A Survey of Adaptive Sorting Algorithms

Vladimir Estivill-Castro Derick Wood
LANIA Department of Computer Science
Rébsamen 80 University of Western Ontario
Xalapa, Veracruz 91000, México London, Ontario N6A 5B7, Canada

The design and analysis of adaptive sorting algorithms has made important contributions to
both theory and practice. The main contributions from the theoretical point of view are: the
description of the complexity of a sorting algorithm not only in terms of the size of a problem
instance but also in terms of the disorder of the given problem instance; the establishment of
new relationships among measures of disorder; the introduction of new sorting algorithms that
take advantage of the existing order in the input sequence; and, the proofs that several of the
new sorting algorithms achieve maximal (optimal) adaptivity with respect to several measures
of disorder. The main contributions from the practical point of view are: the demonstration
that several algorithms currently in use are adaptive; and, the development of new algorithms,
similar to currently used algorithms, that perform competitively on random sequences and are
significantly faster on nearly sorted sequences. In this survey, we present the basic notions and
concepts of adaptive sorting and the state-of-the-art of adaptive sorting algorithms.

Categories and Subject Descriptors: A.l [General Literature]: Introduction and Survey;
F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnumerical Algorithms and
Problems — Sorting and Searching; E.5 [Data): Files — Sorting/searching; G.3 [Mathematics
of Computing]: Probability and Statistics — Probabilistic algorithms; E.2 [Data Storage
Representation]: Composite structures, linked representations.

General Terms: Algorithms, Theory.

Additional Key Words and Phrases: Adaptive sorting algorithms, Comparison trees, Measures
of disorder, Nearly sorted sequences, Randomized algorithms.

CONTENTS

INTRODUCTION

I.1 Optimal adaptivity

1.2 Measures of disorder

[.3 Organization of the paper

1.WORST-CASE ADAPTIVE (INTERNAL) SORTING

ALGORITHMS
1.1 Generic Sort

1.2 Cook—Kim division

1.3 Partition Sort

1.4 Exponential Search

1.5 Adaptive Merging

2.EXPECTED-CASE ADAPTIVE (INTERNAL)

SORTING ALGORITHMS
2.1 Distributional analysis

2.2 Randomized algorithms
2.3 Randomized Generic Sort
2.4 Randomized Partition Sort
2.5 Skip Sort

3. EXTERNAL SORTING

3.1 Replacement Selection

4. FINAL REMARKS
ACKNOWLEDGEMENTS
REFERENCES

procedure Straight Insertion Sort(X,n);
X[0] := —oc;
forj := 2 ton do
begin ¢ := 7 — 1;

t:= X[j];

whilet < X[i] do

begin X[i+ 1] := X[i];

1 =1 — 1;
end;
X[i+1]:=¢

end;

Figure 1: A pseudo-Pascal implementation of Straight Insertion Sort.

INTRODUCTION

Sorting is the computational process of rearranging a given sequence of items into ascending or
descending order [Knuth 1973]. After a first course in Data Structures or Algorithms, the impression
is that, for comparison-based algorithms, we cannot do better than optimal (so called n log n) sorting
algorithms. However, when the sorting algorithm takes advantage of existing order in the input,
the time taken by the algorithm to sort is a smoothly growing function of the size of the sequence
and the disorder in the sequence. In this case, we say that the algorithm is adaptive [Mehlhorn
1984]. Adaptive sorting algorithms are attractive because nearly sorted sequences are common in
practice [Knuth 1973, page 339; Sedgewick 1980, page 126; Mehlhorn 1984, page 54]; thus, we have
the possibility of improving on algorithms that are oblivious to the existing order in the input.

Straight Insertion Sort (see Figure 1) is a classic example of an adaptive sorting algorithm. In
Straight Insertion Sort we scan the input once, from left to right, repeatedly finding the correct
position of the current item, inserting it into an array of previously sorted items. The closer a
sequence is to being sorted, the less is the time taken by Straight Insertion Sort to sort it. In fact,
the performance of Straight Insertion Sort can be described in terms of the size of the input and the
number of inversions in the input. More formally, let Inv(X) denote the number of inversions
in a sequence X = (z1,...,2,), where (4,7) is an inversion if 7 < j and z; > z;. Intuitively,
Inv(X) measures disorder, since its value is minimized when X is sorted and its value depends on
only the relative order of the elements in X. For a sequence X with n elements, Straight Insertion
Sort performs exactly Inv(X)+ n — 1 comparisons and Inv(X)+ 2n — 1 data moves, and uses
constant extra space. We say that Straight Insertion Sort is an adaptive algorithm with respect to
Inv. Empirical evidence confirms that Straight Insertion Sort is efficient for both small sequences
and nearly sorted sequences [Cook and Kim 1980; Knuth 1973].

In this survey we present the basic notions and concepts of adaptive sorting, and the state-of-
the-art of adaptive sorting algorithms. The initial motivation for adaptive sorting algorithms is the

high frequency with which nearly sorted inputs occur in practical applications. Sorting a nearly
sorted sequence should require less work than sorting a randomly permuted sequence. For example,
if we know that, apart from one element in the wrong position, the input sequence is sorted, then
the sequence can be sorted by scanning the sequence to find the misplaced element and performing
a binary search to find its correct position. In this case, sorting takes linear time without resorting
to the full power of a general sorting algorithm. In the general case, we do not know anything in
advance about the existing order in the input, but we want the sorting algorithm to “discover”
existing order and profit from it to accelerate the sorting.

We focus our attention on comparison-based sorting algorithms for sequential models of com-
putation. The reason for this choice is that most of the work on adaptive sorting falls within this
framework. However, in an effort to be comprehensive, we mention briefly in Sections 3 and 4
results that do not fit into this framework.

Notational Conventions: The cardinality of a set S is denoted by ||.5|| and the length
of a sequence X is denoted by |X|. We assume throughout the survey only that the
elements to be sorted belong to a total order; however, we always use integer examples.
The collection of all finite sequences of distinct nonnegative integers is denoted by N <V,
The base-2 logarithm is denoted by log.

1.1 Historical Background

As early as 1958, Burge observed that the best algorithm for a sorting problem depends on the order
already in the data and he proposed measures of disorder to evaluate the extent to which elements
are already sorted [Burge 1958]. Initial research on adaptive sorting algorithms concentrated on
internal sorting algorithms and followed three directions. First, during 1977-1980, data structures
were designed to represent sorted sequences and provide fast insertions for elements whose position
was close to the position of previous insertions. Different adaptive variants of insertion-based
sorting algorithms were obtained by using these data structures to maintain the sorted portion of
the sequence [Brown and Tarjan 1980; Guibas et al. 1977; Mehlhorn 1979]. Second, Cook and Kim
in 1980 and Wainwright in 1985 performed empirical studies [Cook and Kim 1980; Wainwright
1985]. Third, Dijkstra introduced Smooth Sort in 1982 [Dijkstra 1982]. The intuitive ideas arising
from these efforts were formalized by Mannila who, in 1985, introduced a formal framework for
the analysis of adaptive sorting algorithms in the worst case [Mannila 1985b]. This framework
consists of two parts: First, the introduction of the concept of a measure of presortedness as a
function that evaluates disorder; Second, the concept of optimal adaptivity of an algorithm with
respect to a measure of presortedness. Because of the developments of Petersson [Petersson 1990]
and Estivill-Castro [Estivill-Castro 1990], adaptive sorting algorithms are now well understood.
We evaluate the disorder in a sequence by a real-valued function that we call a measure of
disorder; it is a function from N<N to ®. The measure of efficiency of a sorting algorithm is the
number of comparisons it performs. The number of comparisons provides not only a reasonable
estimate of the relative time requirements of all implementations but also enables lower bounds to
be obtained under the decision-tree model of computation. Mannila defined a sorting algorithm to

‘561 <z < ‘563‘ |$17$3| |3317$3| ‘333 < < ‘561‘

‘érl§$3§$2H$3§$1§$2H$2§$1§333H$2§$3§931‘

Figure 2: A comparison tree for sorting the
sequence Iy, T, T3.

be optimally adaptive (or maximally adaptive) with respect to a measure of disorder if it takes
a number of comparisons that is within a constant factor of the lower bound.

A general lower bound for sorting with respect to a measure M of disorder is obtained as follows.
Let below(z,n, M) denote the set of permutations of n items with no more disorder than z with
respect to M; then,

below(z,n,M) = {Y e NV||Y|=mnand M(Y) < z}.

Consider sorting algorithms having as input not only a sequence X of length n but also an up-
per bound z on the value of M(X). We analyze the comparison or decision trees for such algo-
rithms [Knuth 1973, page 182; [Mehlhorn 1984, page 68]; we give an example of a comparison tree
in Figure 2. These trees are binary and must have at least ||below(z,n, M)|| leaves, the number
of possible inputs; so the height of a tree is at least Q(log||below(z,n, M)||). Therefore, such al-
gorithms take at least Q(log ||below(z,n, M)||) time. If an upper bound on M (X) is not available,
the algorithm cannot be faster than one that is provided with the best possible bound z = M(X).
Finally, since testing for sortedness requires linear time, a sorting algorithm should be allowed at
least a linear number of comparisons.

The following definition captures the notion of optimal adaptivity in the worst-case [Mannila

1985b].

Definition I. 1 Let M be a measure of disorder and S be a sorting algorithm which uses Ts(X)
comparisons on input X. We say that S is optimal with respect to M (or M-optimal) if, for
some ¢ > 0, we have, for all X € N<N,

Ts(X) < c¢-max{|X]|,log|/below(M(X),|X

s M|}

An example of a sorting algorithm that is optimal with respect to inversions is Mannila’s
Local Insertion Sort [Mannila 1985b]; it is an insertion-based sorting algorithm. On the i-th
pass, #1,...,%;_1 have been sorted and z; is to be inserted into its correct position. Mannila
uses a level-linked balanced (a,b)-tree with a finger to represent the initial sorted segment. Let
d;(X) denote the distance from the (i — 1)-th insertion point to the i-th insertion point; that is,

di(X)=|{j|1<j<iand (2,1 <z; <z;0r x; <z;<xi_1)}| . Level-linked balanced (a, b)-
trees support the search for z;’s position in ¢(1 + log[d;(X) 4 1]) amortized time, where ¢ is a
constant [Brown and Tarjan 1980]. We use Mannila’s argument to show that Local Insertion Sort
is Inv-optimal. Let I;(X) denote the number of inversion pairs in X, where z; is the second element
in the inversion pair; that is,

LX)=|{jl1<j<iand z; >z}
Now Zl)ﬂ I;(X) = Inv(X) and it is not hard to see that
di(X) <max{;(X), L,_1(X)}. (1)
Thus, Egl log[d;(X) 4+ 1] < 221):(1 log[I;(X) 4 1]. Since the algorithm inserts | X| elements into
an initially empty tree, the amortized bound gives rise to a worst-case upper bound on the time

taken by Local Insertion Sort to sort X. Using Equation (1), properties of the logarithm, and the
fact that the geometric mean is never larger that the arithmetic mean, we obtain the following

derivation.
X n
cZ(l +log[d:(X)+1]) = ¢|X]|+ clog [H(dZ(X) + 1)]
- . 11|
— | X+ 2¢[X|log (H[L(X) y 11)
< x| <1 +2log [I"&'X) + 1]) .

Thus, the time taken by Local Insertion Sort is a smooth function of | X'| and the disorder of X. The
more inversions there are in X, the more work is performed by Local Insertion Sort. Guibas and
associates obtained the following lower bound for adaptive sorting with respect to inversions [Guibas
et al. 1977]:

log ||below(Inv(X),|X|,Inv)|| = QX|log[l+ Inv(X)/|X]]);

thus, Local Insertion Sort is Inv-optimal.
Note that, if a sorting algorithm is optimal with respect to a measure M, then it is optimal in
the worst case; in other words, optimally adaptive algorithms are optimal.

1.2 Examples of measures of disorder

Although the number of inversions is an important measure of disorder, it does not capture all
types of disorder. For example, the sequence

Wo = (|n/2) +1,[n/2] +2,...,0,1,..., [n/2])

has a quadratic number of inversions although it consists of two ascending runs; therefore, it is
nearly sorted in a sense not captured by inversions.

We now describe ten other measures of disorder that have been used in the study of adaptivity.
1. Dis. We may consider that, in terms of the disorder it represents, an inversion pair in which
the elements are far apart is more significant than an inversion pair in which the elements are close
together. One measure of this kind is Dis that is defined as the largest distance determined by an
inversion [Estivill-Castro and Wood 1989a]. For example, let

Wy =(6,2,4,7,3,1,9,5,10,8);

then (6,5) is an inversion whose elements are farthest apart and Dis(W;) = 7.

2. Max. We may also consider that local disorder is not as important as global disorder. For
example, in a library, if a book is one slot away from its correct position, we are still able to find
it, since the call number will get us close enough to where it is; however, a book that is very far
from its correct position is difficult to find. A measure that evaluates this type of disorder is Max
defined as the largest distance an element must travel to reach its sorted position [Estivill-Castro
and Wood 1989a]. In Wy, 1 must travel five positions; thus, Maz(W;) = 5.

3. Faxec. The number of operations required to rearrange a sequence into sorted order may be our
primary concern. A simple operation to rearrange the elements in a sequence is an exchange;
thus, we may define EFzcas the minimum number of exchanges required to sort a sequence [Mannila
1985b]. It is impossible to sort the example sequence Wy with fewer than seven exchanges; thus,
Exc(Wy)=1.

4. Rem. We may consider that disorder is produced by the incorrect insertion of some records,
and evaluate disorder by Rem, defined as the minimum number of elements that must be re-
moved to obtain a sorted subsequence [Knuth 1973, Section 5.2.1, Exercise 39]. By removing 5
elements from W; we obtain the sorted subsequence (2,4,7,9,10). Removing fewer than 5 ele-
ments cannot give a sorted subsequence; thus, Rem(W;) = 5. We can also define Rem(X) as
|X| — Las(X), where Las(X) is the length of a largest ascending subsequence; that is, Las(X) =
max{t | 3i(1),7(2),...,1(t) [1 <i(1) <i(2) < ... <i(t) < nandzqy < -+ < Ty}

5. Runs. Since ascending runs represent sorted portions of the input, and a sorted sequence has the
minimum number of runs, it is natural to define a measure that is the number of ascending runs.
In order to make the function zero for a sequence with no disorder, we define Runs as the number
of boundaries between runs. These boundaries are called step-downs [Knuth 1973, page 161], at
which a smaller element follows a larger one. For example, Wy = (6 | 2,4,7 31,9 5,10 8)
has Runs(Wy) = 5.

6. SUS. A natural generalization of Runs is the minimum number of ascending subsequences
into which we can partition the given sequence. We denote this measure by SUS for Shuffled
Up-Sequences [Levcopoulos and Petersson 1990].

7. SMS.SUS can be generalized further by defining SMS(X) (for Shuffled Monotone Subse-
quence) as the minimum number of monotone (ascending or descending) subsequences into which
we can partition the given sequence [Levcopoulos and Petersson 1990]. For example,

W, = (6,5,8,7,10,9,12,11,4,3,2)

has Runs(W3) = 7, whereas

SUS(W)

1{(6,8,10,12), (5,7,9,11), {4), (3), (2}
=5

and

SMS(W,) = [{(6,8,10,12),(5,7,9,11),(4,3,2)}

= 3.

8. Enc. Several researchers have designed sorting algorithms, determined on which permutations
they do well, and then defined new measures as the result of their investigations. Skiena proposed
the measure Fnec(X), defined as the number of sorted lists constructed by Melsort when applied
to X [Skiena 1988a].

9. Osc. Levcopoulos and Petersson defined the measure Osc from a study of Heapsort [Levcopoulos
and Petersson 1989a]. The measure Osc evaluates, in some sense, the “oscillation” of large and
small elements in a given sequence.

10. Reg. Moffat and Petersson defined a new measure called Reg; any Reg-optimal sorting algo-
rithm is optimally adaptive with respect to the other measures [Moffat and Petersson 1991; Moffat
and Petersson 1992].

Are these measures different? From the algorithmic point of view, if two measures My and M,
partition the set of permutations into exactly the same classes of below sets, then any algorithm that
is My-optimal is also Ms-optimal and conversely. Therefore, the measures are indistinguishable.
We capture these ideas in the following definition.

Definition I. 2 Let My, My : N<N — R be two measures of disorder. We say that

1. M, is algorithmically finer than M, (denoted My <., M) if and only if any M;-optimal
algorithm is also My-optimal.

2. My and M; are algorithmically equivalent (denoted My =,, M3) if and only if My <y,
IV[Q and le Salg Iwg.

Figure 3 displays the partial ordering, with respect to <,;,, of the measures that we have defined.

Using a complex data structure called a historical search tree, Levcopolous and Peters-
son designed an insertion-based sorting algorithm that makes an optimal number of comparisons
with respect to Reg, but does not make an optimal number of data moves; therefore, it takes
Q(log Reg(X) + | X|loglog | X|) time and is not Reg-optimal Moffat and Petersson 1991; Moffat
and Petersson 1992]. Their work constitutes an important theoretical contribution and raises the
question of the existence of a universal measure U that is finer than all measures. However, even
if such a universal measure U exists, there may be neither a U-optimal algorithm nor a practical
implementation [Mannila 1985a].

A sequence is nearly sorted if either it requires few operations to sort it or it was created
from a sorted sequence with a few perturbations. Each measure that we have defined illustrates

Dis =41y Maz Runs

‘ | Fzxe
SUS
Inv |
‘ FEne
| Rem
Osc SMS

\}Lg/

Figure 3: The partial order of the 11 measures
of disorder. The ordering with respect to <,,
is up the page; for example, Inv-optimality
implies Dis-optimality.

that disorder can be measured in many different ways, each is important because they formalize
the intuitive notion of a nearly sorted sequence. For ease of reference, Table 1 presents tight lower
bounds for optimality with respect to 11 different measures of disorder. The lower bound for I'nv
was established by Guibas and his coworkers [Guibas et al. 1977]; the lower bounds for Rem and
Runs were established by Mannila [Mannila 1985b]; the lower bounds for Enc, Ezc, Ose, SMS, and
SUS were established by Levcopoulos and Petersson [Levcopoulos and Petersson 1989; Levcopoulos
and Petersson 1990; Levcopoulos and Petersson 1991b]; the lower bounds for Dis and Maxz were
established by Estivill-Castro and Wood [Estivill-Castro and Wood 1989]; and the lower bound for
Reg was established by Moffat and Petersson [Moffat and Petersson 1991; Moffat and Petersson
1992].

Measures of disorder are a fundamental concept, but little can be said about them because of
their generality. Moreover, measures of disorder appear in contexts other than adaptive sorting.
In Statistics, measures of disarray or right invariant metrics are used to obtain coefficients of
correlation for rank correlation methods. These coefficients of correlation are used to test the
significance of observed rank correlations. For example, I'nv appears in the definition of Kendall’sT,
the most popular coefficient of correlation [Kendall 1970]. Right invariant metrics have applications
in cryptography where they are used to build tests for random permutations [Sloane 1982]. Other
applications of measures of disorder include the study of error-sensitivity of sorting algorithms [Islam
and Lakshman 1990]. The study of the relationships between right invariant metrics and measures
of disorder has resulted in general algorithms for the pseudo-random generation of nearly sorted
sequences with respect to a measure of disorder [Estivill-Castro 1990].

Table 1: The worst-case lower bounds for dif-
ferent measures of disorder.

M Lower bound:
log ||below(M(X),|X|, M)]|

Dis QX (1 +log[Dis(X)+ 1]))
Eze QX |+ Eze(X)logFze(X)+ 1])
Fne O(IX (1 + log [Ene(X) + 1))
Inv (X1 (1+1og [T + 1))
Maz QX (1 +log[Maz(X)+1]))
Osc (X (1 +1log [2569 1))
Reg Q| X] + log[Reg(X) + 1])
Rem Q(|X|+ Rem(X)log[Rem(X)+ 1])
Runs Q(X] (1 + log [Runs(X) + 1]))
SMS QX (1 +1log[SMS(X)+1]))
SUS QUX| (1 +1og [SUS(X)+1]))

1.3 Organization of the paper

Most studies of adaptive sorting have had as their goal a guarantee of optimal worst-case perfor-
mance. This approach has resulted in a large family of adaptive sorting algorithms and elegant
theoretical results. Section 1 studies adaptivity from the point of view of worst-case analysis.
Rather than presenting a list of sorting algorithms and their adaptivity properties, we present well-
developed design tools and generic sorting algorithms. The adaptivity results are presented in a
general form with respect to an abstract measure of disorder. From this general scheme, specific
algorithms are obtained as particular applications of the design tools. The adaptivity properties of
particular sorting algorithms appear as simple consequences of the general result.

Worst-case analysis requires us to guarantee best possible performance for all inputs even if
some cases are unlikely to occur. This guarantee can result in complex sorting algorithms that
use sophisticated data structures with large overhead. We suggest an alternative approach: Design
algorithms that are adaptive in the expected case. Section 2 studies adaptivity from the point of
view of expected-case analysis.

In Section 3, we discuss external sorting algorithms; that is, algorithms that are used to sort
sequences that cannot be stored entirely in main memory. Current technology allows the sorting
of large files to be performed on disk drives [Salzberg 1988; Salzberg 1989]. Since Replacement
Selection allows full overlapping of I/O operations during initial run creation for external sorting and
it creates runs that are larger than the available memory, Replacement Selection is a fundamental
practical tool and is almost the only algorithm in use. We present results that demonstrate the
adaptive performance of Replacement Selection.

Finally, in Section 4, we discuss some open problems and some directions for further research. In
particular we survey the efforts that have been made to develop adaptive in-place sorting algorithms
(that is, with constant extra space) and adaptive sorting algorithms for sequences with repeated
keys. We also mention the efforts that have been made to define adaptivity of parallel sorting
algorithms.

1 WORST-CASE (INTERNAL) ADAPTIVE SORTING AL-
GORITHMS

It is certainly useful to design an adaptive sorting algorithm for a particular measure; however, the
diversity of measures of disorder suggests that an algorithm that is adaptive to several measures is
much more useful, since in a general setting, the type of disorder in the input is unknown. Initially,
many discoveries were made by studying a particular measure, but increasingly researchers have
focused their attention on sorting algorithms that are adaptive with respect to several measures.
Unfortunately, it appears that we cannot increase the number of measures without adding complex
machinery with large overhead that renders the algorithm impractical. The trade-off between the
number of measures and a practical implementation is central to the selection of an adaptive sorting
method. We illustrate this trade-off by presenting progressively more sophisticated algorithms
that are adaptive with respect to more measures, although we favor adaptive algorithms that are
practical.

1.1 Generic Sorting Algorithms

We present a generic adaptive sorting algorithm that enables us to focus attention on the combi-
natorial properties of measures of disorder rather than the combinatorial properties of the algo-
rithm [Estivill-Castro and Wood 1991b; Estivill-Castro and Wood 1992b]. Using it, we obtain a
practical adaptive sorting algorithm, optimal with respect to several important measures of disorder
and smoothly adaptive for other common measures.

The structure of the generic sorting algorithm, Generic Sort, should not be surprising. It uses
divide and conquer and balancing to ensure O(nlogn) worst-case time. What is novel, however,
is that we can establish adaptability with respect to a measure M of disorder by ensuring that
the method of division, the division protocol, satisfies three requirements. First, division should
take linear time in the worst case; second, the sizes of the sequences that it generates (and that are
not sorted) should be almost the same; and, third, it should not introduce too much disorder. We
formalize what is meant by too much disorder in Theorem 1.1. The generic sorting algorithm has
the form shown in Figure 4. If a sequence cannot be divided into smaller sequences or is so close
to sorted order that it can be sorted in linear time by an alternative sorting algorithm, then it is
considered to be simple. Generic Sort leaves us with two problems: What are reasonable division
protocols and what is meant by too much disorder? Three example division protocols are:

e Straight division. Divide a sequence X = (z1,...,2,) into two halves X7, = X1.qx]/2) and
Xr = Xig(Ix|/2]..|X]"

Generic Sort(X)
e X is sorted. Terminate.

e X is simple. Sort it using an alternative
sorting algorithm for simple sequences.

e X is neither sorted nor simple.

— Apply a division protocol to divide
X into at least s > 2 disjoint se-
quences.

— Recursively sort the sequences us-
ing Generic Sort.

— Merge the sorted sequences to give
X in sorted order.

Figure 4: Generic Sort. The first generic sorting algorithm.

e Odd-Even division. Divide X into the subsequence X,,., of elements in even positions and
the subsequence X,44 of elements in odd positions.

e Median division. Divide X into the sequence of all elements smaller than the median of
X and the sequence of all elements larger than the median of X (denoted by X and X
respectively).

Observe that each of these division protocols satisfies the time and size requirements. The notion
of too much disorder is made precise in the following theorem [Estivill-Castro and Wood 1991b;
Estivill-Castro and Wood 1992b].

Theorem 1.1 Let M be a measure of disorder such that M(X) = 0 implies X is simple, D € R
and s € N be constants such that 0 < D < 2 and s > 1, and DP be a linear-time division protocol
that divides a sequence into s sequences of almost equal sizes.

1. Generic Sort is worst-case optimal; it takes O(| X |log|X|) time in the worst case.

2. If there is an ng € N such that, for all sequences X with | X| > ng, DP satisfies

Z M (j-thsequence) < D|s/2| M(X),

7=1
then Generic Sort is adaptive to the measure M ; it takes
O(|X[(1+ log[M(X) +1]))

time in the worst case.

Straight Merge Sort(X);

if not sorted(X')

then begin
Straight Merge Sort(X;_|x/2);
Straight Merge Sort(Xq4|x|/2.x));
Merge(X1 |x1/2:X14|x|/2.1X]);

end;

Figure 5: A pseudo-Pascal implementation of
Straight Merge Sort.

3. D < 2 is necessary.

1.1.1 Applications of Generic Sort

Consider the variant of Mergesort displayed in Figure 5. The straight-division protocol takes linear
time and Inv(Xy, ||x|/2)) +Inv(X14x|/2). x|) accounts for all the inversions except those inversion
pairs with one element in X, | x|/2) and the other in Xy |x/2/.x|- Thus,

Inv(X) > Im’(X1~L|X|/2J) + Inv(X1+L|X|/2J..|X|)-
Similarly,
Rem(X) > Rem(X1~~[|X|/2J) + Renl(X1+|_|X|/2J“|X|).

Therefore, Straight Merge Sort is adaptive with respect to Inv and Rem. Now, R‘UnS(Xl..HXUQJ) +
Runs(X1+L|X|/2J“|X|) accounts for all the step-downs in X except possibly for a step-down between

Xrpixizz) and Xigyxiz).x). Thus,
RUTLS(X) > RURS(X1L|X|/2J) + Runs(X1+[|X|/2J|X|)
and Theorem 1.1 and the lower bound imply that Straight Merge Sort is optimal with respect to

Runs.
Now, for the measure Dis, we have

Dis(X) > Dis(Xy_|x|/2)
and
Dis(X) > Dis(X14x|/2.X;

therefore,
2Di8(X) > DZ'S(XL.|X|/2) + DZ'S(X1+|X|/2“|X|).

This bound is tight because, for the sequence W = (2,1,4,3,...), we have Dis(W) = Dis(W;_jw|/2) =
Dis(Wi4jwyj2.qw|) = 1. Assume that Theorem 1.1 holds when D = 2. This assumption implies

Odd-Even Merge Sort(X);

if not sorted(X')

then begin
Odd-Even Merge Sort(X cyen);
Odd-Even Merge Sort(X ,44);
l“’ferge()(euen7)(@:!::1);

end;

Figure 6: A pseudo-Pascal implementation of
Odd-Even Merge Sort.

that Straight Merge Sort should take O(|W|[1+1log2]) = O(|W]) time. But clearly, Straight Merge
Sort requires Q(|W|log|W|) comparisons to sort W. Thus, D < 2 is necessary for Theorem 1.1 to
hold and Straight Merge Sort is not adaptive with respect to Dis.

To construct an algorithm that is adaptive with respect to Dis, we use the odd-even divi-
sion protocol. It can be shown that Dis(X)/2 > Dis(X,q4) and Dis(X)/2 > Dis(Xeyen) and
immediately we have

Dis(X) > Dis(Xeven) + Dis(Xoua).

Moreover, it is easy to prove that, for any sequence X,
Inv(X) > Inv(Xepen) + Inv(Xoda),

and

Rem(X) > Rem(Xepen) + Rem(X,44).

Thus, the modified version of Mergesort presented in Figure 6 takes fewer comparisons than the
minimum of 6|.X |(log[Inv(X)+ 1]+ 1), 6| X|(log[Dis(X)+ 1] + 1), 6|.X |(log[Rem(X)+ 1] + 1) and
6| X|(log[Maz(X)+ 1] + 1). In other words, if Odd-Even Merge Sort is given a sequence that
is nearly sorted with respect to any of the above measures, it will adapt its time requirements
accordingly. In fact, for Dis and Max, it is optimal; see Table 1.

As a final application of Theorem 1.1, we combine the two previous algorithms and obtain an
algorithm that is adaptive with respect to Inv, Fxc, and Rem and optimal with respect to Runs,
Dis, and Maz. We merely combine the two division protocols to give Odd-Even Straight Merge
Sort; see Figure 7. With the same design tool we have obtained a sorting algorithm that is

e Simple and leads to implementations that are competitive with traditional methods on random
sequences

e Adaptive with respect to several measures; thus, it leads to implementations that are faster
on nearly sorted inputs

The reader may ask why we do not use a sorting algorithm that is Reg-optimal and covers all
the measures we have introduced? As we have pointed out, there is no known sorting algorithm

Odd-Even Straight Merge Sort(X);
if notsorted(X)
then begin
O-E S M Sort(X cyen,);
O-E S M Sort(X 44,);
O-E S M Sort(X cven,);
O-E S M Sort(X 44y,);
Merge(XevenL 7XoddL7 XeuenRaXoddR);
end;

Figure 7: A pseudo-Pascal implementation of
Odd-Even Straight Merge Sort.

that is Reg-optimal. The message we are attempting to communicate is that more machinery is
required to obtain adaptivity with respect to more measures and we have to be very careful that
the overhead that is needed does not outweigh the savings obtained by the gained adaptivity. We
hope to give you a feeling for those methods whose overhead is small that result in adaptivity for
many measures.

We now present a division protocol that allows us to achieve Fzec-, Inv- and Rem-optimality
with little increase in the complexity of the code.

1.2 Cook—Kim division

In their empirical studies Cook and Kim chose the measure Rem because it

‘...is an easily computed measure that coincides with our intuitive notion [of nearly
sorted].’

They designed a division procedure to make Quickersort adaptive with respect to Rem [Cook and
Kim 1980]. The resulting sorting algorithm is called CKsort. Later Levcopolous and Petersson
observed that Cook—Kim division is very powerful, since we can use it to add Rem and Fzc to
the list of measures for which a sorting algorithm is optimal [Levcopoulos and Petersson 1991b].
Let A be any sorting algorithm that takes O(n log n) comparisons in the worst case. We describe
how Cook-Kim division can be used to obtain a sorting algorithm that is Rem- and Fzc-optimal
and also M-optimal, for any measure M for which algorithm A is M-optimal. Let X = (21,...,z,)
be the sequence to be sorted. Cook—Kim division divides X into two subsequences such that one
of the subsequences is sorted and the other has length at most 2Rem(X). We sort the unsorted
subsequence with algorithm A and merge the resulting sequences, in linear time, to obtain a sorted
sequence. In total, Cook—Kim division adds a linear-time term to the time taken by algorithm
A. The division procedure is defined as follows. Initially, z; is the only element in the sorted
subsequence. Now, examine z;, for i = 2,...,|X|. If z; is larger than the last element in the sorted

subsequence, then z; is appended to the sorted subsequence; otherwise, the last element in the
sorted sequence and z; are placed in a second subsequence and the first sorted subsequence shrinks.

For example, Cook—Kim division can be combined with the test for sortedness in Odd-Even
Straight Merge Sort to obtain an algorithm that is optimal with respect to Dis, Fxc, Max, Rem,
and Runs. Moreover, Levcopoulos and Petersson generalized Cook-Kim division to obtain a divi-
sion protocol that satisfies the linear-time and equal-size requirements of Generic Sort [Levcopoulos
and Petersson 1991b]. They demonstrated that the resulting algorithm is Inv- and Rem-optimal.
We now present their division protocol.

LP division protocol. Given a sequence X = (21, ...,2,), initially place z; in a sequence
S and create two empty sequences X7, and Xg. Now, examine z;, for i = 2,...,|X|. If
x; is larger than the last element in 5, append z; to S; otherwise append z; to X7, and
remove the last element of S and append it to Xg. We obtain a sorted sequence S and
two sequences Xg and X, of the same length.

When we combine straight division with Odd-Even division and LP division in Generic Sort
we obtain an algorithm which we call LP Odd-Even Straight Merge Sort that is Fzec-, Dis-, Inv-,
Rem-, and Runs-optimal. Harris [Harris 1981] has shown that when Natural Mergesort is imple-
mented using linked lists, as suggested by Knuth [Knuth 1973, Section 5.2, Ex. 12 and Section 5.2,
Ex. 12],it is a competitive (with respect to comparisons and data movements) adaptive sorting al-
gorithm that behaves well on random sequences. In fact, LP Odd-Even Straight Merge Sort can be
implemented with linked lists without difficulty. With this implementation, LP Odd-Even Straight
Merge Sort results in a practical and simple utility. Comparisons of CPU time, for nearly sorted
sequences (with respect to Dis, Inv, Rem and Runs), between LP Odd-Even Straight Merge Sort
and other algorithms indicate that LP Odd-Even Straight Merge Sort is the most effective alter-
native. Moreover, CPU timings of LP Odd-Even Straight Merge Sort show that is is competitive
with other sorting algorithms on random data and much faster on nearly sorted data.

1.3 Partition Sort

In Section 1.1, we presented a generic sorting algorithm that divides the input into s parts of almost
equal size, where s is a constant. We now describe an alternative generic sorting algorithm in which
the number s of parts can vary and depends on the disorder in the input [Estivill-Castro and Wood
1992c]. Moreover, the sizes of the individual parts are not restricted, although the total size of the
simple parts must be at least a fixed fraction of the total size of the parts. This approach makes
the code for the generic algorithm more complex but, in exchange, we obtain optimal adaptivity
with respect to more measures. In particular, the division protocol is more sophisticated and may
require more than linear time, since it must ensure that the disorder has been significantly reduced
in a constant fraction of the parts. The parts where the disorder is small are considered simple.

Letting X be a sequence, we say that a set P(X) of nonempty sequences Xy,...,X, is a
partition of X if every element of X is in one and only one sequence in P(X) and the sequences
in P(X) have elements only from X. The number of sequences in P(X) is called the size of the
partition.

Partition Sort(X)

o If X is sorted, then terminate; other-
wise, if X is simple, then sort it using
an algorithm for simple sequences.

e Otherwise (X is neither sorted nor sim-
ple):

— create a partition P(X)
= X Xy

— Fori=1,...,||P(X)|, sort X; re-
cursively

— Merge the sorted sequences to give
X in sorted order

Figure 8: Partition Sort. The second generic
sorting algorithm.

The structure of the generic sorting algorithm, Partition Sort is again based on divide and
conquer. Given asequence X, a partition protocol computes a partition P(X) = {X1,..., X|p(x)}-
Note that the size of the partition depends on the input X. Fach X; that is simple is sorted using
a secondary sorting algorithm that sorts simple sequences. Each part that is not simple is sorted
by a recursive call of Partition Sort. In the final step, all the sorted parts are merged; see Figure 8.

The merging of || P(X)|| sorted parts takes O(| X |(1+ log[||P(X)||+ 1])) time (pairing the parts
Xoi—1 and Xg;, for i =1,..., [||[P(X)]|/2] and merging them reduces the number of parts by a half
in linear time). Partition Sort can take as much time to compute the partition as it does to merge
the sequences resulting from the recursive calls. Our goal, however, is to obtain an algorithm that
takes O(| X |(1 4+ log[||P(X)|| +1])) time. If [|P(X)|| is related to a measure M of disorder, then the
algorithm will be adaptive with respect to M. However, we will achieve our goal only if a constant
fraction of the recursive calls are simple and the sizes of the partitions obtained during further
recursive calls do not increase arbitrarily.

We make these notions precise in the following theorem [Estivill-Castro and Wood 1992c].

Theorem 1.2 Let ¢ € R be a constant with 0 < ¢ < 1. Let PP be a partition protocol and d > 0
be a constant such that, for all sequences X € N<N:

o The partition protocol PP creates a partition P(X) = {X1,..., X)p(x)} of X making no
more than d| X |(1+ log[||P(X)|| + 1]) comparisons

o The sum of the lengths of the simple sequences in P(X) is at least ¢| X|
o If PP is applied to any X; in P(X), then no more than ||P(X)|| sequences are obtained

If there is a constant k > 0 and a sorting algorithm S such that, for all simple sequencesY resulting
from partitions of X and its parts, algorithm S sorts Y by making no more than k|Y |log(||P(X)||+1
comparisons, then Partition Sort makes O(| X |(1+log[||P(X)|||4+1])) comparisons. In other words,
Partition Sort is adaptive with respect to the size of the initial partition.

Before we present some applications of Partition Sort we make two observations. First, Generic
Sort can be regarded as a variant of Partition Sort. The specific form of Generic Sort, however,
results in a stronger theorem (Theorem 1.1) that is easier to apply. Second, Carlsson and Chen
attempted to use Partition Sort as a general framework for adaptive sorting algorithms and defined
the “...minimal size of a specific type 7 of partitions” as a generic measure of disorder; thus the
relationship between the size of the partition and the measure would be immediate [Chen and
Carlsson 1991].

1.3.1 Applications of Partition Sort

The first application is to Natural Mergesort [Knuth 1973, page 161]. Natural Mergesort partitions
the input into ascending runs. A sequence is considered simple if it is sorted and, in fact, in this
example all parts of the partition are simple. Clearly, a partition into ascending runs can be obtained
in linear time by scanning the input and finding all step-downs. Since the number of ascending runs
is directly related to the measure Runs, Natural Mergesort takes O(|X|(1 + log[Runs(X) + 1]))
time and is, therefore, Runs-optimal; a new proof of a Mannila’s known result [Mannila 1985b].

Our second application is to Skiena’s Melsort, which we now describe [Skiena 1988]. When
Melsort is applied to an input sequence X, it constructs a partition of the input that consists of a
set of sorted lists called the encroaching lists of X. Since encroaching lists are sorted, the simple
parts are sorted sequences and all parts are simple. In the final step, Melsort merges the lists to
obtain the elements of X in sorted order. The encroaching set of a sequence X = (zq,...,2,)
is defined by the following procedure: We say that z; fits a double-ended queue D if z; can be
added to either the beginning or the end of D to maintain D in sorted order. We start with z1 as
the only element in the first double-ended queue and, for 7 = 2,...,|X|, we insert z; into the first
double-ended queue in which it fits. We create a new double-ended queue if z; does not fit any
existing double-ended queue. An example should make this process clear. Consider the sequence
Ws = (4,6,5,2,9,1,3,8,0,7). Initially, D; consists of 4. The second element, 6, fits at the end
of Dy. The third element, 5, is between 4 and 6, so 5 is added to an empty D3. The next three
elements all fit Dy and are placed there. The element 3 does not fit Dy but it fits Dy. Similarly, 8 fits
Dy and 0 fits Dy, but the last element requires a new double-ended queue. The final encroaching
set is

{Dl = [07172747679]7 D2 = [37578]7 DS = [7]}

The number of lists in the encroaching set is the measure Fnc of disorder. Thus, in our exam-
ple, EFne((4,6,5,2,9,1,3,8,0,7)) = 3. Since the encroaching set can be constructed in O(|X|(1+
log[Ene(X) + 1])) time, Melsort takes O(|X|(1 + log[Ene(X) + 1])) time; therefore, Melsort is
FEnc-optimal and we have obtained a new proof of Skiena’s result [Skiena 1988].

Our third application is to Slab Sort [Levcopoulos and Petersson 1990]. Slab Sort is a sorting
algorithm that achieves optimality with respect to SMS(X) (the minimum number of shuffled

Nt

Figure 9: A plot of a zig-zag shuffled sequence.

monotone subsequences of X') and, therefore, optimality with respect to Dis, Maz, Runs and
SUS. Although Slab Sort is an important theoretical breakthrough it has limited practical value
because it requires repeated median finding.

Slab Sort sorts sequences X with SMS(X) < z using O(|X|(1 + log[z 4+ 1])) comparisons.
The input sequence X is stably partitioned into p = [2%/2] parts of almost equal size using the
|1+ |X|/p|-th, [1 4+ 2|X|/p]-th, ..., [1 4+ (p — 1)|X|/p]-th elements as pivots. These elements
are found by repeated median finding that make a total of O(|X|log[p + 1]) comparisons. The
partitioning is similar to the partitioning in Quicksort, but with p — 1 pivots, and it can be carried
out in O(|X|(1 + log[p + 1])) time, as is shown by Frazer and Mckellar for the partitioning in
Samplesort [Frazer and McKellar 1970].

Before describing Slab Sort, we must define zig-zag shuffled sequences because, in this applica-
tion, zig-zag sequences correspond to simple sequences.

Definition 1.3 Letting X € N<N, we denote a subsequence of X by (mi(l),...,mi(s)% where

i:41,...,8} — {1,...,|X]|} is injective and monotonically increasing. We say that a subse-
quence <xi(1),...,xi(s)> is an up-sequence if ;1) < Tig) < ... < Tys). Similarly, we say that
a subsequence <xi(1), .. .,xi(5)> is a down-sequence if T;1) > Tig) > ... > Tis). A subsequence

is monotone if it is either a down-sequence or an up-sequence. We say that two subsequences
<$i(1)7 R mi(s)>f <xj(1)7 R mj(t)> intersect Zf{@(l), 2(1)+17 .- ,@(8)}ﬂ{](1),j(1)+1, .- 7](t)} 7£ 0.

For example, if Wy = (6,5,8,7,10,9,4,3,2, 1), the subsequences (6,8,10) and (5, 7,9) intersect but
(6,8,10) and (4,3,2,1) do not.

Definition 1.4 A sequence X is a zig-zag shuffled sequence if there is a partition of X into
SMS(X) monotone subsequences such that no up-sequence intersects a down-sequence.

A geometric interpretation of zig-zag shuffled sequences can be obtained as follows. Given a se-
quence X, for each z; we plot a point (7, rank(z;) in the plane. Given the minimum decomposition
of X into monotone subsequences, we join the consecutive points of each monotone subsequence
with line segments. Then, X is a zig-zag shuffled sequence if no down-sequence curve intersects an
up-sequence curve; for example, see Figure 9.

Let X1, X, ..., X, be the subsequences given by the Slab Sort partition of X. Zig-zag shuffled
sequences are important because if X; is a zig-zag shuffled sequence and SMS(X;) < z, then

Ene(X;) < z and Melsort sorts X in O(|X|(1+log[z+1])) time; hence, Melsort can be used to sort
zig-zag shuffled sequences. Moreover, for any X;, if Melsort attempts to construct an encroaching
set with more than z sorted lists, then we know that X; is not simple and should be sorted by a
recursive invocation of Slab Sort.

Finally, we must ensure that a constant fraction of the elements in X belong to a simple
subsequence. Let X be a sequence with SMS(X) < z. Assume that a minimum partition by
monotone sequences has z; down-sequences and zy up-sequences with zy + 29 < z. Thus, the
number of intersections among up-sequences and down-sequences is bounded by 212, < 22/4. Since
Slab Sort stably partitions X into p = [2%/2] intervals X1,..., X, at least half of these intervals
are zig-zag shuffled sequences with SMS(X;) < z. Hence, half of the intervals are simple and, since
all intervals are almost the same size, about half of the elements in the original sequence belong to
simple sequences. We conclude that given a sequence X and an integer z such that SMS(X) < z,

Slab Sort sorts X in O(|X|(1+ log[z + 1])) time.

1.4 Exponential Search

Let M be a measure of disorder. Suppose that we have a sorting algorithm A that has two
inputs, a sequence X and a bound z on the disorder of X, and uses the bound z to sort X in
O(log ||below(z,| X |, M)]||) time. Although algorithm A is adaptive, it requires z as input and thus
we do not consider it to be a general sorting algorithm. We describe, however, a design tool that
allows us to use algorithm A as a building block for a general sorting algorithm that is M-adaptive.

The idea is to estimate a bound on the disorder in the input and then apply algorithm A [Estivill-
Castro and Wood 1989]. We describe a scheme to approximate the disorder based on a variant of
exponential search [Mehlhorn 1984, page 184].

The sorting algorithm Search Sort uses a variant of exponential search to find an upper approx-
imation to M(X). In other words, we find a bound z, such that M(X) < z and z is not too far
from M(X), and then give this bound to algorithm A [Estivill-Castro and Wood 1992d].

Let k be a constant such that, for all X € N<V and all z with M(X) < z, algorithm A on
inputs X and z takes no more than k x f(|X|,) comparisons, where

F(IX1,2) = max{|X|,log||below(z, | X |, M)].

The general algorithm Search Sort is shown in Figure 10. Note that f(|X|, z) is an nondecreasing
function of z. If the updating of the estimate of the bound on the disorder is carefully selected, the
time taken by Search Sort is dominated by the last invocation of algorithm A and, thus, we obtain
an algorithm that requires only the sequence X as input and, up to a constant factor, is as fast as
algorithm A. The following theorem formalizes the details.

Theorem 1.5 Let k > 0 be a constant such that, for all X € N<N and all z with M(X) < z,
algorithm A on inputs X and z takes no more than k X f(|X|, z) comparisons. If ¢ > 1 is a constant
such that, for all z, ‘ ‘

e x f(IX],2%) < F(X], 27,

Search Sort(X)

e Set an initial bound z = ¢, where ¢ > 0
is a small constant.

¢ Repeat

— Call algorithm A with inputs X
and z, and count the comparisons
A performs.

— If A makes more than k£ x f(|X], z)
comparisons, then interrupt A and
update the guess z (usually by
squaring z).

— If A finishes successfully with at
most k£ x f(|X|,z) comparisons,
then terminate.

Figure 10: Search Sort. The third generic
sorting algorithm.

and Search Sort updates the guess z by squaring it, then Search Sort makes
O(f(I1X], M(X))

comparisons to sort X ; Search Sort is M -optimal.

1.4.1 An application of Search Sort

As an application of Search Sort we transform Slab Sort (see Section 1.3), which requires a bound
on the disorder in the input, into a general sorting algorithm that is SMS-optimal.

We let the initial guess be z = 2 and, rather than counting the comparisons performed by Slab
Sort, we test if the bound z is adequate by verifying that at least half of the parts in the partition
are simple. If at any time we do not obtain this many simple parts, then we square the value of z,
and the recursive calls of Slab Sort use the new value of z. It is not hard to verify that the new
algorithm makes O(|X|(1 + log[1 + SMS(X)])) comparisons, so it is SM S-optimal. This example
illustrates that combining Partition Sort and Search Sort gives a general sorting algorithm whose
division protocol is sophisticated and powerful.

1.5 Adaptive Merging

We have presented three generic sorting algorithms that are based on divide and conquer. Their
adaptive behavior is a direct consequence of a carefully designed division protocol, whereas the

merging phase is simple and oblivious to the disorder in the input. However, if the input is nearly
sorted, then it is intuitively clear that there should be little disorder among the sorted sequences
that result from the recursive calls. There have been two efforts to design sorting algorithms whose
merge phase profits from such existing order.

Carlsson, Levcopoulos, and Petersson presented the first adaptive sorting algorithm based on
adaptive merging [Carlsson et al. 1990]. Their work extended the notion of adaptivity and optimal
adaptivity to merging algorithms; they proposed a new merging algorithm, Adaptmerge. Using this
merging algorithm to obtain a sorted sequence from the runs in the input, they obtained a variant
of Natural Mergesort that is Dis-, Fxc-, Rem- and Runs-optimal. Unfortunately, Adaptmerge
represents its output as a linked list of sorted segments, which complicates its implementation.

The second sorting algorithm based on adaptive merging was designed by Van Gelder [Van
Gelder 1991]. The merging strategy is similar to that of Adaptmerge and is based on a simple idea:
Let X = (z1,...,2,) and Y = (y1,...,yn) be sorted sequences stored in an array with X before
Y. Assume n is known and the goal is to merge X and Y. Their overlap (given by indexes [and r
such that 2; <y < 2141 and y, < x, < Yry1) is first found. Second, the smaller of z;,...,2, and
Y1, .-, Yr is copied to another array and then merged with the larger sequence in the original array.
To obtain a sorting algorithm, Van Gelder uses straight division for the divide phase and the above
merging strategy to combine sorted sequences. The resulting algorithm has little overhead and is
Dis- and Runs-optimal. It is also adaptive for the measures Rem and Fzc, but not optimal.

2 EXPECTED-CASE (INTERNAL) ADAPTIVE SORTING AL-
GORITHMS

In contrast to the pessimistic view taken by worst-case analysis, expected-case analysis provides a
more practical view, because normally the worst-case instances of a problem are unlikely. We now
discuss sorting algorithms that are adaptive in the expected case. There are two approaches for
expected-case complexity [Karp 1986; Yao 1977], the distributional approach and the random-
ized approach. In the distributional approach a “natural” distribution of the problem instances
is assumed and the expected time taken by the algorithm over the different instances is evaluated.
This approach may be inaccurate, since the probabilistic assumptions needed to carry out the
analysis may be false. We show that, based on the distributional approach, sound definitions of
optimality with respect to a measure of disorder can be made; but little new insight is obtained
from them. This difficulty is circumvented with randomized sorting algorithms, since their behavior
is independent of the distribution of the instances to be solved. (The expected execution time of
a randomized algorithm is evaluated on each individual instance.) We demonstrate that adaptive
randomized sorting algorithms exist and that they are simple and practical. In contrast, worst-case
time sorting algorithms that are adaptive for sophisticated measures like SMS use complex data
structures or require median finding.

2.1 Distributional Analysis

Our goal here is to argue that distributional analysis provides no new insight into the behavior of
adaptive sorting algorithms. As we have pointed out, the distributional approach to expected-case
complexity analysis assumes a distribution of the problem instances. The standard assumption for
distributional analysis of the sorting problem is that all permutations of the keys are equally likely
to occur (clearly, an assumption that can hardly be true in practice; however, it is accepted, for
example, in the textbooks that analyze Quicksort. Moreover, nearly sorted sequences are common in
practice, and adaptive sorting algorithms are more efficient [Knuth 1973, page 339; Mehlhorn 1984,
page 54]). With this assumption in mind, Katajainen and Mannila defined optimality for adaptive
algorithms, in the expected case, using the distributional approach [Katajainen and Mannila 1989)].
Although their definition is sound, it is unclear whether it provides any new insights. Katajainen
and Mannila have been unable to construct an example of a sorting algorithm that is optimal in
the expected case and suboptimal in the worst case [Katajainen and Mannila 1989]. Moreover,
the definition does not shed light on the behavior of Cook and Kim’s CKsort. Recall that CKsort
applies Cook—Kim division to a sequence X and splits X into two sequences, one of which is sorted.
Quickersort is used to sort the unsorted sequence and, finally, the two sequences are merged [Cook
and Kim 1980]. CKsort takes O(|X|?) time in the worst case and the computer science fraternity
has assumed that it is adaptive with respect to Rem in the expected case Cook and Kim 1980;
Wainwright 1985]. In the second phase of the algorithm, however, the sequences of length at
most 2Rem(X) that are given to Quickersort are not equally likely to occur; therefore, CKsort is
not expected-case optimal with respect to any nontrivial measure and Katajainen and Mannila’s
definition of optimality.

Li and Vitanyi show that the universal distribution is as reasonable as the uniform distribu-
tion and, they are able to explain why nearly sorted sequences appear more frequently in practice [Li
and Vitanyi 1989]. Moreover, they show that if an expected-case analysis is carried out for the
universal distribution, then the expected-case complexity of an algorithm is of the same order as its
worst-case complexity. Their result implies that Quicksort requires (] X |?) time in the expected
case and it shows that distributional-complexity analysis depends heavily on the assumed distribu-
tion. More realistic distributions are usually mathematically intractable. In addition, not only are
nearly sorted sequences more likely, but also their distribution may change over time. Because of
the difficulties posed by the distributional approach, we consider the randomized approach.

2.2 Randomized Algorithms

We use randomization as a tool for the design of sorting algorithms that are both adaptive and
practical. With randomization, we can enlarge the set of measures for which a sorting algorithm
is adaptive without increasing the difficulty of a practical implementation. The difficulties with
the distributional approach are circumvented by randomized algorithms because their behavior is
independent of the distribution of the instances to be solved. Janko, and Bentley and coworkers
have successfully used randomization for a constrained sorting problem [Janko 1976; Bentley et al.
1981].

Using the terminology introduced by Mehlhorn and Yao for comparison-based algorithms, we

‘172 SII S Ig‘ ‘1‘2 S xr3 Sl‘l‘

Figure 11: A randomized comparison tree for
sorting the sequence z1, 24, z3.

translate the Q(log||below(-,,-)||) lower bounds for the worst case to lower bounds for the dis-
tributional expected case, which in turn, result in lower bounds for the randomized expected
case [Mehlhorn 1984; Yao 1977]. These implications allow us to capture the notion of optimal
adaptivity for randomized sorting algorithms.

Again let M be a measure of disorder and consider sorting algorithms having as input not only
the sequence X but also an upper bound z on the value of M(X). Recall that the corresponding de-
cision trees for such algorithms have at least || below(z, | X|, M)|| leaves, since below(z, | X|, M)is the
number of possible inputs. The average depth of a decision tree D with at least ||below(z,|X|, M)||
leaves is denoted by Average-depth(D) and is

Z depth of Y in D

vebelow(z,|X|,M) || below(z, | X |, M)

This formula implies that there is a constant ¢ > 0 such that, for every sorting algorithm D that
sorts sequences in below(z,|X|, M),

Average-depth(D) > ¢ X log||below(z, |X|, M)|| (2)

Now, a randomized sorting algorithm corresponds to a randomized decision tree [Mehlhorn
1984]. In a randomized decision tree there are two types of nodes; we give an example of a
randomized comparison tree in Figure 11. The first type of node is the ordinary comparison node.
The second type is a coin tossing node that has two outgoing edges labeled 0 and 1 which are
each taken with a probability of % Without loss of generality we can restrict attention to finite
randomized decision trees; thus, we assume that the number of coin tosses on inputs of size n is
bounded by some function k(n). Which leaf is reached depends not only on the input but also
on the sequence s € {0, l}k(”) of outcomes of coin tosses. For any permutation Y and sequence
s €40, 1}1“(”), let d;s denote the depth of the leaf reached with the sequence s of coin tosses and
input Y. Let T be a randomized decision tree for the sequence X; then, the expected number of

comparisons performed by T on X is denoted by E[T(X)] and is given by

1
E[T(X)] = E ok(n) d§,5§
s€{0,1}+()

that is, F[T(X)] is the average number of comparisons of d§,5 over all random sequences s €
{0, 1}%(),

Let R be the family of all randomized algorithms and let R be a specific randomized algorithm.
We denote by Tr(X) the number of comparisons performed by algorithm R on input X; Tr(X)is a
random variable. A lower bound on the largest expected value of Tr(X), for X in below(z, | X|, M),
is given by the following equation:

max E[Tr(X)] > min max E[T(Y)].
Xebelow(z,|x|,M) TeR yebelow(z,|X|,M)
Observe that once the sequence s € {0, l}k(”) is fixed, a randomized decision tree becomes an

ordinary decision tree D that sorts sequences in below(z,|X|, M). since the maximum value of
E[T(Y)] is never smaller than the its average value:

E[T(Y)]

max E[TR(X)]> min 2 Thelow(e X 0]

Xebelow(z,|x]|,M) - Ter Yebelow(z,|X|,M)

Now, replacing E[T(Y)] with

1 T
Z Qk(n) dY75
s€{0,1}K(n)
reordering the summations, since they are independent, and using Equations (??) and (eq:Aver)
we obtain

1
max FE|Tr(X > min —— Average depth|D,
Xebelow(z,|X|,M) TR(X)] 2 TeR se{gk(n) 2k(n) ge depth[D]

> d log||below(z,| X |, M)|.

A randomized adaptive sorting algorithm cannot be faster than the fastest randomized sorting
algorithm, which uses a bound on the disorder, when it is provided with the best possible bound,
namely z = M(X). Intuitively, an adaptive randomized sorting algorithm R is optimal in the
expected case with respect to a measure M of disorder if for every sequence X, the expected value
of Tr(X) is within a positive constant of the minimum value. Finally, since testing for sortedness
requires linear time, a sorting algorithm should be allowed at least a linear number of comparisons.
Therefore, we capture the notion of optimal adaptivity for randomized sorting algorithms as follows.

Definition 2.1 Let M be a measure of disorder, R be a randomized sorting algorithm, and E[Tr(X)]
denote the expected number of comparisons performed by R on input X. We say that R is optimal
with respect to M (or M-optimal) if, for some ¢ > 0, we have, for all X € N<N|

ETr(X)] < ¢ xmax{|X]|,log| below(M(X),|X|,M)|}.

Thus, for randomized algorithms the lower bounds for optimal adaptivity coincide with the lower
bounds for optimal adaptivity in the worst case as displayed in Table 1; however, with randomization
it is possible to obtain adaptivity for more measures with simpler implementations. Moreover, the
relationships <,;, and =,;, between measures are preserved for randomized algorithms.

2.3 Randomized Generic Sort

We now present a randomized generic adaptive sorting algorithm Randomized Generic Sort that
facilitates the design of an adaptive algorithm by enabling us to focus our attention, once more, on
the combinatorial properties of measures of disorder rather than on the combinatorial properties
of the algorithm. The randomized generic adaptive algorithm is based on divide-and-conquer. The
division phase is performed, however, by a randomized division protocol that, in an expectation
sense that we formalize later, does not introduce disorder. The generic algorithm gives rise to
randomized sorting algorithms that are adaptive in the expected case; moreover, they are simple
and practical.

We denote by Pr[P(X)] the probability that, on input X, the randomized division protocol
produces a partition P(X) = {X1,..., X|p(x)}- Let Trpp(X, P(X)) be the number of compar-
isons performed by the randomized division protocol to create P(X) when partitioning X . We say
that the protocol is linear in the expected case if there is a constant & such that, for all X € N<N,

E[Trpp(X)] = > Pr[P(X)]-Trpp(X, P(X))
P(X)

IN

k| X]|.
An example of a randomized division protocol is

¢ Randomized median division: Select, with equal probability, an element z from X as a pivot
to partition X into X, (a sequence of elements smaller than z) and X5, (a sequence of
elements larger than z). The size of the partition is either two or three (the pivot counts as
one element of the partition).

The structure of Randomized Generic Sort is presented in Figure 12.

The following theorem formally establishes that Randomized Generic Sort results in a sorting
algorithm that is adaptive in the expected case with respect to a measure M, when we use a division
protocol that reduces the disorder in the expected case. Observe that

POy,
LM(X))
; RY

is the sum of the disorder in the parts of the partition weighted by their corresponding fractions of
| X|. Observe also that

IPCOI x|
S PriP(X)] > leM(XZ-)
P(X) i=1

is the expected disorder in the parts with respect to the set of partitions generated by the division
protocol.

Randomized Generic Sort(X)
e X is sorted. Terminate.

¢ X is simple. Sort X using an alternative sorting
algorithm.

e X is neither sorted nor simple.

— Apply a randomized division protocol to
divide X into at least two disjoint se-
quences.

— Recursively sort the sequences using
Randomized Generic Sort.

— Merge the sorted sequences to give X in
sorted order.

Figure 12: Randomized Generic Sort. A ran-
domized generic sorting algorithm.

Theorem 2.2 Let M be a measure of disorder such that M(X) = 0 implies X is simple, ¢ be a
constant with 0 < ¢ < 1, and RDP be an expected-case linear-time randomized division protocol
that randomly partitions a sequence X into a partition P(X)= {X1,..., X|p(x)} with probability
Pr[P(X)].

1. Randomized Generic Sort is expected-case optimal; on a sequence of length n, it takes O(nlogn)
expected time.

2. If there is an ng € N and a constant p > 2 such that, for all sequences X with |X| > no,
RDP satisfies 2 < [|[P(X)[| < p, and

POy
S PrP(X)] > ||§Z||M(XZ») < ex M(X),
P(X) i=1

then Randomized Generic Sort is adaptive with respect to M in the expected case, it takes
O(|X[(1+ log[M(X) +1]))
time in the expected case.

Since it is the first time that the result has been presented for a generic algorithm, as compared
with a similar result for a specific algorithm by Estivill-Castro and Wood [Estivill-Castro and Wood
1992a], we provide the main ideas of its proof.

Sketch of the proof of Theorem 2.2: The proof requires an induction on |X|. Let b > 0 be a
constant such that:

e The expected time taken by Randomized Generic Sort to sort all simple sequences of length
n is at most bn.

e The expected time taken to discover that a sequence of length n is not simple and, in this
case, to partition it and carry out any merging after the recursive calls is at most bn.

Let d be greater that b/log[2/(1 + ¢)], Tras(X) denote the number of comparisons performed
by Randomized Generic Sort on input X, E[Tras(X)] denote the expected value of this random
variable, and E[Trgs](n, k) denote the maximum value of F[Trgs(X)] over all X of length n with
M(X) = k. We show by induction that

E[Tras|(n, k) < dn(1 + log[k + 1]),

which establishes the theorem. We supply only the induction step since the basis is immediate.
Thus, we assume £ > 1 and we let X be a sequence of length n with M(X) = k. The induction
hypothesis is

E[Tras](n', k) < dn'(1 + log[k + 1)),

for all »’ < n. Now,

[|1P(X)]]
E[Tpas(X)] < bn+ > Pr[P(X)] [> E[TRGS(Xi)]] :
P(X) =1

since the right-hand side is the average over all possible partitions of the sum of the cost of sorting
each part. By the definition of E[Tras(X)],

1P|
E[Tras(X)] <bn+ > Pr[P(X)] Y. E[Tras](|Xi|, M(X))).
P(X) i=1
The induction hypothesis gives
1P|
ElTras(X)] < bn+ > PrP(X)] > d|Xi|(1+ log[l + M(X)]).
P(X) i=1

Algebraic manipulation enables us to show that this inequality implies that

1P (X))

E[Tras(X)] < (b+ d)n+ dnlog {1+ > Pr[P(X)] >
P(X) i=1

|X¢|[\J(X¢)
| X

Now, by hypothesis 2 and since d > log[2/(1 4 ¢)], we have

E[Tras(X)] < (b4 d)n+ dnlog[l + cM(X)]
1+M(X -
< bt dn — dulog [{F5EL] + dnlog1 + M(X)]
< dn(1 +log[1 + M(X))).

as required. a

2.3.1 Applications of Randomized Generic Sort

Different variants of Quicksort have been obtained by choosing different pivot selection strategies.
Standard Randomized Quicksort selects the pivot randomly and uniformly from the elements in
the sequence [Mehlhorn 1984]. Standard Randomized Quicksort can take quadratic time on every
sequence; moreover, the number of comparisons performed by Standard Randomized Quicksort is a
random variable T'spg(X) such that Tsprg(X) = Q(| X |log|X|) and E[Tsro(X)] = O(|X|log|X]),
for every sequence X [Knuth 1973]. Thus, Standard Randomized Quicksort is oblivious to the order
in the input.

As an application ofRandomized Generic Sort, we modify Standard Randomized Quicksort
such that while it partitions the input, it checks whether the input is already sorted and, if so, no
recursive calls are made. We call this algorithm Randomized Quicksort. The number of comparisons
performed by the algorithm on an input sequence X is a random variable between ¢;|X| and ¢y X |2,
for some constants ¢1,cq > 0. Since Quicksort uses exchanges to rearrange the elements, we use
FEzc, the minimum number of exchanges required to sort a sequence, to measure disorder. It turns
out that this measure characterizes precisely the adaptive behavior of Randomized Quicksort as
the following result shows [Estivill-Castro and Wood 1992a).

Theorem 2.3 The expected number of comparisons performed by Randomized Quicksort on a

sequence X is denoted by E[Trg(X)] and is O(| X |(1 + log[Ezc(X) 4+ 1])).
For k =2,3,...,|n/2], the sequence
W(k) = <27174737'--72U€/2J72U€/2J - 1>

has Eze(W(k)) = k. We can construct a sequence of length n and measure k£ by appending the
sorted sequence

Yo = (2\k/2] +1,2[k/2] +2,...,n)

to W (k). Since Tro(W (k)Y) = Q(|n|(1+log[k+1])), we have shown that E[Trq(X)]is Q(|X|(1+
log[Eze(X) + 1])). The proof of the upper bound follows from Theorem 2.2. We now show that
Randomized Quicksort fulfills the hypothesis of Theorem 2.2 [Estivill-Castro and Wood 1992a].

Lemma 2.4 Let X = (z1,...,2,), Xi(s) = (2],...,2._,) be the left subsequence produced by
Randomized Quicksort’s partition routine when the s-th element is used as the pivot, and X,.(s) =
(#hyq,...,2y,) be the corresponding right subsequence. Then,

—Eacc X) > Z

() + —— Eae(X,(s))|

The proof of this lemma, which uses classic results by Cayley [Cayley 1849], is laborious because
there are sequences in which most of the elements, when used as pivots, increase the disorder;

that is, a pivot s can give Eze(X (s))+ Eze(X,(s)) > Fze(X). However, Lemma 2.4 says that, on
average, the partition given by a randomly selected pivot does not increase the disorder as measured
by Fzxc.

Cook and Kim [Cook and Kim 1980], Dromey [Dromey 1984], Wainwright [Wainwright 1985],
and Wegner [Wegner 1985] have designed adaptive versions of Quicksort that are deterministic
algorithms with a worst-case complexity of O(|X|?), but their distributional expected-case analysis
seems mathematically intractable. Thus, apart from simulation results, no other description of
their adaptive behavior is known. Estivill-Castro and Wood have shown that a worst-case bound of
O(|X|(1+ log[Eze(X)+ 1])) comparisons is achievable if the median is used as the pivot [Estivill-
Castro and Wood 1992b]. Observe that, although Randomized Quicksort can be coded succinctly
and efficiently, it is not Fzc-optimal since this hypothesis implies that its running time would be
O(|X|+ Eze(X)[1+ log Eze(X))]).

The second application of Randomized Generic Sort is to Randomized Mergesort, a variant of
Mergesort that is Runs-optimal in the expected case. It is not optimal in the worst case, with
respect to any nontrivial measure, for the same reason that Randomized Quicksort is not optimal;
that is, Trus(X) = O(]X|?) in the worst case, for every unsorted sequence X. Randomized
Mergesort first determines whether the input is already sorted and, if so, it halts. Otherwise,
Randomized Mergesort uniformly selects a split position and then proceeds in the same way as the
usual Mergesort. The time complexity of Randomized Mergesort for a sequence X is a random
variable independent of the distribution of the problem instances. From Table 1 we know that
log ||below(X, Runs)|| is Q(| X|[1 + log(Runs(X) + 1)]); thus, the following theorem implies that
Randomized Mergesort is Runs-optimal in the expected case.

Theorem 2.5 If E[Trys(X)] is the expected number of comparisons performed by Randomized
Mergesort on a sequence X, then

E[Trms(X)] = O(1X|(1 4+ log[1 + Runs(X)])).

Theorem 2.5 follows by verifying that Randomized Mergesort is an application of Randomized
Generic Sort that fulfills the hypotheses of Theorem 2.2. Although the uniform selection of the
split position is the most practical alternative, Randomized Mergesort may use other distributions
to select the split position [Estivill-Castro and Wood 1992a).

2.4 Randomized Partition Sort

Naturally we can define a randomized version of Partition Sort, which we call Randomized Partition
Sort. It is also based on divide-and-conquer through a randomized division protocol. We can relax
the requirements, however, that the randomized division protocol takes linear time in the expected
case and that deeper recursive levels have no more parts than the partition at the first level.
For Randomized Partition Sort, given a sequence X, the randomized partition protocol obtains a
partition P(X) = {Xy,..., X||pcx)} with probability Pr[P(X)]. Each simple part X; is sorted
using an alternative sorting algorithm for simple sequences, and each part that is not simple is
sorted by a recursive call. In the final step, all sorted parts are merged; see Figure 13. The number

Randomized Partition Sort(X)
e X is sorted. Terminate.

e X is simple. Sort it using an algorithm for sim-
ple sequences.

e X is neither sorted nor simple.

— Using a
randomized division protocol construct a
partition P(X) = {Xq,...,)(HP(X)H}.

— Yori=1,...,||P(X)], sort X; recursively.

— Merge the sorted sequences to give X in
sorted order.

Figure 13: A relaxed, randomized divi-
sion protocol results in Randomized Partition
Sort.

of parts in the partition, || P(X)||, is a random variable; thus, the expected time taken for the merge
is no more than

> ex PrP(X)|X|(1+ log[[|P(X)[+1]) < | X|(1+ log[E[[| P(X)[l] + 11),
P(X)

where ¢ is a constant and E[||P(X)||] is the expected value of || P(X)].

Thus, the expected time taken by the partition protocol to obtain a partition of X is bounded
from above by ¢| X |(1+log[E[||P(X)]|]+ 1]). If the expected time taken by the recursive calls is also
bounded by ¢| X |(1+log[E[||P(X)||]]+1]), then we obtain an algorithm that is adaptive with respect
to E[||P(X)]|], and if E[||P(X)||]is related to a measure M of disorder, we obtain adaptivity with
respect to M.

This approach works however only if the expected length of the simple sequences is a constant
fraction of the total length of the sequence to be partitioned as is made precise in the following
theorem.

Theorem 2.6 Let ¢ be a constant with 0 < ¢ < 1, RDP be a randomized division protocol, and
d be a constant such that, for all sequences X € N<N, the RDP creates a partition P(X) =
{ X1, X)pcxy) of X in no more than d| X |(1+ log[E[|| P(X)||]] + 1]) comparisons, and

X > Y Pr[P(X)]) IX,
P(X)

i€ J(P(X))

where J(P(X)) is the set of indices of simple parts.

If there is a constant k > 0 and a sorting algorithm S such that for all possible simple se-
quences X; in P(X), algorithm S sorts X; by making no more than k| X;|(1+ log[E[||P(X)[|]+ 1])
comparisons, then the expected number of comparisons to sort X by Randomized Partition Sort is

O(IX[(1 + log[E[[| P(X)[I]+ 11))-
Randomized Partition Sort is adaptive with respect to the expected size of the partition.

One application of Randomized Partition Sort is to Randomized Slab Sort. Recall that Slab Sort
sorts a sequence X with SMS(X) < z using no more than O(|X|(1+ log[1 + z])) comparisons. It
requires, however, p = [22/2] pivots that are found using median finding that makes O(|X|(1 +
log[1 + p])) comparisons. In contrast, Randomized Slab Sort uses random selection of a sample
of p pivots as in Samplesort [Frazer and McKellar 1970]. Estivill-Castro and Wood show that
Randomized Slab Sort satisfies the requirements of Theorem 2.6 [Estivill-Castro and Wood 1991c].
Thus, for a sequence X with SMS(X) < z, Randomized Slab Sort takes O(|X|(1+ log[l + z2]))
expected time.

2.5 Skip Sort

We have argued that sorting algorithms which are adaptive with respect to several measures take
advantage of existing order even when it appears in different forms. Such algorithms are, how-
ever, hard to obtain without the use of complex data structures when worst-case adaptivity is
desired. In contrast, randomization enables us to achieve expected-case optimality with respect
to many measures with simpler data structures. To illustrate this point once more, we recall that
Moffat and Petersson designed an insertion-sorting algorithm that, in the worst-case, performs an
optimal number of comparisons with respect to all measures of presortedness appearing in the
literature [Moffat and Petersson 1991], an important theoretical contribution. The data structure
that they use to represent the sorted portion of the input is a historical search tree that provides
fast local insertions. A local insertion is an insertion at a position in a sorted sequence that is
not too far from previous insertions. The additional virtue of Moffat and Petersson’s historical
search tree is that it implements two types of local insertions efficiently. Those insertions for which
distance is measured by space (the number of links followed) in the data structure and those for
which distance is measured by time in the sequence of insertions (the number of elements in the
sequence between the successor and the element currently being inserted). Unfortunately, the use
of a historical search tree implies not only that the time taken by the sorting algorithm is not pro-
portional to the number of comparisons, but also, and more seriously, that the possible applications
of the algorithm are limited because of the overhead.

We present Skip Sort, a practical sorting algorithm that is optimal with respect to Dis, Fze,
Inv, Maz, Rem, and Runs in the expected case. Skip Sort is an insertion-sorting algorithm that
uses a skip list to represent a sorted subsequence. Informally, a skip list is a singly linked list
with additional forward pointers at different levels; an example skip list is shown in Figure 14. Tt
is a simple and practical probabilistic data structure that has the same asymptotic expected-time
bounds as a balanced binary search tree and allows fast local insertions [Pugh 1989]. The price we

Y

level 7]
level 6 &

level 5
level 4

level 3
level 2 >

level 1 Nl = SN = SNy pu I

HEADER 1st nd 3rd 4th 5th 6th 7th Sth

Y

Y

Y
Y

32 {1s

— 15H] — 7 N

7H — 130] H ..

ps

> I
19T = = 40_ 1

& “I

Y
\ 4
Y
Y

Y

Y
Y
Y
Y

Y
\ 4
\ 4
Y
Y

\ 4

Y

Y
Y
Y

Figure 14: A skip list of 8 elements with the search path when search-
ing for the 6th element. The update vector for the 6th element is
[6th, 5th, fth, fth, jth, jth, HEADFER)], since these positions define the
nodes whose pointers may need to be modified if the height of the
node at the 6th position changes.

pay for this performance is that skip lists are no longer worst-case optimal, but only expected-case
optimal. Note that the same behavior can be achieved with randomized treaps! [Aragon and
Seidel 1989]; we use skip lists because updates in a treap require rotations and care must be taken
to preserve the heap order of the priorities.

Since Skip Sort is an insertion-sorting algorithm, the elements are considered one at a time,
and each new element is inserted at its appropriate position relative to the previously inserted
elements. The standard skip-list insertion of z; [Pugh 1989], begins at the header; however, for
Skip Sort, the insertion of z; into the skip list begins at the position of z;_1, the previously inserted
element. During the insertion of each element into (and the deletion of an element from) the skip
list, Pugh [Pugh 1989] maintains what he calls the update vector. It satisfies the invariant:

update[j] points to the rightmost node of level j or higher that is to the left of the
position of z;_1 in the skip list; see Figure 14.

Since level-1 links are the standard list links, update[l] points to the node just before x;_;. The
search for the insertion position of z; begins by comparing z; and z;_¢. If z; < z;_1, then we search
to the left; otherwise, we search to the right. If we must search to the left, then we repeatedly
increase the level and compare z; with the nodes pointed to by update[l], update[2], ..., until we
find a level 7 such that the element of the node pointed to by update[j] is smaller than z;. At this
stage, z; can be inserted after the node given by update[j] using the skip-list insertion algorithm. If
we ever reach the top level of the skip list, we insert z; by the skip-list insertion algorithm beginning
at the header. For example, suppose we insert 18 immediately after 30 has been inserted into the
skip list of Figure 14. We compare 18 with 30 and determine that we must go to the left. After
comparing 18 with update[1] = 19 and update[2] = 19, we find that update[3] = 15 is smaller than

!Treaps are search trees with keys and priorities stored in their nodes. The keys are arranged in inorder and the
priorities in heap order.

18. Thus, skip-list insertion proceeds from the fourth element and down from level 3. A search to
the right is performed similarly.

To insert an element into a skip list that is d positions from the last insertion position, takes
O(1 + log d) expected time [Papadakis et al. 1990; Pugh 1989]. Let Cy(d) denote the number of
comparisons performed by an insertion d positions away from the last position and T'ss(X) denote
the number of comparisons performed by Skip Sort on input X = (z1,...,2,). Since E[Tss(X)]is
the sum of the expected times of the | X | insertions,

IX|
E[Tss(X)] = ZE[CI(d X

|X]

O "1+ log[l + di(X)]),

=1

where d;(X)=|{j|1<j<iand (2,01 < z; < z; or z; < z; < x;_1)}||. From this point onwards,
the proofs of worst-case optimality [Estivill-Castro and Wood 1989a; Levcopoulos and Petersson
1991b; Mannila 1985b] can be modified to obtain the following theorem.

Theorem 2.7 Skip Sort is expected-case optimal with respect to Inv, Runs, Rem, Fzc, Maz,
and Dis.

Sketch of the proof: To illustrate the technique, we give the proof for Runs. We analyze

E 1 + log[1 + d;(X)] as we did in the proof for the worst-case time of Local Insertion Sort and

use
|X|

E[Tss(X)] = 031 +log[1 + di(X)]) (3)
=1
to bound the expected value of T'ss(X) by a function of |X| and the disorder in X. Since
log ||below(Runz(X), | X|, Runs)|| = Q(| X |[1+log(Runs(X)+1)]), to show that Skip Sort is Runs-
optimal in the expected case we must show that, for all X, E[Tss(X)] = O(|X|[1 + log(Runs(X)+
1)]). Let R = Runs(X)+1 and #(r) be the set of indices of the r-th run. Thus, "7 ||t(r)|| = | X].
Moreover, for each run r, 37, d;(X) < 2| X|[. Now,

IX|

> 1 41logll +di(X)] = |X|+EZlog1+d X)).

i=1 r=1 jet(r)
For integers d; > 0 such that 37, d; < 2|X|, the sum }7;c(,)log(1 + d;) is maximized when
d; = 2|X|/||t(r)|]. Therefore,

|X|
S 14 log[l + di(X)] < |X|+z||t)| Tog(1 + 21 X|/[|1(r)]).

=1

Table 2: Comparing Local Insertion Sort and Skip Sort on Rem nearly sorted sequences.

The CPU time is measured in milliseconds.

Algorithm | X |

64 128 256 512 1024 2048 4096 8192
L I Sort 57.8 120.2 247.0 517.1 1086.56 2191.28 4618.76 9224.77
Skip Sort | 25.2 51.2 105.6 2244 483.11 979.32 2094.97 4181.15

Table 3: Comparing Local Insertion Sort and Skip Sort on Max nearly sorted sequences.

The CPU time is measured in milliseconds.

Algorithm | X |

64 128 256 512 1024 2048 4096 8192
L I Sort 63.5 127.4 245.6 4979 1052.76 2163.80 3115.64 9552.80
Skip Sort | 27.1 54.2 109.5 2344 507.61 1080.16 2370.37 4881.20

The right-hand side

R
|X [+ [X] 3 Tlog(1 + 2| X |/[|t(r) IeN/IX]

r=1
R
| X[+ | X |log TT 11+ 21X |/[[t(r)[FCON/IXL,

r=1

R
[X1+ 2_: [[1(r)[Hog(1 + 21X |/[[#(r)]])

Since the geometric mean is no larger than the arithmetic mean, we obtain.

R R
X1+ X |log TT 11+ 21X/ [je(r) /X1 | X]+ [XTlog > _[2 4+ [[(r)]I/1X]

r=1 r=1

= | X|(1+log[2R + 1]).

I

This inequality and Equation (3) give E[Tss(X)] = O(|X|(log[1 + Runs(X)])) as required

a

Furthermore, because of the simplicity of skip lists, Skip Sort is a practical alternative to
Local Insertion Sort. Tables 2 and 3 presents simulation results that imply that Skip Sort is
twice as fast as Local Insertion Sort. Both algorithms were coded in C and simulations were
performed on a VAX-8650 running UNIX”™ 4.3BSD and measured using gprof [Graham et al.
1982]. Each algorithm sorted the same set of 100 nearly sorted sequences for each input length.
The Rem nearly sorted sequences were generated using Cook and Kim’s method [Cook and Kim

1980; Wainwright 1985] with Rem(X)/|X| < 0.2. The percentage of disorder in Table 3 is given
by Maz(X)/|X| < 0.2 and the permutations were generated on the basis that Maxz is a normal
measure of disorder [Estivill-Castro 1991].

3 EXTERNAL SORTING

Currently, the sorting of sequences of records that are too large to be held in main memory is
performed on disk drives [Salzberg 1988; Salzberg 1989]. Initial runs are created during the first
phase of external sorting and, during a second phase, the runs are merged. With more than one
disk drive, Replacement Selection allows full overlapping of I/O operations and the calculations
performed in main memory to create initial runs that are usually larger than the available main
memory. If only one disk drive is available, Heapsort also allows full overlapping, but the length of
the created runs is the size of available main memory [Salzberg 1988]. During the second phase of
external sorting the initial runs are combined by Multiway Merge and the number of runs merged
in each pass (the order of the merge) is chosen to optimize the seek time and the number of
passes [Salzberg 1988; Salzberg 1989]. Indeed it is possible to achieve a two-pass sort, one pass to
create the initial runs and one pass to sort the runs with Multiway Merge [Zheng and Larson 1992].

Sorting a very large sequence implies that the records must be read from disk at least once;
thus, full overlapping of I/O with the operations performed in main memory produces initial runs
for free. Replacement Selection is of central importance because longer initial runs result in fewer
initial runs and, therefore, fewer passes over the sequence in the second phase. Thus, larger initial
runs reduce the overall sorting time.

The classic result on the performance of Replacement Selection establishes that, when all input
sequences are assumed to be equally likely, the asymptotic expected length of the produced runs
is twice the size of available main memory [Knuth 1973, page 254]. Similar results concerning the
length of the first, second, and third initial run as well as the last and penultimate initial run have
been obtained by Knuth [Knuth 1973, page 262]. Other researchers have modified Replacement
Selection such that, asymptotically, the expected length of the initial runs is more than twice the
size of available memory [Dinsmore 1965; Dobosiewicz 1984; Frazer and Wong 1972; Ting and Wang
1977]. These methods have received limited acceptance because they require more sophisticated
I/0O operations and prohibit full overlapping; thus, the possible benefits hardly justify the added
complexity of the method. Similarly, attempts to design new external sorting methods that profit
from the existing order in the input face inefficient overlapping of I/O operations.

Several researchers have observed, however, that the lengths of the runs created by Replacement
Selection increase as the disorder in the input sequence decreases. For fixed input length, as
the lengths of the initial runs increases, the number of passes to merge these runs decreases.
Thus, external sorting using Replacement Selection is sensitive to the disorder in the input when
two or more disk drives are available. Let P be the maximum number of records that can be
stored in main memory. In the worst case, Replacement Selection produces runs no larger than
P. Replacement Selection facilitates the merging phase when it produces runs of more thanP
elements. Based on this idea, Estivill-Castro and Wood describe mathematically the worst-case
performance of Replacement Selection on nearly sorted sequences [Estivill-Castro and Wood 1991a].

(‘ > >

> >)

IO OO

_— _—
IN

ouT

I 04
— ____J

Selection Tree

Figure 15: Environment for Replacement Selection.

They introduce two measures to assess the performance of Replacement Selection. These measures
are minimized when Replacement Selection does not create runs with more than P elements and
are maximized when Replacement Selection creates a sorted sequence. Their results show how
the performance of Replacement Selection smoothly decreases as the disorder in the input sequence
increases. In their analysis, they show that, as is common in practice, it is essential to consider
input sequences that are much larger than the size of main memory; otherwise, the disorder in the
input sequence has little effect. The reason is that, for short nearly sorted sequences, Replacement
Selection does not produce long runs because there are simply not enough elements. We now
summarize these results.

3.1 Replacement Selection

The environment for Replacement Selection consists of two disk drives; see Figure 15. The input
sequence is read sequentially from the IN disk drive using double buffering. While one of the input
buffers, say I; is being filled, ¢ € {0, 1}, Replacement Selection reads elements from the other input
buffer I1_;. The roles of I; and I[1_; are interchanged when one buffer is full and the other one
is empty. The output sequence is written sequentially to the second disk drive using a similar
buffering technique.

For the purposes of our discussion we concentrate on Replacement Selection based on selection
trees [Knuth 1973, page 254]. We assume that there is room in main memory for P elements,
together with buffers, program variables, and code. Replacement Selection organizes the P elements
in main memory into a selection tree with P nodes.

Notational convention: We use X7 to denote the input sequence and Xo to denote
the corresponding output sequence produced by Replacement Selection with P nodes.
P is omitted throughout—we should really write X g .

Replacement Selection operates as follows. Initially, the selection tree is filled with the first P
elements of X7; the smallest element is at the root. The element at the the root is the smallest

element in the selection tree that belongs to the current run. Repeatedly, the root element is
removed from the tree, appended to Xp, and replaced by the next element from X;. In this way
P elements are kept in main memory, except during initialization and the termination. To make
certain that the elements that enter and leave the tree do so in proper order, we number the runs
in Xp. After an element has been deleted from the selection tree and is replaced by a new element
x, we discover the run number that z belongs to by the following reasoning: If z is smaller than
the element that was just added to the current run, then z must be in the next run; otherwise,
belongs to the current run.

Consider the length of the input to be fixed and the disorder in the input to be variable. It is
intuitively clear that Replacement Selection creates initial runs with more than P elements when
X7 is nearly sorted. However, it is unclear how many initial runs will be larger than P. It is even
less clear, for example, how sorted should X7 be to guarantee that at least one in four of the initial
runs is larger than P. This observation leads us to a fundamental question: Letting ¢ be a positive
integer, how sorted should X be to guarantee that, on average, at least one in ¢ of the initial runs is
larger than P? The first measure of the performance of Replacement Selection is Runs-Ratio(Xo),
the fraction of the runs that are larger than P; it is defined as follows:

number of runs in Xp thatare larger than P

Runs-Ratio(Xp) =
uns-Ratio(Xo) number of runs in Xg

This measure is naive but we are able to analyze it. The second measure of the performance of
Replacement Selection is theaverage run length of X¢. It is denoted by ARL(X¢) and is defined
as the average of the lengths of the runs in Xo:

sum of the lengths of the runs in Xp

ARL(Xp) =

number of runs in Xop
[Xo|
number of runs in Xo

In fact, the time taken by the second phase of external sorting is a function of the average run
length of Xo. The number of passes required by a multiway merge is

1+ |log, (number of runs in Xo)| = 1+ [log,(length of Xo/ARL(X0)], (4)

where w is the order of the merge.

The measure Runs-Ratio(Xo) can be as small as 0. We expect that if M(Xy) is small with
respect to P, for some measure M of disorder, then Runs-Ratio(Xp) is at least positive. Some
consideration must be given, however, to the length of X with respect to P because if X7 is shorter
than P, then the value Runs-Ratio(Xo) is 0 independently of how sorted X is. Similarly, we expect
that if M(X7)is small, then ARL(Xp) is somewhat larger than P; however, this property does not
hold for all measures of disorder. Fortunately, disorder can be evaluated in many ways. Intuitively,
Replacement Selection is oblivious to local disorder, since it can place elements that are no more
than P positions away from their correct position. Replacement Selection is sensitive, however, to
global disorder. Recall that one measure that evaluates this type of disorder is Maz, defined as the

Smallest 1
value of
Runs-Ratio(Xo)

»l
'

1/2-- —O

———O

—O
—

—
—

11 [| | | |, »nisxp
1P 2P 3P 4P 5P 6P TP 8P

Figure 16: As the disorder in X grows, the performance of Replacement
Selection, quantified by the smallest value of Runs-Ratio,decreases.

largest distance an element must travel to reach its sorted position, and another is Dis, defined as
the largest distance determined by an inversion. In fact, Dis and Maxz are equivalent since, for all
unsorted X, Maz(X) < Dis(X) < 2Maz(X) [Estivill-Castro and Wood 1989].

Theorem 3.1 characterizes the Runs-Ratio with respect to Dis. We present the result in graph-
ical form in Figure 16, which illustrates how the performance of Replacement Selection decreases
as the disorder increases.

Theorem 3.1 Let ¢ > 0 be a constant and let X1 be such that | X1| > (|c]+1)P. If Dis(X1) < ¢P,
then

1. Runs-Ratio(Xo) = 1 when ¢ < 1; thus, when the disorder according to Dis is less than P,
Replacement Selection mazimizes Runs-Ratio.

2. Runs-Ratio(Xo) > LITJ when ¢ > 1; thus, Runs-Ratio is at least P/Dis(X).
Moreover, these bounds are tight.

It is not surprising that if the distance determined by an inversion pair that is farthest apart is less
than P, then Xois sorted and Runs-Ratio(Xo) is maximized. However, it is not immediate that
Dis(X1) < 2Pimplies that X¢ is sorted. As the bound on the disorder grows, the performance of
Replacement Selection decreases. Now we can determine how sorted should X7 be to guarantee
that at least one in ¢ runs in X are larger than P. For example, if we want to make sure that
one in two runs produced by Replacement Selection is larger than P, then Dis(X) should be less
than 3P. What was unclear, now seems simple.

As we have mentioned, Runs-Ratio is a simple measure. We have used it as a first approach
to the study of the average run length. Recall (see Equation (4)) that the overall cost of external
sorting is a function of the the average run length.

As promised, Theorem 3.2 gives the corresponding bounds on the average run length of X when
X7 is nearly sorted with respect to Dis; Figure 17 is the corresponding graphical interpretation of

2P |
Smallest
values of
ARL(X0)
P

o d =+ = O w

I
I
I
I
I
I
I
I
I
-
I
I
I
I
I
I
I
I
I

Dis(X7)

™

2p

3P

AP 5P 6P 7P 8P

Figure 17: The smallest values of ARL(Xp) define a decreasing function
of the disorder. These values, which lie in the shaded area, show how the
performance of Replacement Selection decreases as the disorder increases.

the theorem. This result confirms that the performance of Replacement Selection,measured by the
average run length of X, decreases smoothly as the disorder in X; (measured by Dis) increases.

Theorem 3.2 Let X1 be such that | X1| > (|c] +2)P, r = P/|Xy|, and Dis(X1) < cP. Then,

ARL(X0)

>

(3/2)P
1+1/2r

1+[c]/r

3—c)P
14+(2—c)/r

1
(4)P

when 1 < ¢ <3/2

when 3/2 < e <2

whenQScandc<LcJ+1—LlTJ.

Moreover, for all integers ¢ > 2, these bounds are tight.

Theorems 3.1 and 3.2 provide bounds on the performance of Replacement Selection and formally
establish that if the input is nearly sorted, then the runs that are produced must be longer. Fig-
ures 16 and 17 are graphical representations of Theorems 3.1 and 3.2, respectively, that show that
the performance of Replacement Selection decreases slowly as a function of the disorder measured

by Dzs.

4 FINAL REMARKS

The objectives of this survey are primarily:

e to present generic adaptive sorting algorithms
e to describe the performance of the generic algorithms

e to illustrate how the generic algorithms can be used to obtain adaptivity with respect to
different measures of disorder

We believe that our survey provides insight into the theory of adaptive sorting algorithms and
brings important points to the attention of practitioners. Research on adaptive sorting algorithms
is still active; moreover, adaptive sorting offers several directions for further research. There have
been and continue to be attempts to modify well-known sorting algorithms to achieve adaptivity.
Moffat studied Insertion Sort using a splay tree [Moffat 1990]; however, the characterization of
the adaptive behavior of this algorithm is open. Sophisticated variants of Natural Mergesort that
increase the number of measures to which the algorithm is adaptive have also been proposed [Moffat
1991; Moffat et al. 1992].

Other researchers have studied measures of disorder and their mathematical structure [Estivill-
Castro et al. 1989; Chen and Carlsson 1989]. In addition, the discoveries that have been made
for sequential models have prompted other researchers to design parallel sorting algorithms with
respect to Dis [Igarashi and Altman 1988] and other measures [Levcopoulos and Petersson 1988;
Levcopoulos and Petersson 1989b].

We now discuss, in some detail, some other directions for further research. First, we believe
that researchers should develop universal methods for large classes of measures of disorder that
lead to practical implementations. If Xq, Xo,..., X, is a partition of X into disjoint subsequences,

then
S

S OM(X;) < sM(X)

7=1
normally holds, for a measure M of disorder; that is, all division protocols result in a division
with D < 2. With Generic Sort, we showed that it is necessary and sufficient for a protocol to
satisfy D < 2 to obtain an adaptive algorithm with respect to M. We conjecture that it is always
possible to design a linear-time division protocol that partitions a sequence X into subsequences
X1, X9,..., X, of almost the same length such that D < 2. If this conjecture holds, then an
adaptive sorting algorithm that makes O(|X|(1+ log[1 4+ M(X)])) comparisons, in the worst case,
could always be obtained.

Second, Estivill-Castro and Wood obtained adaptivity results using the median-division pro-
tocol [Estivill-Castro and Wood 1991b; Estivill-Castro and Wood 1992b]. These results suggest a
generalization of Theorem 1.1 in which the bound on the disorder introduced at the division phase
is a function of the input size rather than constant, but is still bounded above by 2. In other words,
the results suggest that the condition in Theorem 1.1 can be weakened to:

Let D(n) be a function such that, for all n, D(n) < 2 and, for all sequences X of size
n, the division protocol satisfies

ES: M (s-th subsequence) < D(n)|s/2|M(X)

i=1

If this generalization holds, then more sorting algorithms could be shown to have the performance
claimed in Theorem 1.1.

Third, Shell Sort is a very efficient sorting method in practice. There are many ways of choosing
the sequence of increments for Shell Sort [Gonnet 1984; Knuth 1973]; however, Shell Sort requires
Q(nlogn) comparisons to sort every sequence of length n. Shell Sort shows some adaptivity, but
it has not been shown to be optimal with respect to any measure of disorder. It would be useful if
we could describe the behavior of Shell Sort as a function of the input size and the disorder in the
input. Furthermore, a variant of Shell Sort that adapts the sequence of increments to the existing
order in the input would be even more interesting.

Fourth, adaptive variants of Heapsort have been proposed [Dijkstra 1982; Leong 1989; Lev-
copoulos and Petersson 1989a; Petersson 1991] but either the in-place property of Heapsort is lost
or their adaptivity is insignificant. A natural question is: Are there any in-place sorting algorithms
that are optimally adaptive with respect to important measures? Levcopoulos and Petersson have
modified Cook—Kim division to obtain an in-place Rem-optimal algorithm [Levcopoulos and Pe-
tersson 1991b]. Huang and Langston have developed an algorithm to merge two sorted sequences
in-place [Huang and Langston 1988]. Their linear-time in-place merging algorithm can be used
with Generic Sort to obtain Runs-, Dis-, Maxz-, Fxc- and Rem-optimal sorting algorithms that
sort in-place such that the number of data moves moves is proportional to the number of com-
parisons. The resulting sorting algorithms are bottom up rather than recursive. Finally, using
linear-time in-place merging, linear-time in-place selection, and encoding pointers by swapping ele-
ments, Levcopoulos and Petersson have recently designed an in-place sorting algorithm that is Inov-
and Rem-optimal [Levcopoulos et al. 1991a].

Fifth, Carlsson and Chen consider adaptivity with respect to the number of distinct keys in a
sequence rather than to its disorder [Chen and Carlsson 1991]. Their results are not new [Munro
and Spira 1976; Wegner 1985], they suggest, however, a new direction for research; namely, design
sorting algorithms that are adaptive with respect to both the disorder and the number of distinct
keys.

Finally, we mention adaptive parallel sorting. There are several models of parallel computers
and many different sorting algorithms have been designed for different architectures [Akl 1985;
Quinn 1987]. An SIMD computer consists of a number of processors operating under the control
of a single instruction stream issued by a central control unit. The processors each have a small
private memory for storing programs and data and operate synchronously. A number of metrics
have been proposed for evaluating parallel algorithms. Akl describes the most important ones [Akl
1985]. The parallel running time of a parallel algorithm is defined as the total number of the two
kinds of steps executed by the algorithm: routing steps and computational steps. For a problem of
size n, the parallel worst-case running time of an algorithm is denoted by w(n), and the number
of processors it requires is denoted by P(n). The cost ¢(n) of a parallel algorithm is defined as
the product w(n)P(n). A parallel algorithm is said to be cost optimal if ¢(n) is of the same order
of time complexity as an optimal sequential algorithm.

When sorting on a shared-memory parallel computer, it is usually assumed that the data is
stored in the shared memory. Since the introduction of Ajtai and his coworkers’ O(nlogn)-cost
sorting network, there are many parallel sorting algorithms that use O(n) processors and take

O(logn) time; hence, they are cost optimal [Ajtai et al. 1983]. On a CRCW PRAM it takes
constant time to test whether a sequence is sorted, however, in most other models with n processors,
Q(logn) time is needed to test whether the input is sorted. Thus, the cost of verifying whether the
input is sorted is the same as the cost of sorting.

Because of these observations, it seems that there is no raison d’étre for parallel adaptive sorting.
However, Levcopoulos and Petersson have taken an unusual approach [Levcopoulos and Petersson
1988; Levcopoulos and Petersson 1989b]. Rather than the usual notion of the number of processors
required to solve a problem, they redefine this complexity measure as follows. At step ¢; the parallel
algorithm may decide to declare several processors idle and not be charged for them. The algorithm
has full power to request more processors or to declare some processors to be idle. The cost of
the algorithm is redefined to be the sum, over all time steps t;, of the number of processors active
at time ¢;. In this model, they have described parallel sorting algorithms that are cost optimal
with respect to the measures Inv and Rem [Levcopoulos and Petersson 1988; Levcopoulos and
Petersson 1989b]. Although it is usually assumed that the number of processors does not change
dynamically during execution of an algorithm, the idea that the algorithm can adapt its resource
requirements (processors) according to the difficulty of the input is a step forward. With one
processor, the algorithm’s time complexity grows smoothly from O(n) to O(nlogn) according to
the disorder in the input sequence. When we have O(n) processors, the time complexity is always
Q(logn) for all problem instances. Thus, a basic question is: Given P processors, can we design
parallel sorting algorithms whose running time is a nondecreasing function of the disorder in the
input sequence and, in this case, what does it mean to be optimal? We have almost no answers.
For the measure Runs and the special case P = n/logn, Carlsson and Chen provide a cost-optimal
adaptive algorithm [Carlsson and Chen 1991]. For a more general case, McGlinn has generalized
CKsort and studied its adaptive behavior empirically [McGlinn 1989].

ACKNOWLEDGEMENTS

This work was done while the first author was a Postdoctoral Fellow and the second author was a
fulltime faculty member in the Department of Computer Science, University of Waterloo, Waterloo,
Canada. It was carried out under Natural Sciences and Engineering Research Council of Canada
Grant No.A-5692 and under an Information Technology Research Centre grant.

References

[1] M. Ajtai, J Komlés, and E. Szemerédi. An O(nlogn) sorting network. In Proceedings 11th
Annual ACM Symposium on the Theory of Computing, pages 1-9, April 1983.

[2] S. G. Akl. Parallel Sorting Algorithms. Notes and Reports in Computer Science and Applied
Mathematics. Academic Press, Orlando, FL, 1985.

[3] C. Aragon and R. Seidel. Randomized search trees. In Proceedings of the 30th IEEE Sympo-
sium on Foundations of Computer Science, pages 540-545, 1989.

[4]

[10]

[11]

[12]

[13]

[14]
[15]

J. L. Bentley, D. F. Stanat, and Steele J. M. Analysis of a randomized data structure for
representing ordered sets. In Proceedings of the 19th Annual Allerton Conference on Commu-
nication, Control and Computing, pages 364-372, 1981.

M.R. Brown and R.E. Tarjan. Design and analysis of data structures for representing sorted
lists. SIAM Journal on Computing, 9:594-614, 1980.

W.H. Burge. Sorting, trees and measures of order. Information and Control, 1:181-197, 1958.

5. Carlsson and J. Chen. An optimal parallel adaptive sorting algorithm. [Information Pro-
cessing Letters, 39:195-200, 1991.

S. Carlsson, C. Levcopoulos, and O. Petersson. Sublinear merging and natural merge sort.
In Joho Shoi Gakkai, editor, Proceedings of SIGAL International Symposium on Algorithms,
Springer-Verlag Lecture Notes in Computer Science 450, 1990.

A. Cayley. Note on the theory of permutations. London, Fdinburgh and Dublin Philosophical
Magazine and Journal of Science, 34:527-529, 1849.

J. Chen and S. Carlsson. A group-theoretic approach to measures of presortedness. Technical
report, Department of Computer Science, Lund University, Box 118, S-2100 Lund, Sweden,
1989.

J. Chen and S. Carlsson. On partitions and presortedness of sequences. In Proceedings of the
Second ACM-STAM Symposium on Discrete Algorithms, pages 63-71, 1991.

C.R. Cook and D.J. Kim. Best sorting algorithms for nearly sorted lists. Communications of
the ACM, 23:620-624, 1980.

E.W. Dijkstra. Smoothsort, an alternative to sorting in situ. Science of Computer Program-
ming, 1:223-233, 1982.

R.J. Dinsmore. Longer strings for sorting. Communications of the ACM, 8(1):48, 1965.

W. Dobosiewicz. Replacement selection in 3-level memories. Computer Journal, 27(4):334—
339, 1984.

P.G. Dromey. Exploiting partial order with Quicksort. Software — Practice and Fxperience,
14(6):509-518, 1984.

V. Estivill-Castro. Sorting and Measures of Disorder. PhD thesis, University of Waterloo,
1991. Available as Department of Computer Science Research Report CS-91-07.

V. Estivill-Castro, H. Mannila, and D. Wood. Right invariant metrics and measures of pre-
sortedness. Discrete Applied Mathematics, accepted 1989, to appear.

V. Estivill-Castro and D. Wood. A new measure of presortedness. Information and Compu-
tation, 83:111-119, 1989.

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

V. Estivill-Castro and D. Wood. External sorting, initial runs creation, and nearly sortedness.
Research Report C5-91-36, Department of Computer Science, University of Waterloo, 1991.

V. Estivill-Castro and D. Wood. Practical adaptive sorting. In F. Dehne, F. Fiala, and
W.W. Koczkodaj, editors, Advances in Computing and Information — Proceedings of the
International Conference on Computing and Information, Springer-Verlag Lecture Notes in
Computer Science 497, pages 47-54, 1991.

V. Estivill-Castro and D. Wood. Randomized sorting of shuffled monotone sequences. Research
Report CS-91-24, Department of Computer Science, University of Waterloo, 1991.

V. Estivill-Castro and D. Wood. Randomized adaptive sorting. Random Structures and Al-
gorithms, 1992, to appear. Available as Department of Computer Science Research Report
C5-91-21, University of Waterloo.

V. Estivill-Castro and D. Wood. A generic adaptive sorting algorithm. The Computer Journal,
to appear, 1992.

V. Estivill-Castro and D. Wood. An adaptive generic sorting algorithm that uses variable
partitioning. In preparation, 1992.

V. Estivill-Castro and D. Wood. The use of exponential search to obtain generic sorting
algorithms. In preparation, 1992.

W.D. Frazer and A. C. McKellar. Samplesort: A sampling approach to minimal storage tree
sorting. Journal of the ACM, 17(3):496-507, July 1970.

W.D. Frazer and C.K. Wong. Sorting by natural selection. Communications of the ACM,
15(10):910-913, 1972.

G.H. Gonnet. Handbook of Algorithms and Data Structures. Addison-Wesley Publishing Co.,
Reading, MA, 1984.

S. L. Graham, P.B. Kessler, and M. K. McKusik. gprof: A call graph execution profiler. The
Proceedings of the SIGPLAN’82 Symposium on Compiler Construction, SIGPLAN Notices,
17(6):120-126, 1982.

L.J. Guibas, E.M. McCreight, and M.F. Plass. A new representation of linear lists. In The
Proceedings of the 9th Annual ACM Symposium on Theory of Computing, pages 49-60, 1977.

J. D. Harris. Sorting unsorted and partially sorted lists using the natural merge sort. Software
— Practice and Fzperience, 11:1339-1340, 1981.

B. Huang and M. Langston. Practical in-place merging. Communications of the ACM,
31(3):348-352, March 1988.

Y. Igarashi and T. Altman. Roughly sorting: Sequential and parallel approach. Technical
Report 116-88, Department of Computer Science, University of Kentucky, 1988.

[35]

[36]

[37]

[38]

T. Islam and K. B. Lakshman. On the error-sensitivity of sort algorithms. In S. G. Akl, F. Fi-
ala, and W. W. Koezkodaj, editors, Proceedings of the International Conference on Computing
and Information, pages 81-85, Canadian Scholar’s Press, Toronto, 1990.

W. Janko. A list insertion sort for keys with arbitrary key distributions. ACM Transactions
on Mathemathical Software, 2(2):143-153, June 1976.

R. M. Karp. Combinatorics, complexity and randomness. Communications of the ACM,
29(2):98-109, February 1986.

J. Katajainen, C. Levcopoulos, and Q. Petersson. Local insertion sort revisited. In Proceedings
of Optimal Algorithms, Springer-Verlag Lecture Notes in Computer Science 401, pages 239-
253, 1989.

J. Katajainen and H. Mannila. On average case optimality of a presorting algorithm. Unpub-
lished manuscript, 1989.

M.G. Kendall. Rank Correlation Methods. Griffin, London, 4th edition, 1970.

D.E. Knuth. The Art of Computer Programming, Vol.3: Sorting and Searching. Addison-
Wesley Publishing Co., Reading, MA, 1973.

H. W. Leong. Preorder Heapsort. Technical report, National University of Singapore, 1989.

C. Levcopoulos and O. Petersson. An optimal parallel algorithm for sorting presorted files. In
In proceedings of the 8th Conference on Foundations of Software Technology and Theoretical
Computer Science, Springer-Verlag Lecture Notes in Computer Science 338, pages 154-160,
1988.

C. Levcopoulos and O. Petersson. Heapsort — adapted for presorted files. In F. Dehne, J.R.
Sack, and N. Santoro, editors, Proceedings of the Workshop on Algorithms and Data Structures,
Springer-Verlag Lecture Notes in Computer Science 382, pages 499-509, 1989.

C. Levcopoulos and O. Petersson. A note on adaptive parallel sorting. Information Processing
Letters, 33:187-191, 1989.

C. Levcopoulos and Q. Petersson. Sorting shuffled monotone sequences. In J.R. Gilbert and
R. Karlsson, editors, Proceedings of the 2nd Scandinavian Workshop on Algorithm Theory,
Springer-Verlag Lecture Notes in Computer Science 447, pages 181-191, 1990.

C. Levcopoulos and Q. Petersson. An optimal in-place sorting algorithm. In Proceedings of the
11th Conference on Foundations of Software Technology and Theoretical Computer Science,

1991.

C. Levcopoulos and O. Petersson. Splitsort—an adaptive sorting algorithm. Information
Processing Letters, 39:205-211, 1991.

[49]

[53]

[54]

[55]

[62]

[63]

M. Li and P.M.B. Vitanyi. A theory of learning simple concepts under simple distributions
and average case complexity for the universal distribution. In Proceedings of the 30th IFEF
Symposium on Foundations of Computer Science, pages 34-39, 1989.

H. Mannila. [Instance Complezxity for Sorting and NP-Complete Problems. PhD thesis, Uni-
versity of Helsinki, Department of Computer Science, 1985.

H. Mannila. Measures of presortedness and optimal sorting algorithms. [FFFE Transactions
on Computers, C-34:318-325, 1985.

R. McGlinn. A parallel version of Cook and Kim’s algorithm for presorted lists. Software —
Practice and Ezxperience, 19(10):917-930, October 1989.

K. Mehlhorn. Sorting presorted files. Proceedings of the jth GI Conference on Theory of
Computer Science, Springer-Verlag Lecture Notes in Computer Science 67:199-212, 1979.

K. Mehlhorn. Data Structures and Algorithms, Vol 1: Sorting and Searching. EATCS Mono-
graphs on Theoretical Computer Science, Springer-Verlag, Berlin/Heidelberg, 1984.

A. Moffat. How good is splay sort. Technical report, Department of Computer Science, The
University of Melbourne, Parkville 3052, Australia, 1990.

A. Moffat. Adaptive merging and a naturally natural merge sort. In Proceedings of the 14th
Australian Computer Science Conference, pages 08.1-08.8, 1991.

A. Moffat and O. Petersson. Historical searching and sorting. In Second Annual International
Symposium on Algorithms, Springer-Verlag Lecture Notes in Computer Science, 1991.

A. Moffat and O. Petersson. A framework for adaptive sorting. In Proceedings of the 3rd
Scandinavian Workshop on Algorithm Theory, Springer-Verlag Lecture Notes in Computer
Science, 1992.

A. Moffat, O. Petersson, and N. Wormald. Further analysis of an adaptive sorting algorithm.
In Proceedings of the 15th Australian Computer Science Conference, pages 603-613, 1992.

J.I. Munro and P.M. Spira. Sorting and searching in multisets. STAM Journal on Computing,
5(1):1-8, March 1976.

T. Papadakis, J. I. Munro, and P.V. Poblete. Analysis of the Expected Search Cost in Skip
Lists. In J.R. Gilbert and R. Karlsson, editors, Proceedings of the 2nd Scandinavian Workshop

on Algorithm Theory, Springer-Verlag Lecture Notes in Computer Science 447. pages 160-172,
1990.

O. Petersson. Adaptive Sorting. PhD thesis, Lund University, Department of Computer Sci-
ence, 1990.

O. Petersson. Adaptive selection sorts. Technical Report LU-CS-TR:91-82, Department of
Computer Science, Lund University, Lund, Sweden, 1991.

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

W. Pugh. Skip Lists: A probabilistic alternative to balanced trees. Communications of the
ACM, 33(6):668-676, 1990.

M.J. Quinn. Designing Efficient Algorithms for Parallel Computers. Supercomputing and
Artificial Intelligence, McGraw-Hill, New York, NY, 1987.

B. Salzberg. File Structures: An Analytic Approach. Prentice-Hall, Inc., Fnglewood Cliffs,
New Jersey, 1988.

B. Salzberg. Merging sorted runs using large main memory. Acta Informatica, 27:195-215,

1989.
R. Sedgewick. Quicksort. Garland Publishing Inc., New York and London, 1980.
S5.S. Skiena. Encroaching lists as a measure of presortedness. BIT, 28:755-784, 1988.

N.J.A. Sloane. Encrypting by random rotations. In T. Beth, editor, Proceedings of Cryp-
tography, Burg Feuerstein 82, Springer-Verlag Lecture Notes in Computer Science 149, pages
71-128, 1983.

T.C. Ting and Y. W. Wang. Multiway replacement selection sort with a dynamic reservoir.
Computer Journal, 20(4):298-301, 1977.

A. Van Gelder. Simple adaptive merge sort. Technical report, University of California, Santa
Cruz, 1991.

R.L. Wainwright. A class of sorting algorithms based on Quicksort. Communications of the
ACM, 28:396-402, 1985.

L.M. Wegner. Quicksort for equal keys. IFFF Transactions on Computers, C-34:362-367,
1985.

A.C. Yao. Probabilistic computations — toward a unified measure of complexity. In Pro-
ceedings of the 18th IEFE Symposium on Foundations of Computer Science, pages 222-227,
1977.

L.-Q. Zheng and P.-A. Larson. Speeding up external mergesort. University of Waterloo,
Department of Computer Science Research Report CS5-92-77, 1992.

