AN ALMOST OPTIMAL ALGORITHM FOR UNBOUNDED SEARCHING

Jon Louis BENTLEY*
Department of Computer Science, University of North Carolina,
Chapel Hill North Carolina 275:4:SA
and
Andrew Chi-Chih YAO ${ }^{\ddagger}$
Lepartr,ent of Mathematics, Massachussetts Institute of Technology, Cambridge, Massachussetts 021 39, USA

Received 14 November 1975, revised vercion reirived 7 June 19176

Ordered table searching, optimal algorithms, analysis of algorithms, representations of integers.

1. Introduction

Many search methods based on comparisons of keys are described by Knuth in [6, section 6.2]. His work, however, deals exclusively with searching in a table of finite size (that is, searching in a bounded key space). In this paper we will consider the problem of comparison searching in an unbounded key space.

To give an exact formulation of the problem to be attacked we define N^{+}to be the $s s^{t}$ of positive integers and specify the function $F: N^{+} \rightarrow\{X, Y\}$ as
$F(j)=\left\{\begin{array}{l}X \text { for } j<n, \\ Y \text { for } j \geqslant n,\end{array}\right.$
where n is an integer that inniquely defines F. The problem of unbounded searching is the follewing: give an algorithm to determine n, using as primitive operations only comparisons of $F(i)$ to X for a sequence of $t \in N^{+}$chosen by the algorithm. That is, the algorithm wust determine the unique n such that $F(n)=Y$ and $F(n-1)=X$ by testing different values of $F(i)$. We : y

[^0]that n is the solution to the unbounded searching problem. For a given algorithm A let us define the cost furcicion $C_{A}: N^{+} \rightarrow N^{+}$as $C_{A}(n)=m$ iff algorithm A uses m evaluations of F to determine that n is the solution to the unbounded search problem.

It is easy to see an isomorphism between the problem of unbounded searching and the problem of table lookup in an ordered table of infinite size. Given $S=$ $S_{1}, S_{2} ; S_{3}, \ldots$, a strictly increasing infinite sequence of reals ($S_{k} \in R$ and $S_{k+1}>S_{k}$ for all $k \in N^{+}$), suppose that we are asked to find the unique first element in S that is greater than or equal to a fixed $z \in R$ using as a primitive operation only the question "Is $S_{i}<z$?" for $i \in N^{+}$. To solve this table lookup problem, use $F(i)=X$ iff $S_{i}<z$; the desired element of S is then S_{n} where n is the solution to the isomorphic problem of unbounded searching,

It is also easy to see that for any deterministic unbounded sear in algorithm A there is a corresponding binary encoding of the integers, constructed as follows: for every $i \in / N^{+}$, the codeword representing i is $S_{i}=$ $a_{1} a_{2} \ldots a_{C_{A}(i)}$, where $a_{m}=1$ iff the inth evaluation of F is Y when using algorithm A to find i as the solution to the unbounded search problem. Notice that the length of the sodeword S_{i} representing i is $C_{A}(i)$. Clearly the set $\left\{S_{i}\right\}$ is a prefix set (i.e., S_{i} is not a prex of S_{j} for $j \neq i$; if it were not a prefix set then alg rithm A would not be able to termin- te accurately
for the i in violation of the prefix definition.
The problem of unbounded searching arises in many diverse areas. Suppose that one wants to find the zero of function $G: N^{+} \rightarrow R$ that is known tc cross the x-axis only once; this can be viewed as an unbounded searching problem if one ignores such (possibly misleading) properties as the derivatives of G. Testing a system for a breaking point might involve an unbounded search; one knows that the system functions with zero workload and wishes to find that workload at which the system no longer funcriUnbounded searching could be used in searching an extremely large ordered table if one wanted to pay a search cost proportional to the item's distance from the front of the table. We have already seen that every unbounded search strategy yields a uniquely decipherable prefix encoding of the integers; therefore, good search strategies can have important applications in information theory.

We investigate a number of algorithms for solving the unbounded searching problem in section 2 . In section 3 we will show a lower bound for the cost function $C_{A}(n)$ for any unbounded searching algorithm A that is almost attained by one of the algorithms given in section 2. Possible topics for further work in this area are mentioned in section 4.

2. Unbounded searching algorithms

In this section we will examine a number of algorithms for unbounded searching.

2.1. Algorithm B_{0} (unary search)

The most straightforward algorithm for unbounded searching is to test $F(1), F(2), \ldots$, until $F(n)=Y$. It is easy to see that the cost of this algoritinm is $C_{B_{0}}(n)$ $=n$.

2.2. Algorithm B_{1} (binary search)

The next algorithm suggested is the standard bounded binary search algorithm, using the "gambler's strategy" of doubling successive guesses to provide the upper bound needed for the binary search. More precisely, the first stage of the algorithm determines $m=\lfloor\lg n\rfloor+1$ by successively evaluating $F\left(2^{i}-1\right)$ for
$i=1,2, \ldots$ until $F\left({ }^{\wedge n}-1\right)=Y$, ai which time we know that $2^{m-1}<n \div 2^{m} \cdots i$. The second stage then uses a standard bounded binary search on hiose $2^{m i n-1}$ elements to determine the exact value of n. The first stage will require $m=\lfloor\lg n\rfloor+1$ evaluations of F and the second stage will sequire $\lg 2^{m} 1=n-1=\mid \lg n$ । evaluations of F, so the total cost is $C_{B_{1}}(n)=2|\lg n|$ +1 . It is helpful to view an unbounded search algorithm as a decision tiee in which the label i en an internai node represents the evaluation of $F(i)$, a left (right) branch corresponds to the cutcome of the evaluation being $Y(X)$, and external nodes represent solutions to the problem. Fig. 1 is the decision tree representation of algorithm B_{1}.

2.3. Algorithm B_{2} 'double binary search)

The first stage of algorithm B_{1} essentially uses unary saarch (algorithm B_{0}) to determine $m=\lfloor\lg n\rfloor+1$ by successivley evaluating $F\left(2^{i}-1\right)$. We could, hov. ever, make יoe of rigorithm B_{1} to find m by replacing every occurrence of the expression $F(j)$ in stage one of B_{1} with the expression $F\left(2^{j}-1\right)$. The cost of the second stage of the resulting algorithm B_{2} will be the same as the second stage of B_{1} (that is, $m-1=\left\lfloor\lg n_{j}\right)$, but the cost of the first stage will be reduced from $\sigma_{b_{0}}(m)=$ m tn $C_{B_{1}}(m)=2\lfloor\lg (m)\rfloor+1$, so the total cost of the algorithm (substituting $m=\lfloor\lg n\rfloor+1$) is
$C_{B_{2}}(n)=\lfloor\lg n\rfloor+2\lfloor\lg (\lfloor\lg n\rfloor+1)\rfloor+1$.

Fig. 1. Decision tree representation of algorithin B_{1}.

2.4. Algorithm B_{z} (k-nested binary search)

To synthesi e algorithm B_{2} from B_{1} we replaced a unary searcil by a binary search. This same terhnique could oe used to create a new algorithm B_{3} from B_{2}; we would use algorithm B_{1} to determine
$\lfloor\lg (\lg n!+1)\rfloor+1$ by rewriting $F(i)$ in algorithm B_{1} to be $F\left(2^{2 i-1}-1\right)$; (algorithm B_{2} uses a unary search to find $\lfloor\lg (\lfloor\lg n\rfloor+1)\rfloor+1)$. In general this technique could be ajpplied to algorithm B_{k-1} to yield a new algorithn! B_{k}.

To analyze algorithm B_{k} we define $y^{\prime}(n)$ recursively by
$\rho^{0}(n)=n$,
and
$f^{j+i}(n)=\left\lfloor\lg l^{\prime}(n)!+1\right.$.
We define $L^{j}(n)=l^{j}(n)-1$ for $j \in N$. It is easy to prove by induction that

$$
\begin{align*}
C_{B_{k}}(n) & =L^{1}(n)+L^{2}(n)+\ldots+L^{k-1}(n)+2 L^{k}(n)+1 \\
& =\sum_{1 \leqslant i \leqslant k} L^{i}(n)+L^{k}(n)+1 . \tag{1}
\end{align*}
$$

Our discussion of algorithm B_{1} provides a basis for the induction. We will not give a detailed forin of the inductive part here but the spirit of that proof is that the $L^{k}(n)+1$ in (1) represents the cost of a unary search and the cost of the corresponding binary search is $2 L^{k+1}(n)+1$. Since $C_{B_{0}}(n)=n=L^{0}(n)+1$, (1) holds for any $k \in N$.

It is helpful to view the algorithms $B_{0}, B_{1}, B_{2}, \ldots$ as a progression. To do this we have represented the first few algorithms in fig. 2. Each box in the figure corresponds to what might be thought of as a subroutine, and the tree structure represents the calling hierarchy. Rounded boxes call further routines; rectangular boxes represent basic operations. The left "subroutine" of a round box is called before the "right" subroutine.

Fig. 2. Succession of algorithm $B_{0}, B_{1}, B_{2}, \ldots, B_{k}, \ldots$

2.5. Algorithm U(íiie ultimate algorithm)

Now that we have at our disposal an infinite number of unbounded searching algorithms, which one shall we use for a particular search? If we choose B_{k} for a fixed k we can fall into either of two traps: if k is small and n is large, we are paying the high cost of $2 J^{k}(n)$ when we could be paying only $L^{k}(n)+$ $2 L^{k+1}(n)$, which is quite a significant difference for some values of n and k. On the other hand, if k is large and n is small, we could be using "too sophisticated" an algorithm and therefore paying a lot of comparisons for very little information. These two examples hint to us that we should choose k as a function of n.

We therefore propose that algorithm U consist of two parts: the first stage will chcose an appropriate value of k and the second stage will then use algorithm B_{k} to solve the problem. The above two examples suggest that to avoid both traps we should choose the least k such that $L^{k}(n)$ is constant. In particular, we propose to choose $k=L^{*}(n)=\min j$ such that $L^{j}(n)$ $=1$. Since L is defined by l, it will be easier to work with $L^{*}(n)=l^{*}(n)=\min j$ such that $l^{j}(n)=2$. By the definition of $l^{j}(n)$ we can see that $l^{*}(n)$ is the least $j \in I$ such that $g(j) \geqslant n$ where g is defined recursively as
$g(0)=2$,
and
$g(j+1)=2^{g(j)}-1$.
(Notice that $L^{*}(n)$ has behavior similar to $\lg ^{*}(n)$.) Thus the first stage of algorithm U will determine k by testing $F(g(0)), F(g(1)), \ldots$, until $F(g(k))=Y$, and then use B_{k} to determine n.

The first stage of algorithm U will require $k+1=$ $L^{*}(n)+1$ evaluations of F to find $L^{*}(n)$. Our analysis of algorithm B_{k} tells us the cost of the second stage. Thus the total cost of algorithm U is

$$
\begin{aligned}
C_{U}(n) & =\left[1+L^{*}(n)\right]+\left[C_{B_{L}{ }^{*}(n)}(n)\right] \\
& =\left[1+L^{*}(n)\right]+\left(\sum_{1 \leqslant i \leqslant L^{*}(n)} L^{i}(n)+L^{L^{*}(n)}(n)+1\right) \\
& =4+L^{*}(n)+\sum_{1 \leqslant i \leqslant L^{*}(n)-1} L^{i}(n) .
\end{aligned}
$$

3. A lower bound

In this section we shaii prove a lower bound for the cost function of any correct unbounded searching algorithm which shows that algorithm U given in section 2 is very nearly optimal. We domonstrated in section 1 that any unbounded searching algorithm yields an encoding of the integers. For a given encoding of the integers, let $f(n)$ represent the number of bits used to represent the integer n. By the mapping of search algorithms to codes, any lower bound for $f(n)$ also is a lower bound for the cost function $C_{A}(n)$, for any correct unbounded search algorithm A.

We saw in section 1 that the codes induced by search algorithms are prefix codes, which implies Kraft's inequality (see [3]):
$\sum_{j \geqslant 1} \frac{1}{2^{f(j)}} \leqslant 1$.
We shall presently show that (2) implies the following theorem:
Theorem A: For infinitely many n,
$f(n)>\lg n+\lg ^{(2)} n+\ldots+\lg ^{\left(\lg ^{*} n\right)} n-2\left(\lg ^{*} n\right)$
Proof: Define, for positive integers l and n,
$\left.k_{l}=2^{2 \cdot .^{2}}\right\}^{l}-l-2$,
$\left.n_{l}=2^{2 \cdot \cdot^{?}}\right\}^{k_{l}++1+1}+1$,
$\left.n_{l}^{\prime}=2^{2 \cdot \cdot^{2}}\right\}^{k_{l}+l+2}$
and
$K(n)=\lg ^{*} n-\lg ^{*}\left(\lg ^{*} n\right)-2$.
The following facts are easy to verify:
Fact 1: $K(n)=k_{l}$ if $n_{l} \leqslant n \leqslant n_{l}^{\prime}$

$$
\begin{aligned}
& \lg ^{\left(k_{l}+1\right)} n_{l}^{\prime}>2^{k_{l}} \\
& \lg ^{\left(k_{l}+1\right)} n_{l}<k_{l}+l+3
\end{aligned}
$$

Fact 2:

$$
\int \frac{\mathrm{d} x}{x(\lg x)\left(\lg ^{(2)} x\right) \ldots\left(\lg ^{(k)} x\right)}=(\ln 2)^{k} \operatorname{ig}^{(k+1)} x
$$

Lemma B: Let $A=\left\{n \mid n_{l} \leqslant n \leqslant n_{l}^{\prime}, l=3,4, \ldots\right\}$. Then there exists ininisisly many $n \in A$ such that $2^{f(n)}$ $>n(\lg n)\left(\mathrm{g}^{(2)} n\right) \ldots\left(\mathrm{lg}^{(K(n))} n\right)$.
Proof of Lemmá B: Suppose the lemma is false. Then there exists l_{0} such that $2^{f(n)} \leqslant n(\lg n)\left(\lg ^{(2)} n\right)$ $\ldots\left(\lg (X(n))_{n}\right)$ if $n_{l} \leqslant n \leqslant n_{l}^{\prime}$ for some $l \geqslant l_{0}$. This implies, for $!\geqslant l_{0}$,
$\sum_{j=1}^{\infty} \frac{1}{2^{f(n)}}>\sum_{n l<n<n_{i}^{\prime}} \frac{1}{n(\lg n)\left(\lg ^{(2)} n\right) \ldots\left(\lg ^{\left(K\left(n^{\prime}\right)\right.} n\right)}$

$$
\begin{align*}
& \geqslant \int_{n_{l}}^{n_{l}^{\prime}} \frac{d x}{x(\lg x)\left(\lg ^{(2)} x\right) \ldots\left(\lg ^{\left(k_{1}\right)} x\right)} \\
& =(\ln 2)^{\left.k_{l} \lg ^{(k+1)} x\right|^{x=n_{l}^{\prime}}} \begin{array}{l}
x=n_{l}
\end{array} \\
& >(\ln 2)^{k_{l} \cdot\left(2^{k_{l}}-k_{l}-l-3\right)} \\
& =(2 \ln 2)^{k_{l}(1+O(1)),} \tag{3}
\end{align*}
$$

where Facts 1 and 2 are used in the derivation of (3).
Since $2 \ln 2>1$, (3) impiies $\sum_{j=1}^{\infty} 1 / 2^{f()}=\infty$. This contradicts (2) and Lemma B is proved. Thus, we have shown that for infinitely many $n \in A$,

$$
\begin{align*}
f(n) & >\lg n+\lg ^{(2)} n+\ldots+\lg ^{(K(r))+1)} n \\
& =\lg n+\lg ^{(2)} n+\ldots+\lg ^{\left(\lg ^{*} n\right)_{n}} n-h(n), \tag{4}
\end{align*}
$$

where
$h(n)=\lg (k(n)+2) n+\ldots+\lg ^{\left(\lg ^{*} n\right)} n$.
Observe that, for $n: \leqslant n \leqslant i l^{\prime}, \lg ^{(k(n)+2)} n \leqslant \lg ^{*} n$. Therefore,
$h(n) \leqslant \lg ^{*} n+\lg _{0}\left(\lg ^{*} n\right)+\ldots+\lg ^{\left(g^{*}\left(g^{*} n\right)\right.}\left(\lg ^{*} n\right)$
$<2 \lg ^{*} n$ for all sufficiently large n.
Theorem A follows from (4) and (5) immediately.
(F. Chung and R.L. Graham have pointed out that Theorem A can be strengthened, for example, to

$$
\begin{aligned}
f(n) & >\lg n+\lg ^{(2)} n+\ldots, \\
& +\lg ^{\left(\lg ^{*} n\right)_{n}} n+\lg ^{(2)}\left(\lg ^{*} n\right)+O(1)
\end{aligned}
$$

for infinitely many n, To do this they employed a theorem stating that the series
$\sum_{n \geqslant 1} \frac{1}{n(\lg n)\left(\lg ^{(2)} n\right) \ldots\left(\lg ^{\left(\lg ^{*} n\right)} n\right)\left(\lg ^{*} n\right)}$
is divergent. They point out that similar techniques can be employed to add terms o:
$\lg ^{(2)} \lg ^{*}(n)+\lg { }^{(3)} \mathrm{lg}^{*}(n)+\ldots$
to their improved lower bound.)

4. Areas for further work

There are many ways in which the unbounded search problem can be extended. To model a multicomparator system, one might consider unbounded searching with primitive operations consisting of testing k different values of F. Notice that the outcome of such a test has $k+1$ different possibilities and hence can be described by $\lg (k+1)$ bits. This problem is similar to Kazp and Miranker's generalization of finding a maximum of a function [5] (see also Linn [4]). We considered the cost of evaluating F to be independent of the outcome of the evaluation; in certain applications, however, it might be much more expensive to have tested (for example) a Y rather than an X (perhaps in locating a breaking point of a system). In general, given costs x and y of evaluating F to X and Y, what is the optimal algorithm to use? Knuth describes in [6, section 6.2.1] a fibonaccian search for a finite ordered table. Is the corresponding unbounded fibonaccian search interesting?

It was demonstrated in section 1 that every unbounded search strategy suggests a prefix encoding of the integers. Indeed, Elias [1] has studied codes that are isomorphic to each of the search strategies in section 2, and Even and Rodeh [2] have studied a code similar to aigorithm U. Conversely, does there exist a search strategy corresponding to every prefix code for the integers? Does the framework oi unbounded searching provide any insight into problems in information theory? What are the implications of the lower bound derived in section 3 to Elias' work?

References

[1] P. Elias, Universal codework sets and representation of the integers. IEEE Trîns. on Information Theory IT-21 (1975) 194-203.
[2] S. Even and M. Rodeh, Economical encoding of commas between strings. TicíiNiON Techn. Rep. No. 54 (July 197j), Haifa, Israel.
[3] P.E. Gallager, Information Theory and Reliable Communication, (Wiley, New York, 1968).
[4] J. Linn, General methods for parallel searching, Tech.
 Lab., Sianford Umv. (Mav 1973).
[5] R.M. Karp and W.L. Mirankier, Parallel minimax search for a maximum. J. of Comb. Theory 4, pp. 19-35.
[6] D.E. Knuth, The Art of Compuier Programming, vol. 3 (Sorting and Searching), (Addison-Wesley, 1975).

[^0]: * Wort apported in part by U.S. Energy Research and Deve' י. ment Administration under contract $\mathrm{E}(403) 515$ and in par Wy a National Science Foundation Graduate Felliciwship.
 - This wort dune while this author was visiting Stanford University; partialiy supported by NSF grant MCS-72-03752 A03, ONS contract N00014-76-C-0330, and by IBM Corporation.

