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Abstract. The Swap-Insert Correction distance from a string S of
length n to another string L of length m ≥ n on the alphabet [1..d]
is the minimum number of insertions, and swaps of pairs of adjacent
symbols, converting S into L. Contrarily to other correction distances,
computing it is NP-Hard in the size d of the alphabet. We describe an
algorithm computing this distance in time within O(d2nmgd−1), where
there are nα occurrences of α in S, mα occurrences of α in L, and where
g = maxα∈[1..d] min{nα, mα−nα} measures the difficulty of the instance.
The difficulty g is bounded by above by various terms, such as the length
of the shortest string S, and by the maximum number of occurrences of
a single character in S. The latter bound yields a running time within
O(d(n+m)+(d/(d−1)d−2) ·nd(m−n)) in the worst case over instances
of fixed lengths n and m for S and L, which further simplifies to within
O(nd(m − n) + m) when d is fixed, the state of the art for this problem.
This illustrates how, in many cases, the correction distance between two
strings can be easier to compute than in the worst case scenario.

Keywords: Adaptive · Dynamic programming · Edit distance · Insert ·
Swap

1 Introduction

Given two strings S and L on the alphabet Σ = [1..d] and a list of correction
operations on strings, the String-to-String Correction distance is the min-
imum number of operations required to transform the string S into the string L.
Introduced in 1974 by Wagner and Fischer [7], this concept has many appli-
cations, from suggesting corrections for typing mistakes, to decomposing the
changes between two consecutive versions into a minimum number of correction
steps, for example within a control version system.
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2 J. Barbay and P. Pérez-Lantero

Each distinct set of correction operators yields a distinct correction distance
on strings. For instance, Wagner and Fischer [7] showed that for the three fol-
lowing operations, the insertion of a symbol at some arbitrary position, the
deletion of a symbol at some arbitrary position, and the substitution of
a symbol at some arbitrary position, there is a dynamic program solving this
problem in time within O(nm) when S is of length n and L of length m. Sim-
ilar complexity results, all polynomial, hold for many other different subsets of
the natural correction operators, with one striking exception: Wagner [6] proved
the NP-hardness of the Swap-Insert Correction distance, denoted δ(S,L)
through this paper, i.e. the correction distance when restricted to the operators
insertion and swap (or, by symmetry, to the operators deletion and swap).

The Swap-Insert Correction distance’s difficulty attracted special inter-
est, with two results of importance: Abu-Khzam et al. [1] described an algorithm
computing δ(S,L) in time within O(1.6181δ(S,L)m), and Meister [4] described
an algorithm computing δ(S,L) in time polynomial in the input size when S and
L are strings on a finite alphabet.

The complexity of Meister’s result [4], polynomial in m of degree 2d + 1, is a
very pessimistic approximation of the computational complexity of the distance.
At one extreme, the Swap-Insert Correction distance between two strings
which are very similar (e.g. only a finite number of symbols need to be swapped
or inserted) can be computed in time linear in n and d. At the other extreme, the
Swap-Insert Correction distance of strings which are completely different
(e.g. their effective alphabets are disjoint) can also be computed in linear time
(it is then close to n+m). Even when S and L are quite different, δ(S,L) can be
“easy” to compute: when mostly swaps are involved to transform S into L (i.e.
S and L are almost of the same length), and when mostly insertions are involved
to transform S into L (i.e. many symbols present in L are absent from S).

Hypothesis: We consider whether the Swap-Insert Correction distance
δ(S,L) can be computed in time polynomial in the length of the input strings
for a constant alphabet size, while still taking advantage of cases such as those
described above, where the distance δ(S,L) can be computed much faster.

Our Results: After a short review of previous results and techniques in
Section 2, we present such an algorithm in Section 3, in four steps: the intu-
ition behind the algorithm in Section 3.1, the formal description of the dynamic
program in Section 3.2, and the formal analysis of its complexity in Section 3.3.
In the latter, we define the local imbalance gα = min{nα,mα − nα} for each
symbol α ∈ Σ, summarized by the global imbalance measure g = maxα∈Σ gα,
and prove that our algorithm runs in time within O(d2gd−1nm) in the worst
case over instances where d, n,m and g are fixed.

We discuss in Section 4 some implied results, and some questions left open.
Additional details are deferred to the full version [2].
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Adaptive Computation of the Swap-Insert Correction Distance 3

2 Background

In 1974, motivated by the problem of correcting typing and transmission errors,
Wagner and Fischer [7] introduced the String-to-String Correction prob-
lem, which is to compute the minimum number of corrections required to change
the source string S into the target string L. They considered the following oper-
ators: the insertion of a symbol at some arbitrary position, the deletion of a
symbol at some arbitrary position, and the substitution of a symbol at some
arbitrary position. They described a dynamic program solving this problem in
time within O(nm) when S is of length n and L of length m. The worst case
among instances of fixed input size n + m is when n = m/2, which yields a
complexity within O(n2).

In 1975, Lowrance and Wagner [8] extended the String-to-String Cor-
rection distance to the cases where one considers not only the insertion,
deletion, and substitution operators, but also the swap operator, which
exchanges the positions of two contiguous symbols. Not counting the identity,
fifteen different variants arise when considering any given subset of those four
correction operators. Thirteen of those variants can be computed in polynomial
time [6–8]. The two remaining distances, the computation of the Swap-Insert
Correction distance and its symmetric the Swap-Delete Correction dis-
tance, are equivalent by symmetry, and are NP-hard to compute [6], hence our
interest. All our results on the computation of the Swap-Insert Correction
distance from S to L directly imply the same results on the computation of the
Swap-Delete Correction distance from L to S.

In 2013, Spreen [5] observed that Wagner’s NP-hardness proof [6] was based
on unbounded alphabet sizes (i.e. the Swap-Insert Correction problem is
NP-hard when the size d of the alphabet is part of the input), and suggested
that this problem might be tractable for fixed alphabet sizes. He described some
polynomial-time algorithms for various special cases when the alphabet is binary,
and some more general properties.

In 2014, Meister [4] extended Spreen’s work [5] to an algorithm computing
the Swap-Insert Correction distance from a string S of length n to another
string L of length m on any fixed alphabet size d ≥ 2, in time polynomial
in n and m. The algorithm is explicitly based on finding an injective function
ϕ : [1..n] → [1..m] such that ϕ(i) = j if and only if S[i] = L[j], and the total
number of crossings is minimized. Two positions i < i′ of S define a crossing if
and only if ϕ(i) > ϕ(i′). Such a number of crossings equals the number of swaps,
and the number of insertions is always equal to m − n. Meister proved that the
time complexity of this algorithm is equal to (m + 1)2d+1 · (n + 1)2 times some
function polynomial in n and m.

3 Algorithm

We describe the intuition behind our algorithm in Section 3.1, the high level
description of the dynamic program in Section 3.2, and the formal analysis of
its complexity in Section 3.3.
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4 J. Barbay and P. Pérez-Lantero

3.1 High Level Description

The algorithm runs through S and L from left to right, building a mapping
from the characters of S to a subset of the characters of L, using the fact that,
for each distinct character, the mapping function on positions is monotone. The
Dynamic Programming matrix has size n1 × · · · × nd < nd.

For every string X ∈ {S,L}, let X[i] denote the i-th symbol of X from left to
right (i ∈ [1..|X|]), and X[i..j] denote the substring of X from the i-th symbol to
the j-th symbol (1 ≤ i ≤ j ≤ |X|). For every 1 ≤ j < i ≤ n, let X[i..j] denote the
empty string. Given any symbol α ∈ Σ, let rank(X, i, α) denote the number of
occurrences of the symbol α in the substring X[1..i], and select(X, k, α) denote
the value j ∈ [1..|X|] such that the k-th occurrence of α in X is precisely at
position j, if j exists. If j does not exist, then select(X, k, α) is null.

The algorithm runs through S and L simultaneously from left to right, skip-
ping positions where the current symbol of S equals the current symbol of L, and
otherwise branching out between two options to correct the current symbol of
S: inserting a symbol equal to the current symbol of L in the current position of
S, or moving (by applying many swaps) the first symbol of the part not scanned
of S equal to the current symbol of L, to the current position in S.

More formally, the computation of δ(S,L) can be reduced to the application
of four rules:

– if S is empty: We just return the length |L| of L, since insertions are the
only possible operations to perform in S.

– if some α ∈ Σ appears more times in S than in L: We return +∞,
since delete operations are not allowed to make S and L match.

– if S and L are not empty, S[1] = L[1]: We return δ(S[2..|S|], L[2..|L|]).
– if S and L are not empty, S[1] �= L[1]: We compute two distances: the

distance dins = 1 + δ(S,L[2..|L|]) corresponding to an insertion of the
symbol L[1] at the first position of S, and the distance dswaps = (r − 1) +
δ(S′, L[2..|L|]) corresponding to perform r − 1 swaps to bring to the first
position of S the first symbol of S equal to L[1]. In this case, r denotes the
position of such a symbol, and S′ the string resulting from S by removing
that symbol. We then return min{dins, dswaps}.

There can be several overlapping subproblems in the recursive definition of
δ(S,L) described above, which calls for dynamic programming [3] and memo-
ization. In any call δ(S′, L′) in the recursive computation of δ(S,L), the string
L′ is always a substring L[j..|J |] for some j ∈ [1..|J |], and can thus be replaced
by such an index j, but this is not always the case for the string S′. Observe
that S′ is a substring S[i..|S|] for some i ∈ [1..|S|] with (eventually) some sym-
bols removed. Furthermore, if for some symbol α ∈ Σ precisely cα symbols α of
S[i..|S|] have been removed, then those symbols are precisely the first cα sym-
bols α from left to right. We can then represent S′ by the index i and a counter
cα for each symbol α ∈ Σ of how many symbols α of S[i..|S|] are removed (i.e.
ignored). In the above fourth rule, the position r is equivalent to the position of
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Adaptive Computation of the Swap-Insert Correction Distance 5

the (cL[1] + 1)-th occurrence of the symbol L[1] in S[i..|S|]. To quickly compute
r, the functions rank and select will be used.

Let W =
∏d

α=1[0..nα] denote the domain of such vectors of counters, where
for any c = (c1, c2, . . . , cd) ∈ W, cα denotes the counter for α ∈ Σ. Using
the ideas described above, the algorithm recursively computes the extension
DIST (i, j, c) of δ(S,L), defined for each i ∈ [1..n + 1], j ∈ [1..m + 1], and
c = (c1, c2, . . . , cd) ∈ W, as the value of δ(S[i..n]c, L[j..m]), where S[i..n]c is the
string obtained from S[i..n] by removing (i.e. ignoring) for each α ∈ Σ the first
cα occurrences of α from left to right.

Given this definition, δ(S,L) = DIST (1, 1, 0), where 0 denotes the vector
(0, . . . , 0) ∈ W. Given i, j, and c, DIST (i, j, c) < +∞ if and only if for each
symbol α ∈ Σ the number of considered (i.e. not removed or ignored) α symbols
in S[i..n] is at most the number of α symbols in L[j..m]. That is, count(S, i, α)−
cα ≤ count(L, j, α) for all α ∈ Σ, where count(X, i, α) = rank(X, |X|, α) −
rank(|X|, i − 1, α) is the number of symbols α in the string X[i..|X|]. In the
following, we show how to compute DIST (i, j, c) recursively for every i, j, and
c. For a given α ∈ Σ, let wα ∈ W be the vector whose components are all equal
to zero except the α-th component that is equal to 1.

3.2 Recursive Computation of DIST (i, j, c)

We will use the following observation which considers the swap operations per-
formed in the optimal transformation from a short string S of length n to a
larger string L of length m.

Observation 1 ([1,5]). The swap operations used in any optimal solution sat-
isfy the following properties: two equal symbols cannot be swapped; each symbol is
always swapped in the same direction in the string; and if some symbol is moved
from some position to another by performing swaps operations, then no symbol
equal to it can be inserted afterwards between these two positions.

The following lemma deals with the basic case where S[i..n] and L[j..m] start
with the same symbol, i.e. S[i] = L[j]. When the beginnings of both strings are
the same, matching those two symbols seems like an obvious choice in order to
minimize the distance, but one must be careful to check first if the first symbol
from S[i..n] has not been scheduled to be “swapped” to an earlier position, in
which case it must be ignored and skipped:

Lemma 1. Given two strings S and L over the alphabet Σ, for any positions
i ∈ [1..n] in S and j ∈ [1..m] in L, for any vector of counters c = (c1, . . . , cd) ∈ W

and for any symbol α ∈ Σ,

S[i] = L[j] = α
cα = 0

}

=⇒ DIST (i, j, c) = DIST (i + 1, j + 1, c).

Proof. Given strings X,Y in the alphabet Σ, and an integer k, Abu-Khzam et
al. [1, Corollary1] proved that if X[1] = Y [1], then:

δ(X,Y ) ≤ k if and only if δ(X[2..|X|], Y [2..|Y |]) ≤ k.
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6 J. Barbay and P. Pérez-Lantero

Given that one option to transform X into Y with the minimum number of
operations is to transform X[2..|X|] into Y [2..|Y |] with the minimum number of
operations (matching X[1] with Y [1]), we have:

δ(X,Y ) ≤ δ(X[2..|X|], Y [2..|Y |]).
By selecting k = δ(X,Y ), we obtain the equality

δ(X,Y ) = δ(X[2..|X|], Y [2..|Y |]).
Then, since the symbol α = S[i] must be considered (because cα = 0), and
S[i] = L[j], we can apply the above statement for X = S[i..n]c and Y = L[j..m]
to obtain the next equalities:

DIST (i, j, c) = δ(X,Y ) = δ(X[2..|X|], Y [2..|Y |]) = DIST (i + 1, j + 1, c).

The result thus follows. 	

The second simplest case is when the first available symbol of S[i..n] is already

matched (through swaps) to a symbol from L[1..j − 1]. The following lemma
shows how to simply skip such a symbol:

Lemma 2. Given S and L over the alphabet Σ, for any positions i ∈ [1..n] in
S and j ∈ [1..m] in L, and for any vector of counters c = (c1, . . . , cd) ∈ W and
for any symbol α ∈ Σ,

S[i] = α
cα > 0

}

=⇒ DIST (i, j, c) = DIST (i + 1, j, c − wα).

Proof. Since cα > 0, the first cα symbols α of S[i..n] have been ignored, thus
S[i] is ignored. Then, DIST (i, j, c) must be equal to DIST (i+1, j, c−wα), case
in which cα − 1 symbols α of S[i + 1..n] are ignored. 	


The most important case is when the first symbols of S[i..n] and L[j..m]
do not match: the minimum “path” from S to L can then start either by an
insertion or a swap operation.

Lemma 3. Given S and L over the alphabet Σ, for any positions i ∈ [1..n]
in S and j ∈ [1..m] in L, and for any vector of counters c = (c1, . . . , cd) ∈
W, note α, β ∈ Σ the symbols α = S[i] and β = L[j], r the position r =
select(S, rank(S, i, β)+ cβ +1, β) in S of the (cβ +1)-th symbol β of S[i..n], and
Δ the number

∑d
θ=1 min{cθ, rank(S, r, θ)− rank(S, i− 1, θ)} of symbols ignored

in S[i..r].
If α �= β and cα = 0, then DIST (i, j, c) = min{dins, dswaps}, where

dins =
{

DIST (i, j + 1, c) + 1 if cβ = 0
+∞ if cβ > 0

and

dswaps =
{

(r − i) − Δ + DIST (i, j + 1, c + wβ) if r �= 0
+∞ if r = 0.
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Adaptive Computation of the Swap-Insert Correction Distance 7

Proof. Let S′[1..n′] = S[i..n]c. Given that α �= β and cα = 0, there are two
possibilities for DIST (i, j, c): (1) transform S′[1..n′] into L[j + 1..m] with the
minimum number of operations, and after that insert a symbol β at the first
position of the resulting S′[1..n′]; or (2) swap the first symbol β in S′[2..n′] from
left to right from its current position r′ to the position 1 performing r′−1 swaps,
and then transform the resulting S′[2..n′] into L[j + 1..m] with the minimum
number of operations. Observe that option (1) can be performed if and only if
there is no symbol β ignored in S[i..n] (see Observation 1). If this is the case,
then DIST (i, j, c) = DIST (i, j + 1, c) + 1. Option (2) can be used if and only if
there is a non-ignored symbol β in S[i..n], where the first one from left to right
is precisely at position r = select(S, rank(S, i, β) + cβ + 1, β). In such a case
r′ = (r − i + 1) − Δ, where Δ =

∑d
θ=1 min{cθ, rank(S, r, θ) − rank(S, i − 1, θ)}

is the total number of ignored symbols in the string S[i..r]. Hence, the number
of swaps counts to r′ − 1 = (r − i) − Δ. Then, the correctness of dins, dswaps,
and the result follow. 	


The next two lemmas deal with the cases where one string is completely
processed. When L has been completely processed, either the remaining symbols
in S have all previously been matched via swaps and the distance equals zero,
or there is no sequence of operations correcting S into L:

Lemma 4. Given S and L over the alphabet Σ, for any positions i ∈ [1..n + 1]
in S and j ∈ [1..m] in L, for any vector of counters c = (c1, . . . , cd) ∈ W,

DIST (i,m + 1, c) =
{

0 if c1 + . . . + cd = n − i + 1 and
+∞ otherwise.

Proof. Note that DIST (i,m + 1, c) is the minimum number of operations to
transform the string S[i..n] into the empty string L[m + 1..m]. This number is
null if and only if all the n − i + 1 symbols of S[i..n] have been ignored, that is,
c1 + . . . + cd = n − i + 1. If not all the symbols have been ignored, then such a
transformation does not exist and DIST (i,m + 1, c) = +∞. 	


When S has been completely processed, there are only insertions left to per-
form: the distance can be computed in constant time, and the list of corrections
in linear time.

Lemma 5. Given S and L over the alphabet Σ, for any position j ∈ [1..m + 1]
in L, and for any vector of counters c = (c1, . . . , cd) ∈ W,

DIST (n + 1, j, c) =
{

m − j + 1 if c = 0 and
+∞ otherwise.

Proof. Note that DIST (i,m + 1, c) is the minimum number of operations to
transform the empty string S[n + 1..n] into the string L[j..m]. If c = 0, then
DIST (n+1, j, c) < +∞ and the transformation consists of only insertions which
are m − j + 1. If c �= 0, then DIST (n + 1, j, c) = +∞. 	
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8 J. Barbay and P. Pérez-Lantero

Algorithm DIST (i, j, c = (c1, . . . , cd))
1. if DIST (i, j, c) = +∞ then
2. return +∞
3. else if i = n + 1 then
4. (* insertions *)
5. return m − j + 1
6. else if j = m + 1 then
7. (* skip all symbols since they were ignored *)
8. return 0
9. else
10. α ← S[i], β ← L[j]
11. if cα > 0 then
12. (* skip S[i], it was ignored *)
13. return DIST (i + 1, j, c − wα)
14. else if α = β then
15. (* S[i] and L[j] match *)
16. return DIST (i + 1, j + 1, c)
17. else
18. dins ← +∞, dswaps ← +∞
19. if cβ = 0 then
20. (* insert a β at index i *)
21. dins ← 1 + DIST (i, j + 1, c)
22. r ← select(S, rank(S, i, β) + cβ + 1, β)
23. if r �= null then
24. Δ ←∑d

θ=1 min{cθ, rank(S, r, θ) − rank(S, i − 1, θ)}
25. (* swaps *)
26. dswaps ← (r − i) − Δ + DIST (i, j + 1, c + wβ)
27. return min{dins, dswaps}

Fig. 1. Informal algorithm to compute DIST (i, j, c): Lemma 4 and Lemma 5 guarantee
the correctness of lines 1 to 8; Lemma 2 guarantees the correctness of lines 11 to 13;
Lemma 1 guarantees the correctness of lines 14 to 16; and Lemma 3 guarantees the
correctness of lines 18 to 27.

3.3 Complexity Analysis

Combining Lemmas 1 to 5, the value of DIST (1, 1, 0) can be computed recur-
sively, as shown in the algorithm of Figure 1. We analyze the formal complexity
of this algorithm in Theorem 1, in the finest model that we can define, taking
into account the relation for each symbol α ∈ Σ between the number nα of
occurrences of α in S and the number mα of occurrences of α in L.

Theorem 1. Given two strings S and L over the alphabet Σ, for each symbol
α ∈ Σ, note nα the number of occurrences of α in S and mα the number of
occurrences of m in L, their sums n = n1 + · · · + nd and m = m1 + · · · + md,
and gα = min{nα,mα −nα} a measure of how far nα is from mα/2. There is an
algorithm computing the Swap-Insert Correction distance δ(S,L) in time
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Adaptive Computation of the Swap-Insert Correction Distance 9

within O(d + m) if S and L have no symbol in common, and otherwise in time
within

O

⎛

⎝d(n + m) + d2n ·
d∑

α=1

(mα − gα) ·
∏

α∈Σ+

(gα + 1)

⎞

⎠ ,

where Σ+ = {α ∈ Σ : gα > 0} if gα = 0 for any α ∈ Σ, and Σ+ = Σ \
{arg minα∈Σ gα} otherwise.

Proof. Observe first that there is a reordering of Σ = [1..d] such that 0 <
g1 ≤ g2 ≤ · · · ≤ gs and gs+1 = gs+2 = · · · = gd for some index s ∈ [0..d],
and we assume such an ordering from now on. Note also that given any string
X ∈ {S,L}, a simple 2-dimensional array using space within O(d · |X|) can be
computed in time within O(d · |X|), to support the queries rank(X, i, α) and
select(X, k, α) in constant time for all values of i ∈ [1..n], k ∈ [1..|X|], and
α ∈ Σ.

The case where the two strings S and L have no symbol in common is easy:
the distance is then +∞. The algorithm detects this case by testing if gα = 0
for all α ∈ Σ, in time within O(d + m).

Consider the algorithm of Figure 1, and let i ∈ [1..n], j ∈ [1..m], and c =
(c1, . . . , cd) be parameters such that DIST (i, j, c) < +∞.

At least one of the c1, . . . , cd is equal to zero: in the first entry DIST (1, 1, 0)
all the counters c1, c2, . . . , cd are equal to zero, and any counter is incremented
only at line 26, in which another counter must be equal to zero because of the
lines 11 and 14.

The number of insertions counted in line 21, in previous calls to the func-
tion DIST in the recursion path from DIST (1, 1, 0) to DIST (i, j, c), is equal
to j − i − (c1 + · · · + cd). Let tα denote the number of such insertions for the
symbol α ∈ Σ. Then, we have

j = i + (c1 + · · · + cd) + (t1 + · · · + td),

and for all α ∈ Σ, cα ≤ nα, tα ≤ mα − nα, and

cα + tα = rank(L, j − 1, α) − rank(S, i − 1, α).

Using the above observations, we encode all entries DIST (i, j, c), for i, j and
c such that DIST (i, j, c) < +∞, into the following table T of s + 2 ≤ d + 2
dimensions. If we have s = d, then

T [p, i, k, r1, . . . , rd−1] = DIST (i, j, c = (c1, . . . , cd)),

where

cp = 0,

(r1, . . . , rd−1) = (x1, . . . , xp−1, xp+1, . . . , xd)

xα =
{

cα if nα ≤ mα − nα

tα if mα − nα < nα
for every α ∈ Σ, and

k = (c1 + · · · + cd) + (t1 + · · · + td) − (r1 + · · · + rd−1).
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Furthermore, given any combination of values i, j, c1, . . . , cd we can switch to
the values p, i, k, r1, . . . , rd−1, and vice versa, in time within O(d). Otherwise, if
s < d, then

T [i, k, r1, . . . , rs] = DIST (i, j, c = (c1, . . . , cd)),

where (r1, . . . , rs) = (x1, . . . , xs). Again, given the values i, j, c1, . . . , cd we can
switch to the values i, k, r1, . . . , rs, and vice versa, in O(d) time.

Since p ∈ [1..d], i ∈ [1..n + 1], k ∈ [0..
∑d

α=1(mα − gα)], and rα ∈ [0..gα] for
every α, the table T can be as large as d× (n+1)× (1+

∑d
α=1(mα −gα))× (g2 +

1)×· · ·× (gd +1) if s = d, and as large as (n+1)× (1+
∑d

α=1(mα −gα))× (g1 +
1)×· · ·×(gs +1) if 0 < s < d. For s = 0, no table is needed. The running time of
this new algorithm includes the O(d(n + m)) = O(dm) time for processing each
of S and L for rank and select, and the time to compute DIST (1, 1, 0) which
is within O(d) times n + m plus the number of cells of the table T . If s = d, the
time to compute DIST (1, 1, 0) is within

O

(

d(n + m) + d2n ·
d∑

α=1

(mα − gα) · (g2 + 1) · · · · · (gd + 1)

)

.

Otherwise, if 0 ≤ s < d, the time to compute DIST (1, 1, 0) is within

O

(

d(n + m) + dn ·
d∑

α=1

(mα − gα) · (g1 + 1) · · · · · (gs + 1)

)

.

The result follows by noting that: if s = d, then Σ+ = {2, . . . , d}. Otherwise, if
s < d, then Σ+ = {1, . . . , s}. 	


The result above, about the complexity in the worst case over instances with
d, n1, . . . , nd, m1, . . . , md fixed, implies results in less precise models, such as in
the worst case over instances for d, n,m fixed:

Corollary 1. Given two strings S and L over the alphabet Σ, of respective
sizes n and m, the algorithm analyzed in Theorem 1 computes the Swap-Insert
Correction distance δ(S,L) in time within

O

(

d(n + m) + d2n(m − n)
(

n

d − 1
+ 1

)d−1
)

,

which is within O
(
n + m + nd(m − n)

)
for alphabets of fixed size d; and within

O

(

d(n + m) + d2n2

(
m − n

d − 1
+ 1

)d−1
)

,

which is within O
(
n + m + n2(m − n)d−1

)
for alphabets of fixed size d.
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4 Discussion

The exact running time of our algorithm is within

O

⎛

⎝d(n + m) + d2n ·
d∑

α=1

(mα − gα) ·
∏

α∈Σ+

(gα + 1)

⎞

⎠ ,

where nα and mα are the respective number of occurrences of symbol α ∈ [1..d] in
S and L respectively; where the vector formed by the values gα = min{nα,mα −
nα} measures the distance between (n1, . . . , nσ) and (m1, . . . , mσ); and where
Σ+ = {α ∈ Σ : gα > 0} if gα = 0 for any α ∈ Σ, and Σ+ = Σ \{arg minα∈Σ gα}
otherwise.

Summarizing the disequilibrium between the frequency distributions of the
symbols in the two strings via the measure g = maxα∈Σ gα ≤ n, this yields a
complexity within O(d2nmgd−1), which is polynomial in n and m, and exponen-
tial only in d of base g. Since this disequilibrium g is smaller than the length n
of the smallest string S, this implies a worst case complexity within O(d2mnd)
over instances formed by strings of lengths n and m over an alphabet of size d,
a result matching the state of the art [4] for this problem.

4.1 Implicit Results

The result from Theorem 1 implies the following additional results:

Weighted Operators: Wagner and Fisher [7] considered variants where the
cost cins of an insertion and the cost cswap of an swap are distinct. In the
Swap-Insert Correction problem, there are always n − m insertions,
and always δ(S,L) − n + m swaps, which implies the optimality of the algo-
rithm we described in such variants.

Implied Improvements When Only Swaps Are Needed: Abu-Khzam et
al. [1] mention an algorithm computing the Swap String-to-String Cor-
rection distance (i.e. only swaps are allowed) in time within O(n2). This is
a particular case of the Swap-Insert Correction distance, which happens
exactly when the two strings are of the same size n = m (and no insertion
is neither required nor allowed). In this particular case, our algorithm yields
a solution running in time within O(dm), hence improving on Abu-Khzam
et al.’s solution [1].

Effective Alphabet: Let d′ be the effective alphabet of the instance, i.e. the
number of symbols α of Σ = [1..d] such that the number of occurrences of
α in S is a constant fraction of the number of occurrences of α in L (i.e.
nα ∈ Θ(mα)). Our result implies that the real difficulty is d′ rather than d,
i.e. that even for a large alphabet size d the distance can still be computed
in reasonable time if d′ is finite.
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4.2 Perspectives

Those results suggest various directions for future research:

Further Improvements of the Algorithm: our algorithm can be improved
further using a lazy evaluation of the min operator on line 27, so that
the computation in the second branch of the execution stops any time the
computed distance becomes larger than the distance computed in the first
branch. This would save time in practice, but it would not improve the worst-
case complexity in our analysis, in which both branches are fully explored:
one would require a finer measure of difficulty to express how such a modi-
fication could improve the complexity of the algorithm

Further Improvements of the Analysis: The complexity of Abu-Khzam et
al.’s algorithm [1], sensitive to the distance from S to L, is an orthogonal
result to ours. An algorithm simulating both their algorithm and ours in
parallel yields a solution adaptive to both measures, but an algorithm using
both techniques in synergy would outperform both on some instances, while
never performing worse on other instances.

Adaptivity for other Existing Distances: Can other String-to-String
Correction distances be computed faster when the number of occurrences
of symbols in both strings are similar for most symbols? Edit distances such
as when only insertions or only deletions are allowed are linear anyway, but
more complex combinations require further studies.

Acknowledgement. The authors would like to thank the anonymous referees of
SPIRE 2015 for insightful comments.
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