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We introduce an online version of the multiselection problem, in which q selection queries 
are requested on an unsorted array of n elements. We provide the first online algorithm 
that is 1-competitive with the offline algorithm proposed by Kaligosi et al. [14] in terms 
of comparison complexity. Our algorithm also supports online search queries efficiently. 
We then extend our algorithm to the dynamic setting, while retaining online functionality, 
by supporting arbitrary insertions and deletions on the array. Assuming that the insertion 
of an element is immediately preceded by a search for that element, our dynamic online 
algorithm performs an optimal number of comparisons, up to lower order terms and an 
additive O (n) term.
For the external memory model, we describe the first online multiselection algorithm that 
is O (1)-competitive. This result improves upon the work of Sibeyn [20] when q = ω(m1−ε)

for any fixed positive constant ε, where m is the number of blocks that can be stored in 
main memory. We also extend it to support searches, insertions, and deletions of elements 
efficiently.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The multiselection problem asks for elements of rank ri from the sequence R = {r1, r2, . . . , rq} on an unsorted array A
of size n drawn from an ordered universe of elements. We define B(Sq) as the information-theoretic lower bound on 
the number of comparisons required (in the comparison model) to answer q selection queries, where Sq = {s1, s2, . . . , sq}
denotes the queries ordered by rank. This lower bound can be obtained by taking the number of comparisons needed to 
sort the entire array, and then subtracting the comparisons needed to sort the query gaps. (Please see Section 2.2 for more 
details on this bound.) The online multiselection problem asks for elements of rank ri , where the sequence R is given one 
element at a time. The lower bound B(Sq) also applies to search queries in the offline model, as well as to both types of 
queries in the online model.

✩ A preliminary version of these results have appeared in the proceedings of ESA-2013 [2] and WALCOM-2015 [3].
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The dynamic online multiselection problem supports select, search, insert and delete operations, described below:

• select(s), returns the position of the sth smallest element in A;
• search(p), returns the position of the largest element y ≤ p from A;
• insert(p), inserts p into A; and
• delete(s), deletes the sth smallest element from A.

1.1. Previous work

Offline Multiselection. Several papers have analyzed the offline multiselection problem, but all of these approaches re-
quired the queries to be known in advance. Dobkin and Munro [8] gave a deterministic algorithm for this prob-
lem using 3B(Sq) + O (n) comparisons. Prodinger [18] proved the expected comparisons with random pivot selec-
tion is at most 2B(Sq) ln 2 + O (n). More recently, Kaligosi et al. [14] described a randomized algorithm that uses 
B(Sq) + O (n) expected comparisons, along with a deterministic algorithm that performs B(Sq) + o(B(Sq) + O (n) com-
parisons. Jiménez and Martínez [13] later improved the bound on the number of comparisons in the expected case 
to B(Sq) + n + o(n), when q = o(

√
n). Cardinal et al. [7] generalized the problem to partial order production (of 

which multiselection is a special case), and they used multiselection as a subroutine after an initial preprocessing 
phase.

In the external memory model [1] with internal memory M and block size B , we use N to denote the number of 
elements in A. We also define n = N/B and m = M/B in external memory. Sibeyn [20] solved external multiselection using 
n + nq/m1−ε I/Os, where ε is any fixed positive constant. The first term comes from creating a static index structure using 
n I/Os, and the remaining nq/m1−ε comes from answering q searches using that index. In addition, this result requires the 
condition that B = �(logm n).4 When q = m, Sibeyn’s multiselection algorithm takes O (nmε) I/Os, whereas the optimum is 
�(n) I/Os. In fact, his bounds are ω(Bm(Sq)), for any q = ω(m1−ε), where Bm(Sq) is the lower bound on the number of I/Os 
required. (See Section 6.1 for the definition of Bm(Sq).)

Online Multiselection. Motwani and Raghavan [17] introduced the static online multiselection problem, where selection and 
search queries arrive one at a time, as a “Deferred Data Structure” for sorting. (In other words, the input array is sorted 
over time, as queries are answered.) Barbay et al. [2] described a simpler solution with an improved analysis that matched 
the offline results of Kaligosi et al. [14]. Ching et al. [21] extended Motwani and Raghavan’s solution [17] to support inser-
tion and deletion, with optimal amortized complexity in the worst case over instances with a fixed number q of queries. 
Our solution is simpler, and our analysis finer, in the worst case over instances where the query positions are fixed. To 
the best of our knowledge, there are no existing dynamic results for the multiselection problem in the external memory 
model.

1.2. Our results

For the dynamic online multiselection problem in internal memory, we describe the first algorithm that supports 
a sequence R of q selection, search, insert, and delete operations, of which q′ are search, insert, and delete, using 
B(Sq) + o(B(Sq) + O (n + q′ log n) comparisons.5 For the online multiselection problem (when q′ = 0), our algorithm is 
1-competitive with the offline algorithm of Kaligosi et al. [14] in the number of comparisons performed. In addition, we 
obtain a randomized result that matches (i.e., is 1-competitive with) the performance of Kaligosi et al. [14], while only 
using O ((log n)O (1)) sampled elements instead of O (n3/4) elements.

For the external memory model [1], we describe an external online multiselection algorithm on an unsorted array A of 
size N , using O (Bm(Sq)) I/Os, where Bm(Sq) is a lower bound on the number of I/Os required to support the given queries. 
This result improves upon the work of Sibeyn [20] when q = ω(m1−ε) for any fixed positive constant ε . We also extend it 
to support search, insert, and delete operations using O (Bm(Sq) + q logB N) I/Os.

1.3. Preliminaries

Given an unsorted array A of length n, the median of A is the element x such that �n/2� elements in A are no greater 
than x. It is well-known that the median can be computed in O (n) comparisons, and many [11,5,19] have analyzed the 
exact constants involved. Dor and Zwick [9] provided the best known constant, yielding 2.942n + o(n) comparisons.

With a linear time median-finding algorithm, one can obtain a linear time algorithm to select the element of a specified 
rank r in A. Dobkin and Munro [8] considered the extension of this selection problem to the multiselection problem, and 
gave an algorithm that requires an asymptotically optimal number of comparisons. As mentioned earlier, Kaligosi et al. [14]

4 We use the notation logb a to refer to the base b logarithm of a. By default, we let b = 2. We also define lna as the base e logarithm of a.
5 For the dynamic portion of the result, we make the (mild) assumption that the insertion of an element is immediately preceded by a search for that 

element. In that case, our dynamic online algorithm performs an optimal number of comparisons, up to lower order terms and an additive O (n) term.
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reduced the number of comparisons to B+ o(B) + O (n), where B is a lower bound on the number of comparisons required 
to support the queries on an unsorted array of length n.

Since our online algorithm (presented in Section 4) is a modification of the deterministic algorithm from Kaligosi et 
al. [14], we briefly describe it here. They begin by creating runs, which are sorted sequences from A of length roughly � =
log(B/n). More precisely, there are at most � runs of size less than �, no two of which share the same length. All the 
remaining runs are of length between � and 2�. Then, they compute the median m of the medians of these runs and 
partition them based on m. After partitioning, they recurse on the two sets of runs, sending select queries to the appropriate 
side of the recursion. In each recursive subproblem, they merge short runs of the same size optimally until all but � of the 
runs are again of length between � and 2�.

External Memory Model. In the external memory model [1], we consider only two memory levels: the internal memory of 
size M , and the (unbounded) disk memory, which operates by reading and writing data in blocks of size B . We refer to 
the number of items of the input by N . For convenience, we define n = N/B and m = M/B as the number of blocks of 
input and memory, respectively. We make the reasonable assumption that 1 ≤ B ≤ M/2, or in words, internal memory 
consists of at least two blocks. In this model, we only measure the number of blocks transferred between disk and inter-
nal memory. The cache-oblivious model measures performance the same way, but the algorithm has no knowledge of M
or B .

To achieve the optimal sorting bound of SortIO(N) = �(n logm n) in this setting, it is necessary to make the tall cache
assumption [6]: M = �(B1+ε), for some constant ε > 0, and we will make this assumption for the remainder of this article. 
In keeping with the spirit of the external memory model, our external memory results do not include the RAM complexity; 
typically, such algorithms have undesirable bounds. For a better RAM complexity, we invite the reader to adapt the results 
from Sections 2–4.

1.4. Outline

In the next section, we present a simple algorithm for the online multiselection problem, and introduce some terminol-
ogy to describe its analysis. In Section 3, we show that the simple algorithm has a constant competitive ratio. Section 4
describes modifications to the simple algorithm, and shows that the modified algorithm is optimal up to lower order terms. 
Our main results are contained in this section, and they form the foundation of the remaining results in the paper. Sec-
tion 5 extends these results to support online updates to array A. Finally, in Section 6, we describe how to adapt our optimal 
algorithm to perform well in the external memory model.

2. A simple online algorithm

In this section, we will describe a simple version of our online algorithm that supports selection and search queries 
on an array A of n (unsorted) elements. For simplicity, in this article we assume that all the elements in A are distinct. 
(Standard techniques can be used to remove this restriction.) We will refer to an element in position i from A as a pivot
if A[1 . . . i − 1] < A[i] < A[i + 1 . . .n]. Usually, one must rearrange the array A to satisfy the previous restriction. We refer 
to such a rearrangement as partitioning. Throughout the article, we will explore various pivot selection and partitioning 
techniques. Hence, the algorithms presented in this section do not specify how this partitioning is done. We will address its 
implementation as we need it.

2.1. Algorithm description and correctness

Auxiliary Data Structures and Preprocessing. Throughout all the algorithms in this article, we will create and maintain a bitvec-
tor V of length n, where V[i] = 1 if and only if it is a pivot, and V[i] = 0 otherwise. We will initialize V and set each bit 
to 0. Finally, we will find the minimum and maximum elements in array A, swap them into A[1] and A[n] respectively, and 
set V[1] = V[n] = 1. Both the search and select algorithms use a subroutine called partition, which will change throughout 
the article. In the simple algorithm described below, partition will use the last element in an interval as the pivot, and will 
partition accordingly.

Selection. The operation A.select(s) returns the sth smallest element from A. (In other words, it returns A[s] as if A were 
sorted.) The pseudocode for A.select(s) is given in Algorithm 1, but we briefly describe it here.

If V[s] = 1, return A[s], and we are done. Otherwise, find the smallest unsorted interval containing the sth element. 
(The smallest unsorted interval is A[a + 1 . . .b − 1], where V[a] = V[b] = 1 but V[a + 1 . . .b − 1] are all 0.) Finally, we 
use a variant of the quickselect [11] algorithm (Algorithm 2) on A[a + 1 . . .b − 1], marking pivots found along the way 
in V.
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Algorithm 1: A.select(s)

Input: array A and bitvector V of size n; 1 ≤ s ≤ n
Output: sth element (in sorted order) from A

if V[s] == 1 then return A[s];
// Interval boundaries of sth 

element.
a = b = s;
while V[a] �= 1 do a = a − 1;
while V[b] �= 1 do b = b + 1;

s = A.qselect(a + 1,b − 1, s);

return A[s];

Algorithm 2: A.qselect(l, r, s)

Input: array A and bitvector V of size n; 
1 ≤ l, r, s ≤ n

Output: sth element (in sorted order) from A

if l ≥ r then V[s] = 1; return s;

// A.partition partitions using a
// pivot, and returns its position.
pivotpos = A.partition(l, r);
V[pivotpos] = 1;

if s == pivotpos then return pivotpos;
else if s < pivotpos then

return A.qselect(l,pivotpos − 1, s);

else return A.qselect(pivotpos + 1, r, s);

Search. The operation A.search(p) returns the number of elements from A with value ≤ p.6 The pseudocode for A.search(p)

is given in Algorithm 3, but we describe it briefly here.
We begin by performing a binary search on A as if A were sorted.7 Let j be the location in A that was found from the 

search. (If the endpoints of the interval being compared were out of order, stop the search prematurely and let j instead 
be the midpoint of that interval.) If A[ j] = p and V[ j] = 1, return j and we are done. Otherwise, we have identified the 
unsorted interval in A that might contain p (if p ∈ A). Finally, use a variant of the quickselect [11] algorithm (Algorithm 4) 
on this interval, marking pivots found along the way in V. (We decide which side to recurse on, based on the value of p, 
instead of an array position.) This gives us the value rank, where A[rank] = p, as desired.

Algorithm 3: A.search(p)

Input: array A and bitvector V of size n; query p
Output: number of elements from A with value ≤ p

if p < A[1] then return 0;
if p ≥ A[n] then return n;

// Find interval that may contain p.
a = 2; b = n;
while a + 1 < b do

mid = (a + b)/2;
if p < A[mid] then b = mid − 1;
else if p > A[mid] then a = mid + 1;
else a = b = mid;

while V[a] �= 1 do a = a − 1;
while V[b] �= 1 do b = b + 1;

if p == A[a] then return a;
if p == A[b] then return b;
return A.qsearch(a + 1,b − 1, p);

Algorithm 4: A.qsearch(l, r, p)

Input: array A and bitvector V of size n; 
1 ≤ l, r ≤ n; p is the search value

Output: number of elements from A with value ≤ p

rank = l;
if l ≥ r then

if p > A[rank] then rank = rank + 1;
V[rank] = 1;
return rank;

// A.partition partitions using a
// pivot, and returns its position.
pivotpos = A.partition(l, r);
V[pivotpos] = 1;

if p == A[pivotpos] then return pivotpos;
else if p < A[pivotpos] then

return A.qsearch(l,pivotpos − 1, p);

else return A.qsearch(pivotpos + 1, r, p);

Proof of correctness. The selection and search procedures described above maintain the following invariant throughout both 
the algorithms.

Invariant. For any index a where 1 ≤ a ≤ n, if V[a] = 1, then A[a] is a pivot. (In other words, A[a] is in its correct position 
in sorted order in A if V[a] = 1.)

By construction, the invariant holds after the preprocessing step. Also, each time the selection algorithm partitions, 
it creates a pivot that satisfies the invariant. The correctness of the selection algorithm follows immediately from these 
observations, since A.select(s) only returns when V[s] = 1.

6 The search operation is essentially the same as rank on the set of elements stored in the array A. We call it search to avoid confusion with the rank
operation defined on bitvectors in Section 5.

7 This idea is similar to one described by Biedl et al. [4], in which they also search an unsorted array. However, they do not maintain interval boundaries, 
which is a crucial aspect of our implementation (and analysis).
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To prove the correctness of the search procedure, it is enough to prove the claim that the binary search on the (unsorted) 
array A always returns a position i that is contained in an interval [a, b] such that V[a] = V[b] = 1 and A[a] ≤ p ≤ A[b], and 
for any a < c < b, V[c] = 0. From this index i, the search algorithm scans the bitvector V both ways to find the interval 
[a, b]. The correctness of the remaining part of the algorithm follows along the same lines as the correctness proof for the 
select algorithm, since the procedure A.qselect is essentially the same as A.qsearch, only that A.qselect recurses based on a 
position s whereas A.qsearch recurses based on the value p.

The claim follows from the following observations: Suppose the search value p belongs to an interval [a, b] such that 
V[a] = V[b] = 1 and A[a] ≤ p ≤ A[b], and for any a < c < b, V[c] = 0. Suppose the binary search algorithm probes a location 
i during the search. Then if i < a, the binary search will continue to the right of i since, by the invariant, A[i] < A[a] ≤ p. 
Similarly, if i > b, then the search will continue to the left of i since p ≤ A[b] < A[i] (again, by the invariant). Finally, 
when a ≤ i ≤ b, the search may proceed either to the left or to the right of i. It is possible that the search may probe a 
location outside the interval [a, b] after probing some locations inside the interval, but it will ultimately terminate inside 
the interval.

Analysis for a Simple Pivot Method. As queries arrive, our algorithm performs the same steps that quicksort would perform, 
although not necessarily in the same order. If we receive enough queries over time, we will have performed a quicksort on 
array A, since our recursive subproblems mimic those from quicksort. Furthermore, we have assumed, up to this point, that 
the last element in an interval is used as the pivot, and a simple linear-time partitioning algorithm is used. In the rest of 
this article, we will explore different pivot and partitioning strategies, which produce various complexity results for online 
multiselection (and multisearch). For example, if we employ a linear-time median-finding algorithm, we can easily modify 
the (selection) algorithm from [17] to achieve the following proposition:

Proposition 1. The number of comparisons used by the simple online algorithm to perform q select and search queries on an (unsorted) 
array A with n elements is at most O (n log q + q log n).

The proof of Proposition 1 is an easy consequence of a more detailed and precise analysis to follow. Next, we define 
terminology for our improved analysis.

2.2. Terminology

For now, we assume that all queries are selection queries, since search queries are basically selection queries with a 
binary search preprocessing phase taking O (logn) comparisons. In all future results in this article, we will explicitly bound 
the binary search cost incurred.

Query and Pivot Sets. Let R denote a sequence of q selection queries, ordered by time of arrival. Let St = {s1, s2, . . . , st}
denote the first t queries from R , sorted by position. We also include s0 = 0 and st+1 = n in St for convenience of notation, 
since we find the minimum and maximum elements from A during preprocessing. Let Pt = {pi} denote the set of k pivots 
found by the algorithm when processing St , again sorted by position. Note that St ⊆ Pt , p1 = 1, pk = n, and V[pi] = 1 for 
all 1 ≤ i ≤ k.

Pivot Tree, Recursion Depth, and Intervals. The pivots chosen by the algorithm form a binary tree structure over time, de-
fined as the pivot tree T .8 Pivot pi is the parent of pivot p j if, after pi was used to partition an interval, p j was the pivot 
used to partition either the right or left half of that interval. The root pivot is the pivot used to partition the “first” inter-
val A[2..n − 1], which was created in the preprocessing phase. The recursion depth, d(pi), of a pivot pi is the length of the 
path in the pivot tree from pi to the root pivot. All leaves in the pivot tree T are also selection queries, but it may be the 
case that a selection query is not a leaf. Each pivot in the pivot tree was used to partition an interval in A. Let I(pi) denote 
the interval partitioned by pi (which may be empty), and let |I(pi)| denote its length. Intervals form a binary tree induced 
by their pivots. If pi is an ancestor of p j then I(p j) ⊂ I(pi). The recursion depth of an array element is the recursion 
depth of the smallest interval containing that element, which in turn is the recursion depth of the interval’s corresponding 
pivot.

Gaps and Entropy. We define the query gap �
St
i = si+1 − si and the pivot gap �

Pt
i = pi+1 − pi . Observe that each pivot gap 

is contained in a smallest interval I(p). One endpoint of this gap is the pivot p of interval I(p), and the other matches one 
of the endpoints of interval I(p). By telescoping, we have 

∑
i �

St
i = ∑

j �
Pt
j = n − 1.

We will analyze the complexity of our algorithms based on the number of element comparisons incurred. The worst-case 
lower bound to sort an array of n elements is log n! = n log n −n/ ln 2 +(log n)/2 + O (1) comparisons. (See [15, Section 5.3.1].)

We obtain the lower bound B(St) on the number of comparisons needed to answer the selection queries in St by taking 
the number of comparisons to sort the entire array, and subtracting the comparisons needed to sort the query gaps. Using 
Stirling’s approximation, we have

8 Intuitively, a pivot tree corresponds to a recursion tree, since each node represents one recursive call made during the quickselect algorithm [11].
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B(St) = logn! −
t∑

i=0

log
(
�

St
i

)
!

= n log n −
t∑

i=0

(
�

St
i

)
log

(
�

St
i

)
− O (n)

=
t∑

i=0

(
�

St
i

)
log

(
n/

(
�

St
i

))
− O (n).

Note that B(Sq) ≤ n log q: this upper bound is met when the queries are evenly spaced over the input array A. We can 
strengthen Proposition 1 to show the improved bound in Proposition 2. As before, Proposition 2 is subsumed by later 
results, so we do not prove it here.

Proposition 2. The number of comparisons used by the simple online algorithm to perform a sequence R of q select and search queries 
on an (unsorted) array A of n elements is at most O (B(Sq) + q log n).

We define the notation y x = x ↑↑ y = xxx...
x︸ ︷︷ ︸

y times

. We also let log(i) x = log log log . . . log x︸ ︷︷ ︸
i times

. Now we can define the following 

fact, which we will use throughout the article.

Fact 1. For all ε > 0, there exists a constant cε such that for all integers i > j > 0 and x ≥ 2 ↑↑ (i − 1), log(i) x < ε log( j) x + cε .

Proof. It suffices to show that log(2) x < ε log(1) x + cε , since one can utilize the following two observations to produce the 
claimed result for any i > j > 0 and x ≥ 2 ↑↑ (i − 1):

1. log(i+1) x < log(i) x, and
2. log(i) x < ε log( j) x + cε =⇒ log(i+1) x < ε log( j+1) x + cε .

Now we prove the result for log(2) x < ε log(1) x + cε . Let x ≥ 2 ↑↑ 1 = 2. Since limx→∞(log log x)/(log x) = 0, there exists 
a kε > 2 such that for all x ≥ kε , we know that (log log x)/(log x) < ε . Also, in the interval [2, kε ], the continuous func-
tion log log x − ε log x is bounded. Choosing cε = log log kε , which is a positive constant, finishes the proof. �
3. Analysis of the simple algorithm

In this section, we improve the analysis written in Proposition 2. The final result is stated in Theorem 1 with a fixed 
constant of 4 in the deterministic case. To achieve the main result of the article, we need a different pivot selection and 
partitioning method, which we describe in detail in Section 4.

3.1. A lemma on sorting entropy

Pivot Selection Methods. We say that a pivot selection method is good for the constant c with 1/2 ≤ c < 1 if, for all pairs of 
pivots pi and p j where pi is an ancestor of p j in the pivot tree, then

|I(p j)| ≤ |I(pi)| · cd(p j)−d(pi)+O (1).

For example, if the median is always chosen as the pivot, we have c = 1/2 and the O (1) term is in fact zero. The pivot 
selection method of Kaligosi et al. [14, Lemma 8] is good with c = 15/16.

Lemma 1. If the pivot selection method is good as defined above, then B(Pt) = B(St) + O (n).

Proof. Consider any two consecutive (in terms of rank) selection queries s and s′ , and let � = s′ − s be the gap between 
them. Let P� = (pl, pl+1, . . . , pr) be the pivots in this gap, where pl = s and pr = s′ . Recall that St is the set of t queries 
being processed, and Pt is the set of k pivots generated by processing set St . The lemma follows from the claim that 
B(P�) = O (�), since

B(Pt) − B(St) =
⎛
⎝n logn −

k∑
j=0

�
Pt
j log�

Pt
j

⎞
⎠ −

(
n log n −

t∑
i=0

�
St
i log�

St
i

)

=
t∑

�
St
i log�

St
i −

k∑
�

Pt
j log�

Pt
j

i=0 j=0
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=
t∑

i=0

⎛
⎜⎜⎝�

St
i log�

St
i −

∑
p j ∈ P

�
St
i

�
Pt
j log �

Pt
j

⎞
⎟⎟⎠

=
t∑

i=0

B
(

P
�

St
i

)
=

t∑
i=0

O
(
�

St
i

)
= O (n).

We now proceed to prove our claim.
There must be a unique pivot in P� of minimal recursion depth. Any pair of pivots with the same recursion depth must 

have a common ancestor, and this ancestor must lie between the pair. Moreover, this ancestor is in P� , and it has smaller 
recursion depth than the pair. Let pm denote the pivot of minimum depth. (Note that pm = s or pm = s′ are possible.) As 
before, define the gaps �i = pi+1 − pi for l ≤ i < r. We split the gap � at pm . We address the right side first, and the 
argument for the left side is similar.

The sequence d(pm), d(pm+1), . . . , d(pr−1) must be strictly increasing. Otherwise, one of these pivots would be a leaf in 
the pivot tree, and hence a query, which is a contradiction.

Now consider I(pm+1). This interval must have pm as its left endpoint, due to its smaller recursion depth. Its right 
endpoint must have recursion depth shallower than pm+1, and hence it contains all pivots up to and including pr . For 
m + 1 < i < r, this means that I(pi) ⊂ I(pm+1) and �i = pi+1 − pi < |I(pi)|. Additionally, � ≤ |I(pm−1)| + |I(pm+1)|.

For brevity, we define Dl = ∑m−1
i=l �i and Dr = ∑r−1

i=m �i . Observe that � = Dl + Dr , and further, Dl ≤ |I(pm−1)| and 
Dr ≤ |I(pm+1)|. We also define αi = Dr/�i for m ≤ i < r. Then we can write

Dr log Dr −
r−1∑
i=m

�i log �i =
r−1∑
i=m

�i log(Dr/�i) = Dr

r−1∑
i=m

logαi

αi
.

This quantity can be bounded from above with a lower bound on αi . Write Dr = b · |I(pm+1)| for a constant b with 0 < b ≤ 1. 
So we have

αi = Dr

�i
>

Dr

|I(pi)| = b · |I(pm+1)|
|I(pi)| .

Since we are using a good pivot selection method, we get the bound

|I(pi)| ≤ |I(pm+1)| · cd(pi)−d(pm+1)+O (1).

Plugging in gives us αi > b · c−d(pi)+d(pm+1)+O (1) ≥ b · cm+1−i+O (1) . The last inequality uses the fact that the recursion depths 
must be strictly increasing. Then

r−1∑
i=m

logαi

αi
≤

r−1−m∑
j=0

log(bc j+O (1))

bc j+O (1)
= O (1).

And thus

Dr log Dr −
r−1∑
i=m

�i log �i = O (Dr).

A similar argument on the left side gives

Dl log Dl −
m−1∑
i=0

�i log �i = O (Dl).

Finally, we show that � log � − Dr log Dr − Dl log Dl = O (�) to complete the proof. Since we have chosen a good pivot, 
for some constant 0 < α < 1, let Dr = α� and Dl = (1 − α)�. Then we have

� log� − Dr log Dr − Dl log Dl = � log� − α� logα� − (1 − α)� log(1 − α)�

= � log� − (α� log � + α� logα) − ((1 − α)� log � + (1 − α)� log(1 − α))

= O (�),

which finishes the proof. �
Theorem 1 (Online multiselection). Given an (unsorted) array A of n elements and a sequence R of q online selection and search 
queries of which q′ are search, we provide
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• a randomized online algorithm that performs the queries using B(Sq) + O (n + q′ logn) expected number of comparisons, and
• a deterministic online algorithm that performs the queries using at most 4B(Sq) + O (n + q′ log n) comparisons.

Proof. For the randomized algorithm, we use the randomized pivot selection algorithm of Kaligosi et al. [14, Section 3, 
Lemma 2].) This algorithm gives a good pivot selection method with c = 1/2 + o(1), and the time to choose the pivot is 
O (�3/4) on an interval of length � (which is subsumed in the O (n) term). Each element in an interval participates in 
one comparison per partition operation. Thus, the total number of comparisons is expected to be the sum of the recursion 
depths of all elements in the array. This total is easily shown to be B(Pq), and by Lemma 1, the proof is complete.

For the deterministic algorithm, we use the median of each interval as the pivot; the median-finding algorithm of Dor 
and Zwick [9] gives this to us in under 3� comparisons. We add another comparison per element for the partitioning step. 
Overall, for each array element, we require comparisons equal to four times the element’s recursion depth. This is at most 
4B(Pq), which is no more than 4B(Sq) + O (n) from Lemma 1, and the result follows. �

In Section 3.2, we describe how to get a good pivot selection method with just 6(log n)3(log �)2 samples, instead of 
O (�3/4) samples, which improves upon the work of Kaligosi et al. [14].

3.2. Reducing the number of samples used by the randomized algorithm

Our pivot-choosing method is simple and randomized. We choose 2m elements at random from an interval of size �, 
sort them (or use a median-finding algorithm) to find the median, and use that median as our pivot. We wish to set values 
for m and t such that three events happen:

• At least 2t elements are chosen in an interval of size 2�/ log � about the median of the interval.
• Between m − t and m + t elements are chosen less than the median.
• Between m − t and m + t elements are chosen larger than the median.

If we can show that all events happen with probability 1 − O (1/n2), then we end up with the median of our 2m elements 
being a pivot at position 1/2(1 + O (1/ log �)), which is a good pivot. The last two events are mirror images of one another, 
and so have the same probability of occurring.

First Event. This event is the simplest of the three to estimate. A randomly chosen element fails to land in the middle interval 
with probability 1 − 2/ log � = exp[−2/ log �(1 + o(1))]. If we choose at least (1.1) log � log n elements, all fail to land in 
this middle interval with probability (1 − 2/ log �)(1.1) log � log n = exp[−(2.2) log n(1 + o(1))] = O (1/n2). Since we need 2t
elements in the interval, it suffices for 2m ≥ (2.2)t log � log n, or m ≥ (1.1)t log� log n.

Second (and third) Event. We need to bound the sum of the first k binomial coefficients to achieve our result. The following 
bound and proof are attributed to Lovász [16].

Lemma 2. (See [16].) Let 0 ≤ k < m and define c = ( 2m
k+1

)
/
(2m

m

)
. Then

k∑
i=0

(
2m

i

)
<

c

2
· 22m.

Proof. Write k + 1 = m − t . Define

A =
m−t−1∑

i=0

(
2m

i

)

B =
m∑

i=m−t

(
2m

i

)

By the definition of c we have(
2m

m − t

)
= c

(
2m

m

)

and, because the growth rate of one binomial coefficient to the next slows as we approach 
(2m

m

)
, we have(

2m
)

< c

(
2m

)

m − t − 1 m − 1
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and thus(
2m

m − t − j

)
< c

(
2m

m − j

)
for 0 ≤ j ≤ m − t .

Thus, it follows that the sum of any t consecutive binomial coefficients is less than c times the sum of the next t
coefficients as long as we stay on the left-hand side of Pascal’s triangle. Hence A < cB + c2 B + c3 B + · · · < c

1−c B . We also 
know that A + B ≤ 22m−1. Combining these we get

A <
c

1 − c
B ≤ c

c − 1

(
22m−1 − A

)
.

Solving for A completes the proof. �
We then bound( 2m

m−t

)
(2m

m

) ≤ e−t2/(m+t).

This can be derived from Stirling’s formula and Taylor series estimates for the exponential and logarithm functions. We then 
obtain that

Lemma 3. Let 0 ≤ t < m. Then

m−t−1∑
i=0

(
2m

i

)
< 22m−1 · e−t2/(m+t).

Since choosing an element from an interval at random and observing if it falls before or after the median is an event 
with probability 1/2, the event of choosing 2m elements and having less than m − t fall below the median occurs with 
probability at most

2−2m
m−t−1∑

i=0

(
2m

i

)
.

This is bounded by (1/2) exp[−t2/(m + t)] by Lemma 3. Thus, the probability there are between m − t and m + t elements 
below the median is at least 1 − exp[−t2/(m + t)] by the symmetry of Pascal’s triangle. To obtain 1 − O (1/n2) we need 
t2/(m + t) > 2 log n, or t ≥ √

2m log n(1 + o(1)). (Here we assume that t = o(m).)
Using our lower bound for m in terms of t above, we conclude that m = 6(log n)3(log �)2 and t = 4(log n)2 log� meet 

our needs.

Theorem 2. For any integer n, suppose we are given an array of � elements, such that �/(log�)2 ≥ 6(log n)3 and � ≤ n. With 
probability at least 1 − O (1/n2), if we sample 6(logn)3(log �)2 of the � elements uniformly at random, then the median of the 
sample falls in position �/2 ± �/ log � in the original array.

4. Optimal online multiselection

In this section, we prove our central theorem, Theorem 3, which forms the foundation for the remaining results in this 
article. Our bounds match those of the offline algorithm of Kaligosi et al. [14] when q′ = 0 (i.e., when there are no search 
queries). In other words, we provide the first 1-competitive online multiselection algorithm. The main difference between 
the simple algorithm from Theorem 1 and the optimal online algorithm from Theorem 3 is that the latter uses runs to find 
a good pivot choice and partition efficiently. Kaligosi [14] also finds these runs, but their algorithm is offline.

Theorem 3 (Optimal online multiselection). Given an (unsorted) array A of n elements, we provide a deterministic algorithm that 
supports a sequence R of q online selection and search queries, of which q′ are search, using at most B(Sq)(1 + o(1)) + O (n +q′ log n)

comparisons in the worst case.

We explain the proof of Theorem 3 in three main steps. In Section 4.1, we explain our algorithm and describe how it is 
different from the algorithm in [14]. We then bound the number of comparisons from merging by B(Sq)(1 +o(1)) + O (n) in 
Section 4.2, and in Section 4.3, we bound the number of comparisons from pivot finding and partitioning by o(B(Sq)) + O (n). 
Combining these results, we arrive at the result of Theorem 3.
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4.1. Algorithm description

We briefly describe the deterministic algorithm from Kaligosi et al. [14] to facilitate in understanding the key differences 
between our new online algorithm and their offline algorithm. They begin by creating runs, which are sorted sequences 
from A of length roughly � = log(B/n). More precisely, there are at most � runs of size less than �, no two of which share 
the same length. All the remaining runs are of length between � and 2�. Then, they compute the median m of the medians 
of these runs and partition the runs based on m. After partitioning, they recurse on the two sets of runs, sending select
queries to the appropriate side of the recursion. In each recursive subproblem, they merge short runs of the same size 
optimally until all but � of the runs are again of length between � and 2�.

We make the following modifications to the deterministic algorithm of Kaligosi et al. [14]:

• The queries are processed online, that is, one at a time, from R without knowing which queries will follow. To do this, 
we maintain the bitvector V as described in Section 2.

• We support q′ search queries in addition to selection queries; in the analysis, we treat them as selection queries and 
pay an extra O (q′ log n) comparisons to account for the binary search to find the (unsorted) interval corresponding to 
each query (as in Algorithm 3).

• Since we don’t know all of R at the start, we cannot know the value of B(Sq) in advance. Therefore, we cannot preset 
a value for � as in Kaligosi et al. [14]. Instead, we set � locally in an interval I(p) to 1 + �lg(d(p) + 1)�. Thus, � starts 
at 1 at the root of the pivot tree T , and since we use only good pivots, d(p) = O (lgn). (Also, � = log log n + O (1) in the 
worst case.) We keep track of the recursion depth of pivots, from which it is easy to compute the recursion depth of an 
interval. Also observe that � can increase by at most one when moving down one recursion level during a selection.

• We use a second bitvector W to identify the endpoints of runs within each interval that has not yet been partitioned.

The selection algorithm to perform a selection query is as follows:

• As described earlier in this article, we use bitvector V to identify the interval from which to begin processing. The 
minimum and maximum are found in preprocessing.

• If the current interval has length less than 4�2, we sort the interval to complete the query (setting all elements as 
pivots). The cost for this case is bounded by Lemma 7.

• As in Kaligosi et al. [14], we compute the value of � for the current interval, merge runs so that there is at most one 
run of each length less than �, and then use medians of those runs to compute a median-of-medians to use as a pivot. 
We then partition each run by using binary search on the median-of-medians.

We can borrow much of the analysis done in [14]. We cannot use their work wholesale, because we don’t know B in 
advance. For this reason, we cannot define � as they have, and their algorithm depends heavily on its use. To finish the 
proof of our theorem, we show how to modify their techniques and analysis to handle this complication.

4.2. Merging

Kaligosi et al. [14, Lemmas 5–10] count the comparisons resulting from merging. Lemmas 5, 6, and 7 do not depend on 
the value of � and so we can use them in our analysis. Lemma 8 shows that the median-of-medians built on runs is a good 
pivot selection method. Although the proof clearly uses the value of �, its validity does not depend on how large � is; only 
that there are at least 4�2 items in the interval, which also holds for our algorithm. Lemmas 9 and 10 (from Kaligosi et 
al. [14]) together will bound the number of comparisons by B(Sq)(1 +o(1)) + O (n) if we can prove Lemma 4, which bounds 
the information content of runs in intervals that are not yet partitioned.

Lemma 4. Let a run r of length |r| be a sorted sequence of elements from A in a gap �
Pt
i . Then, for the pivot set Pt with k pivots,

k∑
i=0

∑
r∈�

Pt
i

|r| lg |r| = o(B(St)) + O (n).

Proof. In a gap δ of size �, � = O (log d) where d the recursion depth of the elements in the gap. This gives ∑
r∈δ |r| log |r| ≤ � log(2l) = O (� log log d), since each run has size at most 2�. Because we use a good pivot selection 

method, we know that the recursion depth of every element in the gap is O (log(n/�)). Thus, 
∑k

i=0
∑

r∈�
Pt
i

|r| log |r| ≤∑k
i=0 |�Pt

i | log log log(n/|�Pt
i |). Recall that B(St) = B(Pt) + O (n) = ∑k

i=0 |�Pt
i | log(n/|�Pt

i |) + O (n). Using Fact 1, the proof 
is complete. �



J. Barbay et al. / Journal of Discrete Algorithms 36 (2016) 3–17 13
4.3. Pivot finding and partitioning

Now we prove that the cost of computing medians and performing partition requires at most o(B(Sq)) + O (n) compar-
isons. The algorithm computes the median m of medians of each run at a node v in the pivot tree T . Then, it partitions 
each run based on m. We bound the number of comparisons incurred at each node v with more than 4�2 elements in 
Lemmas 5 and 6. We bound the comparison cost for all nodes with fewer elements in Lemma 7.

Terminology. Let d be the current depth of the pivot tree T (defined in Section 2.2), and let the root of T have depth d = 0. 
In tree T , each node v is associated with an interval I(pv ) corresponding to some pivot pv . We define �v = |I(pv )| as the 
number of elements at node v in T .

Recall that � = 1 + �log(d + 1)�, and that a run is a sorted sequence of elements from A. We define a short run as a run 
of length less than �, and a long run as having a length of � or more. Let βn be the number of comparisons required to 
compute the exact median for n (unsorted) elements, where β is a constant less than three [9]. Let rs

v be the number of 
short runs at node v , and let rl

v be the number of long runs.

Lemma 5. The number of comparisons required to find the median m of medians and partition all runs at m for any node v in the pivot 
tree T is at most β(� − 1) + � log � + β(�v/�) + (�v/�) log(2�).

Proof. We compute the cost (in comparisons) for finding the median m of medians. For the rs
v ≤ � − 1 short runs, we need 

at most β(� − 1) comparisons per node. For the rl
v ≤ �v/� long runs, we need at most β(�v/�).

Now we compute the cost for partitioning each run based on m. We perform binary search on each run. For short runs, 
this requires at most 

∑�−1
i=1 log i ≤ � log � comparisons per node. For long runs, we need at most (�v /�) log(2�) comparisons 

per node. �
Since our value of � changes at each level of the recursion tree, we will sum the costs from Lemma 5 by level. The 

overall cost in comparisons at level d is at most

2dβ� + 2d� log � + (n/�)β + (n/�) log(2�).

We can now prove the following lemma.

Lemma 6. The number of comparisons required to find the median of medians and partition over all nodes v with at least 4�2 elements 
in the pivot tree T is at most o(B(St)) + O (n).

Proof. For all levels of the pivot tree T up to level d ≤ log(B(Pt)/n), the cost is at most

log(B(Pt )/n)∑
i=1

2i�(β + log �) + (n/�)(β + log(2�)).

Since � = �log(d + 1)� + 1, the first term of the summation is bounded by

O ((B(Pt)/n) log log(B(Pt)/n) · log log log(B(Pt)/n)) = o (B(Pt)) .

The second term can be easily upper-bounded by

O

(
n log(B(Pt)/n) · log log log(B(Pt)/n)

log log(B(Pt)/n)

)
= o (B(Pt)) .

Using Lemma 1, the above two bounds are o(B(St)) + O (n).
For each level d with log(B(Pt)/n) < d ≤ log log n + O (1), we need to bound the remaining cost. It is easy to bound each 

node v ’s cost by o(�v ), but this is not sufficient—though we have shown that the total number of comparisons for merging 
is B(St) + O (n), the number of elements in nodes with �v ≥ 4�2 could be ω(B(St)).

We bound the overall cost as follows, using the result of Lemma 5. Since node v has �v > 4�2 elements, we can rewrite 
the bounds as O (�v/� log(2�)). Recall that � = log d + O (1) = log(O (log(n/�v ))) = log log(n/�v) + O (1), since we use a 
good pivot selection method. Summing over all nodes, we get 

∑
v (�v/�) log(2�) ≤ ∑

v �v log(2�) = o (B(Pt)) + O (n), using 
Fact 1 and recalling that B(Pt) = ∑

v �v log(n/�v). Finally, using Lemma 1, we arrive at the claimed bound for queries. �
Now we show that the comparison cost for all nodes v where �v ≤ 4�2 is at most o(B(St)) + O (n).

Lemma 7. For nodes v in the pivot tree T where �v ≤ 4�2 , the total cost in comparisons for all operations is at most o(B(St)) + O (n).
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Proof. We observe that nodes with no more than 4�2 elements do not incur any cost in comparisons for median finding 
and partitioning, unless there is (at least) one associated query within the node. Hence, we focus on nodes with at least 
one query.

Let z = (log log n)2 log log log n + O (1). We sort the elements of any node v with �v ≤ 4�2 elements using O (z) compar-
isons, since � ≤ log log n + O (1). We set each element as a pivot. The total comparison cost over all such nodes is no more 
than O (tz), where t is the number of queries we have answered so far. If t < n/z, then the above cost is O (n).

Otherwise, t ≥ n/z. Then, we know that B(Pt) ≥ (n/z) log(n/z), by Jensen’s inequality. (In words, this represents the sort 
cost of n/z adjacent queries.) Thus, tz = o(B(Pt)). Using Lemma 1, we know that B(Pt) = B(St) + O (n), thus proving the 
lemma. �
5. Optimal online dynamic multiselection

In this section, we extend our results for the case of the static array by allowing insertions and deletions in the array, 
while still supporting selection queries. We are originally given the (unsorted) array A. To support insert and delete effi-
ciently, we maintain newly-inserted elements in a separate data structure, and mark deleted elements in A. These insert and 
delete operations are occasionally merged to make the array A up-to-date. Let A′ denote the current array with length n′ . 
We support the following update operations:

• insert(a), which inserts a into A′ , and;
• delete(i), which deletes the ith sorted entry from A′ .

5.1. Preliminaries

Our solution uses the dynamic bitvector of Hon et al. [12], which supports the following operations on a dynamic bitvec-
tor V:

• The rankb(i) operation returns the number of b bits up to the ith position in V.
• The selectb(i) operation returns the position in V of the ith b bit.
• The insertb(i) operation inserts bit b in the ith position.
• The delete(i) operation deletes the bit in the ith position.
• The flip(i) operation flips the bit in the ith position.

One can determine the ith bit of V by computing rank1(i) − rank1(i − 1). (For convenience, we assume that rankb(−1) =
0.) For the case of maintaining a dynamic bit vector, the result of Hon et al. [12, Theorem 1] can be re-stated as follows:

Lemma 8. (See [12].) Given a bitvector V of length n, there exists a data structure that takes n + o(n) bits and supports rankb and 
selectb in O (logt n) time, and insert, delete and flip in O (t) time, for any t where (logn)O (1) ≤ t ≤ n. This structure assumes access to 
a precomputed table of size nε , for any fixed positive constant ε .

All the pivots (and their positions) generated during select, search, insert, and delete operations on array A are maintained 
using a bitvector V as in Section 4. In addition, we also maintain two bitvectors, each of length n′: (i) an insert bitvector I
such that I[i] = 1 if and only if A′[i] is newly inserted, and (ii) a delete bitvector D such that if D[i] = 1, the ith element in 
A has been deleted. If a newly inserted item is deleted, it is removed from I directly. Both I and D are implemented as 
instances of the data structure of Lemma 8.

We maintain the values of the newly inserted elements in a balanced binary search tree T . The inorder traversal of the 
nodes of T corresponds to the increasing order of their positions in A′ . We support the following operations on tree T : (i) 
given an index i, return the element corresponding to the ith node in the inorder traversal of T , and (ii) insert/delete an 
element at a given inorder position. By maintaining the subtree sizes of the nodes in T , these operations can be performed 
in O (log n) time without having to perform any comparisons between the elements.

Our preprocessing steps are the same as in the static case. In addition, bitvectors I and D are each initialized with n 0s. 
The tree T is initially empty.

After performing n insert and delete operations, where n is the size of array A, we merge all the elements in T with 
the array A, modify the bitvector V appropriately, and reset the bitvectors I and D (with all zeroes). This increases the 
amortized time of the insert and delete operations by O (1), without requiring additional comparisons.

5.2. Dynamic online multiselection

We now describe how to support A′.insert(a), A′.delete(i), A′.select(i), and A′.search(a) operations.

A′.insert(a). First, perform A.search(a) (Algorithm 3), which the reader may recall searches for the appropriate unsorted 
interval [�, r] containing a using a binary search on the original (unsorted) array A; it then performs A.qsearch(�, r, a) on 
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interval [�, r] until a’s exact position j in A is determined. The original array A must have chosen as pivots the elements 
immediately to its left and right (positions j −1 and j in array A); hence, one never needs to consider newly-inserted pivots 
when choosing subintervals. Insert a in sorted order in T at position I.select1( j) among all the newly-inserted elements. 
Calculate j′ = I.select0( j), and set a’s position to j′′ = j′ − D.rank1( j′). Finally, we update our bitvectors by performing 
I.insert1( j′′) and D.insert0( j′′). Note that, apart from the search operation, no other operation in the insertion procedure 
performs comparisons between the elements.

A′.delete(i). Compute i′ = D.select0(i). If i′ is newly-inserted (i.e., I[i′] = 1), then remove the node (element) with inorder 
number I.rank1(i′) from T . Perform I.delete(i′) and D.delete(i′). If instead i′ is an older entry, perform D.flip(i′). In other 
words, we mark position i′ in A as deleted even though the corresponding element may not be in its proper place.9

A′.select(i). If I[i] = 1, return the element corresponding to the node with inorder number I.rank1(i) in T . Otherwise, 
compute i′ = I.rank0(i) − D.rank1(i), and return A.select(i′).

A′.search(a). Search using A.search(a) (Algorithm 3), to find the appropriate unsorted interval [�, r] containing a; followed 
by A.qsearch(�, r, a) on interval [�, r] until a’s exact position j in A is determined. If a appears in A (which we discover 
through A.search), we need to check whether it has been deleted. We compute j′ = I.select0( j) and j′′ = j′ − D.rank1( j′). If 
D[ j′] = 0, return j′′ . Otherwise, it is possible that the item has been newly-inserted. Compute p = I.rank1( j′), which is the 
number of newly-inserted elements that are less than or equal to a. If a is the element corresponding to the pth node in 
the inorder traversal of T , then return j′′; otherwise, return failure.

We now analyze the comparison cost for the above algorithm in Theorem 4 and the running time in Corollary 9.

Theorem 4 (Online dynamic multiselection). Given an (unsorted) array A′ of n elements, we provide a dynamic online algorithm that 
can support q = O (n) select, search, insert, and delete operations, of which r are search, insert, and delete, using at most B(Sq)(1 +
o(1)) + O (n + r log n) comparisons.

Proof. Let n′ denote the current length of the dynamic array A′ , after a sequence of queries and insertions. Let Q be the 
sequence of q selection operations performed (either directly or indirectly through other operations) on A′ , ordered by time 
of arrival. Let Sq be the queries of Q , ordered by position. We now analyze the number of comparisons performed by a 
sequence of queries and insert and delete operations.

We consider the case when the number of insert and delete operations is less than n. In other words, we are between 
two re-buildings of our dynamic data structure. Recall that each of the r search, insert, and delete operations in the sequence 
will perform a constant number of search operations. To execute these searches, we require O (r log n′) comparisons. Note 
that our algorithm does not perform any comparisons for delete(i) operations, until some other query is in the same interval 
as i. The deleted element will participate in the other costs (merging, pivot-finding, and partitioning) for these other queries, 
but its contribution can be bounded by O (log n), which we have as a credit.

Since a delete operation does not perform any additional comparisons beyond those needed to perform a search, we can 
safely assume that all the updates are insertions. Since each inserted element becomes a pivot immediately, it does not 
contribute to the comparison cost of any other select operation. Similarly, from Theorem 3, no pivot is part of a run and 
hence cannot affect the choice of any future pivot.

Since Q is essentially a set of q selection queries, we can bound its total comparison cost by Theorem 3, which gives a 
bound of B(Sq)(1 + o(1)) + O (n). This proves the theorem. �

Next, we modify Theorem 4 to account for the time costs of the dynamic bitvector from Lemma 8, and we obtain the 
following result.

Corollary 9. Given a dynamic array A′ of n original elements, there exists a dynamic online data structure that can support q = O (n)

select, search, insert, and delete operations, of which r are search, insert and delete, and u of which are insert and delete. We provide 
an online algorithm supporting those operations in O (B(Sq) + q logt n + r log n + ut) time, for any t where (logn)O (1) ≤ t ≤ n.

6. External online multiselection

Suppose we are given an (unsorted) array A of length N stored in n = N/B blocks in the external memory. Recall that 
sorting A in the external memory model requires �(n logm n) I/Os. The techniques we use in internal memory are not 
immediately applicable to the external memory model. In the extreme case where we have q = N queries, the internal 
memory solution would require O (n log2(n/m)) I/Os. This compares poorly to the O (n logm n) I/Os used by the optimal 
mergesort algorithm for external memory.

9 If a user wants to delete an item with value a, one could simply search for it first to discover its rank, and then delete it using this function.
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6.1. A lower bound for multiselect in external memory

As in the internal memory case, the lower bound on the number of I/Os required to perform a given set of selection 
queries can be obtained by subtracting the number of I/Os required to sort the elements between the ‘query gaps’ from 
the sorting bound. More specifically, let St = {si} be the first t queries from a query sequence R , sorted by position, and 
for 1 ≤ i ≤ t , let �St

i = si+1 − si be the query gaps, as defined in Section 2.2. Then the lower bound on the number of I/Os 
required to support the queries in St is given by

Bm(St) = n logm n −
t∑

i=0

(
�

St
i /B

)
logm

(
�

St
i /B

)
− O (n),

where we assume that logm

(
�

St
i /B

)
= 0 when �St

i < mB = M in the above definition. Note that Bm(St) = �(n) for all 
t ≥ 1.

6.2. Partitioning in external memory

The main difference between our algorithms for internal and external memory is the partitioning procedure. In the 
internal memory algorithm, we partitioned the array elements according to a single pivot, recursing on the half that contains 
the answer. In the external memory algorithm, we modify this binary partition to a d-way partition, for some d = �(m), 
by finding a sample of d “roughly equidistant elements.” The next lemma describes how to find such a sample, and then 
partition the array elements into d + 1 subranges with respect to the sample.

As in [1], we assume that B = �(logm n)—which allows us to store a pointer to a memory block of the input using a 
constant number of blocks. This is similar to the word-size assumption for the transdichotomous word RAM model [10]. 
In addition, Sibeyn’s algorithm [20] works only under this assumption, though this fact is not explicitly mentioned in that 
paper.

Lemma 10. Given an (unsorted) array A containing N elements in external memory and an integer parameter d < m/2, one can 
perform a d-way partition in O (n + d) I/Os, such that the size of each partition is in the range [n/2d, 3n/2d].

Proof. Let s = �√m/4�. We perform the s-way partition described in [1] to obtain s + 1 super-partitions. We reapply the 
s-way partitioning method to each super-partition to obtain d < m/2 partitions in total.

Finally, our algorithm scans the data, keeping one input block and d + 1 output blocks in main memory. An output block 
is written to external memory when it is full, or when the scan is complete. The algorithm performs n I/O to read the input, 
and at most (n + d + 1) I/Os to write the output into d + 1 partitions, thus showing the result. �
6.3. Algorithm achieving O (Bm(Sq)) I/Os

We now show that our lower bound is asymptotically tight, by describing an O (1)-competitive algorithm.

Theorem 5 (External static online multiselection). Given an (unsorted) array A occupying n blocks in external memory, we provide a 
deterministic algorithm that supports a sequence R of q online selection queries using O (Bm(Sq)) I/Os under the condition that B =
�(logm n).

Proof. Our algorithm uses the same approach as the simple internal memory algorithm of Section 3, except that it chooses 
d − 1 pivots at once. In other words, each node v of the pivot tree T containing �v elements has a branching factor of d. 
We subdivide its �v elements into d partitions using Lemma 10. This process requires O (δv + d) I/Os, where δv = �v/B .

We also maintain the bitvector V of length N , as described before. For each A.select(i) query, we access position V[i]. If 
V[i] = 1, we return A[i]; otherwise we scan left and right from the ith position to find the endpoints of this interval Ii using 
|Ii |/B I/Os. The analysis of the remaining terms follows directly from the internal memory algorithm, giving O (Bm(Sq)) +
O (n) = O (Bm(Sq)) I/Os. �

To add search queries, instead of taking O (log N) time performing a binary search on the blocks of V, we build a 
B-tree T maintaining all pivots from A. (During preprocessing, we insert A[1] and A[n] into T .) The B-tree T can support 
search queries in O (logB N) I/Os instead of O (log N) I/Os. Then, we modify the proof of Theorem 5 to obtain the following 
result.

Corollary 11. Given an (unsorted) array A occupying n blocks in external memory, we provide a deterministic algorithm that supports 
a sequence R of q online selection and search queries using O (Bm(Sq) + q logB N) I/Os under the condition that B = �(logm n).
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Proof. The first term follows directly from the proof of Theorem 5. Now we justify the second term O (q logB N).
As mentioned earlier, we build a B-tree T maintaining all pivots from A. (During preprocessing, we insert A[1] and A[n]

into T .) Naively, for q queries, we must insert qm logm N new pivots into T . The B-tree construction for these pivots would 
require O (min{qm(logm N), N} · (logB N)) I/Os, which is prohibitive.

Instead, we notice that the pivots for an individual query z are all inserted in some unsorted interval Iz =
[l, r], where l and r are consecutive leaves of the pivot tree T (in left-to-right level order). For z, we may spend 
logB(min{qm(logm N), N}) = O (logB N) I/Os navigating to Iz using T . Our approach is to insert all O (m logm N) =
O ((M/B) logm N) = O (M) pivots within Iz in a single batched manner. This process can be done easily in a bottom-up 
fashion by merging nodes in the tree T of an implicit B-tree T ′ for the O (M) pivots using O (m) I/Os.

Thus, we have O (min{qm logm N, N}) pivots in T , and using the batched insertion process above, we can do this using 
only O (min{qm(logm N)/B, N/B}) = O (min{qm, n}) I/Os. We must also add O (q logB N) I/Os to navigate to the correct inter-
val for each query. Overall, for q queries, the algorithm takes O (Bm(Sq)) + O (n) + O (q logB N) = O (Bm(Sq) + q logB N) I/Os, 
matching the result. �

Note that if q = O (Bm(Sq)/ logB N), then Corollary 11 requires only O (Bm(Sq)) I/Os, matching the bounds from Theo-
rem 5. Hence, our result is asymptotically optimal when Bm(Sq)/q = logB N .

Combining the ideas from Corollary 11 and Theorem 4, we can dynamize the above algorithm. The proof follows from 
the fact that we can maintain the bit vectors I and D described in the multiselection algorithms of Section 5 using a B-tree 
in external memory.

Theorem 6 (External dynamic online multiselection). Given an (unsorted) arrayA occupying n blocks in external memory, we provide a 
deterministic algorithm that supports a sequence R of q online select, search, insert, and delete operations using O (Bm(Sq) +q logB N)

I/Os under the condition that B = �(logm n).
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