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Abstract

We describe an algorithm computing an optimal pre�x free code for n unsorted positive weights in

less time than required to sort them on many large classes of instances, identi�ed by a new measure

of di�culty for this problem, the alternation α. This asymptotical complexity is within a constant

factor of the optimal in the algebraic decision tree computational model, in the worst case over all

instances of �xed size n and alternation α. Such results re�ne the state of the art complexity in the

worst case over instances of size n in the same computational model, a landmark in compression

and coding since 1952, by the mere combination of van Leeuwen's algorithm to compute optimal

pre�x free codes from sorted weights (known since 1976), with Deferred Data Structures to partially

sort multisets (known since 1988).
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1 Introduction

Given n positive weights W [1..n] coding for the frequencies
{
W [i]/

∑n
j=1W [j]

}
i∈[1..n]

of n

messages, and a number D of output symbols, an Optimal Prefix Free Code [11] is a

set of n code strings on alphabet [1..D], of variable lengths L[1..n] and such that no string

is pre�x of another, and the average length of a code is minimized (i.e.
∑n
i=1 L[i]W [i] is

minimal).

Any pre�x free code can be computed in linear time from a set of code lengths sat-

isfying the Kraft inequality
∑n
i=1D

−L[i] ≤ 1. The original description of the code by

Hu�man [11] yields a heap-based algorithm performing O(n log n) algebraic operations,

using the bijection between D-ary pre�x free codes and D-ary cardinal trees [8]. This

complexity is asymptotically optimal for any constant value of D in the algebraic deci-

sion tree computational model1, in the worst case over instances composed of n positive

weights, as computing the optimal binary pre�x free code for the weights W [0, . . . , Dn] =

∗ See the full version [1] on http://arxiv.org/abs/1602.03934 for complete proofs and comments.
1 The algebraic decision tree computational model is composed of algorithms which can be modelled as a
decision tree where the decision made in each node is based only on algebraic operations on the input.
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{Dx1 , . . . , Dx1 , Dx2 , . . . , Dx2 , . . . , Dxn , . . . , Dxn} is equivalent to sorting the positive integers
{x1, . . . , xn}. We consider here only the binary case, where D = 2.

Yet, not all instances require the same amount of work to compute an optimal code:

When the weights are given in sorted order, van Leeuwen [14] showed that an optimal

code can be computed using within O(n) algebraic operations.

When the weights consist of r ∈ [1..n] distinct values and are given in a sorted, com-

pressed form, Mo�at and Turpin [17] showed how to compute an optimal code using

within O(r(1 + log(n/r))) algebraic operations, which is often sublinear in n.

In the case where the weights are given unsorted, Belal et al. [5, 6] described several

families of instances for which an optimal pre�x free code can be computed in linear

time, along with an algorithm claimed to perform O(kn) algebraic operations, in the

worst case over instances formed by n weights such that there is an optimal binary

pre�x free code with k distinct code lengths2. This complexity was later downgraded to

O(16kn) in an extended version[4] of their article. Both results are better than the state

of the art when k is �nite, but worse when k is larger than log n.

In the context described above, various questions are left unanswered, from the con�r-

mation of the existence of an algorithm running in time O(16kn) or O(kn), to the existence

of an algorithm taking advantage of small values of both n and k, less trivial than running

two algorithms in parallel and stopping both whenever one computes the answer. Given n

positive integer weights, can we compute an optimal binary pre�x free code in time better

than O(min{kn, n log n}) in the algebraic decision tree computational model? We answer in

the a�rmative for many classes of instances, identi�ed by the alternation measure α de�ned

in Section 3.1:

I Theorem 1. Given n positive weights of alternation α ∈ [1..n− 1], there is an algorithm

which computes an optimal binary pre�x free code using within O(n(1+ logα)) ⊆ O(n lg n)

algebraic instructions, and this complexity is asymptotically optimal among all algorithms

in the algebraic decision tree computational model in the worst case over instances of size n

and alternation α.

Proof. We show in Lemma 12 that any algorithm A in the algebraic decision tree computa-

tional model performs within Ω(n lgα) algebraic operations in the worst case over instances

of size n and alternation α. We show in Lemma 9 that the GDM algorithm, a variant of the

van Leeuwen's algorithm [14], modi�ed to use the deferred data structure from Lemma 5,

performs q ∈ O(α(1+lg n−1
α )) such queries, which yields in Corollary 10 a complexity within

O(n(1+ logα) + α(lg n)(lg n
α )), all within the algebraic decision tree computational model.

As α ∈ [1..n−1] and O(α(lg n)(lg n
α )) ⊆ O(n(1+ logα)) for this range (Lemma 11), the

optimality ensues. J

We discuss our solution in Section 2 in three parts: the intuition behind the general

strategy in Section 2.1, the deferred data structure which maintains a partially sorted list

of weights while supporting rank, select and partialSum queries in Section 2.2, and the

algorithm which uses those operators to compute an optimal pre�x free code in Section 2.3.

Our main contribution consists in the analysis of the running time of this solution, described

in Section 3: the formal de�nition of the parameter of the analysis in Section 3.1, the upper

bound in Section 3.2 and the matching lower bound in Section 3.3. We conclude with a

comparison of our results with those from Belal et al. [5] in Section 4.

2 Note that k is not uniquely de�ned, as for a given set of weights there can exist several optimal pre�x free
codes varying in the number of distinct code lengths used.
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2 Solution

The solution that we describe is a combination of two results: some results about deferred

data structures for multisets, which support queries in a �lazy� way; and some results about

the relation between the computational cost of sorting and that of computing an optimal

pre�x free code. We describe the general intuition of our solution in Section 2.1, the deferred

data structure in Section 2.2, and the algorithm in Section 2.3.

2.1 General Intuition

The algorithm suggested by Hu�man [11] starts with a heap of external nodes, selects the

two nodes of minimal weight, pairs them into a new node which it adds to the heap, and

iterates untill only one node is left. Whereas the type of the nodes selected, external or

internal, does not matter in the analysis of the complexity of Hu�man's algorithm, we claim

that the computational cost of optimal pre�x free codes can be greatly reduced on instances

where many external nodes are selected consecutively. We de�ne the �EI signature� of an

instance as the �rst step toward the characterization of such instances:

I De�nition 2. Given an instance of the optimal pre�x free code problem formed by n

positive weights W [1..n], its EI signature S(W ) ∈ {E, I}2n−1 is a string of length 2n − 1

over the alphabet {E, I} (where E stands for �External� and I for �Internal�) marking, at

each step of the algorithm suggested by Hu�man [11], whether an external or internal node

is chosen as the minimum (including the last node returned by the algorithm, for simplicity).

The analysis described in Section 3 is based on the number |S|EI of blocks formed only

of E in the EI signature of the instance S. We can already show some basic properties of

this measure:

I Lemma 3. Given the EI signature S of n unsorted positive weights W [1..n], |S|E = n;

|S|I = n − 1; |S| = 2n − 1; S starts with two E; S �nishes with one I; |S|EI = |S|IE + 1;

|S|EI ∈ [1..n− 1].

Proof. The three �rst properties are simple consequences of basic properties on binary trees.

S starts with two E as the �rst two nodes paired are always external. S �nishes with one I

as the last node returned is always (for n > 1) an internal node. The two last properties are

simple consequences of the fact that S is a binary string starting with an E and �nishing

with an I. J

For example, the text T = �ABBCCCDDDDEEEEEFFFFFGGGGGGHHHHHHH� has

frequencies W = 1 2 3 4 5 5 6 7 . It corresponds to an instance of size n = 8,

of EI signature S(W ) = EEEIEEEEIEIIIII of length 15, which starts with EE, �nishes with

I, and contains only α = 3 occurrences of EI, corresponding to a decomposition into α = 3

maximal blocks of consecutive Es.

Instances such as this, with very few blocks of E, are easier to solve than instances with

many such blocks. For example, an instance W of length n such that its EI signature S(W )

is composed of a single run of n Es followed by a single run of n − 1 Is (such as the one

described in Figure 1) can be solved in linear time, and in particular without sorting the

weights: it is enough to assign the codelength l = blog2 nc to the n− 2l largest weights and

the codelength l+ 1 to the 2l smallest weights. Separating those weights is a simple select

operation, supported by the data structures described in the following section.

We describe two extreme examples. First, consider the text T = �ba_bb_caca_ba_cc�.

Each of the four symbols of its alphabet {a, b, c,_} occurs exactly 4 times, so that an optimal
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a 4

b 4

c 4

_ 4

16

8

a b

8

c _

Figure 1 Frequencies and code tree for the

text T = �ba_bb_caca_ba_cc�, minimizing

the number of occurrences of �EI� in its EI

signature S(T ) = �EEEEIII�.

a 8

b 1

c 2

_ 4

15

a 7
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b c

Figure 2 Frequencies and code tree for the

text T = �aaaaaaaabcc____�, maximizing

the number of occurrences of �EI� in its EI

signature S(T ) = �EEIEIEI�.

pre�x free code assigns a uniform codelength of 2 bits to all symbols (see Figure 1). There

is no need to sort the symbols by frequency (and the pre�x free code does not yield any

information about the order in which the symbols would be sorted by monotone frequencies),

and accordingly the EI signature of this text, S(T ) = �EEEEIII�, has a single block of Es,

indicating a very easy instance. The same holds if the text is such that the frequencies of

the symbols are all within a factor of two of each other. On the other hand, consider the

text T = �aaaaaaaabcc____�, where the frequencies of its symbols follow an exponential

distribution, so that an optimal pre�x free code assigns di�erent codelengths to almost all

symbols (see Figure 2). The pre�x free code does yield a lot of information about the order

in which the symbols would be sorted by monotone frequencies, and accordingly the EI

signature of this text, S(T ) = �EEIEIEI�, has three blocks of Es, indicating a more di�cult

instance. The same holds with more general distribution, as long as no two pairs of symbol

frequencies are within a factor of two of each other.

2.2 Partial Sum Deferred Data Structure

Given a Multiset W [1..n] on alphabet [1..σ] of size n, Karp et al. [13] de�ned the �rst

deferred data structure supporting for all x ∈ [1..σ] and r ∈ [1..n] queries such as rank(x),

the number of elements which are strictly smaller than x in W ; and select(r), the value of

the r-th smallest value (counted with multiplicity) in W . Their data structure supports q

queries in time within O(n(1 + lg q) + q lg n), all in the comparison model.

Karp et al.'s data structure [13] supports only rank and select queries in the comparison

model, whereas the computation of optimal pre�x free codes requires to sum pairs of weights

from the input, and the algorithm that we propose in Section 2.3 requires to sum weights

from a range in the input. Such a requirement can be reduced to partialSum queries.

Whereas Partial Sum queries have been de�ned in the literature based on the positions in

the input array, we de�ne such queries here in a way that depends only on the content of

the Multiset (as opposed to a de�nition depending on the order in which it is given), so

that it can be generalized to deferred data structures.

I De�nition 4. Given n unsorted positive weights W [1..n], a Partial Sum data structure

supports the following queries: rank(x), the number of elements which are strictly smaller

than x in W ; select(r), the value of the r-th smallest value (counted with multiplicity) in

W ; partialSum(r), the sum of the r smallest elements (counted with multiplicity) in W .

For example, given the array A = 5 3 1 5 2 4 6 7 , this de�nition of the

operators yields rank(5) = 4, select(6) = 5, and partialSum(2) = 3.
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We describe below how to extend Karp et al.'s deferred data structure [13], which sup-

ports rank and select queries on Multisets, in order to add the support for partialSum

queries, with an amortized running time within a constant factor of the original asymptotic

time. Note that the operations performed by the data structure are not any more within

the comparison model, but rather in the algebraic decision tree computational model, as

they introduce algebraic operations (additions) on the elements of the Multiset. The re-

sult is a direct extension of Karp et al. [13], adding a sub-task taking linear time (updating

partial sums in an interval of positions) to a sub-task which was already taken linear time

(partitioning this same interval by a pivot):

I Lemma 5. Given n unsorted positive weights W [1..n], there is a PartialSum Deferred

Data Structure which supports q operations of type rank, select and partialSum in time

within O(n(1+lg q)+q(1+log n)), all within the algebraic decision tree computational model.

Proof. Karp et al. [13] described a deferred data structure which supports the rank and

select queries (but not partialSum queries). It is based on median computations and (2, 3)-

trees, and performs q queries on n values in time within O(n(1 + lg q) + q(1 + log n)), all

within the algebraic decision tree computational model. We describe below how to modify

their data structure in a simple way to support partialSum queries with asymptotically

negligible additional cost. At the initialization of the data structure, compute the n partial

sums corresponding to the n positions of the unsorted array. After each median computation

and partitioning in a rank or select query, recompute the partial sums on the range of values

newly partitioned, adding only a constant factor to the cost of the query. When answering

a partialSum query, perform a select query and then return the value of the partial sum

corresponding to the value by the select query: the asymptotic complexity is within a

constant factor of the one described by Karp et al. [13]. J

In the next section we describe an algorithm that uses the deferred data structure de-

scribed above to batch the operations on the external nodes, and to defer the computation

of the weights of some internal nodes for later, so that for many instances the input is not

completely sorted at the end of the execution, which reduces the execution cost.

2.3 Algorithm �Group-Dock-Mix� (GDM)

There are �ve main phases in the GDM algorithm: the Initialization, three phases (Grouping,

Docking and Mixing, giving it the name �GDM� to the algorithm) inside a loop running until

only internal nodes are left to process, and the Conclusion:

In the Initialization phase, initialize the Partial Sum deferred data structure with the

input, and the �rst internal node by pairing the two smallest weights of the input.

In the Grouping phase, group the weights smaller than the smallest internal node: this

corresponds to a run of consecutive E in the EI signature of the instance.

In the Docking phase, pair the consecutive positions of those weights (as opposed to the

weights themselves, which can be reordered by future operations) into internal nodes, and

pair those internal nodes until the weight of at least one such internal node becomes equal

or larger than the smallest remaining weight: this corresponds to a run of consecutive I

in the EI signature of the instance.

In theMixing phase, rank the smallest unpaired weight among the weights of the available

internal nodes: this corresponds to an occurrence of IE in the EI signature of the

instance. This is the most complicated (and most costly) phase of the algorithm.
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In the Conclusion phase, with i internal nodes left to process, assign codelength l =

blog2 ic to the i − 2l largest ones and codelength l+1 to the 2l smallest ones: this

corresponds to the last run of consecutive I in the EI signature of the instance.

The algorithm and its complexity analysis distinguish two types of internal nodes: pure

nodes, which descendants were all paired during the same Grouping phase; and mixed nodes,

each of which either is the ancestor of such a mixed node, or pairs a pure internal node with

an external node, or pairs two pure internal nodes produced at distinct phases of the GDM

algorithm. The distinction is important as the algorithm computes the weight of any mixed

node at its creation (potentially generating several data structure operations), whereas it

defers the computation of the weight of some pure nodes for later, and does not compute

the weight of some pure nodes.

Before describing each phase more in detail, it is important to observe the following

invariant of the algorithm:

I Lemma 6. Given an instance of the optimal pre�x free code problem formed by n > 1

positive weights W [1..n], between each phase of the algorithm, all unpaired internal nodes

have weight within a constant factor of two (i.e. the maximal weight of an unpaired internal

node is strictly smaller than twice the minimal weight of an unpaired internal node).

We now proceed to describe each phase in more details:

Initialization: Initialize the deferred data structure Partial Sum with the input; com-

pute the weight currentMinInternal of the �rst internal node through the operation

partialSum(2) (the sum of the two smallest weights); create this internal node, of weight

currentMinInternal and children 1 and 2 (the positions of the �rst and second weights,

in any order); compute the weight currentMinExternal of the �rst unpaired weight

(i.e. the �rst available external node) by the operation select(3); setup the variables

nbInternals = 1 and nbExternalProcessed = 2.

Grouping: Compute the position r of the �rst unpaired weight which is larger than

the smallest unpaired internal node, through the operation rank(currentMinInternal);

pair the ((r − nbExternalProcessed) modulo 2) indices to form b r−nbExternalProcessed2 c
pure internal nodes; if the number r−nbExternalProcessed of unpaired weights smaller

than the �rst unpaired internal node is odd, select the r-th weight through the operation

select(r), compute the weight of the �rst unpaired internal node, compare it with the

next unpaired weight, to form one mixed node by combining the minimal of the two with

the extraneous weight.

Docking: Pair all internal nodes by batches (by Lemma 6, their weights are all within a

factor of two, so all internal nodes of a generation are processed before any internal node

of the next generation); after each batch, compare the weight of the largest such internal

node (compute it through partialSum on its range if it is a pure node, otherwise it is

already computed) with the �rst unpaired weight: if smaller, pair another batch, and if

larger, the phase is �nished.

Mixing: Rank the smallest unpaired weight among the weights of the available internal

nodes by a doubling search starting from the beginning of the list of internal nodes. For

each comparison, if the internal node's weight is not already known, compute it through

a partialSum operation on the corresponding range (if it is a mixed node, it is already

known). If the number r of internal nodes of weight smaller than the unpaired weight is

odd, pair all but one, compute the weight of the last one and pair it with the unpaired

weight. If r is even, pair all of the r internal nodes of weight smaller than the unpaired

weight, compare the weight of the next unpaired internal node with the weight of the
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next unpaired external node, and pair the minimum of the two with the �rst unpaired

weight. If there are some unpaired weights left, go back to the Grouping phase, otherwise

continue to the Conclusion phase.

Conclusion: There are only internal nodes left, and their weights are all within a factor

of two from each other. Pair the nodes two by two in batches as in the Docking phase,

computing the weight of an internal node only when the number of internal nodes of a

batch is odd.

The combination of those phases forms the GDM algorithm, which computes an optimal

pre�x free code given an unsorted sets of positive integers. In the next section, we analyze

the number q of rank, select and partialSum queries performed by the GDM algorithm,

and deduce from it the complexity of the algorithm in terms of algebraic operations.

3 Analysis

The GDM algorithm runs in time within O(n lg n) in the worst case over instances of size n

(which is optimal (if not a new result) in the algebraic decision tree computational model),

but much faster on instances with few blocks of consecutive Es in the EI signature of

the instance. We formalize this concept by de�ning the alternation α of the instance in

Section 3.1. We then proceed in Section 3.2 to show upper bounds on the number of queries

and operations performed by the GDM algorithm in the worst case over instances of �xed size

n and alternation α. We �nish in Section 3.3 with a matching lower bound for the number

of operations performed.

3.1 Alternation α(W )

We suggested in Section 2.1 that the number |S|EI of blocks of consecutive Es in the EI

signature of an instance can be used to measure its di�culty. Indeed, some �easy� instances

have few such blocks, and the instance used to prove the Ω(n lg n) lower bound on the

computational complexity of optimal pre�x free codes in the algebraic decision tree compu-

tational model in the worst case over instances of size n has n−1 such blocks (the maximum

possible in an instance of size n). We formally de�ne this measure as the �alternation� of

the instance (it measures how many times the van Leeuwen algorithm �alternates� from an

external node to an internal node) and denote it by the parameter α:

I De�nition 7. Given an instance of the optimal pre�x free code problem formed by n

positive weights W [1..n], its alternation α(W ) ∈ [1..n − 1] is the number of occurrences of

the substring �EI� in its EI signature S(W ).

This number is of particular interest as it measures the number of iteration of the main

loop in the GDM algorithm:

I Lemma 8. Given an instance of the optimal pre�x free code problem of alternation α, the

GDM algorithm performs α iterations of its main loop.

In the next section, we re�ne this result to the number of data structure operations and

algebraic operations performed by the GDM algorithm.

3.2 Upper Bound

In order to measure the number of queries performed by the GDM algorithm, we detail how

many queries are performed in each phase of the algorithm.
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The Initialization corresponds to a constant number of data structure operations: a

select operation to �nd the third smallest weight, and a simple partialSum operation

to sum the two smallest weights of the input.

Each Grouping phase corresponds to a constant number of data structure operations:

a partialSum operation to compute the weight of the smallest internal node if needed,

and a rank operation to identify the unpaired weights which are smaller or equal to this

node.

The number of operations performed by each Docking and Mixing phase is better an-

alyzed together: if there are i symbols in the I-block corresponding to this phase in

the EI signature, and if the internal nodes are grouped on h levels before generating

an internal node larger than the smallest unpaired weights, the Docking phase corre-

sponds to at most h partialSum operations, whereas the Mixing phase corresponds to

at most log2(i/2h) partialSum operations, which develops to log2(i) − h, for a total of

h+ log2(i)− h = log2 i data structure operations.

The Conclusion phase corresponds to a number of data structure operations logarithmic

in the size of the last block of Is in the EI signature of the instance: in the worst case,

the weight of one pure internal node is computed for each batch, through one single

partialSum operation each time.

Lemma 8 and the concavity of the log yields the total number of data structure operations

performed by the GDM algorithm:

I Lemma 9. Given an instance of the optimal pre�x free code problem of alternation α, the

GDM algorithm performs within O(α(1 + lg n−1
α )) data structure operations on the deferred

data structure given as input.

Proof. For i ∈ [1..α], let ni be the number of internal nodes at the beginning of the i-th

Docking phase. According to Lemma 8 and the analysis of the number of data structure

operations performed in each phase, the GDM algorithm performs in total within O(α +∑α
i=1 lg ni) data structure operations. Since there are at most n − 1 internal nodes, by

concavity of the logarithm this is within O(α+ α lg n−1
α ) = O(α(1 + lg n−1

α )). J

Combining this result with the complexity of the Partial Sum deferred data structure

from Lemma 5 directly yields the complexity of the GDM algorithm in algebraic operation

(and running time):

I Lemma 10. Given an instance of the optimal pre�x free code problem of alternation α,

the GDM algorithm runs in time within O(n(1+ logα) + α(lg n)(1 + lg n−1
α )), all within the

algebraic decision tree computational model.

Proof. Let q be the number of queries performed by the GDM algorithm. Lemma 9 implies

that q ∈ O(α(1 + lg n−1
α )). Plunging this into the complexity of O(q lg n + n lg q) from

Lemma 5 yields the complexity O(n(1+ logα) + α(lg n)(1 + lg n−1
α )). J

Some simple functional analysis further simpli�es the expression to our �nal upper bound:

I Lemma 11. Given two positive integers n > 0 and α ∈ [1..n− 1],

O(α(lg n)(lg
n

α
)) ⊆ O(n(1 + lgα))

Proof. Given two positive integers n > 0 and α ∈ [1..n−1], α < n
lgn and α

lgα < n. A simple

rewriting yields α
lgα <

n
lg2 n

and α lg2 n > n lgα . Then, n/α < n implies α × lg n× lg n
α <

n lgα, which yields the result. J
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In the next section, we show that this complexity is indeed optimal in the algebraic

decision tree computational model, in the worst case over instances of �xed size n and

alternation α.

3.3 Lower Bound

A complexity within O(n(1 + lgα)) is exactly what one could expect, by analogy with the

sorting of Multisets: there are α groups of weights, so that the order within each group

does not matter much, but the order between weights from di�erent groups matter a lot.

We prove a lower bound within Ω(n lgα) by reduction to Multiset sorting:

I Lemma 12. Given the integers n ≤ 2 and α ∈ [1..n−1], for any algorithm A in the

algebraic decision tree computational model, there is a set W [1..n] of n positive weights of

alternation α such that A performs within Ω(n lgα) algebraic operations.

Proof. For any Multiset A[1..n] = {x1, . . . , xn} of n values from an alphabet of α distinct

values, de�ne the instance WA = {2x1 , . . . , 2xn} of size n, so that computing an optimal

pre�x free code for W , sorted by codelength, provides an ordering for A. W has alternation

α: for any two distinct values x and y from A, the van Leeuwen algorithm pairs all the

weights of value 2x before pairing any weight of value 2y, so that the EI signature ofWA has

α blocks of consecutive Es. The lower bound then results from the classical lower bound

on sorting Multisets in the comparison model in the worst case over Multisets of size n

with α distinct symbols, itself based on the number αn of such multisets. J

We compare our results to previous ones in the next section.

4 Discussion

We described an algorithm computing an optimal pre�x free code for n unsorted positive

weights in time within O(n(1+ lgα)) ⊆ O(n lg n), where the alternation α ∈ [1..n−1] roughly

measures the amount of sorting required by the computation by combining van Leeuwen's

results about optimal pre�x free codes [14], known since 1976, with Karp et al.'s results

about Deferred Data Structures [13], known since 1988. The results described above yield

many new questions, of which we discuss only a few in the following sections: how do

those results relate to previous results on optimal pre�x free codes (Section 4.1), or to other

results on Deferred Data Structures obtained since 1988 (Section 4.2 and 4.3). We discuss

the potential lack of practical applications of our results on optimal pre�x free codes in

Section 4.4, and the perspectives of research on this topic in Section 4.5.

4.1 Relation to previous work on optimal pre�x free codes

In 2006, Belal et al. [5], described a variant of Milidiú et al.'s algorithm [16, 15] to compute

optimal pre�x free codes, announcing that it performs O(kn) algebraic operations when the

weights are not sorted, where k is the number of distinct code lengths in some optimal pre�x

free code. They describe an algorithm claimed to run in time O(16kn) when the weights are

unsorted, and propose to improve the complexity to O(kn) by partitioning the weights into

smaller groups, each corresponding to disjoint intervals of weights3. The claimed complexity

3 Those results were downgraded in the December 2010 update of their initial 2005 publication through
Arxiv [4].
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is asymptotically better than the one suggested by Hu�man when k ∈ o(log n), and they

raise the question of whether there exists an algorithm running in time O(n log k).

Like the GDM algorithm, the algorithm described by Belal et al. [5] for the unsorted case

is based on several computations of the median of the weights within a given interval, in

particular, in order to select the weights smaller than some well chosen value. The essential

di�erence between both works is the use of a deferred data structure, which simpli�es both

the algorithm and the analysis of its complexity.

While an algorithm running in time within O(n lg k) would improve over the running

time within O(n(1 + lgα)) of our proposed solution, such an algorithm has not been de�ned

yet, and for α < 2k our solution is superior to the complexity within O(nk) claimed by Belal

and Elmasry [5] (and even more so over the complexity of O(16kn)).

4.2 Applicability of dynamic results on Deferred Data Structures

Karp et al. [13] de�ned the �rst Deferred Data Structures, supporting rank and select on

Multisets and other queries on Convex Hull. They left as an open problem the support

of dynamic operators such as insert and delete. Ching et al. [7] quickly demonstrated

how to add such support in good amortized time.

The dynamic addition and deletion of elements in a deferred data structure (added by

Ching et al. [7] to Karp et al. [13]'s results) does not seem to have any application to the

computation of optimal pre�x free codes: even if the list of weights was dynamic, further

work is required to build a deferred data structure supporting pre�x free code queries.

4.3 Applicability of re�ned results on Deferred Data Structures

Karp et al.'s analysis [13] of the complexity of the deferred data structure is in function of

the total number q of queries and operators, while Kaligosi et al. [12] analyzed the com-

plexity of an o�ine version in function of the size of the gaps between the positions of the

queries. Barbay et al.[2] combined the three results into a single deferred data structure for

Multisets which supports the operators rank and select in amortized time proportional

to the entropy of the distribution of the sizes of the gaps between the positions of the queries.

At �rst view, one could hope to generalize the re�ned entropy analysis (introduced by

Kaligosi et al. [12] and applied by Barbay et al.[2] to the online version) of Multisets

deferred data structures supporting rank and select to the computational complexity of

optimal pre�x free codes: a complexity proportional to the entropy of the distribution of

codelengths in the output would nicely match the lower bound of Ω(k(1 +H(n1, . . . , nh)))

suggested by information theory, where the output contains ni codes of length li, for some

integer vector (l1, . . . , lh) of distinct codelengths and some integer h measuring the number

of distinct codelengths. Our current analysis does not yield such a result: the gap lengths

between queries in the list of weights are not as regular as (l1, . . . , lh).

4.4 Potential (lack of) Practical Impact of our Results

We expect the impact of our faster algorithm on the execution time of optimal pre�x free

code based techniques to be of little importance in most cases: compressing a sequence S of

|S| messages from an input alphabet of size n requires not only computing the code (in time

O(n(1 + lgα)) using our solution), but also computing the weights of the messages (in time

|S|), and encoding the sequence S itself using the computed code (in time O(|S|)), which
usually dominates the total cost. Improving the code computation time will improve on the
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compression time only in cases where the size n of the input alphabet is very large compared

to the length |S| of the compressed sequence. One such application is the compression of

texts in natural language, where the input alphabet is composed of all the natural words [18].

Another potential application is the boosting technique from Ferragina et al. [9], which

divides the input sequence into very short subsequence and computes a pre�x free code for

each subsequences on the input alphabet of the whole sequence.

Another argument for the potential lack of practical impact of our result is that there

exist algorithms computing optimal pre�x free codes in time within O(n lg lg n) within the

RAM model4: a time complexity within O(n(1 + lgα)) is an improvement only for values of

α ∈ o(lg n).

4.5 Perspectives

One could hope for an algorithm with a complexity that matches the lower bound of Ω(k(1+

H(n1, . . . , nh))) suggested by information theory, where the output contains ni codes of

length li, for some integer vector (l1, . . . , lh) of distinct codelengths and some integer h

measuring the number of distinct codelengths. Our current analysis does not yield such a

result: the gap lengths between queries in the list of weights are not as regular as (l1, . . . , lh),

but a re�ned analysis might. Minor improvements of our results could be obtained by

studying the problem in external memory, where deferred data structures have also been

developed [19, 3], or when the alphabet size is larger than two, as in the original article from

Hu�man [11].

Another promising line of research is given by variants of the original problem, such as

Optimal Bounded Length Prefix Free Codes, where the maximal length of each word

of the pre�x free code must be less than or equal to a parameter l, while still minimizing the

entropy of the code; or such as the Order Constrained Prefix Free Codes, where the

order of the words of the codes is constrained to be the same as the order of the weights.

Both problems have complexity O(n log n) in the worst case over instances of �xed input

size n, while having linear complexity when all the weights are within a factor of two of each

other, exactly as in the original problem.

Many communication solutions use an optimal pre�x free code computed o�ine. A

logical step would be to study if any can now a�ord to compute a new optimal pre�x free

code more frequently, and see their compression performance improved by a faster pre�x

free code algorithm.
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