal encoding of any 
countable source with entropy H, for 0 < H < co. 

Let C, be a countably infinite uniquely decipherable set 
in B* and let p: N+ + C, map the positive integers 
Nf = {1,2,3; * .} into the members of C, in order of 
increasing length, so that setting p(j) = cj gives the kind 
of indexing with lcjl 5 Ic~+~~, j E N+, assumed before. 
Then the function p is called a IBl-ary representation of the 
integers. 

Let L, be the length function of the set C, so that 

L,(j) = IPWI = Icjl* 
Coding a source (M,P) into the set C, using a minimal 
code gives the minimal average codeword length E,(L,,). 
Coding the same source into the set C(P) of Theorem 1 
or any other set could not give an average codeword length 
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less than max (I,H(P)}, for 0  < H < co. W e  say that the It follows that for C1, with length function L,, 
representation p  and the set C, are universal, iff the ratio /MI 

EP&) 
E&) = c  PWb l(j)l = 2  jgI W U  + Llogjl) 

j=l 

max { 1 , fWN I 2  + 2E,(log) 

is bounded above by a  constant K, independent of P, I 2  -I- 2H(P) 
for all P with 0  < H(P) < co. W e  say that a  universal set 
C, is asymptotically optimal iff the ratio is bounded above so that C, is universal with bounds 
by a  function of H(P), -ML) 5 W  + H(P)) 

E&J &(LI) 
max {W(P)} 

I R,(H(P)) I K, 
max { LH(P)) 

I 2R,(H(P)) I K, = 4. 

with 
lim  R,(H) = 1. 
H-tm 

To  construct a  universal representation pi : N+ + B* 
of the integers, let B = (0, 1,. * *, IBI - l} be  the first 
IBI nonnegat ive integers, and  construct the codeword 
Cj = pi(j) by first writing the integer j E N+ in standard 
IBl-ary notation as a  sequence of 

1  ‘f Llogj] 

symbols in B*. (All logarithms are taken to base IBI unless 
otherwise specified, and  Lx] means the greatest integer 
not greater than x.) Then  insert zero between each pair of 
symbols and one after the last symbol in that sequence. The  
resulting codeword has length 

However, C, is not asymptotically optimal, as will be  seen 
later. 

For each k E N+, another set C, E B” can be  constructed 
by first writing j E Nf in base lBlk notation, which takes 

1 + Llospikjl 
base lBlk symbols. Using the sequences in Bk as base lBlk 
symbols, separat ing them with 0  E B, and terminating the 
sequence with 1  E B gives a  representation &(j) of length 

bk(j>I = c1 + L1o!?lBlkj])(k + I) 

I 1  1  -I- k log,,, j (k + 1) 

<l+k+ 1,: logj 
( 1  

IkW l = 5 W  + Llwjl) which can be  decoded by a  (k + 2)-state acceptor. Averag- 

and the codeword set C1 = {pi(j) 1  j E N+} is the regular ing with respect to P and using Wyner’s inequality proves 

set the following. 

Cl = (B - (O})(OB)*l. Theorem 3: For each 1  BI 2 2  and each k E N+ there 
is a  universal representation 

(See, e.g., Kohavi [13] for a  definition of regular set.) 
Sequences in C1 are accepted by a  simple device that pk: N+ --) c, 
receives pi(j) one  symbol at a  time, reads and prints the with length function Ek, bounds 
symbols that arrive at odd  times, continues without printing 
when zero arrives at an  even time, and  halts without printing 
when one arrives at an  even time. 

a&(&) I U,(H(P)) = 1 -t k + 1 + ‘k H(P) 
( 1  

The fact that C1 is universal follows from an  inequality E&k) 
due to Wyner  [17]. Let (M,P) be any countable source max { LfW) 

< &(H(P)) = U,(H(P)) 
max { 1  JW)} 

with M indexed in the standard way so that P(ml) 2 
P(mJ 2 * * a. Then  Rk(H P)) I Kk = 2 + k + 1 

k’ 

so 

1 2 i P(mi) 2 jP(mj) 
i=l 

and lim it 

lim  R,(H) = 1 + i. 
H-rcc 

1 
j ’ P(mj) 

The set Ck is a  regular prefix set in B* and has a  (k + 2)- 
state halting acceptor. 

log 1  logj I -. 
p(mj> 

Averaging with respect to P gives Wyner’s inequality 

Theorem 3  can be  used to strengthen another result of 
Wyner’s [17] that E,(log) and H(P) converge or diverge 
together. Using Theorem 2  ij, Wyner’s inequality, and  the 
bound on  lp,(j)l averaged with respect to P gives 

E,(log) A ‘2  P(j) log j I ‘2  P(j) log & = H(P). 
j=l j=l 
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Choosing and limit 
k = rJ~p(lOg)l lim R,(H) = 1. 

Ir+m 
gives Theorem 4. The set C, is not regular but is accepted by a machine or 

Theorem 4: For any decreasing probability distribution algorithm with a counter, which sets k = 1, starts, reads 
P(1) 2 P(2) 2 *.*, and prints the next k symbols, halts if the (k + 1)st symbol 

0 I H(P) - E,(log) I 2(1 + JEp(log)) 
is one, and sets k t k + 1 and returns to “start” if the 
(k + 1)st symbol is zero. 

so for any sequence P1,P2; * *,P,,; * * of distributions with 
H(P,) < 0~) and limn+m H(P,) = oc), IV. STANDARD REPRESENTATIONS OF INTEGERS 

lim Epn(log) - 1. Standard representations are widely used for doing 
n+m H(P”) arithmetic and counting operations. Decoding an arbitrary 

universal set into a standard representation is possible by 
Choosing increasing values of k in Theorem 3 gives Sets Theorem 1 if L is computable but need not be easy. For- 

Ck, which are asymptotically more nearly optimal, but no tunately some standard representations are universal. 
single C, is itself an a.o. set. To construct an a.o. representa- 
tion p: N+ + C,, for Cp c B*, given j E N ‘, find the 

Unfortunately none of them are universal binary rep- 

n = n(j) E N+ such that 
resentations or are asymptotically optimal. We will discuss 
several. 

n(n + 1) n(n - 1) + 1 
2 

2 1 + [log j] r 
2 

(2) Unary Encoding 

and let 
The simplest binary representation of N + = { 1,2,3, * . * } 

m = n(n + 1) 
is known in Turing machine theory as unary encoding. 

- The unary codeword set 
‘I 1 - LlogjJ I n - 1. 
L 

C, = O*(B - (0)) 
Then construct p(j) by padding the lBI-ary representation 
of j on the left with m initial zeros and partitioning the is complete and has a two-state acceptor that halts on the 
resulting sequence of n(n + 1)/2 symbols from B into n first nonzero symbol. The unary encoding CI: N+ + C, is 
segments, the kth segment of length k. Insert zero between onto, and for IBI > 2 its inverse 
each pair of segments and one -after the last segment to a-‘(Okb) = k(lBl - 1) + b, k E N, b E B - (0) 
form p(j). Then 

n(n + 1) 
IP(Jl = 2 + n = n + m + 1 + Llog j] 

S 2n + Llog jJ. 

From the right side of (2), 

8(1 + Llog j]) 2 4n(n - 1) + 8 = (2n - 1)2 + 7, 

so 
1 + Jl + 8Llogj] 2 2n 

and using Llog j I log j] gives 

Ip( I log j + 1 + Jl + 8Llog j]. 

is easier to define. The magnitude 

b(j)l = [c~~l-‘~, 
J 

+ 1, jEN+ 

= j when IBI = 2 

is essentially linear in j. Unary codes are essentially optimal 
for some exponential distributions (see Golomb [S]) but 
are not universal since 

P(j) = 6 jENf 
n”.i” ’ 

has finite entropy but E,(L,) = 03. 

Using the Wyner inequality and the convexity n of the lBI-ary Encoding 
square root in averaging this expression gives What is usually called “the standard (BI-ary representa- 

E,(L,) I 1 + H(P) + ~/l + 8H(P) 
tion” is a code B: N+ + C,, where C, E B* is the regular 
set 

which proves Theorem 5. C, = (B - {O})B* 

Theorem 5: The universal representation p: N+ + C, is and /? is defined inductively by 
asymptotically optimal for any I BI 2 2 with length function 
L,, bounds D(j) = j9 j E B - (0) 

E,(L,) I U,(H(P)) = 1 + H(P) + 41 + 8H(P) 

E,(L) 

max (LfW)} 
5 R,(H(P)) = UJH(P)) 

max (W(P)} 

BWI + j) = NW, forkEN+,joB. 

By the induction 

IKjI = k iff (Bike’ 5 j < JBlk 

R,(H(P)) I K, = 5 IPWI = 1 + Llogpl jl = Llwpl (j + 11-I. 
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Unfortunately fi is not a  representation since it is not 
uniquely decipherable. For IBI = 2, B(5) = 101 = /3(2)p(l) 
illustrates the problem. 

IBI-ary Representation 

What is usually meant  by “the standard IBI-ary rep- 
resentation” has an  alphabet (0, 1, * * . , [B( - 1, a}, where 
0  is an  end-of-word symbol. The  representation z: N+ + 
C,, C, c (B u {l-J))*, is def ined by 

C, = (B - {O})B*n 

z(j) = B(.Kl 

It(j)I = 1  + IBW I = 2  + LlofqB~.il~ jE N+. 

There is widespread confusion between z and p  since the 
square frame around 0  is usually om itted, leaving only 
the space it encloses! Yet z is a  prefix, and  so is a  representa- 
tion. However, for IBI = 2, z is a  ternary, not a  binary 
representation. 

The  Wyner  inequality (using logarithmic base IB u 
{n}l = IBI + 1) shows that z is universal 

EP&) 5 2 + W ’) log,,, W I + 1) = 

R,(H) = UT’H) I K = 2 + log,, 
max (1,H) I\ W I + 1). 

The set C, is not complete. A representation ?  : N + + C, 
with 

C, = B*j-J 

is def ined by enumerat ing C, ordered by length and lexi- 
cographically within each length. Then  

IWI = 1  + Lloq,l j(lBI - 111 
JWJ  I U&W’)) = 1  + log,,, W I - 1) 

+ H(P) log,,l (IBI + 1) 

R,(H) = UdH) 
max (1,H) 

s K. = 1 + log,,, (IBI” - 1) < 3. 

For IBI = 2, d  has a  simple decoding. Since the binary 
encoding /3(j) always starts with one, that one  can be  
deleted to give 8: N+ --) Cj with 

j(l) = I &2j) = B(j)0 /?(2j + 1) = &j)l 

where 1  represents the null sequence of no  binary symbols. 
Then  z^( j) = B( j)o. Representat ions essentially equivalent 

to ?  were suggested by Shannon [15] and  used by Elias 
[2] in run-length coding. Their universal character was not 
realized at that time, al though the universal character of 
the resulting run-length codes was, and  these codes are 
evaluated in [2]. 

V. UNIVERSAL BINARY REPRESENTATIONS 

For IBI = 2  the unary encoding a  is not universal, the 
binary encodings /? and fi are not representations, and  the 
“binary” representations z and z^ are ternary, so there is no  
standard universal binary representation. The  universal 
representations pk in Theorem 3  and p in Theorem 5  are 

binary for IBI = 2  but not complete. The  representations 
d  for IB( = 2k - 1, k 2 2, can be  mapped into {O,l}* 
by mapp ing the alphabet B u (01 one-to-one onto 
{O,l}k (see [2] and  [IS]) an  are then complete and binary, d  
but their decoding into a  standard representation is non- 
trivial, and  their shortest codeword has length k 2 2. It 
turns out that the two lim iting properties of the set C(P) 
in Theorem 2, 

lim  R,(H) = lim  R,(H) = 1 
H-tm w-too 

are both useful in applications. W e  construct three complete 
universal binary representations y,6,0, which all share the 
first lim it and  have simple acceptors and decodings into 
b(j) or z(j). Two (6 and o) share the second lim it and  are, 
therefore, asymptotically optimal. 

(Note added in proof: Richard Karp [lS] has done some 
closely related work on  universal binary representations.) 

Compound Representation y 

The representation p1 in Theorem 3  is obtained by 
following each of the bits of the binary representation p(j) 
by a  bit of the unary representation a(Ifi(j)l) of the length 
Ip( of p(j). Since in the binary case the first symbol of 
p(j) is always one, it can be  dropped. This leaves a  rep- 
resentation y : N + + C,, in which each bit of b(j) is in- 
serted between a  pair of bits in a(lp(j)l) to give 

Y(l) = 1  y(3) = 0 i i y(5) = 0 0 0 i i 
y(2) = 0  0  1  y(4) = 0  0  0  0  1  y(6) = o ioCw-. 
The overl ined bits are b(j), and  the remainder are a(l&j)l). 
The  length of y(j) is 

W I = h(j)l - 1  = W I + IBW I = 1  + 2  Llob9.I. 
The set 

c, = (0{0,1})“1  

is regular and  like C, is accepted by a  three-state halting 
acceptor. Like C, and  C,, C, is complete. 

A permutation of the bits in y(j) gives a  representation 
y’(j) = cr(l/?(j)l)fl(j), which has the same length function 
and is easier for people to read 

f(i) = i y’(3) = 0  i-l y’(5) = 0  0  1  0  1  

y’(2) = 0  10  y’(4) = 0  0  1  0  0  y’(6) = 0  0  1  1  0  *.. 

since the last bit of a(Ifi(j)l) is always one, and  it can do  
double duty as the first bit of the overl ined sequence 
/3(j) = l&j). However, the set 

c,, = u  Okl(O,l}k 
kr0 

is not regular, and  an  acceptor for C, needs a  counter. 
Both y and y’ are universal since Wyner’s inequality gives 

the bounds 

Ep(Ly) = EP(Ly,) I 1 + 2H(P) = U,(H(P)) 

R,(H) = U,(H) 
max (1,H) 

I K, = 3. 
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Doubly Compound Representation 6 

While y is universal it is not asymptotically optimal since 

Iy(j)l = 1 + 2Llog j] > 2 log j - 1 

EP@,)  > 2Ep(W - 1 

so by Theorem 4 
E&J) ) 2 
H(P) 

left with a group of length 2. To encode, 

i) write zero 
ii) start 

as H(P) + co. To work better for large H(P), the length 
of /3(j) can be represented by y(l/?(j)l) rather than by 
a(lp(j)l), which is more compact for large j. 

Let 
W> = rMWl)B(j). 

Then 

iii) if Llog j] = 0, halt 
iv) write p(j) to the left of previous writing 
VI j + Lb jl 

vi) return to start. 

There is an equally simple left-to-right decoding algorithm. 
Define l”(j) by the induction 

W) = tlogjl Zk”(j) = P(Zk(j)), kEN+. 

Then 

and 
IP(j)I = W> + 1 

6(i) = Y(I) = i 6(3) = y(2)l = 0 0 i-l 

6(2) = y(2)O = 0 0 lo 6(4) = y(3)O = 0 1 1 0 0 

where the overlined symbols are B(j), i.e., the last one in 
r(lKjI> followed by hj>. 

IW)l = f, PUk-“(jN + 1 

= 1 + i (Z”(j) + 1) 
m=l 

A decoding algorithm for S(j) first uses a decoder for 
y(lb(j)l) to find Ip( j)l, and then prints one followed by the 
last l/I(j)1 - 1 symbols of S(j) and halts. It needs a counter: 
the set C, is not regular, nor is any other set with the same 

where the summation stops with that integer k such that 
Zk(j) = 1. 

An examination of lo( shows that 

bWl I 1 + 2Lb3jl 
Ep(L,) 5 1 + W(P), K, I 5. 

Asymptotic optimality follows from Theorem 4 and the 
lim its 

lim  z”+1(j) - 0, so lim  b(j)1 - 1 
j-cc Z”(j) j-+mll(j)- ’ 

The representation o is not quite ultimate. For k 2 5, 
deleting the k initial ones from each block and the terminal 
zero, and prefixing the result with y(k + 1) (or with 
6(k + 1) or o(k + l), for larger k) works better, but only 
for j much larger than Eddington’s estimate of the number 
of protons and electrons in the universe! 

length function 

La(j) = 
= 

Ld since 

IWI = IrUWl> + IiW  
1 + 2Llog l8Wll + LlogjJ 

1 + Llwjl + 2Llog (1 + tlogjJ)J 
increases by two units whenever j increases by one from 

2 2”-1 - 1 to 22k-1 

while the set of lengths of the members of any regular set is 
ultimately periodic. The Wyner inequality and the convexity 
n of the logarithm prove asymptotic optimality 

E,(L,) I U,(H) = 1 + H + 2 log (1 + H) 

R,(H) I K, = 4 

lim  R,(H) = lim  - = U,(H) 1 . 
H-+m n-tm H 

Penultimate Representation o i) M= N+ = {1,2,3; * *}; 
The representation o: N+ --f C, represents some early ii) the distribution P: A4 -+ [O,l) has 0 < H(P) < co ; 

integers by iii) the source output sequence of length n takes the 

VI. UNIVERSAL CODES 

A universal code is a code that works for all sources in 
some class. To explore several such codes requires definition 
of the corresponding classes. 

The class ~2 of stationary countable finite-entropy sources 
without memory includes a source (M,P), iff: 

-- 
o(1) = 0 o(4) = 10 10 0 0 

w(2) = 10 
-- 

0 o(7) = 1 0 1 1 1 0 

w(l5) = i-l i-i-i-i 0 
-- 

0(16)= 10100100000 
-- 

o(3) = i-i 0 o(8) = 11 i-t%?j 0 ~(32) = 1 0 10 1 1 0 0 0 0 0 0. 

The rightmost overlined group is ,/?(j), except for j = 1. 
Each earlier group is the binary encoding of the length less 
one of the following group, and the process halts on the 

value m  = m(l),m(2), . * * ,m(n) with probability 

p,(m) = ,fjl p(mj>- 
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The class A? c ~4 of monotonic sources satisfies the Universal run-length coding treats the infinite source 
additional constraint output sequence as a  concatenation a(j,)E(j,)a(j,) * * * of 

iv) 1  > P(j) 2  P(j + l), je N+. unary encodings of a  sequence j,,j,,j,, . . . of integers (the 

The  subset dk c & of k-ary (or k-letter) sources has, in lengths of runs of zeros followed by one) and decodes 

addition, and  re-encodes the integers into the concatenation 

v)P(j)>O,iffl <j<k; PCMj2Mj3) * . * of their universal representations. 

and  the monotonic k-ary sources 4,‘ are the set The  probability of the integer j is 

vi) &k = dk n  A. Q(j) = 6 ‘P 

The source coding theorem in Section II shows that for decreasing in j, and  the entropy per run is 
each P E d  there is a  sequence of sets C, and  of codes 
pm: M ” -+ C, such that the entropy performance measure H(Q) = H(P) 2 2, p E (O,$]. 

V 

c Ph>ld4l 
I l8EM” HO’,) 

I  

(3) It follows that max {l,H(Q)} = H(Q) so that 

approaches one as n increases. Theorem 5  shows that there 
is a  single a.o. set C, such that for each P E LZ? there is a  
sequence p”’ : M ” + C, that has the same lim iting per- 
formance, where the codes depend on  P (since pL, maps M ” 
onto C, in order of decreasing probability) but C,, does not. 
O ther work on  sequences of codes reviewed by Davisson 
[l] shows that there is a  single sequence &“: M ” + C, 
that has the same lim iting performance for all P E ~4. 
Davisson calls this sequence a  universal code for d. W e  
prefer to reserve that name for a  single code rather than a  
sequence of codes. 

Define a  code to be  universal for a  class of sources with 
respect to a  performance measure if there is a  uniform 
bound to the measure for all sources in the class. Then  a  
universal representation p : N + + C, is a  universal code 
for the monotonic class A, with respect to the average 
codeword length performance measure 

c 
W M j)i 

jsN+ IllaX {l,H(P)} 

by the definition of a  universal representation. 
No single code in any one of the three sequences of codes 

described has an  entropy performance measure (4) that is 
bounded uniformly on  LZZ  or JL!, however. For 0  < H(P) < E 
the average codeword length is 2  1  by Theorem 2  i) so the 
entropy measure is > llns for any uniquely decipherable p,,, 
and  +cc for fixed n as E -+ 0. Thus the sequence p,,” may be  
described as an  asymptotically optimal universal sequence 
of codes for & but not as an  a.o. sequence of universal 
codes for d. The  coder will need to use different n for 
different customers if he  is to guarantee a  uniform level of 
entropy performance. He need not know P, but he  must 
know (a lower bound >O to) H(P). W e  construct universal 
codes for A2, S2, A, d, and  a.o. sequences of such codes. 
In Davisson’s terminology, such an  a.o. sequence could be  
called a  uniformly universal code. 

Coding Runs of Zeros 

For the class JJ%‘~, let A4 = {O,l} and  P(0) = q, P(1) = p. 
Then the monotonic constraint is just p E (O,:]. Universal 
run-length codes for A2 with entropy performance bounded 
by - 1.6 for p E (O,+] are analyzed in [2]. 

R,W (QN = EQW,) - EQ(L~) < K 
max {LH,Q)l H(Q) - ' 

gives a  uniform bound of Kp to the entropy measure (4). 
Since Q  is known as a  function of p, the ratio R can be  
computed for p E (O,$] for any particular universal p and 
gives much tighter bounds than K, for the representations 
?  used in [2] and  y, 6, and  o  developed in Section V. 

Coding Runs of Zeros and Ones 

The infinite source output sequence m = m( l)m(2)m(3). . * 
is also a  concatenation 

of m(1) and a  sequence of unary encodings, where E(1) = 
1  - m(1) is the complement of m(1) and  

o(j) = so(j) = O’-‘1 al(j) = lj-‘0  = E(j). 

A universal run-length encoding for d, decodes into the 
sequence m(l),jl,kl,j2,k2; + a, and  reencodes into the con- 
catenation m( l)p( j,)p(k,)p( j,)p(k,) * . * . The  distributions 
of the j and  k are 

Q,(j) = q’- ‘p Ql<j> = pj-lq 

both decreasing functions and a  pair (j,k) always contains 
one integer from each distribution, so the concatenation 
p( j)p(k) has entropy performance measure 

(EQ,(&) + EQ~(L,J) 

(H(Qo) + H(Q,N 
(4) 

which is the same as the performance of the original scheme 
a(j) + j + p(j) at p = q = 3  (when Q , = Q l) and  again 
in the lim it p -+ 0  (when H(Qo) + cc and E,,(L,)/ 
H(Q,) + 1  for a.o. p) but is a  little worse in between. 
Comput ing the ratio as a  function of p E (0,l) gives a  
uniform bound - 1.6 for several choices of p. 

This scheme has practical interest since it works well for a  
memoryless source and works even better for a  Markov 
source whose state is the last output symbol and  whose 
conditional probabilit ies P,(O),P,(l) of staying in the same 
state are greater than the corresponding steady-state 
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M = {1,2,3,4} 

probabilities P(O),P(l). It should, therefore, do well for 
both line drawings and large objects in facsimile encoding. 

Universal Codes for &k 

A source in &k, with k > 2, can be universally encoded 
by factoring it into k - 1 independent sources in &, and 
using a universal run-length encoding of their outputs. 
Let M = {1,2;.. ,k}. Fig. 1 illustrates the procedure. 

Let m = jl,j2; . . ,j, be the first n message. Represent 
each occurrence of the integer j E M in m by the unary 
codeword a(j) = Oj- ’ I. Write a(jJ as the sth column of 
an array of k rows by n columns, the first symbol of each 
codeword occupying the first row. Then the entry in column 
s of row j is one, if j, = j; is blank, if j, < j ; and is zero, if 
j, > j; so the first row has no blanks and the h%h row has 
no zeros. 

The locations of the blanks in row j are determined by 
the locations of the ones in earlier rows. The values of the 
nonblank symbols in row j are independent of one another 
and of the values in earlier rows. Thus the nonblank 
symbols in each of the first k - 1 rows are output sequences 
of k - 1 independent sources in “I,. 

Encoding the nonblank symbols in each row by the run- 
length scheme a(j)cr(k) -+ j, k -+ p(j)p(k) described for d,, 
the ratio of the average codeword length to entropy still 
satisfies the uniform bound Kp and the tighter uniform 
bounds in [2]. An algorithm suggested by Gallager [l l] 
sequences the transmission of the representations of the 
run-length integers and gives a universal code for JZ?~. 

For 1 I j I k - 1, place a marker j in row j, initially 
to the left of column 1. Start and choose the leftmost 
column containing any marker and the smallest (highest) 
marker in that column, say marker j. Move marker j to the 
right in row j, passing r - 1 zeros, and halting on the first 
one to the right of the initial position of marker j in row j, 
and send the codeword p(r). Then return to start. The 
received sequence always determines the source sequence 
up to the column from which the last marker moved, and 
determines at most k - 2 message values lying to the right 
of that point. 

Universal Codes for 4’ and ~4 

When M is infinite the algorithm used for -c4, will never 
send the second pair of runs for any symbol, and a less 
symmetric algorithm is needed. To start the new marker- 
moving algorithm, start a cycle. Start a cycle by moving 
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marker 1 to the right side of its first pair of runs and send the 
encoding of that pair of runs. Return to start a cycle when 
every column to the left of marker 1 has appeared as the 
end of a run, so that decoding is complete up to the column 
occupied by marker 1. If a new cycle is not started, the 
next move is made by the smallest (highest) marker that 
lies to the left of marker 1. 

The new algorithm works for &? but not for d, since 
P(1) = 0 is possible for J&‘, in which case marker 1 never 
moves. To encode d, add labels to the rows of the array 
in Fig. 1 and send the labels to the receiver. The label I1 
on row 1 is that message I, E N + which first completes a 
pair 

{4)‘Wf - {4>>” or (N - ~4Mlk 

of runs, and the label on row j + 1 is the message which 
first completes such a pair in that subsequence of the message 
sequence that remains when occurrences of 11,12, * * * ,lj have 
been deleted. Then p(lj) is sent as a prefix to the code 
m(s)p(j)p(k) for the first pair of runs that occur in row j. 

Optimal Sequences of Universal Codes 

Universal codes for .JZ2 and d2 (and thus &k and .&‘) 
that have better entropy performance than the bound of 
N 1.6 in [2] are constructed by using an a.o. representation 
p and an intermediate mapping between the two steps 
a(j) + j and j -+ p(j) or cl(j)%(k) + j, k + p( j)p(k) of a 
run-length encoding. 

Leth:N+ x N++N+ be the usual one-to-one map- 
ping of pairs of integers onto integers 

h(j j ) 
13 2 

~ (jl + j2 - l)(jl + j2 - 4 + jl 
? 
L 

For A2 the probability of a successive pair jl,j2 of runs is 

Qo(jl)Q&J = qj1+j2 p ' 0 4 
a function of j, + j, alone, so the distribution 

Q2(h) = qj (f)’ (j - ‘)f - 2, + 1 I h 

of h is a nonincreasing function of h. Since h is 

H(Qz) = WQ) 2 4, P E CA51 

I Aj - 1) 
2 

one-to-one, 

Therefore, using the encoding a(j,)a( j,) + j,, j, --f 
h( jl,j2) --t p(h(j,,j,)) gives an entropy performance of 

‘ii’,“;’ = R,(H(Q,)) = R,(2H(Q)) 
2 

and an n-fold iteration of the h-mapping stage in the coding 
process maps each 2”-tuple jl, j2,. * . , j,, into a single integer 
with decreasing distribution Q, and then into a single 
codeword in C, with entropy performance 

2;;: = R,W(QJ) = Rp(2"WQN 
" 
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which approaches one uniformly on  .H2 as n increases for 
any a.o. p, since H(Q) 2 2. 

The same procedure is used for &‘,, but the sequence is 

-+ KL.LMhk,) . * - + p(h(j,,j,))p(h(k,,k,)) * * . 
so that the 2” integers mapped by h” are always drawn from 
the same distribution (Q, or Q ,). Using this encoding on  
the rows of the array in F ig. I, sending representations of 
2” runs of zeros and 2” runs of ones from each row, and using 
the appropriate marker-moving algorithm gives an  a.o. 
sequence of universal codes for SZZ~, A, and  JZ’. 
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The Algebraic Decoding of Goppa Codes 
N. J. PATTERSON 

Abstract-An interesting class of l inear error-correcting codes has 
been  found by Goppa  [3], [4]. This paper  presents algebraic decoding 
algorithms for the Goppa  codes.  These algorithms are only a  little more 
complex than Ber lekamp’s wel l-known algorithm for BCH codes and,  
in fact, make essential use of his procedure.  Hence the cost of decoding a  
Goppa  code is similar to the cost of decoding a  BCH code of comparable 
block length. 

I. INTRODUCTION 

ET K be  the finite field GF(q”). Let J be  the finite L field GP(q). Let g(x) be  a  polynomial of degree n  2  1 
with coefficients in K, and let L be a  subset of K with the 
property that no  element of L is a  root of g. W e  define a  
Goppa code 9 with Goppa polynomial g and symbol field J 
as follows. It is convenient to index the coordinates of Y 
by L. Then C is a  codeword of 9, if and  only if 

+?2- z 0  mod  g(x). 
yeLX - y 

Manuscript received January 22, 1974;  revised October 20, 1974.  
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Let C be  a  codeword and R the received word, so that the 
error vector E is given by 

R=C+E 
so that 

CAL3 

YSLX -y 

z C A mod  g(x). 
ysLX - y 

It is natural then to define the syndrome S(X) as the poly- 
nomial of degree less than n such that 

S(x) E c -!f%  mod  g(x). 
yeLX - y 

W e  define 
4x) = y;L 0  - Y) 

E,#O 

(2) 

(thus deg G  = number  of errors), and  we define V(X) of 
degree less than n by 

q(x) = a(x)S(x) mod  g(x). (3) 


