Adaptive Set Intersections, Unions, and Differences

Erik D, Demaime®

Abatract

Motivated by boolean queries In text database systoms,
we condlder the problems of Onding the Intersection,
undon, ar difference of a collection of zorted setz. While
the worst-case complexity of these problems k= stralght-
foprward, we consider a notlon of complexity that de-
pends on the partieular Instance. We develop the kdea
ol a proof that & glven set = Indeed the correct answer.
Prools, and in particular shortest prools, are charace-
terleed. We present adapilve algorithrng that make oo
a priorl assumptlons about the peoblom nstance, and
ghow that thelr running thmes are within a constant Cac-
tor of optimal with respect to a natural measure of the
difficulty of an instance. In the process, we develop a
framework for designing and cvaluating adaptive algo-
rlthres in the comparison model.

1 Introduction and Owverview

Char wiork can be seen o the general context of perform-
ing searches quickly in a database or data warehousing
environment. The beoad Esee 8 that of characterizing
what type of join operatbons can be performed without
scanning the relations involved or actually materlalizing
intermediate relationg. The speciflic problem addressed
here can bo geen In that context or in the contest of
pecforming a web search, or a search n another large
text database, lor documents contalning some or all of a
st of keywords, For each beyword we are given the set,
of references to documents in which it cecurs (2, 6, 9]
These zets are stored In some natural order. such as
document date.

In practice, the sets ae large. For example, the av-
erage word Fom user gquery logs matches approzimately
a million doecuments on the AltaVista web search engine.
O eourde, one would hope that the answer to the query
s amall, particulasly I the guery & an Intersection. It
may also be expected that the elements of such an lo-
tersection are not speead unblormly theough the Initial

*Department of Computer Sclmee, University of Witer-
loo, Waterloo, Owmtarke NZL 361, Conada, cmall: [eddesaise.
imnays | furatarlen . s

FPaculty of Computer Sclenes, Unlveralty of Mew Brunswick,
P. . Box 4400, Frederleton, N, B, EZB 543, Canada, cmafl
alopez-ofusb. ca

Alejandro Lipes-Ortiz

J. Ian Munrvo®

zets, In dealing with news artlcles In particular, one will
find & large number of relerences to one teem over a few
relatively short perlods, and little outside these periods.

We would like algorithis to take advantage of such
features of the data, and Indesd develop a model of
complexity for classes of Instances that take H Into
account. An extreme example that makes this notlon
mofe precise B that of computing the Intersection of
two sorted sets of gkee . Om the one hand, If the sets
lnterleave pecfectly ¥n] comparisons are reguired. On
the other hand, If all eloments of one gel are known bo
fall between a palr of consecutlve elements in the other
zel, the problem siooply reduces Lo & search In a sorted
array and =20 logs n-0 1) upper and lower Bounds apply.

Simtlar motlvation and examples apply to & more
general class of querbes, Including sef wnion and set
difference. While the answer to a unlon query s at
least. &s large as the lacgest input get, one may be able to
construct the apswer using the Input sets without even
examining much of the input, ket alone copying It over.
For example, il we are to produece the unlon of two sets
(each represented by a B-tree) and all elements in one
zel [all betwesn a palr in the oiher set, the ansser 18 a
B-tres conslsting of Oflog) new nodes with references
to portions of the two input trees.t

This leads to the kdea of an edeptive algorithm (4,
5, 11]. Such an algorithm should make no a prios
asmumptlons, but determine the kind of Instance [t
fwces as the computation proceeds. The running tlme
should be reasonable lor the particular instance—mot
the overall worst-case.

Based largely on the development of a prool In a
campnical form amd s speciflcation, we develop alge-
clithms whose runnlng thmes are within constant factors
of our worst-case lower bounds. Ouwr methods, shile
pheased In terms of & pure comparkson model, are Im-
medlately applicable to any balanced teee (e.g.. B-ireg)
muodel.

The general cutline of our approsch, which we apply
to each of the theee problems, Is as follows. Flrst, in
Sectlon 2, we characterlze “proofs” that an algorithm
has obtalned the correct anawer. Then, o Sectlon 3, we
zee how to best encode prools o binary, the des being

! Asperts of this idea are cxplored for the case of two sets in [14].

that “easy” Instances have succinetly encodable proots.
In Section 4, we extend lower bounds beyond the most
basle Information theeretle argument. In Sectlon 5, we
develop an algorithm to find & proof in tlme matching
our lower bound. Finally, in Secilon 6, we extend these
algorithms to produce the desived answer by reusing
poribons of the nput In the eutput.

2 Proof Structure

We am Interested in three problems concernlng sets. In
all cases, an inslance of the problem s a collection of &
sets Ay, ..., Ay, each presented In sorted order. Henee

A, = {41, Aln]}

implies that A, [i] < A.[f] for all s and § < . Some basie
terminology that we will wse throughout this paper 1s
as follows. An element is one of the A[i]s a calue
Is & member of the unlverse, which may occur as an
element In several sets. An element A.[i] precedes
[rweakly procedos] A [§] 104 <« § [§ < j]. Successors and
weak succcssors are defined similarly; pote that they
anly Involve elements in the same set.
Consider the following sel probdens:

1. Inlergection: Compute Ay me---mde.
2. Unidon: Compute A U--- LA,
3. Difference: Compute Ay — [Azn--- 1 Ag)2

Chur work explores each of these three problens in the
compirigon model. That s, the only way in which an
algorithm can use the elements of the seta I8 o test
whether A.[i] is less than, equal to, or greater than
Ag[j], for given & ¢.4,j. An algorithm also knows the
sigrature of the Instance, that s, the slee n of each set
Ae

Any algorithon for & set problem must also be able
to consteuct a prool that its answer I correct. Hence,
wee focus on algorithms for computing such proofs.
This s particularly helpful In the context of wnions
and differences, where enumerating the elemnts of the
angwer can take more time than computing the prooeof,
On the other hand, we will show that this explicit
enumeration can be avelded, Congentrating initially on
proods allows us wo ignoee this problem until we have
the tools Lo solve i

Formally, an argument 5 a fnlte set of symbaolic
equalitbes and Inequalities, or comparisons, of the form
(A [i] = Ag[i]) or (Ali] = A[f)) for s, 64,5 = 1. An

*The differeiece cperation ks somewhat unnatural for more than
two sets, We chocse this generalization becanse diference b8 most
Hke Ietersectlon.

Instance salisfies an arpument i all the comparksons in
the argument hold for that instance.

The mest interesting classes of arguments are those
that prove that the answer to one of the three problems
I8 a partleular zet. Formally, an argument P is called a
proaf for a partleular set problem if all of the instances
satiafving M have the same solution to that problem. IT
the answer ls always the set 4 of eloments, we eall P an
A-proof.

We cannot say much about the strocture of peool
until we fix the problem to solve. This & done In each
al the following subsectlons, in which we analyee what
arguments are proofs. We also study the structurs
ol ordersd arguments and proofs, Le, arguments and
proods with an assoclated order on the comparisons.

2.1 Intersection Proofs. An lntersectlon peool mist
ghow preciscly which clements are contalnod In all sets:

LEsua 2.1, An argument P is a B-proof for the mler-
section problem procisely of there are elements by, ... b
Jor sach b € B, where by 45 an element of A; and fas
the gome value o b, such thal

1. Jor each b € B, there 5 a bree on kB verlices, enery
edge (1,)] of which safisfies (b = b;) € P; and

2. for congecutive values e € B U {+o0, —oo}), the
sulurgument innoluimg the follouing elements 145 a
Petrraaf for that subinstancs: from esch A;, lake
the elements slrictly belueen by and e

Thus, we turn our attention to @-proofs, that is,
how o prove that a collection of sels 5 disjoint. The
basie structure in a feproof 5 to “eliminate” elements,
Intuitively, if we make the comparison (a < &) where &
s the first element o lts set (called “minimal™), then
a amd all its predecessors cannot be o the Intersection
af all of the sets, because In particular they are not in
s med. Thus, we say that o and s predecessors are
“pliminated.” Furthermore, the element immediately
suceesding @ k8 & new “minkmal” element. that can be
sed for further elimination.

More formally, recursively define an eloment @ Lo be
eliminalad [In an argument P) i elther

1. (o< k) € P where e 18 8 weak prodecessor of a. and
& has no uneliminated predecessoes;

2 (o< b £ P whero e 18 & weak successor of b, and
a has no unellminated sucoessors.

If & has no uneliminated predecessors [successors), we
call it minimal [marimal]. Note that & minimal or
maximal element. may be eliminated.

Lesuia 2.2, An argumend iz a W-proof precisely f an
enttre set is eltminaled,

An important concept about, ordered P-proofs is the
notbon of “low-to-high orderings.” First, we need to
intreduce some additional terminology. In an ordered
argument, we say that the ith comparkson eliminales an
element I the subargument with the Arst ¢ comparlsong
has this element climinated; the ith comparkson neiely
efimanates an elerent, if ln addition just the Aest i — 1
comparlsons do not have this element ellminated. A
brte-ta=feigh erdering of an argument, 18 an ordering with
the property that each comparison (A.i] < Ae[i])
newly eliminates elements just ln A., unbess It entirely
ellminates A, (ln which case it may newly ellminate
elements in all sets).

THeorEM 2.1, Every B-proof has o lew-to-figh onfer-
LT

Although not directly relabed to our study of Anding
proois in the minimum amount of thoe, we mention a
glmple greedy method® to exhibit proofs with the fewest,
possible mumber of comparisons. Note this does not
mean that the algorithm makes the fewest comparisons
posaible to actually discover a @-prool, and indesd our
algorithms In Scctlon § will search lor easloer-top-find
prools.

Diefine the fmmeadiale successor of an clement, A, [i]
to be A.[i + 1] if it exists, and infinity otherwise.

Method Fewest-Comparlsong
1. Imitiallze the eliminator ¢ bo the masximum elarment
A 1] over all 1= & < R
2. Untll ¢ beopmes Infnity:

(a) Add the comparison (@ < &) to the prooof
where the elemont a & chesen so that s
immediate succpssor 8" s maximized, subject
to the constralnt that a < e

i) If e # &', a6l e to e’

[e) Otherwise, e 18 present o all sets:

1. Remove the just-added comparson (a <
£] feom the proof.

. Add the comparlsons (8, = e,.;) to the
prool, where e, & the oecurrence of & in
A, foreach 1 < 5= &

. Relnitialize ¢ to the maximum immediate
gueeessor of e; over all 1 < & < k.

THEOREM 2.2, For any given instance, Meathod Feuwost-
Comparisons generates a groof for the inlergection prob-
lomn wilh e fewres! comparisons possille,

Ve aldestep the techmleal detadls of an “algorithm® amd
nondetermindstic cholbees with the term “method.®

2.2 Difference Proofs. The difference problem Ay —
(Aam-- M dy) & much like the corresponding intorsec-
tion problers Ay 7 Az M-+ - A with a twist in how the
anawer s reported. Specifically. whenever we find an
element common to all the sets, this element s with-
held from the answer; and all other elements of 4 are
repaorted In the answer. This 18 essentlally the opposite
ol the Intersectlon problem, though o the context of
prools the sltustlon 8 basleally the same:

Lesiua 2.3, An argument P i5 o B-proof for the dif~
Serenee problem precisely of of @ an (A —8) -proof for
e tnlergechion problem.

2.3 TUnlon Proofs. Proofs [or the union peoblem
have a much slmpler structuse than intemectbons and
differences.

Lesina 2.4, An ergument P iz a proaf for on mslance
I for the unian problem precisely of

I for any walue v, if A, [k, .. Ae,[km] are ez
actly he occurrences of o, then Uhere i a free
om 11 eertices, ecery adge (4, §) of which sofiefies
(A4, k] = A_i[kj-]] £ P oand

2. Jor any value o occurring i 0, O v ond s immmedi-
ate predecessor [successor| o in the wnion of T do
nol occufy a commen get i 1, then for some pocur-
rerices & and & of v and o' respectively, (&f < el € P
fle < e € PJL

Note that we can discard any ¢omparlsons that
follow transitively from others, Le., comparlsons that do
nod come from Lemma 24, We call such comparlsonsg
ugeless, and call others wsaful

3 Encoding Proofs

The next few sections are concerned with bow to fod
prods by using as few comparisons as possible. First we
st be precise about the phrase “as fow as possible”
for an adapilve algorithm. It & teo ouch to hope Gor
an adaptive algorithm to use the smallest amount of
time possible for each particular lnstance. The class
of Instanees mentionesd n the Introduction, in which
all elements of one set fall between two consecutive
elements in another, Is & clear llusteation. Ooly two
comparizong are needed lor a prool, yet legs 1 has been
notesd a8 & lower bound for any algorithm peqguived to
run on &l of those Instances.

Thus we require a notion of the worst-case perlor-
mance of an adaptive algorithm. O course, we cannot
use the worst-case running time as our metrle, because
that will only reflect the case in which the Instance s

difficult to solve. While apparently unstated in the -
erature, & natural metric = the worst-case value of the
ratio of running time te difficulty, swheee “difficulty™ s
an Information theorotic measure of the diffenlty of the
Instance. We can think of this ratio as a scaled run-
miteg fane, which allows the running time Lo be lange lor
difficult Instanees, but enforces I o be amall for easy
Instances. An algorithm that minimizes the worst-case
seiled runnlng tlime 8 & natural definitlon of an opdisal
adaptive algorithm. Scaled running tlie s zlmilar to a
“pompetitive ratle,” which meoasures the effectivenoess of
the gulpud of an algorithm {lnstead of s runnbog tioe)
relative to the optimal.

Mext we peguire a definition of the dificulty of
an lngtance. A natural definition 8 the Information
theoretic lower bound on the running time of any
comparison-based algorithm. In the context of this
paper, this lowor bound s the length of the shortost
binary encoding of some peool. As the name sugoedts,
this I & lewer bownd on the runnibog thme of any coreect,
algorithm in the comparigon model, for the following
meason. An algorithm can only be suee that it knows
the corroct angwer Il 1L knows a proal, or equivalently an
encoding of a prool. Because each comparkson (ower Lhe
aperators <, =, and 2= only peveals a bit of Information,
the number of comparisong must be at least the length
af the shortest hloary encoding of a proofl. (In fact, the
gliuation i8 somewhat more complex than this; see the
prood of Corallary 3.1.)

The mst of this sectlon analyzes the Information
theoretic lower bound [that Is, optimal encodings of
peocda) for each of the thees peobloms. Sections 4
and 5 will use this apalysis to prove rsulis about sealed
running time,

3.1 Encoding Intersectlon and Difference
Proofs. Let us begin with the basle dea for encoeding
peocds for the intersection and difference problems
(which are identleal by Lemma 2.3). We will concen-
trate on the mest impoetant case of Q-proods, which
peove that the Intersectlon is empiy. Call an elenwent
comperad Il It oecurs In one of the proof’s comparlsons.
Because compared elements ean be arbitrarily spaced
out In each set, It 8 natural to encode the skee of the
gaps (Le., the differences in Index) betwesn conpared
elements, which costs roughly lg g bits for each gap of
slze g, where Ig ¢ = loga(1 + g].

We st also handle two further detalls. Flest, by
appropelately switching between specifyving gaps {rom
the losy and high sldes, we can avold encoding the largest
gap In each set. Second, we must specifly the palring
between mompared elements that forms the proof.

The lollowing encoding fills in both of these detalls,

Take a low-to-high ordering of the prood P by Theo-
rem 2.1, Let ¢ = (A,[i] < Aj]) be the first compar-
lson. Fiest encode g and @ using roughly logg & bits
and logs [k — 1) bits, reapectively (because 2 #). En-
code i [j] by specifying the smallest gap g [A] to an
already compared element in A, [A;], using cssentlally
lg g [lgh] bits. The total cost of encoding ¢ in this way
ig long, B+ logy (R — 1) + lgg + lg b

Encoding all comparisons in this way, we abtain a
formuls for the length of encoding an entire peool P.
We call this longth the cost of P and denote it by o P).
We break o P nto two components: get cost &0 P) and
gap cost g{).

Let |P| denote the number of comparizons n P
The sat cost s the cost of encoding the sets A, and A,
Inwplved In each comparlson:

(3.1} s) = |P| (log k + loge(k — 1)) .

The gap cost 18 the eost of encoding all the gaps except
for the largest gap o each set. More lormally, lot
da| 0], . oo, el] donote the gaps In A, for P, including
the “end gaps™ belope Lhe fret comparoed eloment. and
after the last compared element in A, Then

=1

k Pa
(32) 4iP)= E(lg guff] - max lgg.lﬂ)-
il =i=E

Flnally, the cost of P s e{ P) = a[P) + g{ P).*

MNow we clalm that the deseribed encodlng s opti-
mal: if we fix a language for encoding all §-proods, then
an average, a B-peood P requices st least ¢f) bits to be
encoded In this language.

THEOREM 3.1, Giuen any B-proof P for on tnslenes
I. there are 2°UF) foproofs fome of which iz P) for
imstances with the same siguature e, sel sizes) s T,
Furthermore, each of the B-proafs hos |P| comparisons
and cost al most o P}, ond ne bwe of the @-proofs apply
ta a common inslanes,

Proof. First let us glve a constructlon of 03 [200F)

different B-proofs based on a proof P. Let g.[i] be
defined as In the definitlon of g). We decrease every
gap, except the largest gap o each sol, lo any amount
less than or equal to the origlnal gap In P, The
palrlng betweon elements stays the same; we slooply
mevie the compared elements. To cmpensate for these
shrinking paps and to keep the signature the same, the

AW igneare the coat of spocifying relative to which sbde cnch gap
i taken, that is, the locntlon of the largest gap n each set. This
can b mecded in E:=;| lg ps bits, which I8 & eegligibde bower-
order term: meore blts are necessary |ust to meode the nstanee
dgmatare.

largest pap o each set grows, and honee remains largest.
These modified gap slzes Induce moved positions of the
compared elements.

Because we only decrease gap slzes, except for the
largest pap in each set which does not affect g P), the
gap cost of any constructed prood ls &l most Lhe gap
coat of . Furthermore, the number of comparisons
in the proof and the number of sets does ot change,
g #() docs not change, Hence, the total oost of any
construwcted proof 8 at most o P).

Now for each g, [i], except the largest in each set,
wi have g, [i] cholces for a new gap ke, Therefore, the
number of proofs constructed using this technbgue s

k- p
IT IT 0+ akid [jmax (14 gli]).

=l A=

which ks 200F] | L., the exponentlation of Equation [3.2).

Mext, we make some Independent cholees w lnprove
the bound by a factor of 29U, for a total of 250F1
Fixing the gap structuee, that o, the collection of
compared elerments, the comparizons of a B-proof can be
chosen as follows. Plck a set A, such that the smallest
so-far uneliminated element, A,[i] I8 compared in P (in
particular, A, cannot be entieely ellminated yet). Pick
anciher set A, that 8 not vet entirely eliminated, and
lot, Aiff] be the smallest so-far uncompared clement
in A that I8 compared In P. Then choose the next
comparison to be (A7) < A[i]).

The number of cholees for the comparisons s some-
what less than 27", because of the constralnts on the
sots A, amd Ai. However, this reflects the slopplness
in our definitlon of &) Indeed, as Indicated above,
not all sets can be Involved In a comparison at a glven
podnt, glven the gap structure. Hence, the encoding and
definition of £) can be oplimized so that the number
of proofs generated ks precisely 220F] . For slmplicity of
expoaltion, we leave 2P as the overapproximation in
Eguatlon [3.1). a

It wow makes sense to talk aboul eptimal pooofs,
that I8, prools with minimwm cogt. This minlooom
cost I8 called the difficalty, T, of the Instance. This
terminology 18 motlvated by the following superficially
trivial result:

CoroLlaky 3.1, Any alyorithm for the inlersection or
differance problem raquires al least T comparisons in e
ALETHGE Case.

Proof. Certalnly any corpect algorithm must wndes-
stamd what the intersection is, and hence the compar-
laons it makes ooust form & proofl P for the intersection
problem. Thiz only proves a lower bound of |P|, or the

amallest. posaible number of comparisons in a prood for
the Intersecibon problem. It I8 nod necessary that the al-
gorithr discover an enopding of P, one bit per compar-
lapn. Ingtead. an algorithm may discover a collection of
prools for the Instanee. Potentially, this collection eould
be encoded In fewer bits than any individual proof (such
ag P}, Bo the only lower bound se could prove from en-
coding optlmality = o) mines the logarithm of the
number of proofs for the Instanose.

However, the last part of Theorem 3.1 gives us what
we nesd: any two of the 290F] fproofs do not apply to
a common instance. So aoly one of these peoods can
be in the discovered collection. Henee, the algorithm
miist teuly distinguish between the 290°) proofs. In
the beat sase, each comparison halves the seapch space.
Therefore, at least o P} comparisons are nesded. a

It turng out that another Important measure on
prools is the gap cost g{P). The minlmum gap cost,
denoded by G, will show up In the scaled running time
ol an opilmal adaptive algosithm for the Intersection
and differenee problems. Mote that It s pessible for the
optimal gap cost § to only be reallzed by nonoptlonal
proals, that =, proofs with todal eost higher than T

3.2 Encoding Unlon Proofs, HRecall [rom
Lemma 2.4 that all peoofs for the unbon preoblem
are roughly the same: they can only differ in what
treed are formed by the equality comparisons, and by
adding extira [useless) comparisons. Thos, lnstead of
encoding a particular prool, we can conslder enesding
all proofs for the given instance. These two enoosding
problems are equdvalent lor the union problem, because
ghven all preols for an lnstance we can certainly fod
a canonleal one, and furthermore feom A slogle pegol
we coubd construct all other peoods for the Instanee.
Henee, in this context we can defline the oost of an
anstance Instead of & proof.

The basie ldea of encoding the gaps between com-
pared elements Is the same, although now the compared
elements (rom uselul comparisong) are In fixed loca-
tions as defined by Lemma 2.4, Indecd, we will use
exactly the same method to encode Inequality compar-
lsoms. What Jiffers Is the way In which we enopde equal-
ity comparlsons. For each value o that oceurs In multi-
ple seds A, ..., ., we must encode the set numbers
Bly-ooy fm. LTl logations of o within the sets 5 already
specified by the gap lengihs, The only ¢ost unlgue to
the unkon problem b5 that of specilying the moout of &
zets o which v pecurs, namely logs [:1] bits.

Encoding all momparisons as deseribed, we obtain a
formula for the length of encoding an entice prood P, or
equivalently an instance 7. We call this length the ooest
of T and denote It by ofF). Agaln, we beeak o(F) nto

two components, set cost #(J) and gap cost g(T), the
latter of which is defined exactly as for Intersections.
Let #(1] dengte the number of distinet values in
the wnion of 7, and let #p01] denode the number of
oceurrences of the ith smallest value in the union of
I, The gal cost s the oost of encoding the seis A,
and Ag lnvolved In each Inequality comparlson, and the
collection of gets Invalved in cach equality comparlson.

#iI) .
st =3 lor, (#r[-‘h)'

=l

(3-3)

Apain we claim that the described opcoding s
optimal: I we fix a language for encoding all instances,
then on average, an instance I reguires at least o) bits
tor be encoded In this language.

THEOREM 3.2, Giuen any instance T, there are 2¢U7)
pairrase disbinct mslonces fone of which 5 T) with the
same signatwre as . Fartlermore, aach of the mslanees
hias eost al most el T

The cost of an instance =& also called the difficully,
T of the Instance. Unlike [nbersectlons, theee are
no possible tricks with encoding a eollection of proof
instead of & siogle one In oeder o save bits, =0 the
Information theorotle lower bound s Immediate:

CoroLLaiy 3.2, Any algorithm for the union problem
requires af least T comporizsons i the average case

4 Further Lower Bounds on Finding Proofs

Corpllaries 3.1 and 3.2 glve an Information theoretic
lowweer bound, denoted ', on the running time of any
adaptive algorithm. The scaled running time |(running
time divided by T must therefore be £31). For the
unlon problem, we will in fact be able to find an
algorithm with scaled runping time &(1). For the
intersection and difference problems, however, we are
not &0 fortunate. A stronger worst-case lower bound
of {&G/T} holds for the scaled running time of any
adaptive algorithm. [Recall that & denotes the number
af sets In the instance.) In other wonds, I we optimlze
sealed running tioee, then the running tlme = (5F) in
the waorsl case.
Stated differently, this section proves

THeEOREM 4.1, Giuen posilvie tmnlegers b, g, and g [p <
). and gien on algerithm for finding Q-proofs for the
iilersection groblem. there 5 o colleclion of & sefs
having a p-comparison B-proaf with cost Oiplogs k4 g,
such thal every B-proof has gap cost [g), and the
algoritlin takes 13 kg time on this tnpul. I particular,
D= Nplog, k+g) ond G = 1 g], so the soaled runmning
time a5 DA EGTY for this mslenee.

The basle klea s to constroct a paramedorized class
ol Instances, and have an adversary plek & bad Instance
for the algorithm. Let £, ... & be positive otegers
summing to g, such that each is elther |g/p] or [g/p].
An £ will represent the celllng of the lg of a gap in the
i proof.

Flest let us deserlbe the parameters for an instance.
Pick p+ 1 “magic™ values m[0] < --- < m[p]. Pick a
BRQUEnce 8y, ..., 8, of sel numbers such that & _, # &
for all 1 < { < p. Furthermore, each & € {1,. .. &k} must
oecur ab least every 2k clements in the sequence. Chne
way Lo do this I8 to concatenate several permutations of
{1,.... &}, chosen randomly such that the first value
ol one permoutation 18 different from the last value
al the previous permutation. Floally, plek Integers
Fal1],-- .. dalp] such that g j.[i]] = & for all © and &,
except for ja_,[i] which is defined to be sero for all §.

Then we construct an instance s follows (see Flg-
ure 1). Esch magle value mi] occurs n every set except
Ay pwe will denote the oceurrence of meli] In A, by mli].
In eviery set A,, there are precisely j. [i] elements strictly
boetwoen mfi — 1] and mli]. In particular, A._, has no
elements strictly betwesn mfi — 1] and mi]; indeed, it
also has no elements equal to mli — 1).

w0 m1] m|2] 3]

Ay ﬁ] .}:I 4 "

a2 O I,D = ,x:"’D

0 — [0—0 B

As © it Q
s 24 As 20 Ay B8

Flgure 1: llustration of lower-bound constraction: Clircles
show magic elements, and crosed-ount circles indicate miss-
ing magic valnes. Arrows indicate comparisons that form a

#-proof.

Mext let us describe the B-prool. Noete that there
are no elements before m, (1], and hence it 8 minimal.
Suppose in general that m,,_, [i] 18 minimal. Then we
can use It to eliminate all elements less than mli] in
A,,. But there are no elements between mi] (inclusive)
and m[i+1] {exclusive) in A, 20 this elimination makes
11, [i+1] minimal. This continues by induction until we
find that “mp[p+ 1]" 18 minimal, that 18, A, k= entirely
ellminated.

LeEsua 4.1, The described proof has cost ONplog, &+
gl

It turns out that this & the only §-proof for this
instance, except for two types of possible modifications,
each of which Increases the gap cost. As a consequence,
wie have the {ollowlng result:

Lesuis 4.2, Every W-proof Jor the described instonce
has gap cost [g).

Finally, we can show a lower bound on the running
time of the algosithm. The algorithm is allowed 1o koow
the magie values m(l),... m[p), a8 well as f,... F,
that is, the approximate gap slees. The algorithm
does not, know the exact gap slzes (the §.[{]s), nor the
numbers & of the sets missing the maghe values.

Lesina 4.3, The algerithm mus! delermane the 2%
and jo, [i — 1] s, independently of each other.

Henee, the algorithm's job reduces to p independent,
gubjobs, cach of the following form: gleen & sorted sets,
each of unkoown skee whose [Ig] is &, find the unbque set
whose last element = not magle. We need the follgwing
observatlon, which to our knowledge has not appeaved
before.

Lesina 4.4, Given & sorted sets, each of size n, and
an element £, finding the wnigue 26l nol conlaining e
requeras Ik lgn] eomparisons.

Therefore, the algorithm takes D &g) time, proving
Theorem 4.1.

Cher example relles on (k—1-way repetition of el-
ements. A slllar argument shows that there exist
pairanse-digiomt Instances in which the scaled running
time s EG/TY. This result holds provided & =

alag f bog g) for each of the gaps ;.

5 Finding Proofs

This sectlon presents algorithoos for finding proods that,
match the lower bounds presented In previous sections.
Specifically, lor Intersectlons and differences, we glve
an algorithm running o &G time; and {or unlons,
we give an algorithm runnlog in 0D time. For the
intersection problem, this will solve the whole problem:
it b8 easy to exteact the Intersectlon A rom an A-proeol
But [or unbons and differences, there 5 an additional
problen of enecding the output. This will be addressed
In Section 6.

5.1 Finding Intersection and Difference
Proofs. We begin with an algorithmm for Anding
feproos for the Intersectlon problem, and then gen-
eralize It o A-prools for both problems. Esseatially,
the algorithm “gallops” in paralle]l through all the sets,
frpm both the low and high sldes. Galloplng conslsts
af doubling the jump in position esch Heration, wntil
it “pvershoots™ the current eliminator (which will

always be on the low side). Upon overshooting, the
other parallel processes pause while the overshooter

does a binary search to find the largest ellminatable
element, and chooses the next higher element &g the
new eliminator,

In more detall, the algorithm works as lollows.

Algorithm Empty-Interseet
o [nitlalize low-jumpls) and high-jumpis) to 1, and
done(s) to 0, for each & € {1,... k}.
o Initlalize elim-set to 1 and eliminator to 4, [1].
o For & ranging through {1,_. . &} cyclicly:
Skip this step I # = ellm-sat.
Liovw ate:
1. Let p = donefs) + low-jumpis).
2. I A, [p] > eliminator {we overshot),

{a) Binary search in the interval [done(s) +
1,p| to find the smallest p* with A [p'] =
ellminator.

b)) If o — 1 > done(s), add (d.p" — 1] =
eliminator] to the proof.

() Set donels) to p’ — 1, and low-Jumpi &) 1o 1.

(d) Set elim-get to &, and eliminator to A [p']-

3 (herwlse, double low-jump]s] and set dooe]s)
Lo j

High step:

1. Let p = n. + 1 — high-jump{s].

2. I A,[p] « eliminator {we overshot),

{a) Binary search In the interval [p,n.] to fnd
the largest p' with A.[p'] < eliminator.

(b) If p' = done(s), add (A, [p] < eliminator) to
the proof.

{e) If ¢ = n,. stop.

[d) Set doweds) to g, and low-jumnpis) to 1.

() Set elim-get to &, and eliminator to A, ¢/ +1].

([Reset high-jump|s] to ome.

3. (therwlse, double high-jump(a).

Note that at any point in time, A, [i] & eliminated
exactly when ¢ < doneds).

Now we clalm that the algorithm matehes the lower
bound from Section 4, that s, has scaled running thme
O kG T,

THeorEMm S 1. dlperithm Emplg-Tnlersecl runs 0
O EG)Y bime, amnd makes af snogl BEG conparisond.

Proaf., Suppose s blnary search loclusiwely betweosn
done{s) + 1 and p = donels) 4+ low-jump; the high
case 18 slmilar. This takes al mest ¢ = lg low-jump
comparizong. But low-jump = 2 wheee { ks the number
aof iterations we have already executed on this slde of 4,
alnee the last overshooting. Heonoe, £ =1 4 1, 50 we can
charge the binary-search thme § to these = 0 lteratlons,
and no other overshooting lberatlons will charge {0 the
same teratlons (as we now eesel the jump). This
amortlzatbon 18 the source of one factor of two in Lhe
comparkzon bownd.

Let P be a prool with gap cost &, and let b be
ordered low-to-high by Theorem 2.1, Let ¢ = (A.[i] <
Ag[j]) be the frst comparison in P. We want to
ewvaluate the number of iterations the algorithm spends
to eliminate A.li]. The low and high parts of the
algorithm run effectively In parallel; this causes the
second [actor of two in the comparison bound.

There are two maln cases. In the fiest, the gap helow
A[i] (slze g) I8 not the largest gap in A,. Ignoring
the binary-search cost as described above, galloping
affectively oecurs In lock-step parallel over the sets.
Local to A, the number of comparisens for galloping
to A,[i] or bevond 15 lgg. The other sets have had at
st the same number of iterations, thus adding a factor
al .

In the second case the gap below A, [i] 1s the largest
im A, I the sunn of the other gaps’ sbzcs i8 at least g,
then we can charge the oost (lgg) of running through
the largest gap to the other gaps In A.. These gaps
will mot be charged to agaln, because thero s only one
largest gap n A, that the gap cost does not count (Le.,
for which we must aveld paylog dicectly). I on the
other hand, the other gaps’ slees sum up Lo some value
h less than g, then the high step fnds A,[i] from the
high slde in Ig & ltorations. But g & b8 &l moest the sum
af the lga of the other gaps In A, 80 again we can charge
to these paps. These amortbzations add the last factor
ol twio bo the comparison bound.

Therefore, eliminating A.[i] takes Igg amortized
aomparisons, unless g 18 the largest gap In its set, in
which case It takes zero amortbzed comparisons. By
imduetion, this bolds for all futuee comparisons in P. O

It may be possible to Improve the lactor 8 in
the comparison bound down to 4 (plus lower order
terms), uslog more sophisticated galloping technlgues
(see e.g. [3]) that find an integer = in roughly log, = +
Tongs longy, =410, 1o, b, =+ - -+ 14-logg = comparisons,
instead of the method presented which uses 2log, = +
{1} comparlsons.

Finally, let us turn to the case where the intersection
I8 oot necessarlly empty. Recall that a proof for elther
the Intersectlon or difference problem ooust demonstrate
the lntersectlon elements (by making & — 1 eqguality
comparizons each), and forms a @-proof on each of the
remalning sublostances between the partitlon points of
the Intersection elements.

CoroLLaiy 5.1, A proof for the inlersection er differ-
ence groblem for & gorted sels can be computed tn O{EG)
timne and al most &0 comporisons.

Praaf. This follows [rom a simple modifleation to Algo-
rithm Empty-Intersect above, namely whenever a com-

parkzon with the ellminator returns “equal ™ stop gal-
loplng in that set and Increase the occurrenco gount
al the ellminator. Il the occurrence count reaches k.
output the ellminator as part of the Intersection, add
kE — 1 appropriate comparisons to the prool, and take
the ellminator’s successor as the new eliminator. a

CopoLlaky 5.2, The fnbergeclion of & sortad sels can
be computed tn (kT Lime and al most 8ET compar-
1S0TLE,

Mote that the described algorithms perform just as
well on B-trees or related structures. We only need
to start with the lefimost and rightmost leaves, and
then gallop inwards from each glde. This can be easlly
pecformed by traversing the parent and child pointers
in a B-tree, with oaly & constant-factor overhead.

52 Finding Union Proofs. Essentlally, the algo-
rithm maintaing & priority quewe over the sets, where
the priority of a set I8 the value of s smallest [unused)
elpment. In the case of an inequallty comparison, the
algorithm takes the next-to-smallest element. and finds
where It fits in the set gontalning the smallest element,
by galloping through the set, In the case of an equality
comparison, Delote- AN-Min matches and returns multl-
ple elements. In bodh cases. the minimum elements are

removed [Pom eonslderation and the pebority quewes are
updatod.

In more detall, the algorithm works as follows.

Aldgorithim Union-Proof
[nitlalize the priocity quese € with the smallest
element of every set.
Until all elements have been (conceptually | remowed:
1. Lot M = Delete-All-Min ((F).
2. I |M| =1, in particular M = {A,[i]}:
(a] Let m' = Find-A-Min (@), that s, one of
the minima.
(b] Gallop in Ay to find where m' fits.
{e) Add the smallest element A, j] greater than
or equal to m' to Q.
(d) Il m" = Aufi]. add (m" < ALf])} to the
procl.
(e] Remove all elements in Ay less than m'.
3. Mherwise (| M] = 1):
{a) For each A,[i] € M
i. Remove A,[i] from A,.
i Add Ali + 1] to Q.
(B Add equality comparlsons to form a apan-
ning tree of the elements of M.

Mow we clalm that the algorithm matches the lower
bound from Sectbon 3.2,

THeEOREM 5.2, Algerithm Unden-Proof runs i O0D)
timme.

6 Computing the Answer

For both the union and difference problems, fnding a
procd 18 not the whole story. The problem asks for
the actual answer, the wnion or difference of the sets,
not just an understanding of the answer which s given
by & prood. This understanding does, however, specify
the mnges of elements In the answer. For example, a
prood for the unbon problem encodes the total order of
the answer. Thus, the output could be enoeded n the
Tollowing form:

take the ficst 12 eloments rom Az
take the ficst 3 elements feom Ag
take the next 11 elements from As
sgklp the first element in As

However, this kind of output eneoding ls unsatis-
[actory, because 1t is oot In the same form as the Input.
In particular, I we sant 1o use the reeult of this wnion
aperatlon as the Input be another operatlon, eg., an ln-
tersection, then It must be o a usable form for the latter
operation. It 8 diffiealt to gallop ln a sct described as
abowe,

Thus we need a botter output encodlng, one that
matches the nput encoding. We cannol slmply use
arrays lor both Input and outpot, because then welting
down the answer beats the purpese of finding prools
adaptively (a8 unlons and differences are typleally very
large). We turn bnstead to the most natural alternative:
a balaneed search tree structuee. Specifically, we locus
on B-lrees a8 a comosonly used representative of this
class, As mentloned o Sectlon 5.1, It I8 easy to gallop
in such structuees, paying oaly a constant factor of
overhead In time. Furthermore, In text databases, input.
sets are often stored as B-trees to beglo with.

The goal, then, 1 to bulld another B-tree represent -
ing the unlon or difference of & collection of sets. We
assume that the sets cannot be modifled; Ior coample,
in a database systen, while the Input sets o this opera-
tion may be stored In memoey and thus there are coples
stored on disk, the sets ln memory often serve a3 & cache,
whose modification would reguiee expensive reloading
frpm disk. The remalning eedom in encoding ls sub-
tle: we can use entlee subteees (rom existing B-teecs
for building new B-trees. In other words, construeted
B-teees can have child poloters to nodes o other exist-
ing B-trees. This gives us a persistent mechanlam for
augmenting old tress,

This level of Aexibility will be enough to allow 18 Lo
construct B-trees representing the answer n the same

time as for computing & proel representing the answer.
In the next two subsectbons, we comsbder each of the
difference and union problems In turm, and show how to
build & B-tree assuming that we already koow a prood.

6.1 Computing Differences. The sltwation for the
difference problem 18 faiely sloople. & proof glees us the
Interaection of the seta, and it Femalns to remove thodo
elements from Ay Lo obtain the result. Thos, we wanl &
persistent B-tpes structure that supports deletions. In
other words, glven a B-teee T and elements 2y, ... #,,,
wie woild like to be able to sonstruct & new B-tpeo
with contents T — {xy, ... ¢} without modifying T
but by reusing nodes of T This ¢an be done using
a standard perslstence teick: perform the standard B-
tree multidelete [10], but whenever a node i modified,
frat make a copy of the node and then modify the copy
lmgtead. This proves the ollowing theoroem:

THEOREM 6.1, The difference of & sorfed sels slored in
read-enly B-trees con be compmled as anosther B-lree in
CHEG) Lime.

6.2 Computing Unions. The sibuation for unions
Is more difficult. There are two steps. Flrst, we carve
each tree according to the partition defined by the proof.
Second, we merge the pleces In the approprelate oeder
to fprme the unlen. Both of these operations are done
persistently. As we do pot have room for details, we
slmply state the results.

Lesima 6.1, Given a read-only B-ltree T and a col-
lection of waluwes ay,...,0, af which bo cut @, the
resulling H-trees T, Ty, ... T, can b compulal in
O helght(T3)) fime.

The algorithm for this lemma is & generalization of
procedure DIVIDE of Aho et al. [1, p. 157] to support
pltiple cul points. The maln difficulty 1s In proving
the time bownd.

Lesua 6.2, Fiven a seguence T, ... Ty of reod-andy
Hetreeg, their concolenalion can be compruled (o o B-
bree) in Q357 helght{T;)) time.

Apain, the algorithm s esgentlally s generalization
of procedure IMPLANT of Aho et al. [1, p. 153] to
support more than two treed. This cannod be done by
repeatedly calllng IMPLANT, because thal may cadse
the helghts of the trees belng concatenated to gpow
algnificantly. Instead, we uge a priosity gueds to oeder
the trecs appropeiately. This takes only constant cxbea
time per merge as the universe of hedghts 1s amall.

THEOREM 6.2, The wndon of & sels slorad as read-only
B-trews con be comnpuled as another B-lree in Ok
Litne.

We note that our adaptive algorithm {or the wnion
problem has been descrlbed for the speclal case of two
sets (4, 10, 11]. Our new results are the generalization
to multiple sats (which can offer a significant Improve
ment In adapiive performance) and the matching lower
bownds,

T Conelusion

Perhaps the most interesting contribution of this work
s our framework for designing and analyzing adaptive
algorithms under the comparison model. The essential
idea Is to perform a worst-case analysls on the sealed
running time lostead of the vsual ronniog thme. We
defined the scabsd running time to be the ratlo of the
running time o the difficulty of the lnstapce. This
difficulty of course depends on the problemn, but a
natural metric = the Information theoretle lower bownd.

Uzlng this framework, we proved matching upper
and lower bounds on Aonding intersections, unldons, and
diflerences of sorted sets. Specifically, for unbons, the
gealed running tlme 1z @(1). For Intersections and
differences, the scaled running time 3 @85,/ T, where
E I8 the number of sets, & 1s the so-called “gap cost,” and
TF 1a the difficulty of the problem. In other soeds, i we
take the worst-case performance relative to the scaled
running thooe, then the best possible running time s
a{kg).

For the unlon problem, or when the number of sets
s constant, this is & truly ldeal sltwatbon: the running
time 18 proportional 1o the information theoretle lower
bound. For asymoptotically many sets, the ronning thoe
for Intersectbons and differences is away from this bound
by & measonable factor that 18 spmewhat less than k
and furthermore it I8 impossible o achleve better than
this [actor In the woest case. In general, we expect
our algorithms to be practical for evaluating bhoolean
queries In text petrbeval svetems. Ongolog work on
arbitrary query cxpressions, involving a mix of unlons,
Intersections, and differences of seds, bullds upon all the
resulis outlined here.

The theme of this work is the cxploitation of nonuni-
formity In data. A sifvation n which we might not
expect an improvement 18 an Instance with & sets each
contalning n elements chosen unifpemly at random [From
(1], We can show that the expected number of com-
parizons in the smallest B-proof 18 about n/lnk. As a
consequence, our algorithm takes Onk log log k) log &)
expected comparisons, which s asymptotically better
(in terms of k) than previous algorithms which look at
all nk of the elements.

Acknowledgments. We thank Ming Ll for halplul
digcussions. This work was supported by NSERC.

References

[1] A W. Aho. J. E. Hoperodt, and J. D, Ullman., The De.
sigm and Anaiysis of Computer Algorithms. Addison-
Wesley, 1974,

[2] K. Baeza:-Yates. Efficient Tert Searching. FhD thesis,
. Waterboo, 1989,

[4] 1. L. Bentley and A. C-C. Yao, An almeost optimal
algorithm for unbounded searching. fPL, 5{%)-82-87,
Auag. 1976.

[4] 5. Carlsson, €. Levocopoulos, and (3. Petersson. Suhe
lincar merging and natural mergesort. Alporithmico,
:629-648, 19493.

[6] ¥. Estivill-Castro and [N Woed., A survey of ndap-
tive sorting algorithms.
24{4):441 476, Dec. 1002,

[6] W. Frakes and H. Bacsa-Yates, Information Retriesal
Frentice Hall, 1982,

[7] F. K. Hwang and 5. Lin. A simple algorithm for
merging two lincarly-ordered sets. SECOMP, 1(11:31
T, 198

[8] D. E. Knuth. The drt of Computer Programming, vol.
I, Addison-Wealey, 196E.

[#] U. Manber aed G. Myers. Saffix arrays: A new method
tor op:line string scarchs. In Proc. I8 Symp. iscrete
Algorithms, pp. 319-327, 19940.

[1] K. Mechlhorn, fada Structures ond Algorithms, wal. 1,
pp. 240-241. Springer-VYerlag, 1984,

[11] A, Moffat, O, Petersson, and N. C. Wormald, A tree-
based Mesgesort. Acta Informatica, 35{93:775-T93,
Aug. 1HE0E,

ACYH Computing Survegs,

