
3

Instance-Optimal Geometric Algorithms

PEYMAN AFSHANI, MADALGO, University of Aarhus
JÉRÉMY BARBAY, DCC, Universidad de Chile
TIMOTHY M. CHAN, University of Waterloo

We prove the existence of an algorithm A for computing 2D or 3D convex hulls that is optimal for every point
set in the following sense: for every sequence σ of n points and for every algorithm A′ in a certain class A,
the running time of A on input σ is at most a constant factor times the running time of A′ on the worst
possible permutation of σ for A′. In fact, we can establish a stronger property: for every sequence σ of points
and every algorithm A′, the running time of A on σ is at most a constant factor times the average running
time of A′ over all permutations of σ . We call algorithms satisfying these properties instance optimal in
the order-oblivious and random-order setting. Such instance-optimal algorithms simultaneously subsume
output-sensitive algorithms and distribution-dependent average-case algorithms, and all algorithms that do
not take advantage of the order of the input or that assume the input are given in a random order.

The class A under consideration consists of all algorithms in a decision tree model where the tests
involve only multilinear functions with a constant number of arguments. To establish an instance-specific
lower bound, we deviate from traditional Ben-Or-style proofs and adopt a new adversary argument. For
2D convex hulls, we prove that a version of the well-known algorithm by Kirkpatrick and Seidel [1986] or
Chan, Snoeyink, and Yap [1995] already attains this lower bound. For 3D convex hulls, we propose a new
algorithm.

We further obtain instance-optimal results for a few other standard problems in computational geometry,
such as maxima in 2D and 3D, orthogonal line segment intersection in 2D, finding bichromatic L∞-close
pairs in 2D, offline orthogonal range searching in 2D, offline dominance reporting in 2D and 3D, offline
half-space range reporting in 2D and 3D, and offline point location in 2D. Our framework also reveals a
connection to distribution-sensitive data structures and yields new results as a byproduct, for example, on
online orthogonal range searching in 2D and online half-space range reporting in 2D and 3D.

Categories and Subject Descriptors: F.2.2 [Analysis of Algorithms and Problem Complexity]: Nonnu-
merical Algorithms and Problems—Geometrical problems and computations

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Adaptive algorithms, computational geometry, convex hull, decision
trees, distribution-sensitive data structures, instance optimality, output sensitivity, maxima, line segment
intersection, lower bounds, orthogonal range searching, partition trees, point location

This work is partially supported by the Danish National Research Foundation grant DNRF84 through the
Center for Massive Data Algorithmics (MADALGO); the project Fondecyt Regular no 1170366 from Conicyt;
and an NSERC Discovery Grant.
A preliminary version of this work appeared in Proceedings of the 50th IEEE Symposium on Foundations of
Computer Science (2009), 129–138.
Authors’ addresses: P. Afshani, MADALGO, Center for Massive Data Algorithmics, Department of Com-
puter Science, Aarhus University, The IT-park, Åbogade 34, DK-8200 Aarhus N, Denmark; email: peyman@
cs.au.dk; J. Barbay, Departamento de Ciencias de la Computacion (DCC), Edificio Norte, Piso 3, Avenida
Beauchef 851, Universidad de Chile, 837-0456 Santiago, Chile; email: jeremy@barbay.cl; T. M. Chan, De-
partment of Computer Science, University of Illinois at Urbana-Champaign, 201 N. Goodwin Ave., Urbana,
IL 61801, USA; email: tmc@illinois.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights for
components of this work owned by others than ACM must be honored. Abstracting with credit is permitted.
To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component of this
work in other works requires prior specific permission and/or a fee. Permissions may be requested from
Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c© 2017 ACM 0004-5411/2017/03-ART3 $15.00
DOI: http://dx.doi.org/10.1145/3046673

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

http://dx.doi.org/10.1145/3046673

3:2 P. Afshani et al.

ACM Reference Format:
Peyman Afshani, Jérémy Barbay, and Timothy M. Chan. 2017. Instance-optimal geometric algorithms. J.
ACM 64, 1, Article 3 (March 2017), 38 pages.
DOI: http://dx.doi.org/10.1145/3046673

1. INTRODUCTION

Instance Optimality: Our Model(s). Standard worst-case analysis of algorithms has
often been criticized as overly pessimistic. As a remedy, some researchers have turned
toward adaptive analysis where the execution cost of algorithms is measured as a
function of not just the input size but also other parameters that capture in some
ways the difficulty of the input instance. For example, for problems in computational
geometry (the primary domain of the present article), parameters that have been
considered in the past include the output size (leading to so-called output-sensitive
algorithms) [Kirkpatrick and Seidel 1986], the spread of an input point set (the ratio of
the maximum to the minimum pairwise distance) [Erickson 2005], various measures of
fatness of the input objects (e.g., ratio of circumradii to inradii) [Matoušek et al. 1994]
or clutteredness of a collection of objects [de Berg et al. 2002], the number of reflex
angles in an input polygon, and so on.

The ultimate in adaptive algorithms is an instance-optimal algorithm, that is, an
algorithm A whose cost is at most a constant factor from the cost of any other algo-
rithm A′ running on the same input, for every input instance. Unfortunately, for many
problems, this requirement is too stringent. For example, consider the 2D convex hull
problem, which has �(n log n) worst-case complexity in the algebraic computation tree
model: for every input sequence of n points, one can easily design an algorithm A′ (with
its code depending on the input sequence) that runs in O(n) time on that particular
sequence, thus ruling out the existence of an instance-optimal algorithm.1

To get a more useful definition, we suggest a variant of instance optimality where we
ignore the order in which the input elements are given, as formalized precisely next:

Definition 1.1. Consider a problem where the input consists of a sequence of n
elements from a domain D. Consider a class A of algorithms. A correct algorithm refers
to an algorithm that outputs a correct answer for every possible sequence of elements
in D.

For a set S of n elements in D, let TA(S) denote the maximum running time of A
on input σ over all n! possible permutations σ of S. Let OPT(S) denote the minimum
of TA′(S) over all correct algorithms A′ ∈ A. If A ∈ A is a correct algorithm such
that TA(S) ≤ O(1) · OPT(S) for every set S, then we say A is instance optimal in the
order-oblivious setting.

For many problems, the output is a function of the input as a set rather than a
sequence, and the previous definition is especially meaningful. In particular, for such
problems, instance-optimal algorithms are automatically optimal output-sensitive al-
gorithms; in fact, they are automatically optimal adaptive algorithms with respect
to any parameter that is independent of the input order, all at the same time! This
property is satisfied by simple parameters like the spread of an input point set S or
more complicated quantities like the expected size fr(S) of the convex hull of a random
sample of size r from S [Clarkson 1994].

1The length of the program for A′ may depend on n in this example. If we relax the definition to permit the
“constant factor” to grow as a function of the program length of A′, then an instance-optimal algorithm A
exists for many problems such as sorting (or more generally problems that admit linear-time verification).
This follows from a trick attributed to Levin [Jones 1997], of enumerating and simulating all programs in
parallel under an appropriate schedule. To say that algorithms obtained this way are impractical, however,
would be an understatement.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

http://dx.doi.org/10.1145/3046673

Instance-Optimal Geometric Algorithms 3:3

For many algorithms (e.g., quickhull [Preparata and Shamos 1985], to name one),
the running time is not affected so much by the order in which the input points are
given but by the relative positions of the input points. Combinatorial and computational
geometers more often associate “bad examples” with bad point sets rather than bad
point sequences. All this supports the reasonableness and importance of the order-
oblivious form of instance optimality.

We can consider a still stronger variant of instance optimality:

Definition 1.2. For a set S of n elements in D, let T avg
A (S) denote the average running

time of A on input σ over all n! possible permutations σ of S. Let OPTavg(S) denote the
minimum of T avg

A′ (S) over all correct algorithms A′ ∈ A. If A ∈ A is a correct algorithm
such that TA(S) ≤ O(1) · OPTavg(S) for every set S, then we say A is instance optimal
in the random-order setting.2

Note that an instance-optimal algorithm in the previous sense is immediately also
competitive against randomized (Las Vegas) algorithms A′, by the easy direction of
Yao’s principle. The previous definition has extra appeal in computational geometry, as
it is common to see the design of “randomized incremental” algorithms where the input
elements are initially permuted in random order [Clarkson and Shor 1989; Mulmuley
1993].

Instance optimality in the random-order setting also implies average-case optimality
where we analyze the expected running time under the assumption that the input
elements are random and independently chosen from a common given probability
distribution. (To see this, just observe that the input sequence is equally likely to be
any permutation of S conditioned to the event that the set of n input elements equals
any fixed set S.) An algorithm that is instance optimal in the random-order setting
can deal with all probability distributions at the same time! Random-order instance
optimality also remedies a common complaint about average-case analysis, that it does
not provide information about an algorithm’s performance on a specific input.3

Convex Hull: Our Main Result. After making the case for instance-optimal algo-
rithms under our definitions, the question remains: do such algorithms actually exist,
or are they “too good to be true”? Specifically, we turn to one of the most fundamental
and well-known problems in computational geometry—computing the convex hull of a
set of n points. Many O(n log n)-time algorithms in 2D and 3D have been proposed since
the 1970s [de Berg et al. 1997; Edelsbrunner 1987; Preparata and Shamos 1985], which
are worst-case optimal under the algebraic computation tree model. Optimal output-
sensitive algorithms can solve the 2D and 3D problem in O(n log h) time, where h is the
output size. The first such output-sensitive algorithm in 2D was found by Kirkpatrick
and Seidel [1986] in the 1980s and was later simplified by Chan et al. [1997] and in-
dependently by Wenger [1997]; a different, simple, optimal output-sensitive algorithm
was discovered by Chan [1996b]. In 3D, the first optimal output-sensitive algorithm
was obtained by Clarkson and Shor [1989] using randomization; another version was
described by Clarkson [1994]. The first deterministic optimal output-sensitive algo-
rithm in 3D was obtained by Chazelle and Matoušek [1995] via derandomization; the
approach by Chan [1996b] can also be extended to 3D and yields a simpler optimal

2One can also consider other variations of the definition, for example, relaxing the condition to T avg
A (S) ≤

O(1) · OPTavg(S) or replacing the expected running time over random permutations with analogous high-
probability statements.
3Other models for strengthening average-case analysis have been proposed; for example, see work on
self-improving algorithms [Ailon et al. 2011], smoothed analysis [Spielman and Teng 2004], and prior-
independent auctions [Dhangwatnotai et al. 2015].

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:4 P. Afshani et al.

Fig. 1. (a) A “harder” point set and (b) an “easier” point set for the 2D upper hull problem. (c) A “harder”
point set and (d) an “easier” point set for the 2D maxima problem. Instances where all the internal points
are concentrated in one “cell” ((b) and (d)) have cost OPT ∈ �(n), while instances in which internal points
are distributed more or less uniformly ((a) and (c)) have cost OPT ∈ �(n log h).

output-sensitive algorithm. There were also average-case algorithms running in O(n)
expected time for certain probability distributions [Preparata and Shamos 1985], for
example, when the points are independent and uniformly distributed inside a circle or
a constant-sized polygon in 2D or a ball or a constant-sized polyhedron in 3D.

The convex hull problem is in some ways an ideal candidate to consider in our models.
It is not difficult to think of examples of “easy” point sets and “hard” point sets (see
Figure 1(a,b)). It is not difficult to think of different heuristics for pruning nonextreme
points, which may not necessarily improve worst-case complexity but may help for
many point sets encountered “in practice” (e.g., consider quickhull [Preparata and
Shamos 1985]). However, it is unclear whether there is a single pruning strategy that
works best on all point sets.

In this article, we show that there are indeed instance-optimal algorithms for both
the 2D and 3D convex hull problem, in the order-oblivious or the stronger random-order
setting. Our algorithms thus subsume all the previous output-sensitive and average-
case algorithms simultaneously and are provably at least as good asymptotically as
any other algorithm for every point set, so long as input order is ignored.

Techniques. We believe that our techniques—for both the upper-bound side (i.e.,
algorithms) and the lower-bound side (i.e., proofs of their instance optimality)—are as
interesting as our results.

On the upper-bound side, we find that in the 2D case, a new algorithm is not nec-
essary: a version of Kirkpatrick and Seidel’s output-sensitive algorithm [1986], or its
simplification by Chan et al. [1997], is instance optimal in the order-oblivious and
random-order setting. We view this as a plus: these algorithms are simple and prac-
tical to implement [Bhattacharya and Sen 1997], and our analysis sheds new light
on their theoretical complexity. In particular, our result immediately implies that a
version of Kirkpatrick and Seidel’s algorithm runs in O(n) expected time for points uni-
formly distributed inside a circle or a fixed-size polygon—we were unaware of this fact
before. (As another plus, our result provides a positive answer to the question in the
title of Kirkpatrick and Seidel’s paper, “The Ultimate Planar Convex Hull Algorithm?”)

In 3D, we propose a new algorithm, as none of the previous output-sensitive algo-
rithms seem to be instance optimal. For example, known 3D generalizations of the
Kirkpatrick–Seidel algorithm have suboptimal O(n log2 h) running time [Chan et al.
1997; Edelsbrunner and Shi 1990], while a straightforward implementation of the al-
gorithm by Chan [1996b] fails to be instance optimal even in 2D. Our algorithm builds
on Chan’s technique [1996b] but requires additional ideas, notably the use of partition
trees [Matoušek 1992].

The lower-bound side requires more innovation. We are aware of three exist-
ing techniques for proving worst-case �(n log n) (or output-sensitive �(n log h)) lower
bounds in computational geometry: (1) information-theoretic or counting arguments;

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:5

(2) topological arguments, from early work by Yao [1981] to Ben-Or [1983]; and (3)
Ramsey-theory-based arguments, by Moran et al. [1985]. Ben-Or’s approach is per-
haps the most powerful and works in the general algebraic computation tree model,
whereas Moran et al.’s approach works in a decision tree model where all the test
functions have a bounded number of arguments. For an arbitrary input set S for the
convex hull problem, the naive information-theoretic argument gives only an �(h log h)
lower bound on OPT(S). On the other hand, topological and Ramsey-theory approaches
seem unable to give any instance-specific lower bound (e.g., modifying the topological
approach is already nontrivial if we just want a lower bound for some integer input
set [Yao 1991], let alone for every input set, whereas the Ramsey-theory approach
considers only input elements that come from a cleverly designed subdomain).

We end up using a different lower-bound technique that is inspired by an adversary
argument originally used to prove time–space lower bounds for a median finding [Chan
2010]. Note that this approach can lead to another proof of the standard �(n log n) lower
bounds for many geometric problems, including the problem of computing a convex
hull; the proof is simple and works in any algebraic decision tree model where the
test functions have at most constant degree and have at most a constant number of
arguments. We build on the idea further and obtain an optimal lower bound for the
convex hull problem for every input point set. The assumed model is more restrictive:
the class A of allowed algorithms consists of those under a decision tree model in which
the test functions are multilinear and have at most a constant number of arguments
(e.g., this forbids testing if the Euclidean distance between two points is less than 1).
Fortunately, most standard primitive operations encountered in existing convex hull
algorithms satisfy the multilinearity condition (e.g., the standard determinant test
does). The final proof interestingly involves partition trees [Matoušek 1992], which
are more typically used in algorithms (as in our new 3D algorithm) rather than in
lower-bound proofs.

So what is OPT(S); that is, what parameter asymptotically captures the true dif-
ficulty of a point set S for the convex hull problem? As it turns out, the bound has
a simple expression (to be revealed in Section 3) and shares similarity with entropy
bounds found in average-case or expected-case analysis of geometric data structures
where query points come from a given probability distribution—these distribution-
sensitive results have been the subject of several previous pieces of work [Arya et al.
2007a, 2007b; Collette et al. 2012; Dujmović et al. 2012; Iacono 2004]. However, lower
bounds for distribution-sensitive data structures cannot be applied to our problem
because our problem is offline (lower bounds for online query problems usually as-
sume that the query algorithms fit a “classification tree” framework, but an offline
algorithm may compare a query point not only with points from the dataset but also
with other query points). Furthermore, although in the offline setting we can think
of the query points as coming from a discrete point probability distribution, this dis-
tribution is not known in advance.4 Lastly, distribution-sensitive data structures are
usually concerned with improving the query time, but not the total time that includes
preprocessing.

Other Results. The computation of the convex hull is just one problem for which we
are able to obtain instance optimality. We show that our techniques can lead to instance-
optimal results for many other standard problems in computational geometry, in the
order-oblivious or random-order setting, including:

4Self-improving algorithms [Ailon et al. 2011] also cope with the issue of how to deal with unknown input
probability distributions but are not directly comparable with our results, since in their setting each point
may come from a different distribution, so input order matters.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:6 P. Afshani et al.

(a) maxima in 2D and 3D;
(b) reporting/counting intersections between horizontal and vertical line segments in

2D;
(c) reporting/counting pairs of L∞-distance at most 1 between a red point set and a

blue point set in 2D;
(d) offline orthogonal range reporting/counting in 2D;
(e) offline dominating reporting in 2D and 3D;
(f) offline half-space range reporting in 2D and 3D; and
(g) offline point location in 2D.

Optimal expected-case, entropy-based data structures for the online version of (g)
are known [Arya et al. 2007b; Iacono 2004], but not for (e,f)—for example, Dujmović
et al. [2012] only obtained results for 2D dominance counting, a special case of 2D
orthogonal range counting. Incidentally, as a consequence of our ideas, we can also
get new optimal expected-case data structures for online 2D general orthogonal range
counting and 2D and 3D half-space range reporting.

Related Work. Fagin et al. [2003] first coined the term “instance optimality” (when
studying the problem of finding items with the k top aggregate scores in a database in a
certain model), although some form of the concept has appeared before. For example, the
well-known “dynamic optimality conjecture” is about instance optimality concerning
algorithms for manipulating binary search trees (see Demaine et al. [2009] for the latest
in a series of papers). Demaine et al. [2000] studied the problem of computing the union
or intersection of k sorted sets and gave instance-optimal results for any k for union,
and for constant k for intersection, in the comparison model; Barbay and Chen [2008]
extended their result to the computation of the convex hull of k convex polygons in 2D
for constant k. Another work about instance-optimal geometric algorithms is by Baran
and Demaine [2005], who addressed an approximation problem about computing the
distance of a point to a curve under a certain black-box model. Other than these, there
has not been much work on instance optimality in computational geometry, especially
concerning the classical problems under conventional models.

The concept of instance optimality resembles competitive analysis of online algo-
rithms. In fact, in the online algorithms literature, our order-oblivious setting of in-
stance optimality is related to what Boyar and Favrholdt [2007] called the relative worst
order ratio, and our random-order setting is related to what Kenyon [1996] called the
random order ratio. What makes instance optimality more intriguing is that we are
not bounding the objective function of an optimization problem, but rather the running
time of an algorithm.

General Position Assumption. Throughout the article, we assume that the input is in
general position (e.g., no two points have the same x- or y-coordinate for the 2D maxima
problem, and no three points are collinear for the 2D convex hull problem). The as-
sumption can likely be removed with more care, but helps simplifying the presentation.

2. WARMUP: 2D MAXIMA

Before proving our main result on the computation of convex hulls, we find it useful to
study a simpler problem: maxima in 2D. For two points p and q, we say p dominates q if
each coordinate of p is greater than the corresponding coordinate of q. Given a set S of
n points in R

d, a point p is maximal if p ∈ S and p is not dominated by any other point
in S. For simplicity, we assume that the input is always nondegenerate throughout the
article (e.g., no two points share the same x- or y-coordinate). The maxima problem is
to report all maximal points.

For an alternative formulation, we can define the orthant at a point p to be the region
of all points that are dominated by p. In 2D, the boundary of the union of the orthants

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:7

Fig. 2. Three respectful partitions of an instance of the 2D maxima problem. The two partitions on the left
have entropy 1

12 log 12 + 7
12 log 12

7 + 4
12 log 12

4 ≈ 1.281. The partition �vert on the right has higher entropy
log 3 ≈ 1.585.

at all p ∈ S forms a staircase, and the maxima problem is equivalent to computing the
staircase of S.

This problem has a similar history as the convex hull problem: many worst-case
O(n log n)-time algorithms are known; an output-sensitive algorithm by Kirkpatrick
and Seidel [1985] runs in O(n log h) time for output size h; and average-case algo-
rithms with O(n) expected time have been analyzed for various probability distributions
[Bentley et al. 1990; Clarkson 1994; Preparata and Shamos 1985]. The problem is sim-
pler than computing the convex hull, in the sense that direct pairwise comparisons are
sufficient. We therefore work with the class A of algorithms in the comparison model,
where we can access the input points only through comparisons of the coordinate of an
input point with the corresponding coordinate of another input point. The number of
comparisons made by an algorithm yields a lower bound on the running time.

We define a measure H(S) to represent the difficulty of a point set S and prove
that the optimal running time OPT(S) is precisely �(n(H(S) + 1)) for the 2D maxima
problem in the order-oblivious and random-order setting.

Definition 2.1. Consider a partition � of the input set S into disjoint subsets
S1, . . . , St. We say that � is respectful if each subset Sk is either a singleton or can
be enclosed by an axis-aligned box Bk whose interior is completely below the staircase
of S. Define the entropy H(�) of the partition � to be

∑t
k=1(|Sk|/n) log(n/|Sk|).5 Define

the structural entropy H(S) of the input set S to be the minimum of H(�) over all
respectful partitions � of S.

Remark 2.2. Alternatively, we could further insist in the definition that the bounding
boxes Bi are nonoverlapping and cover precisely the staircase of S. However, this will
not matter, as it turns out that the two definitions yield asymptotically the same
quantity (this nonobvious fact is a byproduct of our lower-bound proof in Section 2.2).

Entropy-like expressions similar to H(�) have appeared in the analysis of expected-
case geometric data structures for the case of a discrete point probability distribution,
although our definition itself is nonprobabilistic. A measure proposed by Sen and Gupta
[1999] is identical to H(�vert), where �vert is a partition of S obtained by dividing the
point set S by h vertical lines at the h maximal points of S (see Figure 2 (right) for
an illustration). Note that H(�vert) is at most log h (see Figure 1(c)) but can be much
smaller; in turn, H(S) can be much smaller than H(�vert) (see Figures 1(d) and 2). The
complexity of the 1D multiset sorting problem [Munro and Spira 1976] also involves
an entropy expression associated with one partition but does not require taking the
minimum over multiple partitions.

5All logarithms are in base 2 unless stated otherwise.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:8 P. Afshani et al.

Fig. 3. Partial execution of maxima(S) after one recursion level. In this example, after computing the median
x-coordinate, the algorithm found the highest point q2 to the right of the median and pruned the six points
dominated by it. Only five points are left to recurse upon, one to the left and four to the right.

2.1. Upper Bound

We use a slight variant of Kirkpatrick and Seidel’s output-sensitive maxima algo-
rithm [1985] (in their original algorithm, only points from Q� are pruned in line 4):
maxima2d(Q):

1. if |Q| = 1 then return Q
2. divide Q into the left and right halves Q� and Qr by the median x-coordinate
3. discover the point q with the maximum y-coordinate in Qr
4. prune all points in Q� and Qr that are dominated by q
5. return the concatenation of maxima2d(Q�) and maxima2d(Qr)

We call maxima2d(S) to start: Figure 3 illustrates the state of the algorithm after a
single recursion level. Kirkpatrick and Seidel showed that its running time is within
O(n log h), and Sen and Gupta [1999] improved this upper bound to O(n(H(�vert) + 1)).
Improving this bound to O(n(H(�) + 1)) for an arbitrary respectful partition � of S
requires a bit more finesse:

THEOREM 2.3. Algorithm maxima2d(S) runs in O(n(H(S) + 1)) time.

PROOF. Consider the recursion tree of the algorithm and let Xj denote the sublist of
all maximal points of S discovered during the first j recursion levels, in left-to-right
order. Let S(j) be the subset of points of S that survive recursion level j, that is, that
have not been pruned during levels 0, . . . , j of the recursion, and let nj = |S(j)|. As the
algorithm performs within O(nj) operations to refine level j into level j + 1, and there
are at most �log n� such levels in the computation, the total running time is within
O(

∑�log n�
j=0 nj). Observe that

(i) there can be at most �n/2 j� points of S(j) with x-coordinates between any two
consecutive points in Xj , and

(ii) all points of S that are strictly below the staircase of Xj have been pruned during
levels 0, . . . , j of the recursion.

Let � be any respectful partition of S. Consider a nonsingleton subset Sk in �. Let
Bk be a box enclosing Sk whose interior lies below the staircase of S. Fix a level j.
Suppose that the upper-right corner of Bk has an x-coordinate between two consecutive

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:9

points qi and qi+1 in Xj . By (ii), the only points in Bk that can survive level j must
have x-coordinates between qi and qi+1. Thus, by (i), the number of points in Sk that
survive level j is at most min{|Sk|, �n/2 j�}. (Note that the bound is trivially true if Sk
is a singleton.) Since the Sks cover the entire point set, with a double summation we
have

�log n�∑
j=0

nj ≤
�log n�∑

j=0

∑
k

min
{|Sk|, �n/2 j�}

=
∑

k

�log n�∑
j=0

min
{|Sk|, �n/2 j�}

≤
∑

k

(|Sk|�log(n/|Sk|)� + |Sk| + |Sk|/2 + |Sk|/4 + · · · + 1)

≤
∑

k

|Sk|(�log(n/|Sk|)� + 2)

∈ O(n(H(�) + 1)).

As � can be any respectful partition of S, it can be in particular the one of minimum
entropy, hence the final result.

2.2. Lower Bound

For the lower-bound side, we first provide an intuitive justification for the bound
�(n(H(S) + 1)) and point out the subtlety in obtaining a rigorous proof. Intuitively,
to certify that we have a correct answer, the algorithm must gather evidence for each
point p eliminated of why it is not a maximal point, by indicating at least one witness
point in S that dominates p. We can define a partition � by placing points with a
common witness in the same subset. It is easy to see that this partition � is respectful.
The entropy bound nH(�) roughly represents the number of bits required to encode the
partition �, so in a vague sense, nH(S) represents the length of the shortest “certificate”
for S. Unfortunately, there could be many valid certificates for a given input set S (due
to possibly multiple choices of witnesses for each nonmaximal point). If, hypothetically,
all branches of an algorithm lead to a common partition �, then a straightforward
information-theoretic or counting argument would indeed prove the lower bound. The
problem is that each leaf of the decision tree may give rise to a different partition �.

In Appendix A, we show that despite the aforementioned difficulty, it is possible to
obtain a proof of instance optimality via this approach, but the proof requires a more
sophisticated counting argument, and also works with a different difficulty measure.
Moreover, it is limited specifically to the 2D maxima problem and does not extend to
3D maxima, let alone to nonorthogonal problems such as the convex hull problem.

In this subsection, we describe a different proof, which generalizes to the other
problems that we consider. The proof is based on an interesting adversary argument.
We show in Section 4 how to adapt the proof to the random-order setting.

THEOREM 2.4. OPT(S) ∈ �(n(H(S)+1)) for the 2D maxima problem in the comparison
model.

PROOF. We prove that a specific respectful partition described later not only asymp-
totically achieves the minimum entropy among all the respectful partitions but also
provides a lower bound for the running time of any comparison-based algorithm that
solves the 2D maxima problem. The construction of the partition is based on k-d trees [de
Berg et al. 1997]. We define a tree T of axis-aligned boxes, generated top down as

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:10 P. Afshani et al.

Fig. 4. The beginning of the recursive partitioning of S by the k-d tree T , which will yield the final partition
�kd-tree for the adversarial lower bound for the 2D maxima problem. The two bottom boxes are already
leaves, while the two top boxes will be divided further.

follows: The root stores the entire plane. For each node storing box B, if B is strictly
below the staircase of S, or if B contains just one point of S, then B is a leaf. Otherwise,
if the node is at an odd (even, respectively) depth, divide B into two subboxes by the
median x-coordinate (y-coordinate, respectively) among the points of S inside B. The
two subboxes are the children of B (see Figure 4 for an illustration). Note that each box
B at depth j of T contains at least 	n/2 j
 points of S, and consequently, the depth j is
in �(log(n/|S ∩ B|)).

Our claimed partition, denoted by �kd-tree, is one formed by the leaf boxes in this
tree T (i.e., points in the same leaf box are placed in the same subset). By construction,
�kd-tree is respectful. We will prove that for any correct algorithm A in the compari-
son model, there exists a permutation of S on which the algorithm requires at least
�(nH(�kd-tree)) comparisons. This is done using an adversary argument.

The adversary will construct a bad permutation of S by simulating the algorithm A
on an initially unknown input sequence. In the description that follows, we distinguish
between an input element ζ , which is represented by its index in the input sequence
(its coordinates are not necessarily known), and a point p of S, which is represented
by its coordinates (its index is not necessarily known). At each step, the algorithm can
issue a comparison that involves the x- or y-coordinates of two input elements ζ and ρ.
The adversary will then reveal more information about ζ and ρ to the algorithm so that
the comparison can be resolved. By the end of the simulation, complete information
will be revealed so that each input element ζ will be assigned to a point p of S, giving
us the bad permutation of S.

More precisely, during the simulation, we maintain a box Bζ in T for each input
element ζ . Initially, Bζ is set to the root box. If Bζ corresponds to an internal node, the
only information the algorithm knows about ζ currently is that it is inside Bζ ; that is,
ζ can be assigned to any point in Bζ without affecting the outcomes of the previous
comparisons made.

For each box B in T , let n(B) be the number of elements ζ such that the box Bζ is
contained in B. We maintain the invariant that n(B) ≤ |S ∩ B|. If n(B) = |S ∩ B|, we
say that B is full. As soon as Bζ becomes a leaf box, we assign ζ to an arbitrary point
in S ∩ Bζ that has not been previously assigned (such a point exists because of the
invariant); we then call ζ a fixed element.

Suppose that the algorithm A compares, say, the x-coordinates of two elements ζ and
ρ. The easy case is when both Bζ and Bρ are leaf boxes. Here, ζ and ρ are already

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:11

fixed; that is, they are assigned to specific points, and thus the comparison is already
resolved. The main case is when neither Bζ nor Bρ is a leaf box (the last remaining case
when only one of them is a leaf will be considered later). The comparison is resolved in
the following way:

(1) If Bζ (Bρ , respectively) is at even depth, we arbitrarily reset Bζ (Bρ , respectively)
to one of its children that is not full. We can now assume that Bζ and Bρ are both
at odd depth.
Without loss of generality, suppose that the median x-coordinate of Bζ is less than
the median x-coordinate of Bρ . Let Lζ be the left child of Bζ in the k-d tree T and
let Rρ be the right child of Bρ in T . We reset Bζ to Lζ and Bρ to Rρ ; if either Lζ or
Rρ is full, we go to step 2. Now, the knowledge that ζ lies in Lζ and ρ lies in Rρ

allows us to deduce that ζ has a smaller x-coordinate than ρ. Thus, the adversary
declares to the algorithm that the x-coordinate of ζ is smaller than that of ρ and
continues with the rest of the simulation.

(2) An exceptional case occurs if Lζ is full (the case when Rρ is full can be treated
similarly). Let Rζ be the right child of Bζ in T . We reset Bζ to Rζ , but the comparison
is not necessarily resolved yet, so we go back to step 1.

Note that in both steps, the invariant is maintained. This is because Lζ and Rζ cannot
both be full: otherwise, we would have |S ∩ Bζ | = |S ∩ Lζ | + |S ∩ Rζ | = n(Lζ) + n(Rζ),
but |S ∩ Bζ | ≥ n(Bζ) ≥ n(Lζ) + n(Rζ) + 1 (the “+1” arises because at least one element,
notably, ζ , has Bζ as its box).

The previous description can be easily modified in the case when Bζ or Bρ is a leaf
box. If (without loss of generality) only Bζ is a leaf, we follow step 1 except that now
since ζ has been fixed, we compare the x-coordinate of ζ to the median x-coordinate of
Bρ , and reset only Bρ .

We now prove a lower bound on the number of comparisons, T , made by the algorithm
A. Let D be the sum of the depth of the boxes Bζ in the tree T over all the input ele-
ments ζ at the end of the simulation of the algorithm. We will lower-bound T in terms
of D. Each time we reset a box to one of its children in step 1 or 2, D is incremented;
we say that an ordinary (exceptional, respectively) increment occurs at the parent box
if this is done in step 1 (step 2, respectively). Each comparison generates only O(1)
ordinary increments. To account for exceptional increments, we use a simple amorti-
zation argument: at each box B in T , the number of ordinary increments has to reach
at least 	|S ∩ B|/2
 first, before any exceptional increments can occur, and the number
of exceptional increments is at most �|S ∩ B|/2�. Thus, the total number of exceptional
increments can be upper bounded by the total number of ordinary increments, which
is in O(T). It follows that D ∈ O(T), that is, T ∈ �(D).

Thus, it remains to prove our lower bound for D. We first argue that at the end of
the simulation, Bζ must be a leaf box for every input element ζ . Suppose that this is
not the case. After the end of the simulation, we can do the following postprocessing:
for every input element ζ where Bζ corresponds to an internal node, we reset Bζ to
one of its nonfull children arbitrarily, and repeat. As a result, every Bζ now becomes
a leaf box, all the input elements have been assigned to points of S, and no two input
elements are assigned to the same point; that is, the input is fixed to a permutation of
S. The staircase of this input obviously coincides with the staircase of S. Next, consider
modifying this input slightly as follows. Suppose that Bζ was not a leaf box before the
postprocessing. Then this box contained at least two points of S and was not completely
underneath the staircase of S. We can either move a nonmaximal point upward or move
a maximal point downward inside Bζ and obtain a modified input that is consistent
with the comparisons made but has a different set of maximal points. The algorithm
would be incorrect on this modified input: a contradiction.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:12 P. Afshani et al.

It follows that

T ∈ �(D)

⊆ �

(∑
leaf B

|S ∩ B| log(n/|S ∩ B|)
)

⊆ �(nH(�kd-tree))
⊆ �(nH(S)).

Combined with the trivial �(n) lower bound, this establishes the �(n(H(S) + 1)) lower
bound.

Remark 2.5. The previous proof is inspired by an adversary argument described by
Chan [2010] for a 1D problem (the original proof maintains a dyadic interval for each
input point, while the new proof maintains a box from a hierarchical subdivision).6
The proof still holds for weaker versions of the problem, for example, reporting just
the number of maximal points (or the parity of the number): if the algorithm stops
at a point where Bζ is not a leaf for some input element ζ , then we can modify the
input such that it is consistent with all the comparisons that the algorithm has made
and change the number of maximal points by one. The lower-bound proof also easily
extends to any constant dimension and can be easily modified to allow comparisons of
different coordinates of any two points p = (x1, . . . , xd) and q = (x′

1, . . . , x′
d), for example,

testing whether xi < x′
j or even xi < x′

j + a for any constant a. (For a still wider class of
test functions, see the next section.)

3. CONVEX HULL

We now turn to our main result on 2D and 3D convex hull. It suffices to consider the
problem of computing the upper hull of an input point set S in R

d (d ∈ {2, 3}), since
the lower hull can be computed by running the upper-hull algorithm on a reflection
of S. (Up to constant factors, the optimal running time for convex hull is equal to the
maximum of the optimal running time for upper hull and the optimal running time for
lower hull, on every input.)

We work with the class A of algorithms in a multilinear decision tree model where
we can access the input points only through tests of the form f (p1, . . . , pc) > 0 for a
multilinear function f , over a constant number of input points p1, . . . , pc. We recall the
following standard definition:

Definition 3.1. A function f : (Rd)c → R is multilinear if the restriction of f is a
linear function from R

d to R when any c−1 of the c arguments are fixed. Equivalently, f
is multilinear if f ((x11, . . . , x1d), . . . , (xc1, . . . , xcd)) is a multivariate polynomial function
in which each monomial has the form xi1 j1 · · · xik jk, where i1, . . . , ik are all distinct (i.e.,
we cannot multiply coordinates from the same point).

Most of the 2D and 3D convex hull algorithms that we know fit in this framework:
it supports the standard determinant test (for deciding whether p1 is above the line
through p2, p3 or the plane through p2, p3, p4), since the determinant is a multilinear
function. For another example, in 2D, comparison of the slope of the line through p1, p2
with the slope of the line through p3, p4 reduces to testing the sign of the function
(y2 − y1)(x4 − x3)− (x2 − x1)(y4 − y3), which is clearly multilinear. We discuss in Section 5
the relevance and limitations of the multilinear model.

6There are also some indirect similarities to an adversary argument for sorting due to Kahn and Kim [1995],
as pointed out to us by Jean Cardinal (personal communication, 2010).

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:13

We adopt the following modified definition of H(S) (as before, it does not matter
whether we insist that the simplices 	k are nonoverlapping for both the 2D and 3D
problem):

Definition 3.2. A partition � of S is respectful if each subset Sk in � either is
a singleton or can be enclosed by a simplex 	k whose interior is completely below
the upper hull of S. Define the structural entropy H(S) of S to be the minimum of
H(�) = ∑

k(|Sk|/n) log(n/|Sk|) over all respectful partitions � of S.

3.1. Lower Bound

The lower-bound proof for computing the convex hull builds on the corresponding lower-
bound proof for computing the maxima from Section 2.2 but is more involved, because
a k-d tree construction no longer suffices when addressing nonorthogonal problems.
Instead, we use the known following lemma:

LEMMA 3.3. For any constant d, and for every set Q of n points in R
d (in general

position) and 1 ≤ r ≤ n, we can partition Q into r subsets Q1, . . . , Qr each of size �(n/r)
and find r convex polyhedral cells γ1, . . . , γr each with O(log r) (or fewer) facets, such
that Qi is contained in γi , and every hyperplane intersects at most O(r1−ε) cells. Here,
ε > 0 is a constant that depends only on d.

This follows from the partition theorem of Matoušek [1992], who obtained the best
constant ε = 1/d; in his construction, the cells γi are simplices (with O(1) facets)
and may overlap, and subset sizes are indeed upper and lower bounded by �(n/r). (A
version of the partition theorem by Chan [2012] can avoid overlapping cells but does
not guarantee an �(n/r) lower bound on the subset sizes.)

In 2D or 3D, a more elementary alternative construction follows from the four-
sectioning or eight-sectioning theorem [Edelsbrunner 1987; Yao et al. 1989]: for every
n-point set Q in R

2, there exist two lines that divide the plane into four regions each
with n/4 points; for every n-point set Q in R

3, there exist three planes that divide
space into eight regions each with n/8 points. Since in R

2 a line can intersect at most
three of the four regions and in R

3 a plane can intersect at most seven of the eight
regions, a simple recursive application of the theorem yields ε = 1 − log4 3 for d = 2
and ε = 1 − log8 7 for d = 3. Each resulting cell γi is a convex polytope with O(log r)
facets, and the cells do not overlap.

We also need another fact, a geometric property about multilinear functions:

LEMMA 3.4. If f : (Rd)c → R is multilinear and has a zero in γ1 × · · · × γc where each
γi is a convex polytope in R

d, then f has a zero (p1, . . . , pc) ∈ γ1 × · · · × γc such that all
but at most one point pi is a polytope’s vertex.

PROOF. Let (p1, . . . , pc) ∈ γ1 ×· · ·×γc be a zero of f . Suppose that some pi does not lie
on an edge of γi. If we fix the other c−1 points, the equation f = 0 becomes a hyperplane,
which intersects γi and thus must intersect an edge of γi. We can move pi to such an
intersection point. Repeating this process, we may assume that every pi lies on an edge
uivi of γi. Represent the line segment parametrically as {(1 − ti)ui + tivi | 0 ≤ ti ≤ 1}.

Next, suppose that some two points pi and pj are not vertices. If we fix the other c−2
points and restrict pi and pj to lie on uivi and ujv j , respectively, the equation f = 0
becomes a multilinear function in two parameters ti, tj ∈ [0, 1]. The equation has the
form atitj + a′ti + a′′tj + a′′′ = 0 and is a hyperbola, which intersects [0, 1]2 and must
thus intersect the boundary of [0, 1]2. We can move pi and pj to correspond to such
a boundary intersection point. Then one of pi and pj is now a vertex. Repeating this
process, we obtain the lemma.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:14 P. Afshani et al.

We are now ready for the main lower-bound proof:

THEOREM 3.5. OPT(S) ∈ �(n(H(S) + 1)) for the upper-hull problem in any constant
dimension d in the multilinear decision tree model.

PROOF. We define a partition tree T as follows: Each node v stores a pair (Q(v), �(v)),
where Q(v) is a subset of S enclosed inside a convex polyhedral cell �(v). The root
stores (S, R

d). If �(v) is strictly below the upper hull of S, or if |Q(v)| drops below a
constant, then v is a leaf. Otherwise, apply Lemma 3.3 with r = b, where b is a large
enough constant, and partition Q(v) into subsets Q1, . . . , Qb and obtain cells γ1, . . . , γb.
For the children v1, . . . , vb of v, set Q(vi) = Qi and �(vi) = γi ∩ �(v). For a node v at
depth j of the tree T we then have |Q(v)| ≥ n/�(b) j , and consequently, the depth j
is in �(logb(n/|Q(v)|)). Furthermore, since �(v) is the intersection of at most j convex
polyhedra with at most O(log b) facets each, it has size (j log b)O(1).

Let �part-tree be the partition formed by the subsets Q(v) at the leaves v in T . Let
�̃part-tree be a refinement of this partition obtained as follows: for each leaf v at depth j,
we triangulate �(v) into (j log b)O(1) simplices and subpartition Q(v) by placing points
of Q(v) from the same simplex in the same subset; if |Q(v)| drops below a constant,
we subpartition Q(v) into singletons. Note that the subpartitioning of Q(v) causes the
entropy to increase7 by at most O((|Q(v)|/n) log(j log b)) ⊆ O((|Q(v)|/n) log log(n/|Q(v)|))
for any constant b. The total increase in entropy is thus within O(H(�part-tree)). So
H(�̃part-tree) ∈ �(H(�part-tree)). Clearly, �̃part-tree is respectful.

As in the proof of Theorem 2.4, the adversary will construct a bad permutation of
S by simulating the algorithm on a sequence of initially unknown input elements.
At each step, the algorithm can select c input elements ζ1, . . . , ζc and test whether
“ f (ζ1, . . . , ζc) > 0?” for some multilinear function f . The adversary will then reveal
more information about ζ1, . . . , ζc so that the comparison can be resolved.

During the simulation, we maintain a node vζ in T for each input element ζ . If vζ is
an internal node, the only information the algorithm knows about ζ currently is that
it is inside �(vζ).

For each node v in T , let n(v) be the number of points ζ with vζ in the subtree rooted
at v. We maintain the invariant that n(v) ≤ |Q(v)|. If n(v) = |Q(v)|, we say that v is full.
As soon as vζ becomes a leaf, we assign ζ to an arbitrary unassigned point in S ∩ Q(vζ)
(such a point exists because of the invariant); we then call ζ a fixed element.

Suppose that the simulation encounters a test “ f (ζ1, . . . , ζc) > 0?”. The main case is
when none of the nodes vζi is a leaf.

(1) Consider a c-tuple (v′
ζ1

, . . . , v′
ζc

), where v′
ζi

is a child of vζi for each i ∈ {1, . . . , c}.
We say that the tuple is bad if f has a zero in γ (v′

ζ1
) × · · · × γ (v′

ζc
), and good

otherwise. We prove the existence of a good tuple by upper-bounding the number
of bad tuples: if we fix all but one point ζi, the restriction of f can have a zero
in at most O(b1−ε) cells of the form γ (v′

ζi
), by Lemma 3.3 and the multilinearity

of f . There are O(bc−1 logO(1) b) choices of c − 1 vertices of the cells of the form
γ (v′

ζ1
), . . . , γ (v′

ζc
). By Lemma 3.4, it follows that the number of bad tuples is at

most O((bc−1 logO(1) b) · b1−ε) ⊆ o(bc). As the number of tuples is in �(bc), if b is a
sufficiently large constant, then we can guarantee that some tuple (v′

ζ1
, . . . , v′

ζc
) is

good. We reset vζi to v′
ζi

for each i ∈ {1, . . . , c}; if some v′
ζi

is full, we go to step 2.
Since the tuple is good, the sign of f is determined and the comparison is resolved.

7If
∑k

i=1 qi = q, then by concavity of the logarithm,
∑k

i=1
qi
n log n

qi
= q

n
∑k

i=1
qi
q log n

qi
≤ q

n log(
∑k

i=1
qi
q · n

qi
) =

q
n log kn

q , implying that (
∑k

i=1
qi
n log n

qi
) − q

n log n
q is upper bounded by q

n log k.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:15

Fig. 5. Kirkpatrick and Seidel’s upper-hull algorithm [1986] with an added pruning step. Line 5 prunes the
points in the shaded trapezoid. The added step in line 2 prunes points in the two shaded triangles.

(2) In the exceptional case when some v′
ζi

is full, we reset vζi instead to an arbitrary
nonfull child and go back to step 1.

The previous description can be easily modified in the case when some of the nodes
vζi are leaves, that is, when some of the elements ζi are fixed (we just have to lower c
by the number of fixed elements).

Let T be the number of tests made. Let D be the sum of the depth of vζ over all input
elements ζ . The same amortization argument as in the previous proof of Theorem 2.4
proves that T ∈ �(D). By an argument similar to before, at the end of the simulation,
vζ must be a leaf for every input element ζ . It follows that

T ∈ �(D)

⊆ �

(∑
leafv

|Q(v)| log(n/|Q(v)|)
)

⊆ �(nH(�part-tree))

⊆ �(nH(�̃part-tree))
⊆ �(nH(S)).

Combined with the trivial �(n) lower bound, this establishes the theorem.

The proof extends to weaker versions of the problem, for example, reporting the
number of hull vertices (or its parity).

3.2. Upper Bound in 2D

To establish a matching upper bound in 2D, we use a version of the output-sensitive
convex hull algorithm by Kirkpatrick and Seidel [1986] described next, where an extra
pruning step is added in line 2. (This step is not new and has appeared in both quickhull
[Preparata and Shamos 1985] and the simplified output-sensitive algorithm by Chan
et al. [1997]; see Figure 5 for illustration.)

hull2d(Q):
1. if |Q| = 2 then return Q
2. prune all points from Q strictly below the line through the leftmost and right-

most points of Q
3. divide Q into the left and right halves Q� and Qr by the median x-coordinate pm
4. discover points q, q′ that define the upper-hull edge qq′ intersecting the vertical

line at pm (in linear time)

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:16 P. Afshani et al.

5. prune all points from Q� and Qr that are strictly underneath the line segment
qq′

6. return the concatenation of hull2d(Q�) and hull2d(Qr)

Line 4 can be done in O(n) time (without knowing the upper hull beforehand) by
applying a 2D linear programming algorithm in the dual [Preparata and Shamos
1985]. We call hull2d(S) to start. It is straightforward to show that the algorithm, even
without line 2, runs in time O(n log h), or O(n(H(�vert) + 1)) for the specific partition
�vert of S obtained by placing points underneath the same upper-hull edge in the same
subset, as was done by Sen and Gupta [1999]. To upper-bound the running time by
O(n(H(�) + 1)) for an arbitrary respectful partition � of S, we modify the proof of
Theorem 2.3:

THEOREM 3.6. Algorithm hull2d(S) runs in O(n(H(S) + 1)) time.

PROOF. Like before, let Xj denote the sublist of all hull vertices discovered during
the first j levels of the recursion, in left-to-right order. Let S(j) be the subset of points
of S that survive recursion level j, and nj = |S(j)|. The running time is asymptotically
bounded by

∑�log n�
j=0 nj . Observe that

(i) there can be at most �n/2 j� points of S(j) with x-coordinates between any two
consecutive vertices in Xj , and

(ii) all points that are strictly below the upper hull of Xj have been pruned during
levels 0, . . . , j of the recursion.

Let � be any respectful partition of S. Consider a subset Sk in �. Let 	k be a triangle
enclosing Sk whose interior lies below the upper hull of S. Fix a level j. If qi and qi+1
are two consecutive vertices in Xj such that qiqi+1 does not intersect the boundary
of 	k (i.e., is above 	k), then all points in 	k with x-coordinates between qk and qk+1
would have been pruned during the first j levels by (ii). Since only O(1) edges qiqi+1 of
the upper hull of Xj can intersect the boundary of 	k, the number of points in Sk that
survive level j is at most min{|Sk|, O(n/2 j)} by (i). We then have

�log n�∑
j=0

nj ∈
�log n�∑

j=0

∑
k

min{|Sk|, O(n/2 j)} ⊆ O(n(H(�) + 1)),

as before.

Remark 3.7. The same result holds for the simplified output-sensitive algorithm by
Chan et al. [1997], which avoids the need to invoke a 2D linear programming algorithm.
(Chan et al.’s paper explicitly added the pruning step in their algorithm description.)
The only difference in the previous analysis is that there can be at most �(3/4) jn�
points of S with x-coordinates between any two consecutive vertices in Xj , since in
each recursive step of Chan et al.’s algorithm, each of the two subproblems has size at
most a factor of 3/4 times the original (see Chan et al. [1997] for the details).

3.3. Upper Bound in 3D

We next present an instance-optimal algorithm in 3D that matches our lower bound.
Unlike in 2D, it is unclear if any of the known algorithms can be modified for this
purpose. For example, obtaining an O(n(H(�vert)+1)) upper bound is already nonrivial
for the specific partition �vert where points underneath the same upper-hull facet are
placed in the same subset. Informed by our lower-bound proof, we suggest an algorithm
that is also based on partition trees. We need the following subroutine:

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:17

LEMMA 3.8. Given a set of n half-spaces in R
d for any constant d, we can answer a

sequence of r linear programming queries (finding the point that maximizes a query
linear function over the intersection of the half-spaces) in total time O(n log r + rO(1)).

The previous lemma was obtained by Chan [1996b, 1996c] using a simple grouping
trick (which was the basis of his output-sensitive O(n log h)-time convex hull algorithm);
the d ≥ 3 case required randomization. A subsequent paper by Chan [1996a] gave an
alternative approach using a partition construction; this eliminated randomization.

Our new upper-hull algorithm can now be described as follows, where δ > 0 is some
sufficiently small constant:
hull3d(Q):

1. for j = 0, 1, . . . , 	log(δ log n)
 do
2. partition Q by Lemma 3.3 to get rj = 22 j

subsets Q1, . . . , Qrj and
cells γ1, . . . , γrj

3. for each i = 1 to rj do
4. if γi is strictly below the upper hull of Q then prune all points in Qi from Q
5. 5 compute the upper hull of the remaining set Q directly

THEOREM 3.9. Algorithm hull3d(S) runs in O(n(H(S) + 1)) time.

PROOF. Let nj be the size of Q just after iteration j. Consider iteration j + 1: line 2
takes O(nj log rj+1 + rO(1)

j+1) time by known algorithms for Matoušek’s partition theo-
rem [1992] (or alternatively recursive application of the eight-sectioning theorem). The
test in line 4 reduces to deciding whether each of the at most O(log rj+1) vertices of
the convex polyhedral cell γi is strictly below the upper hull of Q. This can be done
(without knowing the upper hull beforehand) by answering a 3D linear programming
query in dual space. Using Lemma 3.8, we can perform lines 3 and 4 collectively in
time O(nj log rj+1 + rO(1)

j+1). As rj+1 ≤ nδ, we have
∑	log(δ log n)

j=1 rO(1)
j = O(nO(δ)) = o(n) if δ is

chosen small enough. Line 5 is done by running any O(nj log nj)-time algorithm since
for the last index (i.e., when j = 	log(δ log n)
), we have O(nj log nj) = O(nj log rj+1).
Thus, the total running time is asymptotically bounded by o(n) + ∑

j nj log rj+1.
Let � be any respectful partition of S. Consider a (nonsingleton) subset Sk in �.

Let 	k be a simplex enclosing Sk whose interior lies below the upper hull of S. Fix
an iteration j. Consider the subsets Q1, . . . , Qrj and cells γ1, . . . , γrj at this iteration.
If a cell γi is completely inside 	k, then all points inside γi are pruned. Since O(r1−ε

j)
cells γi intersect the boundary of 	k, the number of points in Sk that remain in Q after
iteration j is at most min{|Sk|, O(r1−ε

j · n/rj)} = min{|Sk|, O(n/rε
j)}. The Sks cover the

entire point set, so with a double summation we have∑
j

nj log rj+1 ≤
∑

j

∑
k

min
{
|Sk|, O

(n
2ε2 j

)}
· 2 j+1

=
∑

k

∑
j

min
{
|Sk|, O

(n
2ε2 j

)}
· 2 j+1

∈
∑

k

O

⎛⎝ ∑
j≤log((1/ε) log(n/|Sk|))+1

|Sk|2 j +
∑

j>log((1/ε) log(n/|Sk|))+1

n
2ε2 j−1

⎞⎠
∈

∑
k

O
(|Sk|(log(n/|Sk|) + 1)

)
∈ O(n(H(�) + 1)),

which yields the theorem.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:18 P. Afshani et al.

Remark 3.10. Variants of the algorithm are possible. For example, instead of recom-
puting the partition in line 3 at each iteration from scratch, another option is to build
the partitions hierarchically as a tree. Points are pruned as the tree is generated level
by level.

One minor technicality is that the previous description of the algorithm does not
discuss the low-level test functions involved. In Section 5, we elaborate on this tech-
nicality and give examples of situations that could result in test functions that are
not multilinear. We also explain how a modification of the algorithm can indeed be
implemented in the multilinear model.

A similar approach works for the 3D maxima problem in the comparison model. We
just replace partition trees with k-d trees, and replace linear programming queries
with queries to test whether a point lies underneath the staircase, which can be done
via an analog of Lemma 3.8.

4. EXTENSION TO THE RANDOM-ORDER SETTING

In this section, we describe how our lower-bound proofs in the order-oblivious setting
can be adapted to the random-order setting. We focus on the convex hull problem and
describe how to modify the proof of Theorem 3.5. We need a technical lemma first:

LEMMA 4.1. Suppose we randomly place n elements independently in t bins, for a
parameter t, where each element is placed in the kth bin with probability nk/n. Then the
probability that the kth bin contains exactly nk elements for all k = 1, . . . , t is at least
n−O(t).

PROOF. The probability is exactly n!
n1!···nt!

(n1
n

)n1 · · · (nt
n

)nt
, which by Stirling’s formula

is

�(
√

n)(n/e)n

�(
√

n1)(n1/e)n1 · · · �(
√

nt)(nt/e)nt

(n1

n

)n1 · · ·
(nt

n

)nt ⊆ 1
O(

√
n)t−1

,

yielding the result.

We now present our lower-bound proof in the random-order setting. (The proof is
loosely inspired by the randomized “bit-revealing” argument by Chan [2010].)

THEOREM 4.2. OPTavg(S) ∈ �(n(H(S) + 1)) for the upper-hull problem in any constant
dimension d in the multilinear decision tree model.

PROOF. Fix a sufficiently small constant δ > 0. Let T be as in the proof of Theorem 3.5,
except that we keep only the first 	δ log n
 levels of the tree; that is, when a node reaches
depth 	δ log n
, it is made a leaf.

Let �part-tree be the partition of S formed by the leaf cells in T . Let �̃part-tree be a
refinement of �part-tree in which each leaf cell is further triangulated and each subset
corresponding to a cell of depth 	δ log n
 (which has size �(nδ)) is further subpartitioned
into singletons. As argued before, triangulating each leaf cell causes the entropy to
increase by at most a constant factor. On the other hand, subdividing a subset of
size �(nδ) into singletons also causes the entropy to increase by at most a constant
factor, since nδ

n log n
nδ and nδ · 1

n log n
1 have the same growth rate. Thus, H(�̃part-tree) ∈

�(H(�part-tree)). Clearly, �̃part-tree is respectful.
The adversary proceeds differently. We do not explicitly maintain the invariant that

no node v is full. Whenever some vζ first becomes a leaf, we assign ζ to a random point
among the points in Q(vζ) that has previously not been assigned. If all points in Q(vζ)
have in fact been assigned, we say that failure has occurred.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:19

Suppose that the simulation encounters a test “ f (ζ1, . . . , ζc) > 0.” We do the following:

—We reset each vζi to one of its children at random, where each child v′
ζi

is chosen with
probability |Q(v′

ζi
)|/|Q(vζi)| (which is in �(1/b)). If the tuple (v′

ζ1
, . . . , v′

ζc
) is good (as

defined in the proof of Theorem 3.5), then the comparison is resolved. Otherwise, we
repeat.

Since we have shown that the number of bad tuples is in o(bc), the probability that
the test is not resolved in one step is in o(bc) · �(1/b)c, which can be made less than
1/2 for a sufficiently large constant b. The number of iterations per comparison is thus
upper bounded by a geometrically distributed random variable with mean O(1).

Let T be the number of comparisons made. Let D be the sum of the depth of vζ over all
input elements ζ at the end of the simulation. Clearly, D is upper bounded by the total
number of iterations performed, which is at most a sum of T independent geometrically
distributed random variables with mean O(1). By a version of the Chernoff bound
for geometric distributions (e.g., see Appendix A.1.2 of Mulmuley [1993]), we have
D ∈ O(T) with probability at least 1 − 2−�(T) ≥ 1 − 2−�(n).

By the same argument as before, at the end of the simulation, vζ must be a leaf
for every input element ζ , assuming that failure has not occurred. If failure has not
occurred and D ∈ O(T), we can conclude that

T ∈ �(D)

⊆ �

(∑
leafv

|Q(v)| log(n/|Q(v)|)
)

⊆ �(nH(�part-tree))

⊆ �(nH(�̃part-tree))
⊆ �(nH(S)).

Let (†) be the event in which failure has not occurred. Let I be the generated input
permutation of S (which is well defined when (†) is true). Let (∗) be the event in which
the number of comparisons made by the algorithm on I is greater than c0nH(S), where
c0 is a sufficiently large constant. To summarize, we have shown that Pr[(†) ∧ not(∗)] ≤
2−�(n).

Next, to analyze Pr[(†)], consider the leaf vζ that an element ζ ends up with after
the simulation (regardless of whether failure has occurred). This is a random variable,
which equals a fixed leaf v with probability |Q(v)|/n. Moreover, all these random vari-
ables are independent. Failure occurs if and only if for some leaf v, the number of vζ s
that equal v is different from |Q(v)|. By Lemma 4.1, Pr[(†)] ≥ n−O(nδ), since there are
O(nδ) leaves in T . It follows that

Pr[not(∗) | (†)] = Pr[(†) ∧ not(∗)]
Pr(†) ∈ 2−�(n)

n−O(nδ)
⊆ 2−�(n).

In other words, (∗) holds with high probability in the restricted probability space where
(†) is true.

Finally, observe that Pr[(†) ∧ (I = σ)] is the same for all fixed permutations σ of
S (the probability is exactly

∏
leafv(|Q(v)|

n)|Q(v)| 1
|Q(v)|!). Thus, in the restricted probability

space where (†) is true, the generated input I is a random permutation of S—in other
words, the adversary has not acted adversarily after all! We conclude that the number of
comparisons made by the algorithm on a random permutation of S is in �(nH(S)) with
high probability. In particular, the expected number of comparisons is in �(nH(S)).

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:20 P. Afshani et al.

Fig. 6. An instance where nH(S) is no longer a lower bound if non-multilinear tests are allowed. A circular
disk covers all nonmaximal points underneath the staircase. An algorithm tailored to this instance can
identify the n − h points that are inside the disk by O(n) non-multilinear tests, and then it can compute the
staircase of the remaining h points in O(h log h) time and verify that the disk is underneath the staircase by
O(h) additional non-multilinear tests.

Remark 4.3. Applying the same ideas to the proof of Theorem 2.4 shows that
OPTavg(S) ∈ �(n(H(S) + 1)) for the maxima problem in the comparison model.

5. ON THE MULTILINEAR MODEL

In this section, we take an in-depth view of the multilinear functions and in particular
we address two main questions: First, can our lower bounds be made to work for non-
multilinear functions, or at least can they be generalized to functions with constant
degree? And second, does our upper-bound algorithm for 3D convex hull truly use only
multilinear functions?

We start with the first question. Unfortunately, if non-multilinear test functions are
allowed, then nH(S) may no longer be a valid instance-optimal lower bound under our
definition of H(S). We can show this using a counterexample: one can design both an
instance S of the 2D maxima problem with h output points, having H(S) ∈ �(log h)
(see Figure 6), and an algorithm A that requires just O(n + h log h) operations on that
instance using non-multilinear tests. Furthermore, each multilinear test used by the
algorithm is only a degree 2 function of every variable. A similar example can be
constructed for the 2D convex hull problem.

Nevertheless, many standard test functions commonly found in geometric algorithms
are multilinear. For example, in 3D, the predicate ABOVE(p1, . . . , p4), which returns true
if and only if p1 is above the plane through p2, p3, p4, can be reduced to testing the sign
of a multilinear function (a determinant).

To see the versatility of multilinear tests, consider the following extended defini-
tion: we say that a function f : (Rd)c → R

d is quasi-multilinear if f (p1, . . . , pc) =
(f1(p1, . . . , pc), . . . , fd(p1, . . . , pc)), where fi = hi(p1, . . . , pc)/g(p1, . . . , pc), in which
f1, . . . , fd, g : (Rd)c → R are multilinear functions. In 3D, the function PLANE(p1, p2, p3)
that returns the dual of the plane through p1, p2, p3 is quasi-multilinear; similarly,
the function INTERSECT(p1, p2, p3), which returns the intersection of the dual planes of
p1, p2, p3, is quasi-multilinear. This can be seen by expressing the answer as a ratio of
determinants.

More generally, we have the following rules:

—If the function fi : (R3)ci → R
3 is quasi-multilinear for each i ∈ {1, 2, 3}, then

PLANE(f1(p11, . . . , p1c1), f2(p21, . . . , p2c2), f3(p31, . . . , p3c3)) and INTERSECT(f1(p11, . . . ,
p1c1), f2(p21, . . . , p2c2), f3(p31, . . . , p3c3)) are quasi-multilinear.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:21

—If the function fi : (R3)ci → R
3 is quasi-multilinear for each i ∈ {1, . . . , 4}, then

ABOVE(f1(p11, . . . , p1c1), . . . , f4(p41, . . . , p4c4)) can be reduced to testing the sign of a
multilinear function.

By combining these rules, more and more elaborate predicates can thus be reduced
to testing the signs of multilinear functions, such as in the following example:

ABOVE

⎛⎜⎜⎜⎜⎜⎝
p10,
p11,
p12,

INTERSECT

(
PLANE(p1, p2, p3),
PLANE(p4, p5, p6),
PLANE(p7, p8, p9)

)
⎞⎟⎟⎟⎟⎟⎠ .

However, we may run into problems if a point occurs more than once in the expression,
as in the following example:

ABOVE

⎛⎜⎜⎜⎜⎜⎝
p10,
p11,
p1,

INTERSECT

(
PLANE(p1, p2, p3),
PLANE(p4, p5, p6),
PLANE(p7, p8, p9)

)
⎞⎟⎟⎟⎟⎟⎠ .

Here, the expansion of the determinants may yield monomials of the wrong type. In
most 2D algorithms, these kinds of tests do not arise or can be trivially eliminated.
Unfortunately, they can occasionally occur in some 3D algorithms, including our 3D
upper-hull algorithm in Section 3.3. We now describe how to modify our algorithm to
avoid these problematic tests.

First, we consider the partition construction in Lemma 3.3. We choose the more el-
ementary alternative based on the eight-sectioning theorem: there exist three planes
that divide space into eight regions, each with n/8 points of Q. By perturbing
the three planes one by one, we can ensure that each of the three planes passes
through three input points, and that the resulting nine points are distinct, while
changing the number of points of Q in each region by ±O(1). A brute-force algorithm
can find three such planes in polynomial time. We can reduce the construction time by
using the standard tool called epsilon-approximations [Matoušek 2000]: we compute an
δ-approximation of Q in linear time for a sufficiently small constant δ > 0, and then ap-
ply the polynomial algorithm to the constant-sized δ-approximation. This only changes
the fraction 1/8 by a small term ±O(δ). It can be checked that known algorithms for
epsilon-approximations [Matoušek 2000] require only multilinear tests (it suffices to
check the implementation of the so-called subsystem oracle, which only requires the
ABOVE predicate). We remove the nine defining points before recursively proceeding
inside the eight regions. As a result, we can ensure that the facets in each convex
polyhedral cell are all defined by planes that pass through three input points, where
no two planes share a common defining point. A vertex v of a cell is an intersection of
three such planes and is defined by a set of nine distinct input points, denoted DEF(v).

Next, we consider the proof of Lemma 3.8 for answering r linear programming
queries. We choose the alternative approach from Section 4 of Chan [1996a], which
is based on a partition construction, which we have from the previous paragraph.
Chan’s algorithm [1996a] is based on a deterministic version of the sampling-based
linear programming algorithm by Clarkson [1995] and it can also support up to r inser-
tions and deletions of half-spaces intermixed with the query sequence. The algorithm
can be implemented with simple predicates such as ABOVE.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:22 P. Afshani et al.

Now, in the algorithm hull3d, we make one change: in line 5, we prune only when
each vertex v of γi lies strictly below the upper hull of Q− DEF(v) (instead of the upper
hull of Q). In the dual, testing such a vertex v reduces to a linear programming query
after deletion of DEF(v) from Q, where the coefficient vector of the objective function is
quasi-multilinear in DEF(v). Since DEF(v) has been deleted from Q, we avoid the problem
of test functions where some point appears more than once in the expression. It can be
checked that applying the algorithm for linear programming queries from the previous
paragraph indeed requires only multilinear tests now.

Since the pruning condition has been weakened, the analysis of hull3d needs to be
changed. Recall that the partition in line 3 is constructed by recursive application of
the eight-sectioning theorem. At half the depth of recursion, we obtain an intermediate
partition of Q with O(√rj) subsets Q′

� and corresponding cells γ ′
�, where each subset

has O(n/
√rj) points and every plane intersects at most O(√rj

1−ε) of these cells γ ′
�, for

ε = 1 − log8 7. Furthermore, for a fixed γ ′
�, every plane intersects at most O(√rj

1−ε) of
the cells γi of the final partition inside γ ′

�.
In the second paragraph of the proof of Theorem 3.9, we do the analysis differently.

Consider a cell γi of the partition, which is contained in a cell γ ′
� of the intermediate

partition. We claim that if (1) γ ′
� is strictly contained in 	k and (2) γi is strictly contained

in γ ′
�, then all points inside γi are pruned. To see this, notice that by (1), all points in

Q′
� are strictly below the upper hull of Q, and by (2), the defining points DEF(v) of any

vertex v of γi are in Q′
�. Thus, the points in DEF(v) are strictly below the upper hull of Q;

that is, the upper hull of Q− DEF(v) is the same as the upper hull of Q. As each vertex v
of γi is strictly below the upper hull of Q−DEF(v), all points inside γi are indeed pruned.

At most O(√rj
1−ε) cells γ ′

� can intersect the boundary of 	k. For each of the O(√rj)
cells γ ′

� strictly contained in 	k, at most O(√rj
1−ε log rj) cells γi inside γ ′

� can intersect
the O(log rj) boundary facets of γ ′

�. Hence, the number of points in Sk that remain in
Q after iteration j is at most min{|Sk|, O(√rj

1−ε · n/
√rj + √rj · (√rj

1−ε log rj) · n/rj)} =
min{|Sk|, O((n/rε/2

j) log rj)}. The rest of the proof is then the same, after readjusting ε

by about a half.

6. OTHER APPLICATIONS

We can apply our techniques to obtain instance-optimal algorithms for a number of
geometric problems in the order-oblivious and random-order setting:

(1) Offline half-space range reporting in 2D and 3D: Given a set S of n points and
half-spaces, report the subset of points inside each half-space. Algorithms with
�(n log n + K) running time [Chazelle et al. 1985; Chan 2000; Afshani and Chan
2009; Chan and Tsakalidas 2015] are known for total output size K.

(2) Offline dominance reporting in 2D and 3D: Given a set S of n red/blue points, report
the subset of red points dominated by each blue point. The problem has similar
complexity as (1).

(3) Orthogonal segment intersection in 2D: Given a set S of n horizontal/vertical line
segments, report all intersections between the horizontal and vertical segments, or
count the number of such intersections. The problem is known to have worst-case
complexity �(n log n+ K) in the reporting version for output size K, and complexity
�(n log n) in the counting version [de Berg et al. 1997; Preparata and Shamos 1985].

(4) Bichromatic L∞-close pairs in 2D: Given a set S of n red/blue points in 2D, report
all pairs (p, q) where p is red, q is blue, and p and q have L∞-distance at most 1, or
count the number of such pairs. Standard techniques in computational geometry

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:23

[de Berg et al. 1997; Preparata and Shamos 1985] yield algorithms with the same
complexity as in (3).

(5) Offline orthogonal range searching in 2D: Given a set S of n points and axis-aligned
rectangles, report the subset of points inside each rectangle, or count the number
of such points inside each rectangle. The worst-case complexity is the same as in
(3).

(6) Offline point location in 2D: Given a set S of n points and a planar connected
polygonal subdivision of size O(n), report the face in the subdivision containing
each point. Standard data structures [de Berg et al. 1997; Preparata and Shamos
1985; Snoeyink 1997] imply a worst-case running time of �(n log n).

For each of these problems, it is not difficult to see that certain input sets are indeed
“easier” than others; for example, if the horizontal segments and the vertical segments
respectively lie inside two bounding boxes that are disjoint, then the orthogonal seg-
ment intersection problem can be solved in O(n) time. For each of these problems, we
will define a measure of difficulty H(S) that is similar to the ones from Sections 2
and 3 and obtain an algorithm with running time O(H(S)) and a matching lower bound
�(H(S)).

Note that although some of the aforementioned problems may be reducible to others
in terms of worst-case complexity, the reductions may not make sense in the instance-
optimality setting. For example, an instance-optimal algorithm for a problem does not
imply an instance-optimal algorithm for a restriction of the problem in a subdomain,
because in the latter case, we are competing against algorithms that have to be correct
only for input from this subdomain.

6.1. A General Framework for Reporting Problems

We describe our techniques for offline reporting problems in a general framework. Let
R ⊂ R

d × R
d′

be a relation for some constant dimensions d and d′. We say that a red
point p ∈ R

d and a blue point q ∈ R
d′

interact if (p, q) ∈ R. We consider the reporting
problem: given a set S containing red points in R

d and blue points in R
d′

of total size n,
report all K interacting red/blue pairs of points in S. (By scanning the output pairs, we
can then collect the subset of all blue points that interact with each red point, in O(K)
additional time.)

We redefine H(S) as follows:

Definition 6.1. Given a region γ colored red (blue, respectively), we say that γ is safe
for S if every red (blue, respectively) point in γ interacts with exactly the same subset
of blue (red, respectively) points in S. We say that a partition � of S is respectful if
each subset Sk in � is a singleton (i.e., contains only one element), or a subset of red
points enclosed by a safe red simplex 	k for S, or a subset of blue points enclosed by a
safe blue simplex 	k for S. Define the structural entropy H(S) of S to be the minimum
of H(�) = ∑

k(|Sk|/n) log(n/|Sk|) over all respectful partitions � of S.

THEOREM 6.2. OPT(S), OPTavg(S) ∈ �(n(H(S) + 1) + K) for the reporting problem in
the multilinear decision tree model.

PROOF. This follows from a straightforward modification of the proofs of Theorems 3.5
and 4.2. The main differences are that now we have two lists of elements (one list of red
elements and another list of blue elements) and we now keep two partition trees, one for
the red (blue, respectively) points in S, with cells colored red (blue, respectively). If a cell
�(v) is safe for S, or if the number of red (blue, respectively) points in �(v) drops below a
constant, then we make v a leaf in the red (blue, respectively) partition tree. Similarly,
every red (blue, respectively) element is associated with a red (blue, respectively) cell.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:24 P. Afshani et al.

At the end, we argue that vζ must be a leaf for every red (blue, respectively) input
element ζ . Otherwise, the red (blue, respectively) cell �(vζ) contains at least two red
(blue, respectively) points and is not safe, so we can move ζ to another point inside
�(vζ) and change the answer. The algorithm would be incorrect on the modified input.
(The �(K) term in the lower bound is obvious.)

For the upper-bound side, we assume the availability of three oracles concerning R,
where α is some positive constant:

(A) A worst-case algorithm for the reporting problem that runs in O(n log n + K) time
(B) A data structure with O(n log n) preprocessing time, such that we can report all κ

blue (red, respectively) points in S interacting with a query red (blue, respectively)
point in O(n1−α + κ) time

(C) A data structure with O(n log n) preprocessing time, such that we can test whether
a query red or blue convex polyhedral cell γ of size a is safe for S in O(an1−α) time

Note that we can reduce to preprocessing time in (B) to O((n/m) · mlog m) = O(n log m)
while increasing the query time to O((n/m) · m1−α + κ) for any given 1 ≤ m ≤ n. This
follows from the grouping trick by Chan [1996c]: namely, divide S into �n/m� subsets
of size O(m) and build a data structure for each subset. By setting m = min{r1/α, n}, we
can then answer r queries in total time O(n log m+ r · (n/m) · m1−α + κ) ⊆ O(n log r +
max{n, rn1−α} + κ) ⊆ O(n log r + rO(1) + κ) for total output size κ. Similarly, for (C), by
setting m = min{(ar)1/α, n}, we can answer r queries in total time O(n log m+ r · (n/m) ·
am1−α+κ) ⊆ O(n log(ar)+(ar)O(1)), which simplifies to O(n log r+rO(1)) in our application
with a ≤ logO(1) r. The grouping trick is applicable because the query problems in (B)
and (C) are decomposable; that is, the answer of a query for a union of subsets can be
obtained from the answers of the queries for the subsets.

We now solve the reporting problem by a variant of the hull3d algorithm in
Section 3.3:

report(Q):

1. for j = 0, 1, . . . , 	log(δ log n)
 do
2. partition the red points in Q by Lemma 3.3 to get rj = 22 j

subsets Q1, . . . , Qrj

and red cells γ1, . . . , γrj

3. for each i = 1 to rj do
4. if γi is safe for Q then
5. let Zi be the subset of blue points in Q that interact with

an arbitrary red point in Qi
6. output Qi × Zi
7. prune all red points in Qi from Q
8. redo lines 2–7 with “red” and “blue” reversed
9. solve the reporting problem for the remaining set Q directly

The test in line 4 for each convex polyhedral cell γi of size at most O(log rj) can be
done by querying the data structure in (C), and line 6 can be done by querying the data
structure in (B); the cost of O(rj) queries is O(|Q| log rj + rO(1)

j) plus the output size.
Line 9 can be done by the algorithm in (A).

THEOREM 6.3. Given oracles (A), (B), and (C), algorithm report(S) runs in O(n(H(S)+
1) + K) time.

PROOF. The analysis is as in the proof of Theorem 3.9.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:25

The partition construction in line 2 can be done in the multilinear model, as described
in Section 5. Whether the rest of the algorithm works in the multilinear model depends
on the implementation of the oracles.

For orthogonal-type problems dealing with axis-aligned objects, such as problems (2)
through (5) in our list, we can work instead in the comparison model. We just replace
simplices with axis-aligned boxes in the definition of H(S), replace convex polyhedral
cells with axis-aligned boxes in oracle (C), and replace partition trees with k-d trees in
both the lower-bound proof and the algorithm.

We can immediately apply our framework to the reporting versions of problems (1)
through (5) after checking the oracle requirements for (B) and (C) in each case:

(1) Offline halfspace range reporting in 2D and 3D: For the design of the needed data
structures, it suffices to consider just the lower half-spaces in the input. Color the
given points red, and map the given lower half-spaces to blue points by duality.
The data structure problem in (B) is just half-space range reporting. The data
structure problem in (C) is equivalent to testing whether any of the O(a) edges of
a query convex polyhedral cell intersects a given set of n hyperplanes (lines in 2D
or planes in 3D). This reduces to simplex range searching [Agarwal and Erickson
1999; Matoušek 1992] by duality; known results achieve O(n log n) preprocessing
time and close to O(an1−1/d) query time. It can be checked that the entire algorithm
is implementable in the multilinear model if we use the randomized algorithm by
Chan [2000] for (A).

(2) Offline dominance reporting in 2D and 3D: The data structure problem in (B) is
just dominance reporting. The data structure problem in (C) is equivalent to testing
whether all the corners of a query box are dominated by the same number of points
from a given n-point set. This reduces to orthogonal range counting [Agarwal and
Erickson 1999; de Berg et al. 1997; Preparata and Shamos 1985]; although better
data structures are known, k-d trees are sufficient for our purposes, with O(n log n)
preprocessing time and O(n1−1/d) query time. The entire algorithm works in the
comparison model.

(3) Orthogonal segment intersection in 2D: Map each each horizontal line segment
(x, y)(x′, y) to a red point (x, x′, y) ∈ R

3 and each vertical line segment (ξ, η)(ξ, η′)
to a blue point (ξ, η, η′) ∈ R

3. Each point in R
3 is the image of a horizontal/vertical

line segment. The data structure problem in (B) for red queries corresponds to
reporting all points from a given n-point set that lie in a query range of the form
{(ξ, η, η′) ∈ R

3 : ((x ≤ ξ ≤ x′) ∨ (x′ ≤ ξ ≤ x)) ∧ ((η ≤ y ≤ η′) ∨ (η′ ≤ y ≤ η))} for
some x, x′, y. This reduces to 3D orthogonal range reporting. The data structure
problem in (C) for red queries corresponds to testing whether a query box in R

3

intersects any of the boundaries of n given ranges, where each range is of the form
{(x, x′, y) ∈ R

3 : ((x ≤ ξ ≤ x′) ∨ (x′ ≤ ξ ≤ x)) ∧ ((η ≤ y ≤ η′) ∨ (η′ ≤ y ≤ η))} for some
ξ, η, η′. This is an instance of 3D orthogonal intersection searching [Agarwal and
Erickson 1999], which reduces to orthogonal range searching in a higher dimension.
Again, k-d trees are sufficient for our purposes. Blue queries are symmetric. The
entire algorithm works in the comparison model.

(4) Bichromatic L∞-close pairs in 2D: The problem in (B) corresponds to reporting all
points of a given point set that lie inside a query square of side length 2. This
is an instance of orthogonal range reporting. The problem in (C) corresponds to
testing whether a query box intersects any of the edges of n given squares of side
length 2. This is an instance of orthogonal intersection searching. Note that here
the resulting algorithm requires a slight extension of the comparison model, to
include tests of the form xi ≤ x′

j + a mentioned in Remark 2.5, which are allowed
in the lower-bound proof.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:26 P. Afshani et al.

(5) Offline orthogonal range reporting in 2D: Color the given points red, and map
each rectangle [ξ, ξ ′] × [η, η′] to a blue point (ξ, ξ ′, η, η′) ∈ R

4. Every point in R
4

is the image of a rectangle. The problem in (B) for red queries corresponds to 2D
rectangle stabbing, that is, reporting all rectangles, from a given set of n rectangles,
that contain a query point. The problem in (B) for blue queries corresponds to
2D orthogonal range reporting. The problem in (C) for red queries corresponds to
deciding whether a query box in R

2 intersects any of the edges of n given rectangles.
The problem in (C) for blue queries corresponds to deciding whether a query box
in R

4 intersects any of the boundaries of n given ranges, where each range is of the
form {(ξ, ξ ′, η, η′) ∈ R

4 : ((ξ ≤ x ≤ ξ ′) ∨ (ξ ′ ≤ x ≤ ξ)) ∧ ((η ≤ y ≤ η′) ∨ (η′ ≤ y ≤ η))}
for some x, y. All these data structure problems reduce to orthogonal range or
intersection searching. Again, the algorithm works in the comparison model.

6.2. Counting Problems

Our framework can also be applied to counting problems, where we simply want the
total number of interacting red/blue pairs. We just change oracle (A) to a counting
algorithm without the O(K) term, and oracle (B) to counting data structures without the
O(κ) term. In line 5 of the algorithm, we compute |Z|, and in line 6, we add |Qi|×|Z| to a
global counter. The same lower- and upper-bound proofs yield an �(n(H(S)+1)) bound.
The new oracle requirements are satisfied for (3) orthogonal segment intersection
counting, (4) bichromatic L∞-close pairs, and (5) offline orthogonal range counting.

We can also modify the algorithm to return individual counts, that is, compute the
number of red points that interact with each blue point and the number of blue points
that interact with each red point. Here, we need to not only strengthen oracle (A) to
produce individual counts but also modify oracle (B) to the following:

(B) A data structure with O(n log n) preprocessing time, forming a collection of canon-
ical subsets of total size O(n log n), such that we can express the subset of all blue
(red, respectively) points in S interacting with a query red (blue, respectively)
point, as a union of O(n1−α) canonical subsets, in O(n1−α) time.

As before, the grouping trick can be used to reduce the preprocessing time and total size
of the canonical subsets. In line 4 of the algorithm, we express Z as a union of canonical
subsets. In line 5, we add |Z| to the counter of each red point in Qi and add |Qi| to the
counter of each canonical subset for Z. At the end of the loop in lines 3 through 7, we
make a pass over each canonical subset and add its counter value to the counters of its
blue points, before resetting the counter of the canonical subset. Line 8 is similar. The
analysis of the running time remains the same. The strengthened oracle requirements
are satisfied for problems (3), (4), and (5) by known orthogonal range searching results.

6.3. Detection Problems?

We can also consider detection problems where we simply want to decide whether there
exists an interacting red/blue pair. Here, we redefine H(S) by redefining “safe”: a red
(blue, respectively) region γ is now considered safe for S if no red (blue, respectively)
point in γ interacts with any blue (red, respectively) points in S. We change oracles (A)
and (B) to analogous detection algorithms and data structures, without the O(K) and
O(κ) terms.

The proof of the upper bound O(n(H(S)+1)) is the same, but unfortunately, the proof
of the lower bound �(n(H(S)+1)) only works for instances with a NO answer: at the end,
if vζ is not a leaf for some red (blue, respectively) input element ζ , then �(vζ) contains
at least two red (blue, respectively) points and is not safe, so we can move ζ to some
point inside �(vζ) and change the answer from NO to YES.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:27

YES instances are problematic; however, this is not a weakness of our technique but
of the model: on every input set S with a YES answer, OPT(S) is in fact O(n). To see this,
consider an input set S for which there exists an interacting pair (p, q). An algorithm
that is “hardwired” with the ranks of p and q in S with respect to, say, the x-sorted
order of S can first find p and q from their ranks by linear-time selection, verify that
p and q interact in constant time, and return YES if true or run a brute-force algorithm
otherwise. Then, on every permutation of this particular set S, the algorithm always
takes linear time. Many problems admit �(n log n) worst-case lower bounds even when
restricted to YES instances, and for such problems, instance optimality in the order-
oblivious setting is therefore not possible on all instances.

6.4. Another General Framework for Offline Querying Problems

We now propose another general framework that can handle point location and related
problems. Let M be a mapping from points in R

d to “answers” in some space for some
constant d (the answer M(q) of a point q ∈ R

d may or may not have constant size
depending on the context). We consider the following offline querying problem: given a
set S of n points in R

d, compute M(q) for every q ∈ S. Let K denote the total size of the
answers.

We redefine H(S) by redefining “safe”:

Definition 6.4. We say that a cell γ is safe if every point q in γ has the same answer
M(q). We say that a partition � of S is respectful if each subset Sk in � is a singleton,
or a subset of points enclosed by a safe simplex 	k. Define the structural entropy H(S)
of S to be the minimum of H(�) = ∑

k(|Sk|/n) log(n/|Sk|) over all respectful partitions
� of S.

THEOREM 6.5. OPT(S), OPTavg(S) ∈ �(n(H(S) + 1) + K) for the offline querying
problem in the multilinear decision tree model.

PROOF. This follows from a straightforward modification of the proofs of Theorems 3.5
and 4.2. As before, if a cell �(v) is safe, then we make v a leaf. At the end, we argue that
vζ must be a leaf for every element ζ . Otherwise, �(vζ) is not safe, so we can move ζ
to another point inside �(vζ) and change the answer. The algorithm would be incorrect
on the modified input.

The previous lower bound holds even if we ignore the cost of preprocessing M (i.e., we
allow the algorithm unlimited time to build whatever data structures necessary with
respect to M, and only measure the running time after giving the algorithm the set S
of n query points). Furthermore, the test functions are only required to be multilinear
with respect to S, not M.

For the upper-bound side, we assume that M has been preprocessed in an oracle
data structure supporting the following types of queries:

(A) Given q ∈ R
d, we can compute M(q) in O(log m + κ) worst-case time for output

size κ, where m is a parameter describing the size of M.
(B) Given a convex polyhedral cell γ of size a, we can test whether γ is safe in O(am1−α)

time.

The algorithm is simpler this time. Instead of using a 22 j
progression, we can use a

more straightforward b-way recursion, for a sufficiently large constant b (the result-
ing recursion tree mimics the tree T from the lower-bound proof in Theorem 3.5, on
purpose):

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:28 P. Afshani et al.

off-line-queries (Q, �), where Q ⊂ �:

1. if |Q| drops below n/mδ then compute the answers directly and return
2. partition Q by Lemma 3.3 to get b subsets Q1, . . . , Qb and cells γ1, . . . , γb
3. for i = 1 to b do
4. if γi ∩ � is safe then
5. compute M(q) for an arbitrary point q ∈ γi ∩ �
6. output M(q) as the answer for all points in Qi
7. else off-line-queries(Qi, γi ∩ �)

We call off-line-queries(S, R
d) to start. Line 1 takes O(|Q| log m+ κ) time for output

size κ by querying the data structure for (A); note that each point in Q in this case has
participated in �(log m) levels of the recursion, and we can account for the first term
by charging each point unit cost for every level it participates in. Line 2 takes O(|Q|)
time for a constant b by known constructions of Matoušek’s partition theorem [1992]
(or alternatively recursive application of the four- or eight-sectioning theorem in the
2D or 3D case). The test in line 4 takes O(m1−α logO(1) m) time by querying the data
structure for (C), since the convex polyhedral cell γi ∩� has at most O(log m) facets (and
thus O(logO(1) m) size). As the tree has O(mδ) nodes, the cost of line 4 is negligible, since
its total over the entire recursion tree is sublinear in m by choosing a sufficiently small
constant δ < α. Line 5 takes O(log m+ κ) time for output size κ, by (A); the O(log m)
term is again negligible, since its total over the entire recursion tree is sublinear
in m.

THEOREM 6.6. After M has been preprocessed for (A) and (C), algorithm off-line-
queries(S, R

d) runs in O(n(H(S) + 1) + K) + o(m) time for total output size K.

PROOF. Let nj be number of points in S that survive level j, that is, participate in
subsets Q at level j of the recursion. The total running time for the offline problem is
asymptotically bounded by

∑
j nj , ignoring a o(m) extra term.

Let � be any respectful partition of S. Consider a subset Sk in �. Let 	k be a safe
simplex enclosing Sk. Fix a level j. Let Qis and γis be the subsets Q and cells γ at level
j. Each Qi has size at most n/�(b) j . The number of γis that intersect the boundary
of 	k is at most O(b1−ε) j . Thus, the number of points in Sk that survive level j is at
most min{|Sk|, O(b1−ε) j ·n/�(b) j}. Since the Sks cover the entire point set, with a double
summation we have, for a sufficiently large constant b,∑

j

nj ≤
∑

j

∑
k

min
{|Sk|, n/�(b)εj}

=
∑

k

∑
j

min
{|Sk|, n/�(b)εj}

⊆
∑

k

O(|Sk|(log(n/|Sk|) + 1))

= O(n(H(�) + 1)),

which yields the theorem.

For orthogonal-type problems, we can work instead in the comparison model. We
just replace simplices with axis-aligned boxes in the definition of H(S), replace convex
polyhedral cells with axis-aligned boxes in oracle (C), and replace partition trees with
k-d trees in both the lower-bound proof and the algorithm.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:29

We can apply our framework to solve problem (6):

(6) Offline point location in 2D: For (A), data structures for planar point location with
O(log m) worst-case query time are known, with O(m) preprocessing time and space
[Kirkpatrick 1983; Chazelle 1991; Snoeyink 1997]. The data structure problem in
(C) is equivalent to testing whether any of the O(a) edges of a query polygon
intersect the given polygonal subdivision. This reduces to ray shooting (or segment
emptiness) queries in the subdivision, for which known results [Chazelle et al.
1994] achieve O(log m) query time, with O(m) preprocessing time and space. For
this problem, each answer has constant size, so the O(K) and O(κ) terms can be
omitted. The total running time is O(n(H(S) + 1)), even if preprocessing time is
included, for a subdivision of size m = O(n). It can be checked that the entire
algorithm works in the multilinear model.

6.5. Online Querying Problems and Distribution-Sensitive Data Structures

We can also use the general framework of the preceding section to study online versions
of point location and related problems. Consider the following online querying problem:
given a set S of n points in R

d, build a data structure so that we can compute M(q) for
any query point q ∈ R

d, while trying to minimize the average query cost over all q ∈ S.
Our offline lower bound states that the total time required to answer queries for all

n points in S is �(n(H(S) + 1)). This immediately implies that the average query time
over all q ∈ S must be �(H(S) + 1). (In contrast, lower bounds for the online problem
do not necessarily translate to lower bounds for the offline problem.)

On the other hand, our algorithm for offline queries can be easily modified to give a
data structure for online queries. We just build a data structure corresponding to the
recursion tree generated by off-line-queries(S, R

d), in addition to the data structure
for (A) and (C). It can be shown that with such a data structure, the average query
time over all q ∈ S is O(H(S) + 1) (more details are given later).

We can extend the online querying problem to the setting where each point in S is
weighted and the goal is to bound the weighted average query time over the query
points in S. Even more generally, we can consider the setting where S is replaced by
a (possibly continuous) probability distribution and the goal is to bound the expected
query time for a query point randomly chosen from S. We now provide more details for
the changes needed in this most general setting.

We first redefine H(S) for a probability distribution S.

Definition 6.7. We say that a region γ is safe if every point q in γ has the same
answer M(q). A partition � of R

d into regions is respectful if each region Sk of � can
be enclosed by a safe simplex 	k. Define the structural entropy H(S) of a probability
distribution S to be the minimum of H(�) = ∑

k μS(Sk) log(1/μS(Sk)) over all respectful
partitions � of R

d, where μS denotes the probability measure corresponding to S.

We need a continuous version of Lemma 3.3, which follows by straightforward modifi-
cation to the proof of the partition theorem [Matoušek 1992] (or alternatively, recursive
application of the four- or eight-sectioning theorem in the 2D or 3D case).

LEMMA 6.8. For any probability measure in R
d and 1 ≤ r ≤ n for any constant d,

we can partition R
d into r (not necessarily convex or connected) polyhedral regions

Q1, . . . , Qr each with measure �(1/r) and with rO(1) (or fewer) facets, and find r convex
polyhedral cells γ1, . . . , γr each with O(log r) (or fewer) facets, such that Qi is contained
in γi , and every hyperplane intersects at most O(r1−ε) cells. Here, ε > 0 is a constant
that depends only on d.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:30 P. Afshani et al.

The lower-bound proof is easier for online problems, so we present the simplified
proof in full later. Because the input to a query algorithm is just a single point (unlike
in the offline setting where we could perform a test that has more than one query point
as arguments), multilinear tests can now be replaced with linear tests.

THEOREM 6.9. Any algorithm for the online querying problem requires �(H(S)+1+κ)
expected query time for output size κ, for any probability distribution S in the linear
decision tree model.

PROOF. We define a partition tree T as follows: Each node v stores a pair (Q(v), �(v)),
where Q(v) is a region enclosed inside a convex polyhedral cell �(v). The root stores
(Rd, R

d). If μS(Q(v)) drops below 1/mδ or �(v) is safe, then v is a leaf. Otherwise, apply
Lemma 3.3 with r = b to the restriction of μS to Q(v), and obtain regions Q1, . . . , Qb and
cells γ1, . . . , γb. For the children v1, . . . , vb of v, set Q(vi) = Qi ∩Q(v) and �(vi) = γi ∩ �(v).
For a node v at depth j of the tree T we then have μS(Q(v)) ≥ 1/�(b) j , and consequently,
the depth j is in �(logb(1/μS(Q(v)))).

Let �part-tree be the partition formed by the cells �(v) at the leaves v in T . Let
�̃part-tree be a refinement of this partition after triangulating the leaf cells. Note that
the subpartitioning of a leaf cell at depth j causes the entropy to increase by at
most O(μS(Q(v)) log(j log b)) ⊆ O(μS(Q(v)) log log(1/μS(Q(v)))) for any constant b. So
H(�̃part-tree) ∈ �(H(�part-tree)). Clearly, �̃part-tree is respectful.

The adversary constructs a bad query point q as follows. During the simulation, we
maintain a node vq in T , where the only information the algorithm knows about q is
that q lies inside �(vq).

Suppose that the simulation encounters a test to determine which side q lies inside
a hyperplane h. We do the following:

—We reset vq to one of its children at random, where each child v′
q is chosen with

probability μS(Q′
q)/μS(Qq) (which is in �(1/b)). If �′

q does not intersect h, then the
comparison is resolved. Otherwise, we repeat.

The probability that the comparison is not resolved in a single step is at most O(b1−ε) ·
�(1/b), which can be made less than 1/2 for a sufficiently large constant b.

Let T be the number of tests made. Let D be the depth of vq at the end. For i ≤ T ,
let Ti = 1 and Di be the number of steps needed to resolve the ith test; then E[Di] ≤ 2.
For i > T , let Ti = Di = 0. Since E[2Ti − Di] ≥ 0 for all i, by linearity of expectation,
E[D] = E[

∑
i Di] ≤ 2 E[

∑
i Ti] = 2 E[T].

At the end of the algorithm, vq must be a leaf. Thus,

E[T] ∈ �(E[D])

⊆ �

(∑
leafv

μS(Q(v)) log(1/μS(Q(v)))

)
⊆ �(H(�part-tree))

⊆ �(H(�̃part-tree))
⊆ �(H(S)).

At the end, we can assign q to a random point in Q(vq) chosen from the distribution S.
Then q satisfies precisely the probability distribution S (in other words, the adversary
has not acted adversarily after all). Thus, E[T] is the expected query time for a query
point randomly chosen from the distribution S.

For the upper-bound side, following is the pseudocode for the preprocessing algorithm
and the query algorithm, which are derived from our previous algorithm off-line-

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:31

queries; here, b is a sufficiently large constant. The query algorithm assumes an
oracle data structure for (A) (oracle (C) is only needed in the preprocessing algorithm).

preprocess (Q, �):
1. if μS(Q) < 1/mδ then return
2. apply Lemma 6.8 to the restriction of μS to Q

to get b regions Q1, . . . , Qb and cells γ1, . . . , γb
3. for i = 1 to b do
4. if γi ∩ � is safe then store M(q) for an arbitrary point q ∈ γi ∩ �
5. else preprocess(Qi ∩ Q, γi ∩ �)

on-line-query (q, Q, �):
1. if μS(Q) < 1/mδ then compute M(q) directly and return
2. locate the region Qi containing q
3. if γi ∩ � was marked as safe then look up the stored answer and return
4. else on-line-query(q, Qi ∩ Q, γi ∩ �)

The space of the tree generated by preprocess(Rd, R
d) is only O(mδ), and so the space

for the data structure for (A) dominates. We will not focus on the preprocessing time,
which depends on the construction time for Lemma 6.8, which in turn depends on the
distribution S. The preprocessing can be done efficiently, for example, for a discrete
n-point distribution and for many other distributions.

In algorithm on-line-query, line 1 takes O(log m) time by (A); note that this case
occurs only when the query point q participates in �(log m) levels of the recursion, and
we can account for the cost by charging one unit to each level of the recursion. Line 2
takes O(1) time for a constant b. We can adapt the previous proof of Theorem 6.6 for
the rest of the query time analysis:

THEOREM 6.10. After M has been preprocessed for (A) and preprocess(Rd, R
d) has

been executed, algorithm on-line-query(q, R
d, R

d) runs in O(H(S)+1+κ) expected time
for output size κ, for a query point q randomly chosen from the distribution S.

PROOF. Let nj be 1 if the query point participates at level j of the recursion, and 0
otherwise. Then the query time is asymptotically bounded by

∑
j nj .

Let � be any respectful partition of S. Consider a region Sk in �, enclosed in a
safe simplex 	k. Fix a level j. Let Qis and �is be the regions and cells at level j
of the recursion tree. Each Qi satisfies μS(Qi) ≤ 1/�(b) j . The number of �is that
intersect the boundary of 	k is at most O(b1−ε) j . Thus, Pr[(nj = 1) ∧ (q ∈ Sk)] ≤
min{μS(Sk), O(b1−ε) j · 1/�(b) j} for a point q randomly chosen from the distribution S.
Since the Sks cover R

d, with a double summation we have, for a sufficiently large
constant b,

E

⎡⎣∑
j

nj

⎤⎦ ≤
∑

j

∑
k

min{μS(Sk), 1/�(b)εj}

=
∑

k

∑
j

min{μS(Sk), 1/�(b)εj}

⊆
∑

k

O
(
μS(Sk)(log(1/μS(Sk)) + 1)

)
= O(H(�) + 1),

which yields the theorem.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:32 P. Afshani et al.

For orthogonal-type problems, we can again work in the comparison model, by re-
placing simplicial and convex polyhedral cells with axis-aligned boxes.

We can apply our framework to online versions of several problems:

(6) Online point location queries in 2D: We immediately obtain optimal O(H(S) + 1)
expected query cost, with an O(m)-space data structure for a subdivision of size m,
for any given distribution S. The query algorithm works in the linear decision tree
model. This online point location result is known before [Arya et al. 2007a, 2007b;
Collette et al. 2012; Iacono 2004] (some of these previous works even optimize the
constant factor in the query cost).

(1) Online half-space range reporting queries in 2D and 3D: Here, we map query lower
half-spaces to points by duality. For (A), data structures for 2D and 3D half-space
range reporting with O(log m + κ) worst-case time are known, with O(m) space
[Chazelle et al. 1985; Afshani and Chan 2009]. We thus obtain optimal O(H(S) +
1 + κ) expected query cost for output size κ, with an O(m)-space data structure for
a given 2D or 3D m-point set, for any given distribution S. The query algorithm
works in the linear decision tree model. This result is new.

(2) Online dominance reporting queries in 2D and 3D: The story is similar to half-space
range reporting. The query algorithm now works in the comparison model.

(4) Online orthogonal range reporting/counting queries in 2D: Here, we map query
rectangles to points in 4D as in Section 6.1. For (A), data structures for 2D or-
thogonal range reporting with O(log m + κ) worst-case query time are known,
with O(mlogε m) space; and data structures for 2D orthogonal range counting with
O(log m) worst-case query time are known, with O(m) space [Chazelle 1988]. For
reporting, we thus obtain optimal O(H(S) + 1 + κ) expected query cost for output
size κ, with an O(mlogε m)-space data structure for a given 2D m-point set, for any
given distribution S; for counting, we get optimal O(H(S) + 1) expected query cost
with an O(m)-space data structure. The query algorithm works in the comparison
model. This result is apparently new, as it extends Dujmović, Howat, and Morin’s
result on 2D dominance counting [Dujmović et al. 2012] and unintentionally an-
swers one of their main open problems (and at the same time improves their space
bound from O(mlog m) to O(m)).

Remark 6.11. Some months after the appearance of the conference version of the
present article, a similar general technique for distribution-sensitive data structures
was rediscovered by Bose et al. [2010].

Since the conference version of our article that outlined the new distribution-
sensitive data structures, Nguyen [2015] has also expanded the description of our
approach (and in particular provided self-contained proofs of the continuous version of
the partition theorem).

7. DISCUSSION

Although we have argued for the order-oblivious form of instance optimality, we are not
denigrating adaptive algorithms that exploit the order of the input. Indeed, for some
geometric applications, the input order may exhibit some sort of locality of reference
that can speed up algorithms. There are various parameters that one can define to
address this issue, but it is unclear how a unified theory of instance optimality can be
developed for order-dependent algorithms.

We do not claim that the algorithms described here are the best in practice, because of
possibly larger constant factors (especially those that use Matoušek’s partition trees),
although some variations of the ideas might actually be useful. In some sense, our
results can be interpreted as a theoretical explanation for why heuristics based on
bounding boxes and BSP trees perform so well (e.g., see Andrews et al. [1994] on

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:33

experimental results for the red/blue segment intersection problem), as many of our
instance-optimal algorithms prune input based on bounding boxes and spatial tree
structures.

Note that specializations of our techniques to 1D can also lead to order-oblivious
instance-optimal results for the multiset-sorting problem and the problem of computing
the intersection of two (unsorted) sets. Adaptive algorithms for similar 1D problems
(e.g., Munro and Spira [1976]) were studied in different settings from ours.

Not all standard geometric problems admit nontrivial instance-optimal results in
the order-oblivious setting. For example, computing the Voronoi diagram of n points
or the trapezoidal decomposition of n disjoint line segments, both having �(n) sizes,
requires �(n log n) time for every point set by the naive information-theoretic argument.
Computing the (L∞-)closest pair for a monochromatic point set requires �(n log n) time
for every point set by our adversary lower-bound argument.

An open problem is to strengthen our lower-bound proofs to allow for a more general
class of test functions beyond multilinear functions, for example, arbitrary fixed-degree
algebraic functions.

It remains to be seen how widely applicable the concept of instance optimality is.
To inspire further work, we mention the following geometric problems for which we
currently are unable to obtain instance-optimal results:

(a) Reporting all intersections between a set of disjoint red (nonorthogonal) line seg-
ments and a set of disjoint blue line segments in 2D

(b) Computing the L2- or L∞-closest pair between a set of red points and a set of blue
points in 2D

(c) Computing the diameter or the width of a 2D point set
(d) Computing the lower envelope of a set of (perhaps disjoint) line segments in 2D

Finally, we should mention that all our current results concern at most logarithmic-
factor improvements. Obtaining some form of instance-optimal results for problems
with ω(n log n) worst-case complexity (e.g., offline triangular range searching, 3SUM-
hard problems, etc.) would be even more fascinating.

APPENDIX

A. AN ALTERNATIVE PROOF FOR 2D MAXIMA

In this appendix, we describe an alternative approach to the 2D maxima problem,
which uses a new definition of a difficulty measure and a vastly different lower-bound
proof based on an interesting encoding argument. This approach is more specialized
and does not seem to work for 3D maxima or other problems, but the lower-bound proof
has the advantage of being generalizable to nondeterministic algorithms.

We begin by defining a measure of difficulty F(S) specific to the 2D maxima problem,
which is seemingly different from the structural entropy H(S) defined previously. The
new definition appears simpler in the sense that we do not need to take the minimum
over all partitions but measure the contribution of each point directly, but as a byprod-
uct of our analyses, F(S) is asymptotically equivalent to nH(S) (which is why we do not
give it a name).

Definition A.1. Given a point set S, let q1, . . . , qh denote the maximal points of S
from left to right, with q0 = (−∞,∞) and qh+1 = (∞,−∞). Given a point p ∈ S, let
qi, . . . , q� be all the maximal points that dominate p. Define F(p) to be the subset of all
points in S in the slab (qi−1.x, q�+1.x) × R, where we use p.x and p.y to denote the x-
and y-coordinates of p. Define F(S) = ∑

p∈S log(n/|F(p)|). (See Figure 7.)

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:34 P. Afshani et al.

Fig. 7. Definition of F(S): In this instance, points p1, p2, p3 are dominated by q1, q2, q3, and so |F(p1)| =
|F(p2)| = |F(p3)| = n = 12. Points p4, p5, p6, q2 are dominated only by q2, and so |F(p4)| = |F(p5)| =
|F(p6)| = |F(q2)| = 7. Similarly, |F(p7)| = |F(p8)| = |F(p9)| = |F(q3)| = 4 and |F(q1)| = 7. Thus, F(S) =
3 log 12

12 + 5 log 12
7 + 4 log 12

4 .

For the upper-bound side, we use the same algorithm and an analysis similar to
before:

THEOREM A.2. Algorithm maxima2d(S) from Section 2.1 runs in O(F(S) + n) time.

PROOF. We proceed as in the proof of Theorem 2.3, but a simpler argument replaces
the second paragraph: Fix a point p ∈ S. Let qi, . . . , q� be all the maximal points that
dominate p. Fix a level j. If |F(p)| > 	n/2 j
, then by (i), some maximal point from
{qi, . . . , q�} must been discovered, and by (ii), this implies that p does not survive level
j. Thus, p can survive only for O(log(n/|F(p)|)+1) levels. We can asymptotically bound
the running time by

∑
j nj ∈ O(

∑
p(log(n/|F(p)|) + 1)) = O(F(S) + n).

For the lower-bound side, we first consider a slightly strengthened problem, which
we call maxima with witnesses: given a point set S, report (the indices of) all maximal
points in left-to-right order, and for each nonmaximal point p in S, report a maximal
point (a witness) that dominates p.

THEOREM A.3. OPT(S), OPTavg(S) ∈ �(F(S) + n) for the 2D “maxima with witness”
problem in the comparison model.

PROOF. The proof is a counting argument, which we express in terms of encoding
schemes (see Demaine and López-Ortiz [2003] and Golynski [2009] for more sophisti-
cated examples of counting arguments based on encoding/decoding). We will describe a
way to encode an arbitrary permutation σ of S, so that the length of the encoding can
be upper bounded in terms of the running time of the given algorithm A on input σ .
Since the worst-case encoding length must be at least log(n!), the running time must
be large for some permutation σ .

To describe the encoding scheme, we imagine that the permutation σ is initially
unknown to the decoder, and as we proceed, we record bits of information about σ so
that at the end, the decoder can uniquely determine σ from the bits recorded, given
S. In the description that follows, we distinguish between an input element, which is
represented by its index in the input permutation σ (its coordinates are not necessarily
known to the decoder), and a point of S, which is represented by its coordinates (its
index in σ is not necessarily known). At any moment, if the bits recorded so far allow
the decoder to infer which input element corresponds to a point p of S, we say that p
is known.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:35

We first run the algorithm on σ and record the outcomes of the comparisons made;
this requires TA(σ) bits, where TA(σ) denotes the number of comparisons made by A
on σ . Let M be the list of maximal input elements returned. For each input element
qi, let W(qi) be the list of all nonmaximal input elements that have qi as witness. The
decoder can determine these lists M and W(qi) by simulating the algorithm on σ using
the comparison outcomes recorded. For each maximal point of S, we record its position
in M, using h�log h� bits in total. Now all maximal points of S are known.

We process the nonmaximal points of S from left to right and make them known as
follows. To process a point p, let qi, . . . , qj be all the maximal points that dominate p,
which are all known. Observe that p must be in W(qi) ∪ · · · ∪ W(qj). Let L be all the
points that are left of p, which are all known. We record the position of p in the list
(W(qi) ∪ · · · ∪ W(qj)) − L of input elements (say, ordered by their indices). This requires
�log(|(W(qi) ∪ · · · ∪ W(qj)) − L|� bits. Observe that W(qi) ∪ · · · ∪ W(qj) is contained in
(−∞, qj .x) × R. So, (W(qi) ∪ · · · ∪ W(qj)) − L is contained in the subset F(p) from our
Definition A.1—a lucky coincidence. Thus, the number of bits required is �log |F(p)|�.
Now p is known and we can continue the process.

By our construction, any permutation σ of S can be uniquely decoded from its encod-
ing, for any given set S. The encoding has total length at most

TA(σ) + h log h +
∑

p

log |F(p)| + O(n) = TA(σ) + h log h + n log n − F(S) + O(n).

Taking the maximum over all permutations σ of S, we thus obtain log(n!) ≤ TA(S) +
h log h + n log n − F(S) + O(n), yielding TA(S) + n + h log h ∈ �(F(S)). Combined with
the trivial lower bound �(n) and the naive information-theoretic lower bound TA(S) ∈
�(h log h) (as the problem definition requires the output to be in sorted order), this
implies that TA(S) ∈ �(F(S) + n).

The proof works in the random-order setting as well: in any encoding scheme, at most
a fraction 2−cn of the n! permutations can have encoding length less than log(n!)−cn for
any constant c. Thus, for a random permutation σ , with high probability the encoding
length is at least log(n!) − O(n), implying TA(σ) ∈ �(F(S) + n). In particular, T avg

A (S) ∈
�(F(S) + n).

Combining the previous theorem with the following observation yields a complete
proof of the �(F(S) + n) lower bound:

OBSERVATION A.4. Any algorithm for the 2D maxima problem in the comparison model
can be made to solve the 2D “maxima with witnesses” problem without needing to make
any additional comparisons.

PROOF. Consider the partial order ≺x over S formed by the outcomes of the x-
comparisons made by the maxima algorithm A. Define the partial order ≺y similarly.
Fix a nonmaximal point p. We argue that there must be a point q ∈ S such that p ≺x q
and p ≺y q. Suppose that every q ∈ S has p �≺x q or p �≺y q. Consider modifying the
point set as follows: Increase the x-coordinates of p and all points in {q ∈ S : p ≺x q} by
a sufficiently large common value; this does not affect the outcomes of the comparisons
made and ensures that all points q with p �≺x q now have p.x > q.x. Similarly, increase
the y-coordinates of p and all points in {q ∈ S : p ≺y q} by a sufficiently large common
value; all points q with p �≺y q now have p.y > q.y. Then every q ∈ S now has p.x > q.x
or p.y > q.y; that is, p is now maximal, and the algorithm would be incorrect on the
modified point set: a contradiction.

For every nonmaximal point p, we can thus find a witness point q that dominates p,
without making any additional comparisons. One issue remains: the witness point may

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:36 P. Afshani et al.

not be maximal. If not, we can change p’s witness to the witness of the witness, and so
on, until p’s witness is maximal.

Finally, note that we do not require the given algorithm A to report the maximal
points in left-to-right order. We argue that at the end we already know the x-order
of the maximal points. Suppose that q �≺x q′ for two consecutive maximal points q
and q′. Consider modifying the point set as follows: increase the x-coordinates of q
and all points in {p ∈ S : q ≺x p} by a sufficiently large common value; this does not
affect the outcomes of the comparisons made and ensures that we now have q.x > q′.x
(while maintaining q.y > q′.y). Then q′ is now nonmaximal, and the algorithm would
be incorrect on the modified point set: a contradiction.

Remark A.5. The proof can be modified for weaker versions of the problem, for
example, reporting just the number of maximal points (or its parity).

The proof does not appear to work for problems other than maxima in 2D. One
obvious issue is that Observation A.4 only applies to comparison-based algorithms for
orthogonal-type problems. Even more critically, the proof of Theorem A.3 relies on a
coincidence that is special to 2D maxima.

Curiously, this lower-bound proof holds even for nondeterministic algorithms, that is,
algorithms that can make guesses but must verify that the answer is correct; here we
assume that each bit guessed costs unit time. In the proof of Theorem A.3, we just record
the guesses in the encoding. The previous proofs of instance optimality by Fagin et al.
[2003] and Demaine et al. [2000] all hold in nondeterministic settings. Perhaps this
strength of the proof prevents its applicability to other geometric problems, whereas
our adversary-based proofs more powerfully exploit the deterministic nature of the
algorithms.

ACKNOWLEDGMENTS

We thank the referees for their helpful comments.

REFERENCES

Peyman Afshani and Timothy M. Chan. 2009. Optimal halfspace range reporting in three dimensions. In
Proc. 20th ACM-SIAM Symposium on Discrete Algorithms. 180–186.

Pankaj K. Agarwal and Jeff Erickson. 1999. Geometric range searching and its relatives. In Advances in
Discrete and Computational Geometry, B. Chazelle, J. E. Goodman, and R. Pollack (Eds.). Contemporary
Mathematics, Vol. 223. American Mathematical Society, Providence, RI, 1–56.

Nir Ailon, Bernard Chazelle, Kenneth L. Clarkson, Ding Liu, Wolfgang Mulzer, and C. Seshadhri. 2011.
Self-improving algorithms. SIAM Journal on Computing 40 (2011), 350–375.

D. S. Andrews, Jack Snoeyink, Jim Boritz, Timothy M. Chan, Graham Denham, Jenny Harrison, and Chong
Zhu. 1994. Further comparisons of algorithms for geometric intersection problems. In Proc. 6th Interna-
tional Symposium on Spatial Data Handling. 709–724.

Sunil Arya, Theocharis Malamatos, and David M. Mount. 2007a. A simple entropy-based algorithm for
planar point location. ACM Transactions on Algorithms 3, (2007), Article 17.

Sunil Arya, Theocharis Malamatos, David M. Mount, and Ka Chun Wong. 2007b. Optimal expected-case
planar point location. SIAM Journal on Computing 37 (2007), 584–610.

Ilya Baran and Erik D. Demaine. 2005. Optimal adaptive algorithms for finding the nearest and farthest point
on a parametric black-box curve. International Journal of Computational Geometry and Applications 15
(2005), 327–350.

Jérémy Barbay and Eric Chen. 2008. Adaptive planar convex hull algorithm for a set of convex hulls. In
Proc. 20th Canadian Conference on Computational Geometry. 47–50.

Michael Ben-Or. 1983. Lower bounds for algebraic computation trees. In Proc. 15th ACM Symposium on
Theory of Computing. 80–86.

Jon Louis Bentley, Kenneth L. Clarkson, and David B. Levine. 1990. Fast linear expected-time algorithms
for computing maxima and convex hulls. In Proc. 1st ACM-SIAM Symposium on Discrete Algorithms.
179–187.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

Instance-Optimal Geometric Algorithms 3:37

Binay K. Bhattacharya and Sandeep Sen. 1997. On a simple, practical, optimal, output-sensitive randomized
planar convex hull algorithm. Journal of Algorithms 25 (1997), 177–193.

Prosenjit Bose, Luc Devroye, Karim Douı̈eb, Vida Dujmović, James King, and Pat Morin. 2010. Odds-on
trees. arXiv abs/1002.1092 (2010).

Joan Boyar and Lene M. Favrholdt. 2007. The relative worst order ratio for online algorithms. ACM Trans-
actions on Algorithms 3, (2007), Article 22.

Timothy M. Chan. 1996a. Fixed-dimensional linear programming queries made easy. In Proc. 12th ACM
Symposium on Computational Geometry. 284–290.

Timothy M. Chan. 1996b. Optimal output-sensitive convex hull algorithms in two and three dimensions.
Discrete and Computational Geometry 16 (1996), 361–368.

Timothy M. Chan. 1996c. Output-sensitive results on convex hulls, extreme points, and related problems.
Discrete and Computational Geometry 16 (1996), 369–387.

Timothy M. Chan. 2000. Random sampling, halfspace range reporting, and construction of (≤ k)-levels in
three dimensions. SIAM Journal on Computing. 30 (2000), 561–575.

Timothy M. Chan. 2010. Comparison-based time–space lower bounds for selection. ACM Transactions on
Algorithms 6, (2010), Article 26.

Timothy M. Chan. 2012. Optimal partition trees. Discrete and Computational Geometry 47 (2012), 661–690.
Timothy M. Chan, Jack Snoeyink, and Chee-Keng Yap. 1997. Primal dividing and dual pruning: Output-

sensitive construction of four-dimensional polytopes and three-dimensional Voronoi diagrams. Discrete
and Computational Geometry 18 (1997), 433–454.

Timothy M. Chan and Konstantinos Tsakalidas. 2015. Optimal deterministic algorithms for 2-d and 3-d
shallow cuttings. In Proc. 31st Symposium on Computational Geometry.

Bernard Chazelle. 1988. A functional approach to data structures and its use in multidimensional searching.
SIAM Journal on Computing 17 (1988), 427–462.

Bernard Chazelle. 1991. Triangulating a simple polygon in linear time. Discrete and Computational Geometry
6 (1991), 485–524.

Bernard Chazelle, Herbert Edelsbrunner, Michelangelo Grigni, Leonidas J. Guibas, John Hershberger, Micha
Sharir, and Jack Snoeyink. 1994. Ray shooting in polygons using geodesic triangulations. Algorithmica
12 (1994), 54–68.

Bernard Chazelle, Leo J. Guibas, and D. T. Lee. 1985. The power of geometric duality. BIT 25 (1985), 76–90.
Bernard Chazelle and Jiřı́ Matoušek. 1995. Derandomizing an output-sensitive convex hull algorithm in

three dimensions. Computational Geometry: Theory and Applications 5 (1995), 27–32.
Kenneth L. Clarkson. 1994. More output-sensitive geometric algorithms. In Proc. 35th IEEE Symposium on

Foundations of Computer Science. 695–702.
Kenneth L. Clarkson. 1995. Las Vegas algorithms for linear and integer programming. Journal of the ACM

42 (1995), 488–499.
Kenneth L. Clarkson and Peter W. Shor. 1989. Applications of random sampling in computational geometry,

II. Discrete and Computational Geometry 4 (1989), 387–421.
Sébastien Collette, Vida Dujmović, John Iacono, Stefan Langerman, and Pat Morin. 2012. Entropy, tri-

angulation, and point location in planar subdivisions. ACM Transactions on Algorithms 8, (2012),
Article 29.

Mark de Berg, Matthew Katz, A. Frank van der Stappen, and Jules Vleugels. 2002. Realistic input models
for geometric algorithms. Algorithmica 34 (2002), 81–97.

Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. 1997. Computational Geometry:
Algorithms and Applications. Springer-Verlag.

Erik D. Demaine, Dion Harmon, John Iacono, Daniel Kane, and Mihai Pǎtraşcu. 2009. The geometry of
binary search trees. In Proc. 20th ACM-SIAM Symposium on Discrete Algorithms. 496–505.

Erik D. Demaine and Alejandro López-Ortiz. 2003. A linear lower bound on index size for text retrieval.
Journal of Algorithms 48 (2003), 2–15.

Erik D. Demaine, Alejandro López-Ortiz, and J. Ian Munro. 2000. Adaptive set intersections, unions, and
differences. In Proc. 11th ACM-SIAM Symposium on Discrete Algorithms. 743–752.

Peerapong Dhangwatnotai, Tim Roughgarden, and Qiqi Yan. 2015. Revenue maximization with a single
sample. Games and Economic Behavior 91 (2015), 318–333.

Vida Dujmović, John Howat, and Pat Morin. 2012. Biased range trees. Algorithmica 62 (2012), 21–37.
Herbert Edelsbrunner. 1987. Algorithms in Combinatorial Geometry. Springer-Verlag.

Herbert Edelsbrunner and Weiping Shi. 1990. An O(n log2 h) time algorithm for the three-dimensional convex
hull problem. SIAM Journal on Computing. 20 (1990), 259–269.

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

3:38 P. Afshani et al.

Jeff Erickson. 2005. Dense point sets have sparse Delaunay triangulations. Discrete and Computational
Geometry 33 (2005), 83–115.

Ronald Fagin, Amnon Lotem, and Moni Naor. 2003. Optimal aggregation algorithms for middleware. Journal
of Computer and System Sciences 66 (2003), 614–656.

Alexander Golynski. 2009. Cell probe lower bounds for succinct data structures. In Proc. 20th ACM-SIAM
Symposium on Discrete Algorithms. 625–634.

John Iacono. 2004. Expected asymptotically optimal planar point location. Computational Geometry: Theory
and Applications 29 (2004), 19–22.

Neil D. Jones. 1997. Computability and Complexity: From a Programming Perspective. MIT Press.
Jeff Kahn and Jeong Han Kim. 1995. Entropy and sorting. Journal of Computer and System Sciences 51

(1995), 390–399.
Claire Kenyon. 1996. Best-fit bin-packing with random order. In Proc. 7th ACM-SIAM Symposium on Discrete

Algorithms. 359–364.
David G. Kirkpatrick. 1983. Optimal search in planar subdivisions. SIAM Journal on Computing 12 (1983),

28–35.
David G. Kirkpatrick and Raimund Seidel. 1985. Output-size sensitive algorithms for finding maximal

vectors. In Proc. 1st ACM Symposium on Computational Geometry. 89–96.
David G. Kirkpatrick and Raimund Seidel. 1986. The ultimate planar convex hull algorithm? SIAM Journal

on Computing 15 (1986), 287–299.
Jiřı́ Matoušek. 1992. Efficient partition trees. Discrete and Computational Geometry 8 (1992), 315–334.
Jiřı́ Matoušek. 2000. Derandomization in computational geometry. In Handbook of Computational Geometry,

Jörg-Rüdiger Sack and Jorge Urrutia (Eds.). Elsevier Science Publishers B.V., North-Holland, Amster-
dam, 559–595.

Jiřı́ Matoušek, Janos Pach, Micha Sharir, Shmuel Sifrony, and Emo Welzl. 1994. Fat triangles determine
linearly many holes. SIAM Journal on Computing 23 (1994), 154–169.

Shlomo Moran, Marc Snir, and Udi Manber. 1985. Applications of Ramsey’s theorem to decision tree com-
plexity. Journal of the ACM 32 (1985), 938–949.

Ketan Mulmuley. 1993. Computational Geometry: An Introduction Through Randomized Algorithms. Pren-
tice Hall, Englewood Cliffs, NJ.

J. Ian Munro and Philip M. Spira. 1976. Sorting and searching in multisets. SIAM Journal on Computing 5
(1976), 1–8.

Cuong P. Nguyen. 2015. Optimal Dominance Counting for a Non-Uniform Query Distribution in Linear
Space. Dalhousie University. Bachelor of Computer Science Honours Thesis.

Franco P. Preparata and Michael I. Shamos. 1985. Computational Geometry: An Introduction. Springer-
Verlag.

Sandeep Sen and Neelima Gupta. 1999. Distribution-sensitive algorithms. Nordic Journal on Computing 6
(1999), 194–211.

Jack Snoeyink. 1997. Point location. In Handbook of Discrete and Computational Geometry, Jacob E. Good-
man and Joseph O’Rourke (Eds.). CRC Press, Boca Raton, FL, Chapter 30, 559–574.

Daniel A. Spielman and Shang-Hua Teng. 2004. Smoothed analysis of algorithms: Why the simplex algorithm
usually takes polynomial time. Journal of the ACM 51, 3 (2004), 385–463.

Rephael Wenger. 1997. Randomized quickhull. Algorithmica 17 (1997), 322–329.
Andrew Chi-Chih Yao. 1981. A lower bound to finding convex hulls. Journal of the ACM 28 (1981), 780–787.
Andrew Chi-Chih Yao. 1991. Lower bounds for algebraic computation trees with integer inputs. SIAM

Journal on Computing 20 (1991), 655–668.
F. Frances Yao, David P. Dobkin, Herbert Edelsbrunner, and Michael S. Paterson. 1989. Partitioning space

for range queries. SIAM Journal on Computing 18 (1989), 371–384.

Received April 2015; revised October 2016; accepted November 2016

Journal of the ACM, Vol. 64, No. 1, Article 3, Publication date: March 2017.

