
Volume 5, number 3 INFORMATIlaN PROCESSING LETTERS August 1976

JonLouisBENTLEY*
Depurtment of Computer Science, University of North Carolina,
Chupel Hill North Carolina 2 7.5 ,‘4 : ‘$A

and

hdrew GMhih YAO*
Depattr/rcnt of iUathematics, ,Massachussetts Institute if ‘I’echncdogy,
Cm&ridge, Massuchussetts 02339, USA

Received 14 November 1975, revised wsion remr-kcd 7 Yune IS176

Ordered table searching, optimal algorithms, analysis of algorithms, representations of integers.

1. Intro6luctloa .

Many search methods based on comparisons of keys
ale described by Knuth in [6, section 6.21. His work,

ever, deals exclusively with searching in a table of
(that is, searching in a bounded key space).

paper we will consider the problem of compiari-
rching in an unbounded key space.

e&act formulation of the problem to be
we define N+ to be the s?t of positive inte-

ify the function F:AV+ + {A-, Y) as

(

x for j<n,

Y forf>n,

a b an integer that imiquely def”mes 6;. The
abounded searching is the follc&ng: give
to determine n, using as primitive opera-

ns of fiti) to X for a sequence of
algorithm. That is, the algorithm
nique n such that F(n) = Y a4

testing different values of F(i). We ! by

-764X330, and by IBM Corporz&ion.

that n is the scllution to the unbounded searching prob
Ielm. For a given algorithm A let us define the cost
fii&:tion CA :N+ -*fl as CA(n) = m iff algorithm /i
uses m evaluations of F to determine that rt is the solu-
tion to the: unbounded search problem,.

It is easy to see an isomorphism between the prob
lem of unbounded searching and the problem of table
lookup in ati ordered table of infinite size. Given S =
s’,,Sz,SJ*.,. ,L 9 strictly increasing inl’mite sequence
of reals (Sk E R and Sk, :. > Sk for all k E N*), suppose
that we are asked to find the unique fist element in S
that is greater than or equal to a Fied z E R using as
a primit%% operation only the question *‘Is Si < z?”
for i E lb*. To solve this table lookup problem, use
I$) = X iff Si < z; the desired element of S is then
Sn where n is the solution to the isomorphic problem
of unbounded searching,

It is also easy to see that for any deterministic un-
bounded searr il algorithm A there is H corresponding
binary encoding of the integers, constructed as follows:
for every i E Al+, the codeword representing i is Si =

V2 . . .acA(,T, where am = 1 iff the 23th evaluation of
JF is Y when \; sing algorithm A to find i as the solution
!to the unbouttded search problem. Notice that the
length of the codeword Si representing i is CA(i).
clearly the se?. {Si} is a pre$.X set (i.e., Si is not a pre-
lx of Sj for j # i); if it were not a prefa set then al-

;g >rithm A would not be able to terrzW ‘2 ac+zdr&y

Volume 5, number 3 INFORMATION PROCESSING LETTERS Aiqpst !9?fi

for the i in violation of the prefix definition.
The problem of unbounded searching arises in

many diverse areas. Suppose that one wants to find
the zero of function G:fV+ + R that is known to
cross the x-axis only once; this can be viewed as an
unbounded searching problem if one ignores such
(possibly misleading) properties as the derivatives of
G. Testing a system for a breaking point might involve
an unbounded search; one knows that the system
functions with zero workload and wishes to find that
workload at which the system no longer fdncria- >.
Unbounded searching could be used in searching an
extremely large ordered table if one wanted to pay a
search cost proportional to the item’s distance from
the front of the table. We have already seen that every
unbounded search strategy yields a uniquely decipher-
able prefer encoding of the integers; therefore, good
search strategies can have important applications in in-
formation theory.

We investigate a number of algorithms for solving
the unbounded searching problem in section 2. In sec-
tion 3 we will show a lower botlnd for the cost func-
tion C,(n) for any unbounded searching algorithm A
that is atmost attained by one of the algorithms given
in section 2. Possib!e topics fat further work in this
area are mentioned in section 4.

2. Unbounded searching algorithms

In this section we will examine a number of algor-
ithms for unbounded searching.

2. I. Akotithm Bo (wary search)

The most straightforward algorithm for unbounded
searching is to test F(l), F(2), . . . , until F(H) = I’. It
is easy to see that the cost of this algorithm is C&,(n)
=n .

2.2. A&withm BI (binary search)

The next algorithm suggested is the standard
bounded binary search algorithm, uting the “gambler’s
stratew” of doubling successive guesses to provide the
upper bound needed for the binary search. More pre-

cisely, the first stage of the algorithm determines
m = I lg n j + 1 by successively evaluating fi2” - 1) for

r’= 1,2,... unti)Ff”” -1) = Y, ai which time we
how that 2”-” * 1 II PM ?” - 1. The becond stage tkien
uses a standaid bounded binary search OK !Lv :e: P - 1

elements to determine the exact value of N. The: fiist
stage will require m = [lg zi ./ f 1 evaluations of F and
the second stage will require lg 2m \ -1 vz -- 1 = 1 Ig II 1
evaluatiocs of F, SO the total cost is &, (n) = 21 lg n 1
+ 1. Pt is helpfb\ to view an unbounded search algorithm
as a decision t:ee in which the label i cn an int~nai node
represents :Le evdu&;Pion of F(i), a left (right) branch
corresponds to the cutcome of the evaluation being
Y(X), and external nodes represent solutions to the
problem. Fig. 1 is the decision tree representation of
algorithm B, .

2.3. Algorithm R:, #otrble bi:wary search)

The first stage of algorithm B, essentially uses unary
search (algorithm B, j to determine m = Llg n J + 1 by
successivley evaluating F(2’ - I). We could, hov, :ver,
make I*& of Ggorithm B, to find m by replacing every
occurrence of the expression F(j) in stage one of S,
with the expression flu’ -- 1). The cost of the second
stage of the resulting algorithm B, will be the same as
the second stage of B, (that is, m - 1 = I_lg n;i9 but the
cost of the first stage will be reduced fry= l ‘,(;:z) 2
m to CB I (mj = 2Llg(mj_/ + 1, so ths total cost of the
algorithm (substituting m = Llg n J f 1) is

C’$nj= l.lgn.J+2 Llg(Llgn_J+ QJ+ 1.

(7 1

Fig. 1. Decision tree: representation <jf algorithn 131.

83

INFORMATION PROCESSING LITTERS August 1976

2.4. Al’rithm l#h (k-nested binary search)

To syntheske algorithm B2 from BI we replaced
unary sear% by a binary search. This same t&A-

que could be used to create a new algorithm 83 from
l we w Duld use algorithm B, to determine
I&J {+ I) _J + 1 by rewriting I$!) in algorithm B,

t0beN.Z *‘-I - 1); (algorithm B2 uses a unary search
to fid &(Llg n J + 1)J + 1). In general this technique
could be applied to algorithm Bk_f to yield a II~W al-

rithni Bk.
To analyze algorithm Bk we define Y’(n) recursivety

by

PC 1 n en,

and

rl” (n) = Llg$(n)J + 1.

We define Lj(n 2: =: l$n) - 1 for j E N. It is easy to prove
by induction that

CBk(Nj = L l(n) + L $1) + . . .+ L k-1(tj) +2Lk(flj+ 1

= c Li(n)tLk(r,) t 1.
l<;i<k

Cl)

Our discussion of algorithm B, provides a basis for the
induction. We will not give a detailed forin of the in-
ductive part here but the spirit of that proof is that the
Lk(rz) t 1 in (1) represents the cost of a unary search
and the cost of the corresponding binary search is
2Lk+$z) + 1. Since C’,(n) = n = LO(n) + 1, (1) holds
for any k EN.

It is helpful to view the algorithms Bo, B, ,B2,. . .

~1s a progression. To do this we have represented the
first few algorithms in fig. 2. Each box in the figure
corresponds to what might be thought of as a sub-
routine, and the tree structure represents the calling
hierarchy. Rounded boxes call further routines; rec-
tangular boxes represent basic operations. The left
“subroutine” of a round box is called before the “right”
subroutiie.

Had n By
binary nearch

4

by binary aaareh

Fig. 2. Succession of algorithm Bo, B,, B2,. . . , Bk,

Volume 5, number 3 INFORMATION PROCESSING LETTERS August 1976

2.5. Algorithm 6’ &,e ultimate algoritlvn)

Now that we have at our disposal an infinite num-
ber of unbounded searching algorithms, which one
shall we use for a particular search? If we choose Bk
for a fixed k we can fall into either of two traps: if k
is small and 11 is large, we are paying the high cost of
@(n) when we could be paying only Lk(n) +
2Lk+l(n), which is quite a significant difference for
some values of n and k. On the other hand, if k is
large and 11 is small, we ;ould be using “too sophisti-
cated” an algorithm and therefore paying a iot of
comparisons for ver!’ little information. These two
examples hint to us that we should choose k as a func-
tion of n.

We therefore propose that algrxithm U consist of
two parts: the first stage will chclose an appropriate
value of k and the second stage will then use algorithm
Bk to solve the problem. The above two examples sug-
gest that to avoid both traps we should choose the
least k such that Lk(n) is constant. In particular, we
propose to choose k = L*(u) = mini such that U’(n)
= 1. Since L is defined by I, it will be easier to work
with L*(n) = f(n) = mini such that Z$r) = 2. By the
defmition of Z$l) we can see that I*(n) is the least
j E I such that g(j) 3b n where g is defined recursively
as

SlO) = 2,

and

&+1)=2!=1.

(Notice that L*(n) has behavior similar to lg*(n).)
Thus the first stage of algorithm U will determine k
by testing mO)), F(9(1)), . . . , until F(g(k)) = Y,
and then use Bk to determine n.

The first stage of algorithm U will require k + 1 =

L*(n) + 1 evaluations of F to find L*(n). Our analysis
of algorithm Bk tells us the cost of the second stage.
Thus the total cost of algorithm U is

C&I) = [1 + L*(n)] f [C Bp(J”)l

= 4 + I3.7) + ‘c
lGi<f, *(n) -1

L’(n).

3. A lower botlna

In this section we shaii prove a lower bound for the
cost function of any correct unbounded searching al-
gorithm which shows that algorithm I/ given in section
2 is very nearly optimal. We domonstrated in section 1
that any unbounded searching algorithm yields an en-
coding of the integers. For a given encoding of the in-
tegers, let An) repreSent the number of hits used to
represent t:re integer n. By the mapping of search al-
gorithms to codes, any lower bound for f(n) also is a
lower bound for the cost function C#‘(f2), for any cor-
rect unbounded search algorithm A.

We saw in section 1 that the codes induced by
search algorithms are prefix codes, which implies
Kraft’s inequality (see [3]):

(2)

We shall presently show that (2) implies the following
theoren:
Theorem A: For infinitely many n,

An) > Igr2 f lg(‘+r + . . . + lg(~*“+z - 2(lg* n)

Proof: Define, for positive integers I and n,

.2 i
k, = 22”

1
--I -2,

.
22

:
rt/ = + 1,

t1; = 22
.’
.2 k1+1+2

1
and

K(n) = lg*n -lg*(lg’“n) - 2.

The following facts are easy to verify:
Fact 1: K(u)=klifnl<nGn;

p+ 1) ,,; > pr

lg(ki+l)r+ < k, + I f 3.

Fact 2:

s dx --
x(lgx) (lg(2)x) . . . (lg%)

= (In 2)” ig(k+*)x.

85

Vd~mct 5, number 3 INFQRMATION PROCESSING LETTERS August 1976

= {n]n@zGz;,l=3,4,. ..}.Then
itfly many n E A such that 2f@)

c 1
> z I

1 5 nl< n<nS n(lg n) (lg~2~*) . . . (lg(K(n”n)

ni
J

dx - _.--_ ----
nl x(lgx)(lg%) l . . (@Gj

i (in 2~f)g@++ll, .t: = ni = “i
>(ln2~~(~l-kl--~- 3)

r (21n 2YZ(l+ O(l)), (3)

e Facts 1 and 2 are used in the derivation of (3).
nce 2 In 2 > 1, (3) impiies $ 1/2P = 00. This

cloortrradkts (2) and Lemma B is proved. Thus, we
awn that for infinitely many n E A,

Rn) > Ig n + lgt2b -t . . . + Is’K(“‘+ ‘In

= lgn + lge2), + . . . + lg@+% - k(g),

re

h(n) 3 Ig(kb)‘2)n +
’ . . . 4” j*‘lg*“)n .

Observe that, for n: < n < ;.l;, lg(k(n)+2)n G 1g”n. There
fore,

h(n) 4 lg% +Ii9,(lg*n) + . . . + lg@*@*n)+lg* n)

< 2lg*n for all suff’iciently lage n. (5)

l’lmxm A follows from (4) and (5) immediately.
(F. Chung and R.L. Graham have pointed out that

Theorem A can be strengthened, for example, to

f(n) > ig n i- lg”n +
.

l =9 b

+ ig**“‘n + Ig(2)(lg’n) t O(1)

for inEnitely many M, To do this they imployed a
theorem stating thirt the series +

i

c I
-v

na 1 /z(lg n>(lg($. . . (lg@*“)ni(lg*n) ,

is divergent. They point out that similar techniques
can be employed to add terms 0:‘

lgt2)lg*(n) + lgt3)lg*(n) + . .

to their improved lower bound.)

4. Areas for further wark

There are many ways in which the unbounded
search probiem can be extended. To model a multi-
comparator system, one might consider unbounded
searching with primitive operations consisting of test-
ing k different values of F. Notice that the outcome of
such a test has k: + 1 different possibilities and hence
can be described by lg(k + 1) bits. This problem is
similar tc Karp and k&ranker’s generalization of flnd-
ing a maximum of a function [S] (see also Linn [4]).
We considered the cost of evaluating F to be indepen-
dent of the outcome of the evaluation; in certain c3p
plications, however, it might be much more expensive
to have tested (for example) a Y rather than an X
(perhaps in locating a breaking point of a system). In

Ageneral, given costs x and y of evaluating F to X and
I’, what is the optimal algorithm to use? Knuth de-
scribes in [6, section 6.2.11 a flbon,accian search for
a finite ordered table. Is the corresponding unbounded
fibonaccian search interesting?

It was demonstrated in section 1 that every un-
bounded search strategy suggests a prefii encoding
of the integers. Indeed, Elias [l] has studied codes
that are isomorphic to each of the search strategies in
section 2, and Even and Rodeh [2] have studied a
code similar to algorithm U. Conversely, does there
exist a search strategy corresponding to every prefix
code for the integers? Does the framework of un-
bounded searching provide any insight into problems

ion theory? What are the implications of I)
the lower bound derived in section 3 to Elias’ work?

References

(l] P. Elias, Universal codework sets and representation >f the
ns. on Information Thetory IT-21 (1975)

194-203.

Volume 5, number 3 INFORMAT’ION PROCESSING LETTERS August 8976

[2] S. Even and M. Rodeh, Economical encodifig of commas
between strings. IKHNiOilJ Techn. Rep. No. 54 (July
1973), Haifa, Israel.

[31 P.E. Gallager, Information Theory and Reliable Com-
munication, (Wiley, New York, 1968).

141 J. Linn, General methods for parallel searchiig, Tech.

Rep. No. 6 1 jb: I d ‘iy41*~1s f ab., Stanford Electronics
Lab., ~imtorcl LJII~V. (Maf# 1973).

[S] R.M. Karp and W.L. Mirankier, Parallel minimax search
for a maximum. 1. of Comb. Theory 4, pp. 19-35.

[6) D.E. Knuth, The Art of Computer ProErramming, vol. 3
(Sorting and SearcIting), (Addison-Wesley, 1975).

