

ISSN 0103-9741

Monografias em Ciência da Computação

n 05/09

Merge Source Coding Revisited

Bruno Tenório Ávila

Eduardo Sany Laber

Departamento de Informática

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

RUA MARQUÊS DE SÃO VICENTE, 225 - CEP 22451-900

RIO DE JANEIRO - BRASIL

Monografias em Ciência da Computação, No. 05/09 ISSN: 0103-9741
Editor: Prof. Carlos José Pereira de Lucena February, 2009

Merge Source Coding Revisited

Bruno Tenório Ávila and Eduardo Sany Laber

bavila@inf.puc-rio.br, laber@inf.puc-rio.br

Abstract. We show that any comparison-based merging algorithm can be naturally
mapped into a source coder via a conversion function introduced here. By applying this
function over some well known merging algorithms, namely Binary Merging and Recursive
Merging, we realize that they are closely related to a runlength-based coder with Rice
coding and to the Binary Interpolative Coder, respectively. Furthermore, by applying the
conversion function over the Probabilistic Merging algorithm we obtain a new runlength-
based coder that uses a variant of the Rice code, namely Randomized Rice Code. This new
code uses a random source of bits with the aim of reducing its average redundancy with
high probability.

Keywords: Source Coding, Merging Algorithms

Resumo. Nós mostramos que qualquer algoritmo de intercalação baseado em compara-
ções pode ser naturalmente mapeado em um codificador de fonte por meio de uma função
de conversão introduzida aqui. Aplicando esta função em alguns algoritmos de intercalação
conhecidos, especialmente Intercalação Binária e Intercalação Recursiva, nós percebemos
que eles são relacionados à um codificador baseado em comprimento de carreiras com
codificação Rice e ao Codificador de Interpolação Binária, respectivamente. Além disso,
aplicando a função de conversão no Algoritmo de Interpolação Probabilístico nós obtemos
um novo codificador baseado em comprimento de carreiras que usa um variante da cod-
ificação Rice, chamado Codificação Rice Aleatorizada. Esse novo código usa uma fonte
aleatória de bits com o objetivo de reduzir a redundância média com alta probabilidade.

Palavras-chave: Codificação de Fonte, Algoritmos de Intercalação

In charge of publications:
Rosane Teles Lins Castilho
Assessoria de Biblioteca, Documentação e Informação
PUC-Rio Departamento de Informática
Rua Marquês de São Vicente, 225 - Gávea
22451-900 Rio de Janeiro RJ Brasil
Tel. +55 21 3527-1516 Fax: +55 21 3527-1530
E-mail: bib-di@inf.puc-rio.br
Web site: http://bib-di.inf.puc-rio.br/techreports/

ii

1 Introduction

One of the fundamental goals of data compression is to efficiently represent data into bits
by removing its redundancy. For a discrete memoryless source that outputs symbols from
an alphabet with d symbols according to a probability distribution X = (x1, . . . , xd), the
Shannon’s source coding theorem [18] shows that the average number of bits per symbol
required to represent the data generated by the source is lower bounded by its entropy,
given by:

H(X) = −Σd
i=1xi log2 xi.

A typical data compression algorithm can be split into two phases [17]: the modelling
phase and the coding phase. The former is in charge of generating a sequence of probabili-
ties while the latter, implemented by a coder, is responsible to represent these probabilities
into bits. A coder designed for maximizing compression rate by reaching entropy lower
bound is classified as entropy coder. The most popular entropy coders are Huffman [10]
and Arithmetic [17] coders.

In modern applications, however, reaching the entropy limit is not necessarily the main
goal. Some factors, such as, coding speed, hardware constraints, memory limitation and
cache optimization may be more important. Coders that prioritise some of these factors
rather than achieving the entropy lower bound are classified as non-entropy coders [14].
In general they use the same representation regardless of the probability distribution.
Examples of non-entropy coders are Elias gamma coder [8], Golomb [9] and Rice coders
[16].

Coders can also be classified as static or adaptive. Another way to classify coders is
according to the kind of source they can model: binary or multialphabet; memoryless
or Markov; stationary or nonstationary. In summary, there are several types of coders
with different characteristics and the best of them depends on the requirements of the
target application. In fact, as pointed out by Moffat et al. [14], there is no single "best"
coding method. There are, however, a relatively small number of competing alternatives.
Therefore, there is a strong motivation for the development of new kinds of coders for
specific applications that fit better than the available ones.

Let us turn our attention, for a while, to the problem of merging two sorted lists, a
basic and well studied problem in theoretical computer science [12]. Given two sorted lists
A and B, the problem consists of generating a sorted list C that contains the elements in
A ∪ B. This problem arises naturally in numerous application domains, such as database
design and management, information retrieval, among others.

Merging k sorted sequences with different sizes is a more general problem that has
also received a lot of attention. It can be either solved by a k-way merging algorithm,
which simultaneously merges k lists, or by a sequence of k− 1 executions of a 2-way merge
algorithm. In the latter, two of the k lists are merged via a 2-way merging algorithm and
then the k−1 remaining lists are recursively merged. An interesting observation concerning
this strategy appears in [2]: if the 2-way merge is the tape merge algorithm [19] then the
best strategy to select the two lists to be merged at each step is obtained by following
the execution of Huffman’s coding algorithm [10] over a set of symbols {l1, . . . , lk}, with
frequencies {f1, . . . , fk}, where li corresponds to the i-th list and fi corresponds to its size.

Despite this already known relation between coding and merging, we are not aware of
any result indicating how merge algorithms can be useful to design source coders.

1

This paper shows that any comparison-based merging algorithm can be naturally
mapped into a source coder via a conversion function that we introduce here. This re-
sult is interesting because it makes possible the interpretation of the vast literature on
merging algorithms (e.g. online and offline algorithms, distributed and parallel strategies,
hardware implementations, algorithm analysis, etc.) in the context of coding methods.

In fact, by investigating this conversion process we realize that some of the most popular
merging algorithms are closely related to some well known coders. As an example, the
Binary Merging algorithm proposed in [11] corresponds to a runlength-based encoder that
uses Rice coding [16] to represent repetition of bits. Another example is the Recursive
Merging algorithm proposed in [7]. It is closely related to the Binary Interpolative Coder
proposed by Moffat et. al. [15] for information retrieval applications.

In addition, we propose a new coder that is obtained by applying our conversion func-
tion over the Probabilistic Merging algorithm presented in [5]. We find out that it was
possible to extract, from the converted coder, a variant of the Rice code namely Random-
ized Rice Code. This new code uses a random source with the aim to reduce its average
redundancy with high probability.

We believe that further investigation of the connection established here may lead to
new useful source coders.

The rest of the paper is organized as follows. In Section 2, we explain how to map
merging algorithms into binary coders. In Section 3, we discuss the connection of two well
known merging algorithms with two well known coding methods. Furthermore, we intro-
duce a new coder that is obtained by applying our conversion function over a probabilistic
merging algorithm proposed in [5].

2 Merge-based Source Coders

2.1 Comparison-based Merge Algorithms

Given two disjoint linearly ordered subsets A = {a1 < ... < am} and B = {b1 < ... < bn},
with m ≤ n, of a linearly ordered set C, the merging problem consists of determining the
linear ordering of their union (i.e. to merge A and B). Let compare(u, v) be an operation
that takes as input two elements u and v from a linearly ordered set and outputs either
’<’ if u < v or ’>’ if u > v. A comparison-based merge algorithm merges A and B by
performing a sequence of compare operations, where one of the arguments of compare
belongs to A and the other one belongs to B.

For a comparison-based merge algorithm r, define M r (m,n) as the number of com-
parisons performed by r to merge two ordered lists of sizes m and n in the worst case. In
addition, define M(m,n) = minr∈RM r (m,n), where r is optimized over the class R of all
possible comparison-based merge algorithms. For all m,n ≥ 1, the following inequalities
hold:

I (m,n) ≤M (m,n) ≤ m + n− 1,

where I (m,n) =
⌈

log2

(

m+n
m

)⌉

is the information theoretical lower bound.
The determination of the exact value of M (m,n) has been studied in several pa-

pers [12][19][4][13]. Moreover, there are several algorithms [11][7][5][4][13] that perform
O (I (m,n)) = O (M (m,n)) = O

(

m log2

(

n
m

+ 1
))

comparisons in the worst case. All of
them are asymptotically optimal in the comparison-based model.

2

2.2 Mapping Merging Algorithms into Binary Source Coders

Given a binary string x, let x(i) be the i-th symbol of x. In addition, let Ax = {i|x(i) = 0}
and Bx = {i|x(i) = 1}, where ax

i and bx
i are the i-th element of Ax and Bx, respectively.

As an example, if x = (11011110010001110111), then Ax = {3, 8, 9, 11, 12, 13, 17} and
Bx = {1, 2, 4, 5, 6, 7, 10, 14, 15, 16, 18, 19, 20}. This example will be further used in section
3.

Let R be the class of all comparison-based merging algorithms and let S be the class of
all binary coders. We introduce a function ϕ : R 7→ S that converts an arbitrary merging
algorithm r ∈ R into a binary coder s ∈ S. Fix a merging algorithm r ∈ R. The binary
coder ϕ(r) maps a binary string x into a binary string y, where y(i) = 1 (resp. y(i) = 0)
if and only if the i-th operation compare, performed by r to merge Ax and Bx, outputs
’>’ (resp ’<’).

Figure 1 illustrates the merging tree corresponding to the tape merging algorithm [19]
to merge the sets A = {a1 < a2} and B = {b1 < b2}. Ellipses are used to represent
comparisons and rectangles to represent the final sorted set. In order to encode the string
x = (1001), as an example, we first construct the sets Ax = {2, 3} and Bx = {1, 4}. Then,
we apply the merge procedure over Ax and Bx. The sequence >,<,< is output by the
compare operations so that the code y = (100) is generated.

a1, b1

a2, b1

<

a1, a2, b1, b2

<

a2, b2

>

a1, b1, a2, b2

<

a1, b1, b2, a2

>

a1, b2

>

a2, b2

<

b1, a1, a2, b2

<

b1, a1, b2, a2

>

b1, b2, a1, a2

>

Figure 1: Example of merging tree.

We should note that for a merging algorithm both compare(u, v) and compare(v, u)
have the same effect. However, for encoding purposes we should fix from which list comes
the left and the right argument of compare. As an example, if we replace compare(a1, b2)
by compare(b2, a1) in Figure 1 then the encoding of x = (1001) becomes (110) instead of
(100).

Given the encoded string y and the merge algorithm r we can recover the original
string x. For that, let us assume that the numbers m and n of bits with values 0 and
1 in x are known. We construct two linearly ordered sets A = {a1 < . . . < am} and
B = {b1 < . . . < bn}. Then, we apply the algorithm r over A and B. Although we do
not know the values of the elements in A and in B, we can merge these sets because the
result of the i-th comparison performed by r is stored in y(i). The output of the merging
algorithm r is a linearly ordered set C = {c1 < . . . < cm+n} containing the elements of
A ∪B. We reconstruct x by setting x(i) = 0 if ci ∈ A and x(i) = 1, otherwise.

An interesting subset of R is the subset R′ of asymptotically optimal merging algo-
rithms. The main characteristic of R′ is that the number of comparisons performed by

3

any merging algorithm r ∈ R′ is O(I(m,n)) in the worst case. Since

I(m,n) ∈ O

(

(m + n)H

(

m

m + n
,

n

m + n

))

,

it follows that ϕ converts any merging algorithm r ∈ R′ into a binary entropy coder.

3 Applications

In this section, we show how some of the most popular merging algorithms relate with
some well known entropy coders. In the description of the merging algorithms we omit the
assignment steps and some implementation details, because only the comparisons steps are
important for the conversion process.

3.1 Binary Merging Algorithm

The Binary Merging algorithm (BM) [11] is a well known algorithm that was originally
designed for merging two files stored in tapes. At each step, it verifies whether the first
element of the smallest list is larger than the 2t-th element of the largest list, where t is an
integer that depends on the size of both lists. In the positive case, the first 2t elements of
the largest precede the first element of the smallest list. In the negative case, it determines
which elements of the largest list are smaller than the first element of the smallest list. Its
pseudocode is presented below:

BM(A,B)

1. U ← smallest set between A and B;

2. V ← largest set between A and B;

3. If both U 6= ∅ and V 6= ∅ then

(a) t = blog2
|V |
|U |c;

(b) compare(u1, v2t):

i. If u1 < v2t then

A. do a binary search to find the integer q for which vq < u1 < vq+1;

B. BM(U [2, . . . , |U |], V [q + 1, . . . , |V |]);
ii. If u1 > v2t then

A. BM(U [1, . . . , |U |], V [2t + 1, . . . , |V |]);

Here, we convert a slight variation of the above algorithm into a binary coder. In
this variation, at each step, an hybrid search (a sequential search combined with a binary
search) is performed to find the number of elements in the largest list that are smaller than
the first element of the smallest list or, in other words, the position of u1 in V . This new
algorithm is obtained from BM by replacing line b) with:

b’)

4

1. Do a sequential search to find the smallest integer i in the set {1, 2, 3, . . .} for which
u1 < vi2t ;

2. Do a binary search in the interval [i2t − 2t, i2t − 1] to find an integer q for which
vq < u1 < vq+1;

3. BM(U [2, . . . , |U |], V [q + 1, . . . , |V |]);

Conversion. By converting this modified algorithm we obtain a runlength-based coder
that uses Rice coding to represent repetitions of the same bit. The pseudocode for encoding
a binary string x into a binary string y is given below:

Encode(x)

1. m← number of bits 0 in x;

2. n← number of bits 1 in x;

3. If both m,n > 0 then:

(a) t =
⌊

log2
max{m,n}
min{m,n}

⌋

;

(b) if m > n then j∗ ← min{j|x(j) = 1}
else j∗ ← min{j|x(j) = 0};

(c) append the Rice code for j∗ − 1, with parameter t, to the output y;

(d) Encode(x[j∗ + 1, . . . , |x|]);

In order to illustrate the encoding scheme, we use the example of section 2.2. The en-
coding method calculates, at each recursion, a value for j∗ which generates the sequence of
values (3, 5, 1, 2, 1, 1, 4). It encodes these values using Rice code with the respective param-
eter (0, 0, 0, 0, 1, 1, 2) producing the sequence of Rice codes (001, 00001, 1, 01, 10, 10, 111).

We argue that the above encoder is obtained by applying our conversion function over
the modified BM. Let us assume that u1 is always the left argument of the operation
compare at step (b’). The key observation is that the sequence of comparisons performed
by the merge algorithm to find the integer q in the line (b’) corresponds, in the sense
of our conversion function, to the Rice code of q, with parameter t. In fact, the unary
code corresponds to the sequential search while the binary code corresponds to the binary
search.

Thus, it remains to show that the integer q is exactly j∗− 1. First note that m = |Ax|,
n = |Bx| and

t =

⌊

log2

max{m,n}
min{m,n}

⌋

=

⌊

log2

max{|Ax|, |Bx|}
min{|Ax|, |Bx|}

⌋

.

If |Ax| > |Bx|, then q is such that ax
q < bx

1 < ax
q+1. It follows from the definition of Ax

and Bx that j∗ = bx
1 = q + 1, and as a consequence, q = j∗ − 1. A similar argument holds

when |Ax| < |Bx|.
Discussion. Note that when m = n, the Binary Merging algorithm reduces to the tape
merging and, when m = 1, it reduces to a decentralised binary search. It presents a good
balance for the ranges of m and n. The authors proved that the number of comparisons

5

MBM performed by Binary Merging is upper bounded by
⌈

log2

(

m+n
m

)⌉

+ m. We observe
that MBM (m,n) <

⌈

log2

(

m+n
m

)⌉

+m < (m+n)H(m/(m+n), n/(m+n))+m. In addition,
since m ≤ n, it follows that MBM (m,n) < (m + n) [H(m/(m + n), n/(m + n)) + 0.5].

The proposed modification to the original binary merge algorithm resulted in a variant
of the runlength coder that uses Rice’s scheme. We shall mention that this modification
does not change the asymptotic analysis; therefore, the resulting coder is still an entropy
one.

3.2 Recursive Merging Algorithm

The Recursive Merging algorithm (RM) [7] is also a simple and well known algorithm that
merges two sets A and B of sizes m and n, respectively, as follows: first it finds the location
of ai, where i = bm/2c, in the list B, that is, the integer q for which bq < ai < bq+1. Then,
it recursively merges the lists A[1, . . . , i−1] and B[1, . . . , q] and then the lists A[i+1, . . . ,m]
and B[q + 1, . . . , n]. Its pseudocode is presented below:

RM(A,B)

1. Let m = |A|, n = |B| and i = bm/2c;

2. If n = 0 or m = 0 then exit;

3. If n < m then swap m with n and A with B;

4. Do a binary search to find the location of ai in B, that is, the integer q for which
bq < ai < bq+1;

5. RM(A[1, . . . , i− 1], B[1, . . . , q]);

6. RM(A[i + 1, . . . ,m], B[q + 1, . . . , n]).

By applying the conversion function over this merging algorithm we obtain a binary
entropy coder that is closely related to the Binary Interpolative Coder (BIC) proposed by
Moffat et. al. [15] for compressing inverted indexes. First, we describe BIC and then we
explain its connection with RM.

Conversion. BIC receives three input parameters (A, lb, ub), where A = {a1 < . . . < am}
is an ordered set of integers and lb and ub are integers that satisfy lb ≤ a1 and am ≤ ub,
respectively. Let i = bm/2c. Since all the integers of A are distincts it follows that ai

belongs to the interval [lb + i, ub − i] of size w = ub − lb − 2i + 1. The first step of BIC
consists of encoding ai. For that it uses the minimal centered binary code [15] which
generates 2dlog2 we − w codewords of size blog2 wc and 2w − 2dlog2 we codewords of size
dlog2 we. Next, BIC is recursively called for the input (A[1, ..., i − 1], lb, ai − 1) and then
for the input (A[i + 1, ...,m], ai + 1, ub).

The connection between RM and BIC relies on the fact that the encoding produced by
RM for a binary string x is similar to that produced by BIC for input (Ax, 1, |x|). In fact,
both encodings are exactly the same if the Step (3) is removed from RM and the binary
search performed by RM at Step (4) is consistent with the encoding of ai at the first step
of BIC.

6

We illustrate this connection through an example. We use again the binary string
x of the example of section 2.2. The first element to be merged is Ax[4] = 11. By
applying the binary search induced by the tree of Figure 2, the following operations are
executed compare(11, 10), compare(11, 16) and compare(11, 14) which generate code 100.
Then, RM is recursively called with input (Ax[1, . . . , 3], Bx[1, . . . , 7]) and then with input
(Ax[5, . . . , 7], Bx[8, . . . , 13]).

10

5

2

1 4

7

6

16

14

15

19

18 20

Figure 2: Minimal centered binary tree.

On the other hand, BIC receives (Ax, 1, 20) as input parameters. It first encodes the
number 11 using the interval [1 + 3, 20 − 3] = [4, 17]. Since there are 17 − 4 + 1 = 14
possible numbers, then it requires 4 bits to encode any number in [4..9, 12..17] and 3 bits
to encode any number in [10..11]. Therefore, the number 11 is encoded as 100. Then, BIC is
recursively called with input (Ax[1, . . . , 3], 1, 10) and then with input (Ax[4, . . . , 7], 12, 20).

Discussion. The Recursive Merging algorithm is asymptotically optimal and the au-
thors did a simple analysis to show that is runs in MRM (m,n) = O

(

m log2

(

n
m

+ 1
))

.
Nevertheless, we can use the more precise analysis of the BIC to show that it runs in
MRM (m,n) < m

(

2.5783 + log2

(

n
m

+ 1
))

.
As we have already mentioned, the authors of BIC developed this coder for the problem

of compressing inverted indexes. According to their research, this coder is suitable for
encoding data that presents nonuniform (clustered) distribution. It is interesting to note
that several merging algorithms [6][1][3] have been studied for this kind of data and, in
the light of our result, they may be converted into suitable encoders for non-stationary
sources, such as, inverted indexes and bilevel document images.

3.3 Probabilistic Merging Algorithm

The Probabilistic Merging (PM) algorithm [5] uses randomization techniques for reducing
the average number of comparisons. Let s = (

√
5−1)/2 ≈ 0.618 and r = (

√
2−1+

√
2s)2 ≈

1.659. La Vega et. al. shows that PM performs better than the Binary Merging, presented
in Section 3.1, when |B|/|A| > 1 + s, assuming that A and B are the linearly ordered
subsets to be merged and that |B| ≥ |A|. They further recommend the usage of tape
merging [19] when |B|/|A| ≤ 1 + s.

The algorithm receives two other parameters t and p, besides the two linearly ordered
subsets A and B. The parameter t is related to the variable t of BM, but it remains
constant during the merging process. The parameter p is used to define the probability of
performing certain comparisons during the algorithm’s execution. A discussion of how to
set the values of p and t in order to minimize the average number of comparisons employed
by PM is presented in [5].

PM can be seen as a variation of the BM, where a biased coin is flipped, at each step,

7

to determine whether b2t or b2t+1 should be compared with the first element of list A. Our
presentation of PM is a bit different from that given in [5]:

PM(A,B, p, t)

1. If A = ∅ or B = ∅ then exit;

2. Initialize i = 0 and j = 0;

3. Flip a biased coin that outputs ′H ′ with probability p and ′T ′ with probability 1−p:

(a) If ′T ′ then compare(a1, b2t):

i. if a1 < b2t then binary search a1 into the list {b1 < . . . < b2t−1} and set
i = 1;

ii. if a1 > b2t then set j = 2t;

(b) if ′H ′ then compare(a1, b2t+1):

i. if a1 < b2t+1 then binary search a1 into the list {b1 < . . . < b2t+1−1}, set
j = 2t if a1 > b2t and, finally, set i = 1;

ii. if a1 > b2t+1 then set j = 2t+1;

4. PM(A[1 + i, . . . , |A|], B[1 + j, . . . , |B|], p, t);

In order to maintain compatibility with the original algorithm of [5], we have to insert
the list {−∞ < . . . < −∞} of size 2t−1 at the beginning of the subset B. Also, we assume
that bk =∞ for k > |B|.
Conversion. By converting PM, we obtain a runlength-based coder that uses a variant of
Rice code to represent the relative position of the bits zero. The pseudocode for encoding
a binary string x into a binary string y is given below. The values of t and p are calculated
the same way as the merging algorithm.

ProbEncode(x, t, p)

1. j∗ ← min{j|x(j) = 0};

2. Append the output of RandomizedRiceEncode(j∗ − 1, t, p) to the output y;

3. Let x′ be the binary string (1, . . . , 1) of size j∗ − 1 mod 2t;

4. ProbEncode(x′ ◦ x[j∗ + 1, . . . , |x|], t, p);

The operation u mod v calculates the rest of the integer division of u by v. The
operation u◦v is the concatenation of the strings u and v. Again, for maintain compatibility
with the merging algorithm, we insert at the beginning of x the binary string (1, . . . , 1) of
size 2t − 1.

RandomizedRiceEncode(j, t, p)

1. Initialize the code s as empty;

2. {j ≥ 2t+1} While j ≥ 2t+1 do:

8

(a) append one bit 0 to s;

(b) set z = 0 with probability 1 − p and z = 1 with probability p; decrement j by
2t+z ;

3. {j < 2t+1} Set z = 0 with probability 1− p and z = 1 with probability p;

(a) if z = 0 then compare j with 2t; if j ≥ 2t then append one bit 0 to s, decrement
j by 2t and go to step 3; otherwise, if j < 2t then append one bit 1 to s;

(b) if z = 1 then append one bit 1 to s and compare j with 2t; if j ≥ 2t then append
one bit 0 to s and decrement j by 2t; otherwise, if j < 2t then append one bit
1 to s;

4. {j < 2t} Append the binary code of j using t bits to s;

5. Return the code s.

The procedure above generates a variant of the Rice code, namely Randomized Rice
Code. It is formed by two parts as in the original Rice code [16]: the unary and the binary
part. Except that, in this case, the unary part is also parameterised by a probability
p, besides the usual parameter t. This parameter is used to flip a biased coin for each
unary bit and then, decide, by how much, decrement the value j. Therefore, for the same
parameter values, it might be generated a different unary code.

We use again the example of section 2.2 to illustrate the encoding method. The value
of the parameters t and p is 0 and 0.618, respectively, since |Bx|/|Ax| = 1.857. At
each recursion, the encoding method calculates a value for j∗ which generates the se-
quence of values (3, 5, 1, 2, 1, 1, 4). It encodes these values using randomized Rice code
with the respective random binary string (0011110111101) producing the sequence of
codes (0011, 0011, 1, 10, 11, 11, 0011). If we associate a different random binary string
(10111010111) then it produces the sequence of codes (01, 0011, 1, 10, 1, 11, 010).

Discussion. Let EPM (m,n) be the expected number of comparisons made by PM. The
authors showed that EPM (m,n) < I(m,n) + 0.471m, for values of m and n sufficiently
large. We further observed that EPM (m,n) < (m+n)[H(m/(m+n), n/(m+n))+0.2355].

It is interesting to note that the new coder uses a random binary source to reduce its
average redundancy. Therefore, the decoder has to receive a seed, which can be an integer,
to generate the same random binary string employed by the encoder. Besides that, the
decoder has also to receive the values m and n, if it implements a static model.

Acknowledgments

The authors are supported by CNPq.

References

[1] J. Barbay and C. Kenyon. Alternation and redundancy analysis of the intersection
problem. ACM Transactions on Algorithms, 4(1), 2008.

9

[2] W. H. Burge. Sorting, trees, and measures of order. Information and Control,
1(3):181–197, 1958.

[3] S. Carlsson, C. Levcopoulos, and O. Petersson. Sublinear merging and natural merge-
sort. In Proceedings of the Intl. Symposium on Algorithms, pages 251–260, 1990.

[4] C. Christen. Improving the bound on optimal merging. In Proceedings of the 19th
IEEE Symposium on Foundation of Computer Science), pages 259–266, 1978.

[5] W. F. de La Vega, S. Kannan, and M. Santha. Two probabilistic results on merging.
SIAM Journal of Computing, 22(2):261–271, April 1993.

[6] E. D. Demaine, A. López-Ortiz, and J. I. Munro. Adaptive set intersections, unions
and differences. In Proceedings of the 11th ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pages 743–752, 2000.

[7] K. Dudzinski and A. Dydek. On a stable storage merging algorithm. Information
Processing Letters, 12:5–8, 1981.

[8] P. Elias. Universal codeword sets and representations of the integers. IEEE Transac-
tions on Information Theory, IT-21(2):194–203, January 1975.

[9] S. W. Golomb. Run-length codings. IEEE Transactions on Information Theory,
12(7):399–401, May 1966.

[10] D. A. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE, pages 1098–1101, September 1952.

[11] F. K. Hwang and S. Lin. A simple algorithm for merging two disjoint linearly ordered
lists. SIAM Journal of Computing, 1:31–39, 1972.

[12] D. E. Knuth. The Art of Computer Programming: Sorting and Searching, volume 3.
Addison-Wesley, 1973.

[13] G. K. Manacher. Significant improvements to the Hwang-Lin merging algorithm.
Journal of ACM, 26:434–440, 1979.

[14] A. Moffat, T. C. Bell, and I. H. Witten. Lossless compression for text and images.
International Journal of High Speed Electronics and Systems, 8(1):179–231, October
1997.

[15] A. Moffat and L. Stuiver. Binary interpolative coding for effective index compression.
Information Retrieval, 3(1):25–47, 2000.

[16] R. F. Rice. Some practical universal noiseless coding techniques. Technical Report
79-22, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, 1979.

[17] J. J. Rissanen and G. G. Langdon Jr. Arithmetic coding. IBM Journal of Research
and Development, 23(2):146–162, March 1979.

[18] C. E. Shannon. A mathematical theory of communication. The Bell System Technical
Journal, 27:379–423, 623–656, July 1948.

10

[19] P. K. Stockmeyer and F. F. Yao. On the optimality of linear merge. SIAM Journal
of Computing, 9:85–90, 1980.

11

