Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

SIAM J. COMPUT. @© 1988 Society for Industrial and Applied Mathematics
Vol. 17, No. §, October 1988 003

DEFERRED DATA STRUCTURING*

RICHARD M. KARP%, RAJEEV MOTWANIf, AND PRABHAKAR RAGHAVAN#

Abstract. We consider the problem of answering a series of on-line queries on a static data set. The
conventional approach to such problems involves a preprocessing phase which constructs a data structure
with good search behavior. The data structure representing the data set then remains fixed throughout the
processing of the queries. Our approach involves dynamic or query-driven structuring of the data set; our
algorithm processes the data set only when doing so is required for answering a query. A data structure
constructed progressively in this fashion is called a deferred data structure.

We develop the notion of deferred data structures by solving the problem of answering membership
queries on an ordered set. We obtain a randomized algorithm which achieves asymptotically optimal
performance with high probability. We then present optimal deferred data structures for the following
problems in the plane: testing convex-hull membership, half-plane intersection queries and fixed-constraint
multi-objective linear programming. We also apply the deferred data structuring technique to multi-
dimensional dominance query problems.

Key words. data structure, preprocessing, query processing, lower bound, randomized algorithm, compu-
tational geometry, convex hull, linear programming, half-space intersection, dominance counting

AMS(MOS) subject classifications. 68P05, 68P10, 68P20, 68Q20, 68U05

1. Introduction. We consider several search problems where we are given a set of
n elements, which we call the data set. We are required to answer a sequence of queries
about the data set.

The conventional approach to search problems consists of preprocessing the data
set in time p(n), thus building up a search structure that enables queries to be answered
efficiently. Subsequently, each query can be answered in time g(n). The time needed
for answering r queries is thus p(n)+ r- q(n). Very often, a single query can be answered
without preprocessing in time o(p(n)). The preprocessing approach is thus uneconomi-
cal unless the number of queries r is sufficiently large.

We present here an alternative to preprocessing, in which the search structure is
built up ““on-the-fly”” as queries are answered. Throughout this paper we assume that
an adversary generates a stream of queries which can cease at any point. Each query
must be answered on-line, before the next one is received. If the adversary generates
sufficiently many queries, we will show that we build up the complete search structure
in time O(p(n)) so that further queries can be answered in time g(n). If on the other
hand the adversary generates few queries, we will show that the total work we expend
in the process of answering them (which includes building the search structure partially)
is asymptotically smaller than p(n)+r-q(n). We thus perform at least as well as the
preprocessing approach, and in fact better when r is small. We do so with no a priori
knowledge of r. We call our approach deferred data structuring since we build up the
search structure gradually as queries arrive, rather than all at once. In some cases we

* Received by the editors December 22, 1986, accepted for publication (in revised form) November 10,
1987.

+ Computer Science Division, University of California, Berkeley, California 94720. The work of the
first two authors was supported in part by the National Science Foundation under grant DCR-8411954. The
results in § 4 first appeared in R. Motwani and P. Raghavan, Deferred data structures: query-driven preprocess-
ing for geometric search problems, in Proc. 2nd Annual ACM Symposium on Computational Geometry,
Yorktown Heights, NY, June 1986, pp. 303-312.

$ IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598. The work of this
author was supported in part by an IBM Doctoral Fellowship while he was a graduate student at the
Computer Science Division, University of California, Berkeley, California 94720.

883

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

884 R. M. KARP, R. MOTWANI, AND P. RAGHAVAN

show that our deferred data structuring algorithm is of nearly optimal efficiency, even
in comparison with algorithms that know r, the number of queries, in advance.

In § 2 we exemplify our approach through the membership query problem. We
determine the complexity of answering r queries on n elements under the comparison
tree model. In § 3 we present a randomized algorithm for the membership query
problem whose performance matches an information-theoretic lower bound (ignoring
asymptotically smaller additive terms). We then proceed to exhibit deferred data
structure for several geometry problems. In § 4 we show that deferred data structuring
is optimal for the following two-dimensional geometric problems: (1) Given n points
in the plane, to determine whether a query point lies inside their convex hull. (2) Given
n half-planes, to determine whether a query point lies in their common intersection.
(3) Given n linear constraints in two variables, to optimize a query objective function
(also linear). Our algorithms are proved optimal by means of a tight lower bound
(under the algebraic computation tree model) in § 4.4. In § 5 we consider dominance
problems in d-space. We present theorems about the deferred construction of Bentley’s
ECDF search tree [2].

In this paper all logarithms are to the base two.

2. General principles of deferred data structuring. In this section we develop the
basic ideas involved in deferred data structuring. Let X ={x,, x,, : - -, x,,} be a set of
n elements drawn from a totally ordered set U. Consider a series of queries where
each query g; is an element of U; for each query, we must determine whether it is
present in X.

If we had to answer just one query, we could simply compare the query gq; to
every member of X and answer the query in O(n) comparison operations. This would
be the preferred method for answering a small number of queries. On the other hand,
if we knew that the number of queries r were large, we could first sort the elements
of X in p(n)= O(nlog n) operations, these building up a binary search tree Tx for
the elements of X. We could then do a binary search costing Q(n)= O(log n) com-
parisons for each query; this takes O((n+r)-log n) comparisons.

We proceed to determine the complexity (number of comparisons) of answering
r queries on the set X; we do not know r a priori, and each query is to be answered
before we know of the next one.

2.1. The lower bound. We first prove an information-theoretic lower bound for
this problem.

THEOREM 1. The number of comparisons needed to process r queries is at least
(n+r)-log (min {n, r}) — O(min {n, r}) in the worst case.

Remark. Note that neither of the strategies mentioned above (linear search, or
sorting followed by binary search) achieves this bound for all r=n.

Proof. 1f we could collect the r queries and process them off-line, we would have
an instance of the SET INTERSECTION problem where we have to find the elements
common to the sets X ={x,,x,, -, x,} and Q={q;, ' -, q.}. We will prove a lower
bound of Q((n+r)-log (min {n, r})) comparisons for determining the intersection of
two sets of cardinalities n and r. This off-line lower bound will hold a fortiori for the
on-line case in which we are interested. We present the argument for the case r=n;
the other case is symmetrical.

Since we are interested in lower bounds on this problem, we can restrict our
attention to only those cases where X N Q=(J. In this case the algorithm has to
determine the relation of each element in X to each element in Q. An adversary can
ensure that for any two elements in Q there will be at least one in X whose value lies

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

DEFERRED DATA STRUCTURING 885

between them. In other words, the elements of Q will partition X into at least r—1
nonempty classes. Each such class will consist of all those members of X which lie
between two consecutive values in the total ordering of Q. We shall give an information-
theoretic lower bound by counting some ways of arranging X and Q to satisfy the
above constraint.

There are r! ways of ordering the elements in Q. Given a total order on Q, there
are (r—1)! ways of separating the elements in Q by some arbitrary r —1 elements from
X. The remaining elements of X can be placed arbitrarily. There are r+1 available
slots as determined by the r ordered elements of Q. This can be done in (r+1)"""""
ways. Let I be the total number of interleavings (of X and Q) possible when SN Q= .
Then the number of possible arrangements specified above is a lower bound on the
value of I:

IZzrl-(r=1)(r+1)"""

Since the algorithm has to identify one out of (at least) this many possible arrangements
the lower bound is given by log I:

logI=(n+r)-logr—2rloge.
Here e represents the base of the natural logarithms. [

2.2. Upper bounds. We now present two approaches to obtaining an upper bound
which comes within a multiplicative constant factor of the lower bound. The first
approach is based on merge-sort, while the second is based on recursively finding
medians.

2.2.1. An approach based on merge-sort. The following algorithm comes within
a constant factor of the lower bound. It uses a recursive merge-sort technique to totally
order the elements in X. The merge-sort proceeds in log n stages. At the end of a stage
the set X is partitioned into a number of equal-sized totally ordered subsets called
runs. Each stage pairs off all the runs resulting from the previous stage and merges
them to create longer runs. These stages are interleaved with the processing of a set
of queries, until a single totally ordered run remains, whereafter no more comparisons
between elements of X are required. To process a query implies a binary search through
each of the existing runs. The number of queries processed between consecutive merging
stages or, equivalently, the minimum length of a run before the ith query, are chosen
appropriately.

This algorithm ensures that the size of each run is at least L(i) before the ith
query. A suitable choice for L(i) is @(ilogi). Since the length of a run must be a
power of 2 we will choose

L(l) — 2[log(ilogi)]'

The processing cost of going from a stage with runs of length 1 to runs of length L(i)
is O(n log L(i)). Thus the total cost of processing in answering r queries is O(n log r).
The search cost for the ith query is upper bounded by n- [log (L(i)+1)]/L(i). Summing
over the first r queries, the search cost is bounded by
" n
,E, L(i)
THEOREM 2. For r = n, the total cost of answering r queries is O(n log r).

When r> n, we note that the set X will be completely ordered by our strategy.
All queries are then answered in time O(log n) by binary search.

‘[log (L(i)+1)]=O(n log r).

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

886 R. M. KARP, R. MOTWANI, AND P. RAGHAVAN

Proof. The processing cost and the search cost are each O(n logr), so that the
total cost of answering the first r queries is O(nlogr). 0O

2.2.2. An approach based on recursive median finding. We now describe an alterna-
tive approach based on median finding; a specification of the algorithm in “pseudo-
pascal” follows. The algorithm builds the binary search tree Tx in a query-driven
fashion. Each internal node v of Ty is viewed as representing a subset X (v) of X—the
root represents X, its left and right children represent the smallest (n —1)/2 and the
biggest (n—1)/2 elements of X, respectively, and so on. Let LSon (v) and RSon (v)
represent the left and right children of v, respectively. We can now think of building
Tx as follows. For each internal node v, expansion consists of partitioning X (v) into
two subsets of equal size—elements smaller than the median of X(v), which will
constitute X (Lson (v)), and elements larger than the median, which will make up
X (Rson (v)). We label v by the median of X (v). Thus a node at level i represents at
most n/2' elements of X.' Subsequently, LSon (v) and RSon (v) may be expanded.
Since the median of X (v) can be found in 3|X(v)| comparisons [12], the expansion
of node v takes 3| X (v)| comparisons. If we begin by expanding the root of Ty (which
represents the entire set X), and then expand every node created, Tx can be built up
in 3n log n comparisons.

The search for a query can be thought of as tracing a root-to-leaf path in Tx. The
key observation is that for any given query g;, we need only expand those nodes visited
by the search for g;; this is the query-driven tree construction referred to earlier. After
each expansion, at most one of the resulting offspring will be visited. The first query
q,is answered in O(n+n/2+- -) = O(n) operations while building up one root-to-leaf
path of Tx. The time taken to answer g, is thus within a constant factor of the time
for a linear search. In the process of answering q,, we have developed some structure
that will be useful in answering subsequent queries; any future search that visits a
node that is already expanded will only cost us a single comparison to proceed to the
next level of the search; there is no further expansion cost at this node. Nodes that
remain unexpanded will be expanded when other queries visit them. When n queries
that visit all n leaves have been answered, Tx will have been completely built up. In
essence, we are dispensing with an explicit preprocessing phase, i.e., we are doing
“preprocessing’ operations only when needed. The cost of building the data structure
is distributed over several queries.

DEeTAILED DESCRIPTION OF THE ALGORITHM. With every node in the tree we associate
a set of values and a label, both of which may at times be undefined.

Main body
Step 1. Initialize the tree, Ty, with the n data keys at the root.
Step 2. Get a query q.
Step 3. Result< SEARCH (root, q).
Step 4. Output the result.
Step 5. Goto Step 2

procedure SEARCH (v: node; g:query): boolean;
Step 1. If (v is not labeled) then EXPAND (v).
Step 2. If (label(v) = q) then return true.
Step 3. If (v is a leaf node) then return false.

! Actually it represents slightly fewer elements, since each node picks up one element of X as its label.
This does not matter, as we are deriving an upper bound.

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

DEFERRED DATA STRUCTURING 887

Step 4. If (g <label(v)) then return SEARCH (left_child(v), q).
Step 5. If (q > label(v)) then return SEARCH (right_child(v), q).

procedure EXPAND (v: node);
Step 1. S < set(v).
Step 2. m < MEDIAN_FIND (S).
Step 3. label(v) <« m.
Step 4. if (|S|=1) then return.
Step 5. S;<[x|xe S and x<m].
Step 6. S,<[x|xe S and x> m].
Step 7. set(leftchild (v)) < S,.
Step 8. set(rightchild(v)) < S,.

It should be noted that the two subsets, S; and S,, are computed by the procedure
MEDIAN_FIND as part of the process of finding the median. There is no extra work
associated with determining these two sets once the median has been found.

In order to analyze our algorithm, let us define a function on n and r as follows:

3nlogr+rlogn, r=n,
(3n+r)-logn, r>n.

Aln, 1) ={

Note that A(n, r)=0((n+r) -logmin (n, r)) since r-logn=n-logr for r=n.

THEOREM 3. The number of operations needed for processing r queries is no more
than A(n, r).

Proof. Consider the case r=n. No more than r nodes will be expanded at any
level of Ty, after r queries. For nodes in the top log r levels, the total cost is thus less
than 3nlog r. This is because all nodes may be expanded at each of the first logr
levels. The expansion of a node v entails finding the median of X (v) and this requires
at least 3| X (v)| comparisons in the worst case [12]. For i > [log r] the node-expansion
cost at level i is O(r- n/2"). This is because the cost of expanding a node at level i is
at most 3 - n/2". Summing over all but the first [log r] levels, the cost of node expansion
at these levels is O(n). In addition to the expansion cost, we have to consider the cost
associated with search; this is at most log n comparisons per query. The search
component of the cost is thus always less than r log n.

When r exceeds n, the expansion cost can never exceed the cost of constructing
Tx completely; this cost is 3n log n. Again, note that the factor of 3 comes from the
median-finding procedure. [

2.3. A general paradigm for deferred data structuring. We are now ready to state
the general paradigm for deferred data structuring. This paradigm will isolate some
features essential for a search problem to be amenable to this approach, and will
simplify our description of the geometric search problems considered in §§ 4 and 5.
It also enables us to identify some problems where this approach is not likely to work.

Let II be a search problem with the following properties. (1) The search is on a
set S of n data points (in the above example, S = X). (2) A query g can be answered
in O(n) time. (3) In time O(n), we can partition S into two equal-sized subsets S,
and S, such that (i) the answer to query g on set S is equal to the answer to q on
either S, or S,; (ii) in the course of partitioning S we can compute a function on S,
f(S), such that there is a constant time procedure, TEST (f(S), q), which will determine
whether the answer to g on S is to be found in S; or S,. (In the above example
f(S)=MEDIAN (S) and TEST is a simple comparison operation.)

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

888 R. M. KARP, R. MOTWANI, AND P. RAGHAVAN

Under these conditions, we can adopt the deferred data structuring approach that
builds the search tree gradually. We illustrate this paradigm by several geometric
examples in §§ 4 and 5.

3. A randomized algorithm. In the last section we saw a deterministic algorithm
to answer r queries in O((n+r)-log min {n, r}) time using deferred data structures.
The upper bound of Theorem 3 exceeds the information-theoretic lower bound by a
factor of 3 if we use the median algorithm given in [12]. Finding the median of n
elements takes 3n comparisons and this is what leads to the gap between the upper
and lower bounds. A careful implementation would reduce the constant factor to 2.5
by passing down certain partial orders generated in the median-finding algorithm from
parent to children nodes. More easily implemented algorithms given in [3] would yield
even higher constant factors. There is an algorithm due to Floyd [7] which computes
the median in 3n/2 expected time. Its use would reduce our constant to 3/2. Here we
present a randomized algorithm in which the number of comparisons will be optimal
(with high probability).

The randomized algorithm differs from the one in § 2 in just one respect. The
median of the set of values stored at a node was used earlier to get a partition for the
purposes of node expansion. Here we will use a mediocre element for the same purpose.
The mediocre element will be chosen to be quite close to the median. More precisely,
the rank of a mediocre element from a set of size ¢ will lie in the range t/2+t*>. We
will use randomized techniques to compute a mediocre element efficiently. First, a
random subset of size O(¢*®) is chosen from the ¢ elements. The median of this random
subset is a good candidate for being a mediocre element. It takes t + O(t”®) comparisons
to pick a random sample and test its median element for “mediocrity” (see Step 5
below). This sampling is repeated until a mediocre element is found. The call to the
procedure MEDIAN_FIND, in the algorithm outlined in § 2, should be replaced by
a call to the procedure MEDIOCRE_FIND outlined below.

procedure MEDIOCRE_FIND (T: set of values): value;
Step 1 Let t=|T|.
Step 2 Pick a random sample S of size 2- [+”/°]+1 from T.
Step 3 m < MEDIAN_FIND (S).
Step 4 Compute rank (m) by comparing with each element of T — .
Step 5 If rank (m) is not in the range (¢/2) = t* then goto Step 2.
Step 6 Return m.

Note that in Step 4 we need not compare m with elements of S since we assume that
the procedure MEDIAN_FIND implicitly gives us the partition of S with respect to
m. At the last few levels we will revert to deterministic median finding since the node
sizes will be too small to justify randomization. A good choice is to use procedure
MEDIOCRE_FIND for the first logn—5 levels and procedure MEDIAN_FIND
thereafter. The randomized algorithm leads to the following theorem.

THEOREM 4. Let T(n, r) be the total number of comparisons made by the randomized
algorithm in answering r queries on n elements. Then the following holds with probability
greater than 1—logr/B-n,

T(n r)<{(1+a)(nlogr+rlogn), r=n

(1+a)(n+r)logn, r>n

e

b

where B depends on the value of the constant a.
The remainder of this section is devoted to the proof of this theorem. The proof
will be organized into five lemmas.

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

DEFERRED DATA STRUCTURING 889

The use of mediocre elements (instead of the median) may result in uneven splits,
causing an imbalance in the binary search tree being created. Nevertheless, the following
lemma shows that the higher of the new binary search tree cannot be much worse than
log n. We also show that the number of elements associated with each node at level i
is close to n/2". Let the size of a node in the search tree be the number of elements
associated with that node.

LEMMA 1. Let s; be the size of some node at level i. Then,

n(l—A)—)<s<n(1+ 20)
i n}/3 =8i= 173)»

provided n; =22, where n; = n/2".

Proof. We will prove one side of the inequality by means of induction on the
levels. The inequality is clearly true at the root (i = 0) since s, = n. Suppose the inequality
holds up to level i—1, i.e., s;_; = n;_,-(1+20/n!’3). We now partition the s;_, elements
about the mediocre element. Let s; denote the larger of the two partition sets. By the
definition of the mediocre element we have s;=s;_,/2+s/5. Using the fact that
(1+x)'=1+a-x,0=a=1 we get,

1 40 2'7
s-—n<1+ 1/3(11 22+ 3 n‘/3>>‘

For n; =22, we note that,

40 23
(11 22/3+? T)<20

This implies the desired result,
Si=n (1 +——2—9—)
i= T4 nl!/j,
provided n;=22. 0O

LeEMMA 2. The height of the binary search tree in the randomized algorithm will be
log n+ O(1).

Proof. At level k=1logn—5 we will no longer be using mediocre elements to
expand a node. Instead, we use the median of the set of elements stored at a node to
partition those elements. At this point Lemma 1 is still applicable since n, =32=22

and we have,
20
s = nk(1+) 2%,
k

Thus, the total number of levels is no more than k+8. The height of the tree is
bounded by logn+3. 0O

From Lemma 2 it follows that the cost of searching in the randomized binary
search tree will be close to optimal. Let us now consider the cost of constructing the
tree, in particular the total cost of node expansions. The following result shows that
the median of the random sample is a mediocre element for the entire set with very
high probability.

LEMMA 3. Let p(t) be the probability that a single iteration of the random sampling
does not come up with a mediocre element for a set of size t. Then,

1
p(t)=2-t"*-exp (—4- t‘“)é‘—‘;.

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

890 R. M. KARP, R. MOTWANI, AND P. RAGHAVAN

Proof. Let T be a set of size t to which a single iteration of the random sampling
process has been applied. First, a random subset S of size s(t) =2-f(#)+1 is chosen,
where f(t) = [t*]. The median of S is tested for being a mediocre element of T. In
other words, the rank of the median of S should be in the range t/2+t*> in T. Let
P(x,) be the event that the element x, (the element of rank r in T) is the median of S:

(Al () oerarno

Let d(t) = t*>. We will refer to f(t) and d(t) as f and d, respectively, to simplify the
following description. Clearly,

ireor % =25 2 () () (5)/G)
t)= P X, + P)= . . .
rin=3 Pe)+ 3 Pe)=— 3 (S5) (7))
We make use of Stirling’s formula:
n!=(217n)1/2(g) e,

to derive the following inequality upon considerable simplification:

—4fd2)

t2

1
<k, <—
12n+1 12n

p(t)<2~f‘/2-exp(

Given the choices for f(¢) and d(t) the bound on p(t) follows immediately. The second
part of the inequality given below is also easy to verify:

p(t)<2- t'/z-exp(—4t”6)<-‘:—t. O
Consider now the overall cost of expanding the nodes in the randomized algorithm.
First, there is the cost of finding the medians of the small random samples. Lemma 5
will show that the cost of finding the medians of the small random samples is small
even when summed over the entire tree. More important is the cost of deciding whether
the median for the sample is a mediocre element for the entire set. There is no cost
associated with the actual partitioning since the testing for “mediocrity’’ implicitly
determines the precise partition (see Step 5 of the procedure MEDIOCRE_FIND).
Consider the ith level in the tree being constructed. Let m =2’ denote the maximum
number of nodes at this level. The sizes of the sets associated with the nodes at this
level must lie in the range (n;/2) +20- n*>, where n; = n/m is the average size of these
sets. Supppose each application of the random sampling yielded a mediocre element.
This would imply that the total cost of testing for mediocrity is n. However, there will
be some bad instances where we do not generate a mediocre element. Let the number
of such instances be s at the ith level. The next lemma shows that with high probability
s is bounded by em, where ¢ is an appropriately small constant. Let ¢; denote the cost
of testing for mediocrity at level i. When s =&-m we have

20
¢=n+n-e 1+nT/3* =(1+a)n

Since n;>1 at all levels it is clear the a =21-&.

LEMMA 4. Let C denote the sum of c¢; over all but the last O(1/¢) levels, P(C =
(1+a)-n-logr)=logr/k*-n.

Proof. Let the random variable ¢; denote the number of bad instances in /=
(1+¢)-m iterations of the random sampling at level i. We already have bounds on

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

DEFERRED DATA STRUCTURING 891

p(t), the probability of a single iteration on a node of size t being bad. The [iterations
at level i do not use equal-sized sets. Therefore let p denote the largest value taken
by p(t) at the nodes of that level. Let E({) and D({) denote the mean and deviation
of some random variable {. The Chebyshev inequality states that P(|{— E({)|=
A-D(¢))=1/A% Since E(¢)=1-p and D(&)=(I- p-(1-p))"/? we have the following:
1-p-(1-p)
m-g?

Pili=zl-m)= when p =

&

2-(1+¢)’

Using the bounds on p(t) and the lower bound on the size of a node at level i we get,
P(s>em)=P(c;=(1+a)-n)=k/e* n for all but the last O(log 1/¢) levels, k is a
small constant. Choosing 8 = ¢°/k and summing the probability over the first log r
levels yields the required bound. O

LemMMA 5. When r < n, the total cost of finding the medians of the random samples
is O(n®'®- r'/®) with probability 1—1log r/B- n.

Proof. The cost of finding the median at a node of size ¢ is 3¢ Let the sizes of the
two children of this node be k-t and (1—k) - t, where k lies between 3 and 1. The cost
of finding the medians for the children will be proportional to C(k)- t”¢, where
C(k) = (k*°+(1-k)*®). Clearly, C(k) is maximized at k =%. Define C = C(3) =2"°.
Thus, the cost of finding the medians at a single level increases by at most a factor of
C in going from level i to i+ 1. We know that the cost of median finding at the first
level is 3+ n*°. Hence, the total median-finding cost for the first log r levels is

3-n%¢-(1+C+C?- - - C'*' 7).

This sums to O(n*¢ - r'/¢) since C =2"°. When r > n the bound on the median-finding
cost becomes O(n). In our analysis so far we have ignored the repetitions in the median
finding for a given node. This will be necessary since not every median of the random
sample will be a mediocre element for the entire set. However, the analysis in Lemma
4 also applies to the median-finding cost since it just bounds the number of repetitions
of the mediocre finding process at a level. 0O

Theorem 4 follows immediately from Lemmas 2, 4, and 5.

4. Planar convex hull and linear programming problems.

4.1. Point membership in a convex hull. In this section we consider the following
problem. We are given a set P={p,, p,, ', p.} of n data points in the plane. Data
point p; is specified by its two coordinates p; = (pix, p;,). The convex hull of P will be
denoted by CH (P). We are required to answer a series of queries: *“Is the query point
q; = (gjx, g;,) included in CH (P)?”

We first present two solutions based on the preprocessing approach. Neither of
these is optimal for all values of r. Let BCH (P) denote those points of P which lie
on the boundary of CH (P). A single query can be answered in O(n) time as follows.
Compute the polar angles from g; to all the data points. The query point is included
in CH (P) if and only if the range of angles = 180°. Alternatively, we can answer r
queries by first constructing CH (P) in time O(nlog h), where h is the number of
points in BCH (P) [6], [11]. Now choose a point, O, in the interior of CH (P) and
divide the plane into h wedges by means of h semi-infinite lines originating at O and
going through each of the h vertices of CH (P). Each wedge contains exactly one edge
from the boundary of CH (P). In any wedge, all points on the same side of this edge
as O must lie inside CH (P). To answer a query we first determine the wedge in which
it lies in O(log h) time by doing a binary search with respect to the angles subtended
at O. We can now test the query point with respect to the edge of the CH (P) which

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

892 R. M. KARP, R. MOTWANI, AND P. RAGHAVAN

lies in that particular wedge to decide the membership in CH (P). This requires a tctal
of O((n+r)-log h) operations to answer r queries.

Our approach to solving the point membership problem using deferred data
structuring is based on the Kirkpatrick-Seidel top-down convex-hull algorithm [6].
The edges on the boundary of CH (P) consist of an upper chain and a lower chain.
Each of these is a sequence of edges going from the leftmost to the rightmost point
in P. Consider a vertical line which partitions P into two nonempty subsets. Such a
line will intersect with exactly one edge of each chain; these edges will be referred to
as the upper tangent and the lower tangent corresponding to the line. The tangents
corresponding to a vertical line which partitions P into subsets of equal size (which
we call the median line) are called the tangents of P. Kirkpatrick and Seidel show that
a tangent can be computed in O(|P|) operations.

We now describe our deferred data structure. In the following description we only
refer to the upper chain and tangents; analogous reasoning applies to the lower chain
and tangents. The data structure consists of a binary search tree Tp in which each
internal node v represents a subset P(v) of P (where P(root) = P). Associated with v
is an x-interval R, =[x.(v), xg(v)]; P(v) consists of exactly those data points whose
x-coordinates lie in R,. We expand a node by computing the median line of P(v).
The members of P(v) are partitioned into two subsets: points lying to the left of the
median line and points lying to its right. These are associated with the two children
of v. The tangent for P(v) can now be computed in O(|P(v)|) operations. It is possible
that the tangents corresponding to the two vertical lines demarcating R, may be adjacent
in the chain. In fact, the two tangents may be the same. In these degenerate cases we
do not need to compute the tangent of P(v). Such degeneracies can be identified from
the tangents corresponding to the vertical lines bounding R, (these tangents will have
been computed by ancestors of v). If at a node we find that both the upper and the
lower tangent are degenerate, we will not expand the node; such a node is a leaf of
Tp. Since at least one new tangent is discovered each time we expand a node, the
number of internal nodes of Tp (and hence the number of leaves of Tp) will never
exceed h.

The search for a query traverses a root-to-leaf path in the search tree. A node is
expanded when it is first visited. At any node v the search progresses to its left or right
child depending on the x-coordinate of the query point. In addition, we test whether
the query point lies below the upper tangent (extended to infinity in both directions)
of P(v). If this test fails at any node along the search path we know that the query
point lies outside CH (P). Similar tests apply to the lower chain/tangent.

Figure 1 shows an example in which two queries g1 and g2 have resulted in the
expansion of the root and its two children. The query g1 lay to the left of the median
line of P, and above the lower tangent of P (extended to the left by dotted lines). This
caused LSon (root) to be expanded; at this point we find that g1 lies below the lower
tangent of the left child and is thus outside CH (P). Note that the lower tangents of
root and LSon (root) meet at a point of P; this means that we will never again compute
a lower tangent in the right-subtree of LSon (root). Similarly, g2 expands the right
child of the root node; it is found to lie between the upper and lower tangents of
RSon (root), and is thus in CH (P).

THEOREM 5. The number of operations for processing r hull-membership queries is
O(A(n, r)).

Proof. The depth of T, never exceeds log n. Moreover, a node at level i can be
expanded in time O(n/2"). This fits our paradigm. An analysis similar to the proof of
Theorem 2 establishes the result. 0O

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

DEFERRED DATA STRUCTURING 893

— Tangent lines

2.Z.2 Median lines

Q%) Query points

o
+

FI1G. 1. Membership in a hull; two queries and the resulting development of Tp.

4.2. Intersection of half-spaces. We consider the problem of determining whether
a query point ¢;=(q, q;) lies in the intersection of n half-planes. Let H =
{hy, hy, * -+ h,} denote the set of lines which bound the half-planes. We assume that
each half-plane contains the origin. If not, we can apply a suitable linear transformation
in O(n) time to bring the origin into the common intersection (provided the intersection
of the h; is nonempty). This can be done by finding a point in the interior of the
intersection [8] and mapping the origin onto this feasible point. We can also test in
linear time whether the intersection is empty [8]. Let H; denote the half-plane (contain-
ing the origin) which is bounded by the line h;. We assume in this section that the
intersection of the H; is bounded—in § 4.3 we will show that the case of an unbounded
intersection region is easily handled.

The notion of geometric duality (or polarity) [4], [11] will prove extremely useful
in the solution of the next two problems. In the plane this reduces to a transformation
between points and lines. The dual of a point p = (aq, b) is the line I, whose equation
is ax+by+1=0, and vice versa. A more intuitive definition is illustrated in Fig. 2.

Y

3

l,: ax+by+1=0

F1G. 2. Duality of points and lines.

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

894 R. M. KARP, R. MOTWANI, AND P. RAGHAVAN

The line I, is perpendicular to the line joining the origin to the point p. If the distance
between p and the origin is d, then the dual line I, lies at a distance 1/d from the
origin in the opposite direction.

We will now apply the duality transformation to the intersection of the half-planes
under consideration. The dual of the line h; is a point, which we will denote by p;;
we denote by P the set of these points. The dual of the intersection of the H; is the
set of all points in R* not in CH (P). The dual of g; is a line L;. The query point g; is
in the intersection of the H; if and only if L; does not intersect CH (P). Thus our
problem reduces to determining whether each of a series of query lines intersects the
convex hull of a set of points.

The search tree and the node-expansion process are exactly the same as in § 4.1.
At each node v, we compute the intersection of L; with the median line of P(v). We
know that L; must intersect CH (P) if one of the following holds: (1) the intersection
point lies between the upper and lower tangents of P(v); (2) L; intersects one of the
tangents of the current node. If not, we must continue the search in the left or right
child of v, depending on the slopes of L; and the tangent. These three possibilities are
illustrated in Fig. 3 by lines L1, L2, and L3, respectively. In the case of L3, we see
that any intersection of L3 with CH (P) must lie to the left of the median line; we
therefore continue the search in LSon (v).

The following theorem results.

THEOREM 6. The number of operations for processing r half-plane intersection queries
is O(A(n, r)).

4.3. Two-variable linear programming. Let L(f) be a two-variable linear program-
ming problem with n constraints and the objective function £, which is to be minimized
subject to these constraints. The algorithms of Dyer [5] and Megiddo [8] can find the
optimum for a single objective function in time O(n). We consider a query version of
the linear programming problem. Each query is an objective function f;, and we are
asked to solve L(f;).

The preprocessing approach to this problem consists of finding the intersection
of the half-planes defined by the constraints. This can be done in O(n log n) time by
divide-and-conquer. The set of half-planes is partitioned into two sets of almost equal

L L3
|
-7 Lz |
-7 \i\ ,u
. — Tangent lines
j{ N . -—.— Median lines
+] \ i
L . - — - Query lines
+ ; I N
+ / | \
+ / I _Jr_ :t+
/ | \
+ Y + i \ +
/ | \
s | \
7 '
, !

F1G. 3. Example for testing line intersection with a hull.

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

DEFERRED DATA STRUCTURING

sizes. The intersection of half-planes in each subproblem can be found recursively;
the two intersections can then be merged in linear time [11]. A binary search for the
slope of the objective function then answers each query in O(log n) time.

As before, we resort to the geometric dual to solve the problem. We may again
assume without loss of generality that the feasible region R; is nonempty and contains
the origin. Each of the n constraints defines a half-plane H;; R; is the intersection of
these half-planes. Using the notation of § 4.1, the dual of R; is the exterior of CH (P).

To begin with, we will assume that R; is bounded. This implies that the origin in
the dual plane lies in CH (P). The objective function f; can be looked upon as a family
of parallel lines in the primal. Depending on the slope of f;, we need only consider
the set of parallel lines above or below the origin. This set of lines dualizes to a
semi-infinite straight line with the origin as one endpoint. We call this the objective
line g;, and note that it intersects the boundary of CH (P) at one point which
corresponds to the optimum solution.

The search tree and node expansion are as in § 4.2. While searching at a node v,
we compute the intersection, if any, of g; with the median line of P(v). If there is no
intersection or if the point of intersection does not lie between the tangents, the search
proceeds to the left (right) child of v if the origin lies to the left (right) of the median
line. Otherwise, we proceed in the opposite direction. The search terminates if g;
intersects a tangent of P(v).

When R; is unbounded, the origin in the dual plane does not lie in CH (P). If
g; does not intersect CH (P), the solution to the problem is unbounded. This can be
detected by computing in O(n) time the polar angle from the origin to all points in
P; this is done once, at the beginning. If g; lies outside the cone defined by this range
of angles, it does not intersect CH (P). If g; intersects CH (P), we use the same search
procedure as in the bounded case. The two points in BCH (P) which subtend the
extreme angles at the origin are joined by a tangent. Intersection with this tangent is
ignored for the termination criterion above.

Figure 4 shows an unbounded feasible region, and the corresponding convex hull
in the dual. Two objective functions f; and f, and their dual objective lines are shown.
The arc in the dual indicates the locus of objective lines (e.g., g,) that do not intersect
CH (P), and hence have unbounded optima.

Primal Plane Dual Plane

F1G. 4. Unbounded linear-programming search example.

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

896 R. M. KARP, R. MOTWANI, AND P. RAGHAVAN

THEOREM 7. The number of operations for processing r two-variable linear program-
ming queries is O(A(n, r)).

4.4. Lower bounds under the algebraic tree model. The information-theoretic lower
bound of § 2 is not valid for the geometric problems we have been considering in this
section. In § 2 we were working with the comparison-tree model of computation,
whereas we are allowing arithmetic operations here. We therefore use the algebraic
tree model of computation [1].

An algebraic computation tree is an algorithm to decicide whether an input vector,
a point in R", lies in a point set W< R". The nodes in the tree are of three types:
computation nodes, branching nodes, and leaves. A computation node has exactly one
child and it can perform one of the usual arithmetic operations or compute a square
root. A branching node behaves like a node in a comparison tree, i.e., it can perform
comparisons with previously computed values. It has exactly two children correspond-
ing to the possible outcomes of the comparison. A leaf is labeled either “Accept” or
“Reject,” and it has no children. Each addition operation, subtraction operation or
multiplication by a constant costs zero. Every other operation or comparison has a
unit cost. The complexity of an algebraic computation tree is the maximum sum of
costs along a root-leaf path in the tree. If W< R", then C(W), the complexity of W,
is the minimum complexity of a tree that accepts precisely the set W. For any point
set SSR", let #(S) denote the number of connected components of W. It was shown
in [1] that C(W) =Q(log #(W)).

We now show a lower bound of Q((n +r) -log min {n, r}) algebraic operations for
processing r hull-membership queries on n data points. We will in fact show that this
bound holds when the r queries are processed off-line. The bound is obtained through
a reduction from the SET DISJOINTNESS problem, defined as follows. Given two
sets X ={x,,x, - x,} and Q={q,, q, ' * * q,}, determine whether their intersection is
nonempty. This problem is a simpler version of the SET INTERSECTION problem
mentioned in § 2. We first prove a lower bound on SET DISJOINTNESS.

THEOREM 8. Any algebraic computation tree that solves SET DISJOINTNESS
must have a complexity of Q((n+r)-log min {n, r}).

Proof. Assume without loss of generality that r=< n. Every instance of SET DIS-
JOINTNESS can be represented as a point 8=(x,,***, X, q1," - *, q,) in R""". Let
W< R"™" be the set of all points representing disjoint sets. The complexity of the
problem is Q(log #(W)), where # (W) is the number of connected components of W
[1]. Consider instances for which the g; are distinct. The elements of Q can be ordered
as {q1y< g <" - <4}, where (i) represents the index of the ith smallest value in
{q1,- -+, q) Let Sg(i)={xc:qu<xx<gi+}, for 1=i=r—1. Define W*=
{B:|Ss(i)=|n/(r=1)], 1=i=r—1}, W*< W. The subsets of W* corresponding to
different choices of Sg’s are separated by hyperplanes of the form x;=gq;. These
hyperplanes are entirely disjoint from W. This means that if two points in W* are
separated by these hyperplanes then they must also be separated in W. Hence, the
number of components of W is at least as large as the number of ways of partitioning
{x1, x5, -, x,} into the Sg’s as per the definition of W*. A counting argument shows
that this is at least as large as

n!
rl———.
(I(n/r=1)]Y)
From this it follows that the complexity is Q((n+r)-logr). O

THEOREM 9. The complexity of processing r hull-membership queries is Q((n+
r)-log min {n, r}).

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

DEFERRED DATA STRUCTURING 897

Proof. By reduction from SET DISJOINTNESS in O(n+r) time. Without loss
of generality, assume that the elements of both sets lie in the interval [0, 27). Each
element x; maps onto a point p; on the unit circle with polar coordinates (1, x;). This
constitutes our data set P; note that BCH (P) = P. Each element g; of Q maps onto a
point r; with polar coordinates (1, g;). The point r; lies in CH (P) if and only if g; € X.
Thus SET DISJOINTNESS «,,, HULL_MEMBERSHIP. 0O

The lower bound extends to the problems in §§ 4.2 and 4.3.

4.5. Effect of the number of points on the convex hull. In this section we return to
the problem of determining whether a query point lies within the convex hull of n
given data points. We show that a substantial improvement is possible when h, the
number of data points on the boundary of the convex hull, is much smaller than n. It
is clear that the guarantees of Theorem 4 are too weak in such a case, since it is possible
to find CH (P) in O(nlog h) operations by the Kirkpatrick-Seidel algorithm; sub-
sequently, queries can be answered in time O(log h) each. This gives a time bound of
O((n+r)log h) for answering r queries. This may seem to contradict the lower bound
of Theorem 9 but recall that in the lower bound reduction all n data points were on
the boundary of the convex hull. When r exceeds h, the algorithm of § 4.1 achieves a
time bound of O(nlogh+rlogn), since node expansion costs add up to only
O(n log h). The cost of searching, however, unfortunately grows as rlog n because
the depth of Tp may grow as log n even though the number of leaves is only h.

To get around this difficulty we construct, in a dovetailed fashion, two binary
search trees Tp and Tp. Let T be the fully expanded version of the search tree
constructed by the algorithm of §4.1. It has h leaves and can be constructed in
O(n log h) time. The two trees Tp and T will be partially expanded versions of T.
Tp is the version obtained by processing queries according to the algorithm of § 4.1.
The other tree T, is obtained by partially constructing T through a deferred depth-first
traversal.

The depth-first traversal of a tree with [leaves can be looked upon as consisting
of | phases, each of which ends when a new leaf is reached. Similarly, the depth-first
construction of Tj, can be broken down into h phases. These h phases are interleaves
with the processing of the first A queries on the search tree Tp. Each phase can also
be looked upon as the processing of a judiciously chosen query on the tree Tp. Thus
the cost of the deferred construction of T, has the same upper bound as that for Tp.

When r exceeds h, the tree T will be fully constructed after the first & queries
have been processed on Tp. At this point Tp itself may not be fully expanded; in fact
only one leaf may have been exposed in it. Since the CH (P) is now completely
determined by T, we can do away with the two search trees for further query processing.
We now resort to the wedge method to answer each query in time O(log h) (see § 4.1).
Since the cost of constructing Tp, is O(n log h) the following theorem results.

THEOREM 10. The cost of processing r hull-membership queries is O(A'(n, r, h)),
where

nlogr, r=h,

A, r’h)z{(n+r)-log h, r>h.

Analogous results hold for the problems in §§ 4.2 and 4.3.

5. Domination problems. In this section we investigate a problem related to point
domination in k-dimensional space. This problem does not fit directly into the paradigm
presented at the end of § 2. However, a higher-dimensional analogue of divide-and-
conquer enables us to adapt our technique to such problems.

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

898 R. M. KARP, R. MOTWANI, AND P. RAGHAVAN

Let p; denote the ith coordinate of a point p in k-space. We say that p dominates
q if and only if p, = g; for all i, 1 =i = k. Bentley [2] considers the dominance counting
problem which is also called the ECDF Searching Problem. In this problem we are
given a set P={p,, p, - - * p.} of n points in k-space. For each query point g, we are
asked to report the number of points of P dominated by gq.

Bentley uses a multidimensional divide-and-conquer strategy to solve this problem.
He constructs a data structure, the ECDF tree, which answers each query in O(log" n)
time following a preprocessing phase requiring O(n log“™" n) time. This result holds
for fixed number of dimensions (k) and for n a power of 2. However, a more detailed
analysis due to Monier [9] shows the validity of this result for arbitrary n and k. In
fact, Monier shows that the constant implicit in the O result is 1/(k—1)!. In the
following analysis we too will assume that the number of dimensions is fixed and that
n is a power of 2. Our results can be generalized to allow for arbitrary k and n by
invoking the results due to Monier.

The basic paradigm of multidimensional divide-and-conquer is as follows: given
a problem involving n points in k-space, first divide into (and recursively solve) two
subproblems each of n/2 points in k-space, and then recursively solve one problem
of at most n points in (k —1)-space. When applied to the dominance counting problem,
this paradigm yields the following search or counting strategy:

(1) Find a (k—1)-dimensional hyperplane M dividing P into two subsets P; and
P,, each of cardinality n/2. We will assume that M is of the form x; = ¢. Hence, all
points in P, have their kth coordinate less than ¢, while those in P, have their kth
coordinate greater than c.

(2) If the query point q lies on the same side of M as P, (i.e., qx <c) then
recursively search in P, only. It is clear that the query point cannot dominate any
point in P,.

(3) Otherwise, g lies on the same side of M as P, (i.e., g, > ¢) and we know that
q dominates every point of P, in the kth-coordinate. Now we project P, and g onto
M and recursively search in (k—1)-space. We also search P, in k-space.

In Fig. 5 we illustrate this strategy for two-dimensional space.

In one-dimensional space the ECDF searching problem reduces to finding the
rank of a query value in the given data-set. The one-dimensional ECDF search tree is
an optimal binary search tree on the n points in P. The k-dimensional ECDF tree for

X, M:X ,=c X, M:X ,=c

A A

______ a, B I P

o — » X, o c — X,

F1G. 5. The two cases for dominance counting in 2-space.

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

DEFERRED DATA STRUCTURING 899

the n points in P is a recursively built data structure. The root of this tree contains
M, the median hyperplane for the kth dimension. The left subtree is a k-dimensional
ECDF tree for the n/2 points in P;, the points in P which lie below M. Similarly, the
right subtree is a k-dimensional ECDF tree for the n/2 points in P,, the points in P
which lie above M. The root also contains a (k — 1)-dimensional ECDF tree representing
the points in the P, projected onto M.

To answer a query g, the search algorithm compares g, to c, the value defining
the median plane M stored at the root. If g, is less than c then the search is restricted
to the points in P, only. The algorithm then recursively searches in the left subtree.
If, on the other hand, g is greater than c then the algorithm recursively searches in
the right subtree as well as the (k —1)-dimensional ECDF tree stored at the root. For
the one-dimensional ECDF tree the algorithm is the standard binary tree search. For
fixed k, the preprocessing time to build the k-dimensional ECDF tree is p(n)=
O(nlog" n), and the time required to answer a single query is g(n) = O(log" n).

We now apply the deferred data structuring technique to the k-dimensional ECDF
tree. As before, we do not perform any preprocessing to construct the search tree. The
ECDF tree is constructed on-the-fly in the process of answering the queries. Initially,
all the points are stored at the root of the k-dimensional ECDF tree. In general, when
a query search reaches an unexpanded node v we compute the median hyperplane,
M,, and partition the data points around M,. The two sets are then passed down to
the two descendant nodes of v. We also initialize the (k —1)-dimensional ECDF tree
which is to be created at v. Even these lower-dimensional trees are created in a deferred
fashion depending upon the queries being answered. The application of deferred data
structuring to the ECDF tree results in the following theorem.

THEOREM 11. The cost of answering r dominance search queries in k-space is
O(F(n, r, k)), where

Finr, k)z{nlog:r+rlog';n, r=n,
nlog “n+rlog*n, r>n.

Proof. The proof will be by induction over both k and n. It is easy to see that the
time required to answer a query remains unchanged by the process of deferring the
construction of the ECDF tree. This proof will concentrate on the node-expansion
component of the processing cost. Clearly, we need not consider the case where r>n
since the node-expansion cost cannot exceed the total preprocessing cost of the
nondeferred ECDF tree. Let f(n, r, k) denote the worst-case node-expansion cost for
answering r queries over n data points in k dimensions using a k-dimensional ECDF
tree. When r exceeds n we have f(n, r, k) = O(n-log" n) since n queries, each leading
to a different leaf, are sufficient to fully expand the ECDF tree. We will now prove
that f(n, r, k) = O(n-log" r) when r=n.

The basis of this induction is the case where k = 1. Consider the one-dimensional
ECDEF tree. It is an optimal binary search tree and we can invoke Theorem 3 to show
the validity of this theorem. This establishes the base case of our induction over k, in
other words, f(n, r,1)=O(n-log r) when r=n. The induction hypothesis is that the
above result is valid for up to k — 1 dimensions, i.e., f(n, r, k—1) = O(n-log"™" r) when
r=n. We now prove that it must be valid for k dimensions also. At the second level
of our nested induction we concentrate on the k-dimensional ECDF tree and use
induction over n. It is clear that the k-dimensional ECDF tree for n =1 points will
satisfy the above theorem for r =n. We now assume that the result is valid for up to
n—1 points in k dimensions. To complete the proof we show that, under the given
assumptions, the result can be extended to n points in k dimensions.

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

900 R. M. KARP, R. MOTWANI, AND P. RAGHAVAN

Consider the root node, say V, of the k-dimensional ECDF tree for the n points
in P. It contains a median hyperplane, say My, which partitions the n points in P into
two equal subsets, P, and P,. Recall that P, is the set of all those points in P which
lie below My ; P, is the set of those points in P which lie above My. The left and right
subtrees of V are the k-dimensional ECDF trees for P, and P,, respectively. We also
store at V a (k—1)-dimensional ECDF tree, say T, for the projections of the points
in P, onto My. This lower-dimension tree creates a kind of asymmetry between P,
and P,. This asymmetry can complicate our proof considerably. Therefore, for the
purposes of this proof only, we will make a simplifying assumption about the structure
of the ECDF tree. We assume that V also contains a (k —1)-dimensional ECDF tree,
say T,, for the projections of the points in P, onto My.

The search procedure for the ECDF tree is also modified to introduce symmetry.
Given a query g, we first test it with respect to the median hyperplane M. If it lies
above My the search continues in the right subtree of V and in T,. On the other hand,
if g lies below M, we continue the search in the left subtree of V as well as T,. The
search in T, is redundant because g, lying below My, cannot dominate any point in
P,. These modifications are made not just at the root but at all nodes in an ECDF
tree. It is not very hard to see that these modifications can only increase the running
times of our node-expansion algorithm. Moreover, these changes entail performing
redundant operations which do not change the outcome of our algorithm. It is clear,
therefore, that any upper bounds on the node-expansion costs for the modified ECDF
tree also apply to the original deferred data structure.

We now proceed to complete the induction proof for r=n. Let r, denote the
number of queries which lie below the median hyperplane M, . These queries continue
the search down the left subtree of the root. Let r, = r — r, denote the remaining queries
which continue the search down the right subtree as they lie above the median
hyperplane M,. Consider the node-expansion costs involved in processing these
queries. Finding the median hyperplane My requires O(n) operations. The r; queries
lying below M, are processed in the left subtree of V (a k-dimensional ECDF tree
on n/2 points) and in T, (a (k—1)-dimensional ECDF tree on n/2 points). The
remaining r, queries are processed in the right subtree of V (a k-dimensional ECDF
tree on n/2 points) and in T; (a (k—1)-dimensional ECDF tree on n/2 points). This
gives us the following bound on the total node-expansion cost entailed by processing
r queries:

f(n, r, k)= max {f(g, i, k) +f<g, ry, k) +f(g, i, k—l)

ritry=r

+f('—21, r, k—l) + O(n)}.

Using the induction hypotheses we know the exact form of the functions on the
right-hand side of the inequality. In particular, we know that these functions are convex.
This implies that the right-hand side of the inequality is maximized when r,=r,=r/2.
Putting together all this we have the desired result

f(n,r,k)=0(n-log"r), r=n

Again, note that this result is valid only for fixed k and n a power of 2. The constant
implicit in the O will, in general, depend on k. Monier’s detailed analyses [9] of
Bentley’s algorithm also extends our result to arbitrary n and k. 0

Bentley [2] actually has a slightly better bound on the preprocessing time for
constructing ECDF trees. He makes use of a presorting technique to improve the bound

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

DEFERRED DATA STRUCTURING 901

to O(n-log“™" n) for k-dimensional ECDF trees on n points. He first sorts all n points
by the first coordinate in O(n-log n) time. This ordering is maintained at every step,
especially when dividing the points into two sets about a median hyperplane for some
other coordinate. Consider the two-dimensional ECDF tree. Initially, all n points are
stored at the root in order by the first coordinate. After the first query, these n points
are partitioned about a median hyperplane and passed down to the children nodes.
The ordering by the first coordinate is maintained during this partition. Let P, denote
the points being passed down to the left subtree, P, denotes the points passed down
to the right subtree. In the original ECDF tree we would have constructed a one-
dimensional ECDF tree for the points in P, and stored it at the root. Instead, we now
just store the points of P,, in order by the first coordinate, at the root. This process is
repeated at every node in the two-dimensional ECDF tree. We now use the two-
dimensional ECDF tree as the basic data structure in our recursive construction of a
k-dimensional ECDF tree. In effect, we have done away with the one-dimensional
ECDF tree. The preprocessing cost for constructing the presorted k-dimensional ECDF
tree becomes O(n-log“"! n)+ O(n-log n). The new data structure is as easily deferred
as the previous one and we have the following result.

THEOREM 12. The cost of answering r dominance search queries in k-space is
O(G(n, r, k)), where

nlogn+nlog ' r+rloghn, =n,
G(n’ r, k)={ gk—l & k g '
nlog“ n+rlog'n, r>n.
Proof. The proof follows from a straightforward modification of the proof for
Theorem 11. Note that cost of presorting is subsumed by the node-expansion cost
when r>n. 0O

6. Conclusion. The paradigm of deferred data structuring has been applied to
some search problems. In all cases, we considered on-line queries and developed the
search tree as queries were processed. For the problems studied, our method improves
on existing strategies involving a preprocessing phase followed by a search phase. An
interesting open problem is to design deferred data structures for dynamic data sets
in which insertions and deletions are allowed concurrently with query processing.

The nearest-neighbor problem [13] asks for the nearest of n data points to a query
point. The problem is solved using Voronoi diagrams in O(log n) search time; the
Voronoi diagram can be constructed in O(n log n) time. There is no known top-down
divide-and-conquer algorithm for constructing the Voronoi diagram optimally. The
obvious top-down method of constructing the bisector of the left and the right n/2
points (see [14] for a definition of the bisector of two sets of points) fails, since sorting
reduces to computing this bisector. It remains an interesting open problem whether a
deferred data structure can be devised for the nearest-neighbor search problem. Note
that the techniques of § 2 can be used to solve the one-dimensional nearest-neighbor
problem.

REFERENCES

[1] M. BEN-OR, Lower bounds for algebraic computation trees, in Proc. 15th Annual ACM Symposium on
Theory of Computing, May 1983, pp. 80-86.

[2] J. L. BENTLEY, Multidimensional divide and conquer, Comm. ACM, 23 (1980), pp. 214-229.

[3] M. BLuM, R. FLOYD, V. PRATT, R. RIVEST, AND R. TARJAN, Time bounds for selection, J. Comput.
System. Sci., 7 (1973), pp. 448-461.

Downloaded 08/22/13 to 200.27.27.200. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journal s/ojsa.php

902 R. M. KARP, R. MOTWANI, AND P. RAGHAVAN

[4] B. M. CHAZELLE, L. J. GuiBAs, AND D. T. LEE, The power of geometric duality, in Proc. 24th Annual
IEEE Annual Symposium on Foundations of Computer Science, November 1983, pp. 217-225.
[5] M. E. DYER, Linear time algorithms for two- and three-variable linear programs, SIAM J. Comput., 13
(1984), pp. 31-45.
[6] D. G. KIRKPATRICK AND R. SEIDEL, The ultimate planar convex hull algorithm?, SIAM J. Comput.,
15 (1986), pp. 287-299.
[7] D. E. KNUTH, The Art of Computer Programming: Sorting and Searching, 3, Addison-Wesley, New
York, 1973, pp. 217-219.
[8] N. MEGIDDO, Linear time algorithm for linear programming in R® and related problems, SIAM 1J.
Comput., 12 (1983), pp. 759-776.
[9] L. MONIER, Combinatorial solutions of multidimensional divide-and-conquer recurrences, J. Algorithms,
1 (1986), pp. 60-74.
[10] R. MOTWANI AND P. RAGHAVAN, Deferred data structures: query-driven preprocessing for geometric
search problems, in Proc. 2nd Annual ACM Symposium on Computational Geometry, Yorktown
Heights, NY, June 1986, pp. 303-312.
[11] F. P. PREPARATA AND M. 1. SHAMOS, Computational Geometry: An Introduction, Springer-Verlag,
Berlin, New York, 1985.
[12] A. SCHONHAGE, M. PATERSON, AND N. PIPPENGER, Finding the median, J. Comput. System Sci.,
13 (1981), pp. 184-199.
[13] M. 1. SHAMOs AND D. HOEY, Closest-point problems, in Proc. 16th Annual IEEE Annual Symposium
on Foundations of Computer Science, October 1975, pp. 151-162.
[14] M. 1. SHAMOS, Computational geometry, Ph.D. thesis, Yale University, New Haven, CT, 1977.

