Volume 5, number 3

INFORMATION PROCE

August 1976

AN ALMOST OPTIMAL ALGORITHM FOR UNBOUNDED SEARCHING

Jon Louis BENTLEY”

Department of Computer Science, University of North Carolina,

Chapel Hill North Carolina 2754 :'SA
and
Andrew Chi-Chih YAO¥

Lepartr.ent of Mathematics, Massachussetts Institute of Technology,

Cambridge, Massachussetts 021 39, USA

Received 14 November 1975, revised vercion received 7 June 1976

Ordered table searching, optimal algorithms, analysis of algorithms, representations of integers.

1. Introduction

Many search methods based on comparisons of keys
are described by Knuth in [6, section 6.2]. His work,
however, deals exclusively with searching in a table of
finite size (that is, searching in a bounded key space).
In this paper we will consider the problem of compari-
son searching in an unbounded key space.

To give an exact formulation of the problem to be
attacked we define N** to be the st of positive inte-
gers and specify the function F:N* - {X, Y} as

X for j<n,
Y forj2n,

where n is an integer that iiniquely defines F. The
problem of unbounded searching is the follewing: give
an algorithm to determine n, using as primitive opera-
tions only comparisons of F{i) to X for a sequence of
{ € N* chosen by the algorithm. That is, :he algorithm
must determine the unique 7 such that F(n) = Y and
#{n— 1) = X by testing diffzrent values of F\{i). We {1y

*work supported in part by U.S. Energy Research and Deve! v
gment Administration under contract E(403)515 and in par-
by o National Science Foundation Graduate Fellowship.

* This work dune while this author was visiting Stanford Uni-
vegsity ; partially supported by NSF grant MCS-72-03752 A03,
088 contract N6GO14-76-C-0330, and by IBM Corporation.

#2

that n is the solution to the unbounded searching prob-
lem. For a given algorithm A let us define the cost
funciion Cg :N* =>N* as C4(n) = m iff algorithm A
uses m evaluations of F to determine that n is the solu-
tion to the unbounded search problem.

It is easy to see an isomorphism between the prob-
lem of unbounded searching and the problem of table
lookup in art ordered table of infinite size. Given S =
§1.55:81,..., a strictly increasing infinite sequence
of reals (S,c €R and Sy, : > S; for all k €N*), suppose
that we are asked to find the uniqué first element in §
that is greater than or equal to a fixed z € R using as
a primitivc operation only the question “Is §; <z?”
for i € N*. To solve this table lookup problem, use
F(i) = X iff S; <z; the desired element of S is then
$, where n is the solution to the isomorphic problem
of unbounded searching,

It is also easy to see that for any deterministic un-
bounded searr i1 algorithm A there is a corresponding
binary encoding of the integers, constructed as follows:
for every i € V*, the codeword representing i is S; =
4,8y .. .aC 4> Where a,, = 1 iff the inth evaluation of
F is Y when using algorithm 4 to find i as the solution
to the unbounded search problem. Notice that the
length of the codeword ; representing i is C4 (i).
TClearly the se: {S;} is a prefix set (i.e., S; is not a pre-

% of §; forj # i;if it were not a prefix set then al-
g rithm A would not be able to termin- ‘2 accurately

Volume 5, number 3

for the i in violation of the prefix definition.

The problem of unbounded searching arises in
many diverse areas. Suppose that one wants to find
the zero of function G:N* - R that is known tc¢
cross the x-axis only once; this can be viewed as an
unbounded searching problem if one ignores such
(possibly misleading) properties as the derivatives of
G. Testing a system for a breaking point might involve
an unbounded search; one knows that the systemn
functions with zero workload and wishes to find that
workload at which the system no longer fanctic ..
Unbounded searching could be used in searching an
extremely large ordered table if one wanted to pay a
search cost proportional to the item’s distance from
the front of the table. We have already seen that every
unbounded search strategy yields a uniquely decipher-
able prefix encoding of the integers; therefore, good
search strategies can have important applications in in-
formation theory.

We investigate a number of algorithms for solving
the unbounded searching problem in section 2. In sec-
tion 3 we will show a lower bound for the cost func-
tion C4{(n) for any unbounded searching algorithm A
that is almost attained by one of the algorithms given
in section 2. Possible topics for further work in this
area are mentioned in section 4.

2. Unbounded searching algorithms

In this section we will examine a number of algor-
ithms for unbounded searching.

2.1. Algorithm By (unary search)

The most straightforward algorithm for unbounded
searching is to test F(1), F(2), ..., until F(n) =Y. It
is easy to see that the cost of this algorithm is Cg,(n)
=n.

2.2. Algorithm B, (binary search)

The next algorithm suggested is the standard
bounded binary search algorithm, using the ‘‘gambler’s
strategy”’ of doubling successive guesses to provide the
upper bound needed for the binary search. More pre-
cisely, the first stage of the algorithm determines
m= | lgn]+ 1 by successively evaluating F(2f — 1) for

INFORMATION PROCESSING LETTERS

August 1976

i=1,2,... until F{*"7 —1) = Y, ai which time we

know that 2m~1 < p -7 2M . { The second stage then
uses a standaid bounded binzry search on }iu e 271
elements to determine the exact value of n. The first
stage will require m = |lg 7 | t 1 evaluations of F and
the second stage will require lg 2" ' =in-— 1 = |lgn,
evaluatiors of F, so the total cost is (g, (n) = 2lign |

+ 1. It is helpful to view an unbounded search algorithm
as a decision tiee in which the label / cn an int¢rnai node
represents the evaluation of F(i), a left (right) branch
corresponds to the cutcome of the evaluation being
Y(X), and externa! nodes represent solutions to the
problem. Fig. 1 is the decision tree representation of
algorithm B, . :

2.3. Algorithm B> [double binary search)

The first stage of algorithm B, essentially uses unary
s=arch (algorithm By) to determine m = Llgn j + 1 by
successivley evaluating F(2! — 1). We could, how. 2ver,
make v.e of 2igorithm By to find m by replacing every
occurrence of the expression F(j) in stage one of B,
with the expression F(2/ - 1). The cost of the second
stage of the resulting algorithm B, will be the same as
the second stage of By (thatis,m—1=|lgx 1), but the
cost of the first stage will be reduced fror~ Zj (i} =
m to Cg,(m) = 2L1g(m)] + 1, so the total cost of the
algorithm (substitutingm = |lgnl+ 1) is

Cp, (M) =Llgn)+2lg(lignl+ 1)1+ 1.

1
1
23
/ SN
SN L
AR
L

Fig. 1. Decision tre. representation of algorithin 3.

[ol]
GI

Volume S, number 3
2.4. Algorithm By, {k-nested binary search)

To synthesi-e algorithm B, from B, we replaced
a unary sear~a by a binary search. This same tecqi-
que could oe used to create a new algorithm 85 from
B,; we would use algorithm B; to determine
Lig(Lign | + 1) + 1 by rewriting F(?) in algorithm B,
to be F(2%~1_ 1); (algorithm B, uses a unary search
to find {lg(Llg n] + 1)} + 1). In general this technique
could be applied to algorithm B, _; to yield a new al-
gorithm B;.

To analyze algorithm By, we define ¥(n) recursively

by

P(n)=n,

and

i) = Ugl(n)i + 1.

We define L/(n} = l/(n) — 1 forj EN. It is easy to prove
by induciion that

INFORMAT!ON PROCESSING LETTERS

August 1976

Cp,(n) =L () +LA(m)+ .. + LYy +2Lk(my+1
2 Limy+LEmy+ 1.

1<igk

(1)
Our discussion of algorithm B, provides a basis for the
induction. We will not give a detailed forn of the in-
ductive part here but the spirit of that proof is that the
L¥(n)+ 1 in (1) represents the cost of a unary search
and the cost of the corresponding binary search is
2Lk*1(n) + 1. Since Cgy(n) = n=LO(n) + 1, (1) holds
forany k €N.

It is helpful to view the algorithms By, By, B,, ...
as a progression. To do this we have represented the
first few algorithms in fig. 2. Each box in the figure
corresponds to what might be thought of as a sub-
routine, and the tree structure represents the calling
hierarchy. Rounded boxes call further routines; rec-
tangular boxes represent basic operations. The left
“subroutine” of a round box is called before the *‘right”
subroutine.

By B
Find n by
unary search -,
Find Ll(n) = }1gnf+1 Find n %
by unary search binary search
B By
—
) Find n
Find n by Find n by

binary search

Find Ll(n))
'-7"
/

Fiad L2(n) by Find L(n)
unary search by binary search

binary search

(Find Ll(n))

f!’ind Lk'l'(n)?

Find L¥(n) by
unary search

Find 1" (n)
by binary search

Fig. 2. Succession vf algorithm By, By, B2, ..., Bg,....

14

Volume §, number 3
2.5. Algorithm U (iiie ultimate algorithm)

Now that we have at our disposal an infinite num-
ber of unbounded searching algorithms, which one
shall we use for a particular search? If we choose B,
for a fixed k we can fall into either of two traps: if k
is small and » is large, we are paying the high cost of
2L¥(n) when we could be paying only Lk (n) +
2L%*1(n), which is quite a significant difference for
some values of 7 and &. On the other hand, if & is
large and n is small, we could be using *“too sophisti-
cated” an algorithm and therefore paying a lot of
comparisons for very little information. These two
examples hint to us that we should choose & as a func-
tion of n.

We therefore propose that algorithm U consist of
two parts: the first stage will chcose an appropriate
value of k and the second stage will then use algorithm
By to solve the problem. The above two examples sug-
gest that to avoid both traps we should choose the
least k such that £X(n) is constant. In particular, we
propose to choose k = L*(n) = min j such that L/(n)
= 1. Since L is defined by /, it will be easier to work
with L*(n) = *(n) = min j such that /(n) = 2. By the
definition of #(n) we can see that I*(n) is the least
Jj € I such that g(j) = n where g is defined recursively
as

8(0)=2,

and

gi+1)=20_1

(Notice that L*(n) has behavior similar to Ig*(n).)

Thus the first stage of algorithm U will determine &
by testing F(g(0)), F(g(1)),. .., until Fg(k)) =Y,
and then use By to determine n.

The first stage of algorithm U will require ¥ +1 =
L*(n) + 1 evaluations of F to find L *(n). Our analysis
of algorithm B, tells us the cost of the second stage.
Thus the total cost of algorithm U is

Cym) =1 +L¥(m)] + [CBL.(n)(n)]

- S‘ . &
AN BORNVTONTON)
=4+L%)+ 2 Li(n).

1<i<l*(m) -1

INFORMATION PROCESSING LETTERS

August 1976

3. A lower bound

In this section we shaii prove a lower bound for the
cost function of any correct unbounded searching al-
gorithm which shows that algorithm U given in section
2 is very nearly optimal. We domonstrated ir: section 1
that any unbounded searching algorithm yields an en-
coding of the integers. For a given encoding of the in-
tegers, let f{n) represent the number of bits used to
represent tie integer n. By the mapping of search al-
gorithms to codes, any lower bound for f(#n) also is a
lower bound for the cost function Cy (1), for any cor-
rect unbounded search algorithm A4.

We saw in section 1 that the codes induced by
search algorithms are prefix codes, which implies
Kraft’s inequality (see [3]):
j>1 D <1 &
We shall presently show that {2) implies the following

theorem:
Theorem A: For infinitely many n,

fn)>ign+1g@Pn+ ...+ lgﬂg*”)n —2(1g*n)

Proof: Define, for positive integers / and n,
L2
k=28 (-1 -2,

L2) kil
ny =22 +1

and
K(n)=1g*n—1g*(ig"n) - 2.

The following facts are easy to verify:
Fact 1: K(n)=k;if ;;<n<n

lg(klﬂ)n; > 2k
lg(kl'ﬂ)n, <k t1t3.

Fact 2:

f dx = (In 2)% ig**+Vx.
))
x(lgx)(1g9x) ... (1g%x)

85

Vol:me 5, number 3

LemmaB: Let A = {nin;<n <ny,1=3,4,...}. Then
there exists iniinitely many n € A such that 2

> r(ign)(ig@n)... (ig&Mn).

Proof of Lemma B: Suppose the lemma is false. Then
there exists [, such that 2/ < n(lgn)(1g@n)

... (1g¥ V’»n) if ny<n < njfor some !> ly. This im-

- plies, for / > I,
oL o 1
je1 YO n<n<nj n(lg n)(lg(z)n)...(lg(K("“n)
n dx

> [— 2
,,fl x(lgx)(lga)x) ... (1g%0x)

=(in 2)1‘11g"‘”‘)xt i

= n:
>Cn2k@k -k -1-3)
= (21n 2%1(1 + O(1)), 3)
‘whete Facts 1 and 2 are used in the denvatlon of (3).
Since 2In2> 1, (3) impiies £ l/2f = oo, This

contradicts (2) and Lemma B is proved Thus, we
. have shown that for infinitely many n € 4,

; Sin)>ign+ lg(z)n +...+ lg(K(ra)+l)n

4 lgﬂg*”)n - h(n), 4)

. =lgn+lg(2)n+..
where
hm) =1

Observe that, for n. <n <}, lg("(")+2)n < lg n. There-
fore,

hin) <1g°n+1e(ig*n)+ ... +1g% & D (1g*)

kD, |y 08"m),

<21g*n for all sufficiently large n.)

" Theorem A follows from (4) and (5) immediately.
- (F.Chung and R.L. Graham have pointed out that
-Theorem A can be strengthened, for example, to

fm>ign+1gPn+. .
o+ Igﬁg*")n +1g@(g*n) + O()

for infinitely many n, To do this they employed a
theorem stating that the series

é

85

INFORMATION PROCESSING LETTERS

August 1976

1
n>1 n(lgn)(1g@n).. .(lg(]g*")n) (Ig*n)

is divergent. They point out that similar techniques
can be employed to add terms o:’

1gP1g* () +1gPg* () +. .

to their improved lower bound.)

4. Areas for further work

There are many ways in which the unbounded
search problem can be extended. To model a multi-
comparator system, one might consider unbounded
searching with primitive operations consisting of test-
ing k different values of F. Notice that the outcome of
such a test has k + 1 different possibilities and hence
can be described by lg(k + 1) bits. This problem is
similar t¢ Karp and Miranker’s generalization of find-
ing a maximum of a function [5] (see also Linn [4]).
We considered the cost of evaluating F to be indepen-
dent of the outcome of the evaluation; in certain ap
plications, however, it might be much more expensive
to have tested ({or example) a Y rather than an X
(perhaps in locating a breaking point of a system). in

., general, given costs x and y of evaluating F to X and

Y, what is the optimal algorithm to use? Knuth de-
scribes in [6, section 6.2.1] a fibonaccian search for
a finite ordered table. Is the corresponding unbounded
fibonaccian search interesting?

It was demonstrated in section 1 that every un-
bounded search strategy suggests a prefix encoding
of the integers. Indeed, Elias [1] has studied codes
that are isomorphic to each of the search strategies in
section 2, and Even and Rodeh [2] have studied a
code similar to aigorithm U. Conversely, does there
exist a search strategy corresponding to every prefix
code for the integers? Does the framework of un-
bounded searching provide any insight into problems
in informdtion theory? What are the implications of
the lower bound derived in section 3 to Elias’ work?

References

{1] P. Elias, Universal codework sets and representation of the
integers. IEEE Trns. on Information Theory IT-21 (1975)
194-203.

Volume 5, number 3 INFORMATION PROCESSING LETTERS Augusi 197§

[2] S. Even and M. Rodeh, Economical encodirg of commas Rep. Mo. &+ 2eiod Systems | ab., Stanford Electronics
between strings. TCrHiNION Techn. Rep. No. 54 (July Lab., Sianfora Umv. (Mav 1973).
1973), Haifa, Israel. [5] R.M. Karp and W.L. Mirankier, Parallel minimax search
[3] P.E. Gallager, Information Theory and Reliable Com- for a maximum. J. of Comh. Theory 4, pp. 19~35.
munication, (Wiley, New York, 1968). . {6] D.E. Knuth, The Art of Compu.er Propgramming, vol. 3
{4] J. Linn, General methods for parallel searching, Tech. (Sorting and Searching), (Addison-Wesley, 1975).
L]
$ b
.
]
»
b
‘ ¥
¢
. q
] ’ \

87

