
Selenite Towers Move Faster Than Hanoï Towers,
But Still Require Exponential Time
Jérémy Barbay∗

Departamento de Ciencias de la Computación (DCC), Universidad de Chile,
Santiago, Chile
jeremy@barbay.cl

Abstract
The Hanoï Tower problem is a classic exercise in recursive programming: the solution has a
simple recursive definition, and its complexity and the matching lower bound correspond to the
solution of a simple recursive function (the solution is so simple that most students memorize it
and regurgitate it at exams without truly understanding it). We describe how some minor change
in the rules of the Hanoï Tower yields various increases of difficulty in the solution, so that to
require a deeper mastery of recursion than the classical Hanoï Tower problem. In particular, we
analyze the Selenite Tower problem, where just changing the insertion and extraction positions
from the top to the middle of the tower results in a surprising increase in the intricacy of the
solution: such a tower of n disks can be optimally moved in a

√
3n moves for n even (i.e. less

than a Hanoï Tower of same height), via five recursive functions following three distinct patterns.

1998 ACM Subject Classification F.2.2 [Analysis of Algorithms and Problem Complexity] Non-
numerical Algorithms and Problems, F.2.m [Analysis of Algorithms and Problem Complexity]
Miscellaneous

Keywords and phrases Brähma Tower, Disk Pile, HanoïTower, Levitating Tower, Recursivity

Digital Object Identifier 10.4230/LIPIcs.FUN.2016.5

1 Introduction

The Hanoï Tower problem is a classical problem often used to teach recursivity, originally
proposed in 1883 by Édouard Lucas [5, 6], where one must move n disks, all of distinct size,
one by one, from a peg A to a peg C using only an intermediary peg B, while ensuring no
disk ever stands on a smaller one. As early as 1892, Ball [3] described an optimal recursive
algorithm which moves the n disks of a Hanoï Tower in 2n− 1 steps. Many generalizations
have been studied, allowing more than three pegs [4], coloring disks [7], and cyclic Hanoï
Towers [2]. Some problems are still open, as the optimality of the algorithm for 4-peg Hanoï
Tower problem, and the analysis of the original problem is still a source of inspiration
many years after its definition: for instance, Allouche and Dress [1] proved in 1990 that the
movements of the Hanoï Tower problem can be generated by a finite automaton, making
this problem an element of SPACE(1).

The solution to the Hanoï Tower problem is simple enough that it can be memorized and
regurgitated at will by students from all over the world: asking about it in an assignment or
exam does not truly test a student’s mastery of the concept of recursivity, pushing instructors
to consider variants with slightly more sophisticated solutions. Some variants do not make
the problem more difficult (e.g. changing the insertion and removal point to the bottom:

∗ Work supported by the Millennium Nucleus RC130003 “Information and Coordination in Networks”.

© Jérémy Barbay;
licensed under Creative Commons License CC-BY

8th International Conference on Fun with Algorithms (FUN 2016).
Editors: Erik D. Demaine and Fabrizio Grandoni; Article No. 5; pp. 5:1–5:20

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.FUN.2016.5
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

5:2 Selenite Towers Move Faster Than Hanoï Towers

the solution is exactly the same), some make it only slightly more difficult (e.g. considering
the case where the disks are not necessarily of distinct sizes, described and analyzed in
Appendix A), but some small changes can make it surprisingly more difficult.

We consider the Selenite Tower problem, which only differs from the Hanoï Tower
problem in that the insertion and removal point in each tower is at the middle instead of
the top (see Figure 1 for an illustration with Selenite Towers of sizes n = 3 and n = 4,
and Section 2.1 for the formal definition). One can poetically imagine that the Selenites1
living on the moon can take advantage of the low gravity in order to remove and insert disks
in the middle of the tower rather than merely at the top.

As for the classical Hanoï Tower, such insertion and removal rules guarantee that
any move is reversible (i.e. any disk d removed from a peg X can always be immediately
reinserted in the same peg X), that the insertion and removal positions are uniquely
defined, that each peg can always receive a disk, and that each tower with one disk or more
can always yield one disk. The problem is very similar to the Hanoï Tower problem: one
would expect answering the following questions to be relatively easy, possibly by extending
the answers to the corresponding questions on Hanoï Towers2:

Consider the problem of moving a Selenite Tower of n disks, all of distinct size,
one by one, from a peg A to a peg C using only an intermediary peg B, while ensuring
that at no time does a disk stand on a smaller one:
1. Which sequences of steps permit moving such a tower?
2. What is the minimal length of such a sequence?
3. How many such shortest sequences are there?

We show that there is a unique shortest sequence of steps which moves a Selenite
Tower of n disks of distinct sizes, and that it is of length at most

√
3n (i.e., exactly√

3n = 3 n
2 if n is even, and 3

5
√

3n−1 − 2
3 = 3 n−1

2 + 2(3 n−3
2 − 1) <

√
3n if n is odd). As√

3 ≈ 1.733 < 2, this sequence is exponentially shorter than the corresponding one for the
Hanoï Tower problem (of length 2n − 1). We define formally the problem and its basic
properties in Section 2: its formal definition in Section 2.1, some examples where such towers
can be moved faster in Section 2.2, and some useful concepts on the insertion and removal
order of a tower in Section 2.3. We describe a recursive solution in Section 3, via its algorithm
in Section 3.1, the proof of its correctness in Section 3.2 and the analysis of its complexity
in Section 3.3. The optimality of the solution is proved in Section 4, via an analysis of the
graph of all possible states and transition (defined and illustrated in Section 4.1) and a proof
of optimality for each function composing the solution (Section 4.2). We conclude with
a discussion (Section 5) of other variants of similar or increased complexity, and share in
Appendix A the text and the solution of a simpler variant successfully used in undergraduate
assignments and exams.

2 Formal Definition and Basic Facts

In this section we define more formally the Selenite Tower (Section 2.1), how small
examples already show that moving such towers requires less steps than moving a Hanoï

1 The word “selenite” is derived from the Greek lunar deity “Σελνην”, “Selene”. The author H.G. Wells,
in “The First Men In The Moon”, referred to the inhabitants of the moon as selenites. The author Jules
Verne also used this term in “From Earth to the Moon” and “Around the Moon”.

2 For a Hanoï Tower, the answer to those question is that there is a single such shortest sequence, of
length 2n − 1, obtained by the recursion h(n,A,B,C) = h(n−1, A, C,B).”A→ B; ”.h(n−1, B,A,C) if
n > 0 and ∅ otherwise.

J. Barbay 5:3

Figure 1 An illustration of the rules for the insertion and removal in a Selenite Tower,
depending on the parity of its size (sizes n = 3 and n = 4 here). In each case, the shaded disk
indicates the removal point and the arrow indicates the insertion point.

1
2
3
A B C

A→ B

1
3 2
A B C

A→ B

1
2
3

A B C

A→ C

2
3 1

A B C

B → C

2
1
3

A B C

B → C

1
2
3

A B C

Figure 2 A Selenite Tower of three disks can be moved in just five steps.

1
2
3
A B C

A→ C

2
3 1
A B C

A→ B

3 2 1
A B C

C → B

3
1
2

A B C

A→ C

1
2 3

A B C

B → A

1 2 3
A B C

B → C

1
2
3

A B C

A→ C

1
2
3

A B C

Figure 3 A Hanoï Tower of three disks requires seven steps to be moved between two pegs.

Tower (Section 2.2), and some properties of the order in which disks are inserted or removed
on a peg to build or destroy a tower (Section 2.3).

2.1 Formal Definition
The “middle” disk of a tower of even size is not well defined, nor is the “middle” insertion
point in a tower of odd size. We define both more formally in such a way that if n is odd,
the removal position is the center one, and the insertion point is below it; while if n is
even, the insertion point is in the middle of the tower, while the removal position is below
the middle of the tower. See Figure 1 for an illustration with sizes n = 3 and n = 4.

More formally, on a peg containing n disks ranked by increasing sizes, the removal point
is the disk of rank bn2 c+ 1; and the insertion point is position bn+1

2 c.
The insertion of disk d on peg X is legal if inserting d in the insertion point of X

yields a legal configuration, where no disk is above a smaller one. A move from peg X to peg
Y is legal if there is a disk d to remove from X, and if the insertion of d on the Y is legal.

2.2 Moving small towers – differences with Hanoï
For size one or two, there is no difference in the moving cost between a Hanoï Tower and
a Selenite Tower. The first difference appears for size three, when only five steps are
necessary to move a Selenite Tower (see the sequence of five steps to move a Selenite
Tower of size n = 3 in Figure 2) as opposed to the seven steps required for moving a
classical Hanoï Tower (see the sequence of seven steps to move a Hanoï Tower of size
n = 3 in Figure 3).

When an odd number of disks is present on the peg A, and an even number is present on
pegs B and C, a sub-tower of height 2 can be moved from A in 2 steps, when in a Hanoï
Tower we need 3 steps to move any subtower of same height. In the Selenite Tower

FUN 2016

5:4 Selenite Towers Move Faster Than Hanoï Towers

problem, having a third disk “fixed” on A yields a reduced number of steps. We formalize
this notion of “fixed” disk in the next section.

2.3 Structural facts on a single Peg
Before considering the complete problem over three pegs, we describe some concepts about
single pegs, and on the order in which the disks are inserted and removed on a specific peg.

I Definition 1. We define the removal order as the order in which disks (identified by their
rank in the final tower) can be removed from a Selenite Tower. Symmetrically, we define
the insertion order as the order in which the disks are inserted in the tower.

The symmetry of the rules concerning the insertion and removal location of Selenite
Towers yields that the insertion order is the exact reverse of the removal order (the
insertion point of a tower is the removal point of a tower with one more disk), and each
disk removed from a peg can be immediately put back exactly where it was.

In particular, a key argument to both the description of the solution in Section 3 and to
the proof of its optimality in Section 4 is the fact that, when some (more extreme) disks are
considered as “fixed” (i.e. the call to the current function has to terminate before such disks
are moved), the order in which a subset of the disks is removed from a peg depends on the
number of those “fixed” disks.

I Definition 2. When moving recursively n disks from a peg X with x > n disks, the x− n
last disks in the removal order of X are said to be fixed. The parity of peg X is the parity
of the number x of disks fixed on this peg.

Selenite Towers cannot be moved much faster than Hanoï Towers:

I Lemma 3. Without a third peg, it is impossible to move more than one disk between two
pegs with the same parity.

Proof. Between two pegs of same parity, the removal order is the same. So the first disk
needed on the final peg will be the last one removed from the starting peg. With more than
one disk, we need the third peg to dispose temporally of the other disks. J

I Lemma 4. It is impossible to move more than two disks between two pegs of opposite
parities without a third peg.

Proof. Between two pegs of opposite parities, the removal orders are different: But the
definition of the middle is constant when the number of disks changes by 2. So after moving
two disks the third cannot be inserted in the right place. J

The removal and insertion orders are changing with the parity of the Selenite Tower.
Consider a peg with n disks on it:

if n = 2m+ 1 is odd, then the disks are removed in the following order:

(m+ 1,m+ 2, m,m+ 3, m− 1,m+ 4, . . . , 3, 2m, 2, 2m+ 1, 1)

if n = 2m is even, then the removal order is:

(m+ 1,m, m+ 2,m− 1, m+ 3,m− 2, . . . , 2m− 1, 2, 2m, 1)

J. Barbay 5:5

The relative order of m and m + 2, of m − 1 and m + 3, and more generally of any pair
of disks i and m− i for i ∈ [1..bn/2c], are distinct. More specifically, disks are alternately
extracted below and above the insertion point. This implies the two following connexity
lemmas:

I Lemma 5. The k first disks removed from the tower are contiguous in the original tower,
and they are either all smaller or all larger than the (k + 1)-th disk removed.

I Lemma 6. If k disks are all smaller than the disk below the insertion point, and all
larger than the disk above the insertion point, then there exists an order for adding those k
disks to the tower.

Proof. By induction: for one disk it is true; for k disks, if the insertion point after the
insertion of disc d is above d then add the larger and then the k−1 remaining disks, else
add the smaller and then the k−1 disks left. J

In the next section, we present a solution to the Selenite Tower problem which takes
advantage of the cases where two disks can be moved between the same two pegs in two
consecutive steps.

3 Solution

One important difference between Hanoï Towers and Selenite Towers is that we do not
always need to remove n− 1 disks of a tower of n disks to place the n-th disk on another peg
(e.g. in the sequence of steps shown in Figure 2, disk 3 was removed from A when there was
still a disk sitting on top of it). But we need always to remove at least n− 2 disks in order to
release the n-th disk, as it is the last or the last-but-one disk removed. This yields a slightly
more complex recursion than in the traditional case. We describe an algorithmic solution
in Section 3.1, prove its correctness in Section 3.2, and analyze the length of its output in
Section 3.3. We prove the optimality of the solution produced separately, in Section 4.

3.1 Algorithm
Note |A| the number of disks on peg A, |B| on B and |C| on C. For each triplet (x, y, z) ∈
{0, 1}3, we define the function movexyz(n,A,B,C) moving n disks from peg A to peg C
using peg B when |A| ≥ n, |A| − n ≡ x mod 2, |B| ≡ y mod 2, |C| ≡ z mod 2, and the n
first disks extracted from A can be legally inserted on B and C. Less formally, there are x
fixed disks on the peg A, y on B and z on C.

We need only to study three of those 23 = 8 functions. First, as the functions are
symmetric two by two: for instance, move000(n,A,B,C) behaves as move111(n,A,B,C)
would if the insertion point in a tower of odd size was above the middle disk, and the
removal point in a tower of even size was above the middle of the tower: in particular,
they have exactly the same complexity. Second, the reversibility and symmetry of the
functions yields a similar reduction: move001(n,A,B,C) has the same structure as the
function move100(n,A,B,C) and the two have the same complexity.

We describe the python code implementing those functions in Figures 4 to 7, so that the
initial call is made through the call move000(n,"a","b","c"), while recursive calls refer only
to function move000(n,A,B,C) (Figure 4), function move100(n,A,B,C) (Figure 5), function
move001(n,A,B,C) (similar to function move100(n,A,B,C) and described in Figure 6) and
function move010(n,A,B,C) (Figure 7).

The algorithm for move000(n,A,B,C) (in Figure 4) has the same structure as the corres-
ponding one for moving Hanoï Towers, the only difference being in the parity of the pegs

FUN 2016

5:6 Selenite Towers Move Faster Than Hanoï Towers

def move(a,b):
print "("+a+",",
print b+")" ,

def move000 (n,a,b,c):
if n>0 :

move100 (n-1,a,c,b)
move(a,c)
move001 (n-1,b,a,c)

Figure 4

def move100 (n,a,b,c):
if n == 1 :

move(a,c)
elif n>1 :

move100 (n-2,a,c,b)
move(a,c)
move(a,c)
move010 (n-2,b,a,c)

Figure 5

def move001 (n,a,b,c):
if n == 1 :

move(a,c)
elif n>1 :

move010 (n-2,a,c,b)
move(a,c)
move(a,c)
move001 (n-2,b,a,c)

Figure 6

def move010 (n,a,b,c):
if n == 1 :

move(a,c)
elif n == 2 :

move(a,b)
move(a,c)
move(b,c)

elif n>2 :
move010 (n-2,a,b,c)
move(a,b)
move(a,b)
move010 (n-2,c,b,a)
move(b,c)
move(b,c)
move010 (n-2,a,b,c)

Figure 7

in the recursive calls, which implies calling other functions than move000(n,A,B,C), in this
case move001(n,A,B,C) and move100(n,A,B,C). The algorithms for move100(n,A,B,C)
(in Figure 5) and move001(n,A,B,C) (in Figure 6) and are taking advantage of the difference
of parity between the two extreme pegs to move two consecutive disks in two moves, but still
has a similar structure to the algorithm for move000(n,A,B,C) and the corresponding one
for moving Hanoï Towers (just moving two disks instead of one).

The algorithm for move010(n,A,B,C) is less intuitive. Given that the removal and
insertion orders on the origin peg A and on the destination peg C are the same (because
the parity of those pegs is the same), n− 1 disks must be removed from A before the last
disk of the removal order, which yields a naive algorithm such as described in Figure 8.
Such a strategy would yield a correct solution but not an optimal one, as it reduces the size
only by one disk at the cost of two recursive calls and one step (i.e. reducing the size by two
disks at the cost of four recursive calls and three steps). Another strategy (described in the
algorithm in Figure 7) reduces the size by two at the cost of three recursive calls and four
steps: moving n− 2 disks to C, the two last disks of the removal order on B, then n− 2
disks to A, the two last disks of the removal order on C, then finally the n− 2 disks to C.
The first strategy (f(n) = 2f(n− 1) + 2 = 4f(n− 2) + 3) yields a complexity within Θ(2n)
while the second strategy (f(n) = 3f(n− 2) + 4) yields a complexity within Θ(3 n

2). We show
in Section 3.2 that moving two disks at a time is correct in this context and in Section 4
that the latter yields the optimal solution.

J. Barbay 5:7

def nonOptimalMove010 (n,a,b,c):
if n==1:

move(a,c)
else:

move101 (n-1,a,c,b)
move(a,c)
move101 (n-1,b,a,c)

Figure 8 Alternative (non optimal) take on
move010(n,A,B,C).

def nonOptimalMove101 (n,a,b,c):
if n==1:

move(a,c)
else:

move010 (n-1,a,c,b)
move(a,c)
move010 (n-1,b,a,c)

Figure 9 Alternative (non optimal) take on
move101(n,A,B,C).

4
...
n−2

1
2
n−1
n 3

A B C

Figure 10 Requirement for insertion (i): disks 4 to n− 2 can be inserted on B as the insertion
point of B is between 2 and n− 1; and on C as the insertion point of C is under 3.

3.2 Correctness of the algorithm
We prove the correctness of our solution by induction on the number n of disks.

I Theorem 7. For any positive integer value n, and any triplet (x, y, z) ∈ {0, 1}3 of booleans,
the function movexyz(n,A,B,C) produces a sequence of legal steps which moves a Selenite
Tower from A to C via B.

The proof is based on the following invariant, satisfied by all recursive functions on
entering and exiting:

I Definition 8. Requirement for insertion (i): The disks above the insertion point of B or
C are all smaller than the first n disks removed from A; and the disks below the insertion
point of B or C are all larger than the first n disks removed from A (see an illustration in
Figure 10).

Proof. Consider the property H(n) = “∀(x, y, z) ∈ {0, 1}3, ∀i ≤ n, movexyz(i, A,B,C) is
correct”. H(0) is trivially true, and H(1) can be checked for all functions at once. For all
values x, y, z, the function movexyz(1, A,B,C) is merely performing the step move(A,C).
The hypothesis H(1) follows. Now, for a fixed n > 1, assume that H(n− 1) holds: we prove
the hypothesis H(n) separately for each function.

Analysis of move000(n,A,B,C):
1. According to H(n−1) the call to move100(n−1, A,B,C) is correct if (i) and (p)100 are

respected. (i) is implied by (i) on move000(n− 1, A,B,C); (p)100 is implied by (p)000
and the remaining disk on A (a− n mod 2 ≡ 0⇒ a− (n− 1) mod 2 ≡ 1 mod 2).

2. The step move(A,C) is both possible and legal because of the precondition (i) for
move000(n,A,B,C): the disk moved was in the n first removed from A, and so can
be introduced on C.

3. The call to move001(n,A,B,C) is symmetrical to 1, and therefore correct.
4. We can check the final state by verifying that the number of disks removed from A

and added to C is (n− 1) + 1 = n.

FUN 2016

5:8 Selenite Towers Move Faster Than Hanoï Towers

x

y

(a) (i): n odd: a is removed first, y is removed
second.

x

y

(b) (ii): n even: y is removed first, x is removed
second.

Figure 11 Removal order of the last two disks.

So move000(n,A,B,C) is correct.
Analysis of move100(n,A,B,C):
1. move100(n− 2, A,B,C) is correct according to H(n− 1), as the requirements are also:

The requirement (i) is given by (i) for the initial call, and the parity (p)100 is respected
because we move two disks less than in the current call to move100(n,A,B,C).

2. The two disks left (let us call them α and β) are in position (given Fig. 11, (i)) such
that the removal order on A is (α, β) and the insertion order on C is (β, α) (see
Fig. 11, (ii)). They can be inserted on C because of requirement (i). So the two disks
are correctly moved in two steps.

3. The requirements for move010(n− 2, A,B,C) are satisfied:
(i) stand as a consequence of the precondition (i) for the current call, as the n− 2
disks to be moved on C were on A before the original call, in the middle of α and β.
(p)010: The number of disks on C is still even as we added two disks. The number
of disks on A is still odd as we removed two disks.

Therefore, because of H(n− 2), move010(n− 2, A,B,C) is correct.
This finishes the proof that move100(n,A,B,C) is correct.
Analysis of move001(n,A,B,C): This function, being similar to move100(n,A,B,C), for
a task symmetric, has the same proof of correctness.
Analysis of move010(2, A,B,C): The two disks (let us call them α and β) are in position
(given Fig. 11, (ii)) such that the removal order on A is (β, α) and the insertion order
on C is (α, β,), as A and C have the same parity. β can be inserted on B and they can
both be inserted on C because of requirement (i). So the two disks are correctly moved
in three steps, using peg B to temporally dispose of the disk β. So move010(2, A,B,C)
is correct.
Analysis of move010(n,A,B,C) if n > 2: Note that fixing two disks on the same peg
does not change the parity of this peg.
1. move010(n − 2, A,B,C) is correct as: from (i) for the initial call results (i) for the

first recursive call; (p)010 is a natural consequence of (p)010 for the initial call (because
the parity of the peg is conserved when two disks are fixed on it). So H(n− 1) implies
that move010(n− 2, A,B,C) is correct.

2. As A and B have different parities, we can move two consecutive disks in two consecutive
calls, as for move100(n,A,B,C).

3. The second recursive call to move010(n− 2, A,B,C) verifies conditions (i) and (p)010
as only two extreme disks (the smallest and the largest) have been removed from A.

J. Barbay 5:9

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
f010 0 1 3 7 13 25 43 79 133 241 403 727 1213 2185 3643
f100 0 1 2 4 7 13 22 40 67 121 202 364 607 1093 1822
f000 0 1 3 5 9 15 27 45 81 135 243 405 729 1215 2187

3dn/2e 1 3 3 9 9 27 27 81 81 243 243 729 729 2187 2187

Figure 12 The first values of f010,f100 and f000, computed automatically from the recursion.
Those corroborate the intuition that f100(n) < f000(n) for values of n larger than 1.

4. The two next steps are feasible because of the difference of parity between B and C
(same argument as point 2).

5. The last recursive call is symmetric to the first call, as we move the n− 2 disks back
between the two extreme disks, but this time on C.

Therefore move010(n,A,B,C) is correct. J

We analyze the complexity of this solution in the next section.

3.3 Complexity of the algorithm
Let fxyz(n) be the complexity of the function movexyz(n,A,B,C), when |A| ≥ n, |A|−n ≡ x
mod 2, |B| ≡ y mod 2 and |C| ≡ z mod 2. The algorithms from Figures 4 to 7 yield a
recursive system of four equations.

∀x, y, z fxyz(0) = 0
∀x, y, z fxyz(1) = 1

f010(2) = 3

∀n > 1, f000(n) = f100(n− 1) + 1 + f001(n− 1)
∀n > 1, f100(n) = f100(n− 2) + 2 + f010(n− 2)
∀n > 1, f001(n) = f010(n− 2) + 2 + f001(n− 2)
∀n > 2, f010(n) = 3f010(n− 2) + 4

As f001 is defined exactly as f100 (because of the symmetry between move001(n,A,B,C)
and move100(n,A,B,C)), we can replace each occurrence of f001 by f100, hence reducing
the four equations to a system of three equations:

∀x, y, z fxyz(0) = 0
∀x, y, z fxyz(1) = 1

f010(2) = 3

∀n > 1, f000(n) = 2f100(n− 1) + 1
∀n > 1, f100(n) = f100(n− 2) + 2 + f010(n− 2)
∀n > 2, f010(n) = 3f010(n− 2) + 4

Lemmas 9 to 11 resolve the system function by function. The function f010(n) can be
solved independently from the others:

FUN 2016

5:10 Selenite Towers Move Faster Than Hanoï Towers

I Lemma 9.

f010(n) =

0 if n = 0;
1 if n = 1;
3 if n = 2;
3 n+1

2 − 2 if n ≥ 3 is odd; and
5× 3 n

2−1 − 2 if n ≥ 4 is even.

Proof. Consider the recurrence Xk+1 = 3Xk + 4 at the core of the definition of f010: a mere
extension yields the simple expression Xk = 3k(X0 + 2)− 2.

When n ≥ 3 is odd, set k = n−1
2 ≥ 1, U0 = 1 and Uk+1 = 3Uk + 4 so that f(2k + 1) =

Uk = 3k(1 + 2)− 2. Then f010(n) = 3× 3k − 2 = 3k+1 − 2 for n ≥ 3 and odd.
When n ≥ 4 is even, set k = n

2 ≥ 1, V0 = 3 and Vk+1 = 3Vk + 4 so that f(2k) = Vk =
3k(3 + 2)− 2, so that f010(n) = 5× 3k − 2 for n ≥ 4 and even.

Gathering all the results yields the final expression. J

The expression for the function f010 yields the expression for the function f100:

I Lemma 10.

f100(n) =

0 if n = 0;
1 if n = 1;
2 if n = 2;
4 if n = 3;
5
2 × 3 n

2−1 + 2 where n ≥ 4 is even; and
3

n+1
2 −1
2 where n ≥ 5 is odd.

Proof. Consider the projection of the system to just f100:

f100(n) =

0 if n = 0
1 if n = 1
f100(n− 2) + 2 + f010(n− 2) if n ≥ 2

For any integer value of k ≥ 0, we combine some change of variables with the results
from Lemma 9 to yield two linear systems, which we solve separately:

Vk = f100(2k) and V0 = f100(0) = 0 so that f100(n) = Vk if n is even and k = n
2 ; and

Uk = f100(2k + 1) and U0 = f100(1) = 1 so that f100(n) = Uk if n is odd and k = n−1
2 .

On one hand, Uk = Uk−1 + 2 + f010(2k+ 1− 2) for k > 0 and U0 = 1. This yields a linear
recurrence which we develop as follows:

Uk = Uk−1 + 2 + f010(2k − 1) by definition;

= Uk−1 + 2 + 3× 3
(2k−1)−1

2 − 2 via Lemma 9 because 2k − 1 is odd;
= Uk−1 + 3k by mere simplification;

= U0 + 3
2(3k − 1) by resolution of a geometric series;

= 3k+1 − 1
2 because U0 = 1.

Since f100(n) = Un−1
2

when n is odd, the solution above yields f100(n) = 3
n+1

2 −1
2 if n is odd.

On the other hand, Vk = Vk−1 + 2 + f010(2k − 2) for k > 0 and V0 = 0. The initial
conditions of f010 for n = 0, 1 and 2 yield the three first values of Vk: V0 = 0; V1 =

J. Barbay 5:11

V0 + 2 + f010(0) = 0 + 2 + 0 = 2; and V2 = V1 + 2 + f010(2) = 2 + 2 + 3 = 7. We then develop
the recursion for k ≥ 3 similarly to Uk:

Vk = Vk−1 + 2 + f010(2k − 2) by definition;

= Vk−1 + 2 + 5× 3
(2k−2)

2 −1 − 2 for 2k − 2 ≥ 4 even, or any k ≥ 3 via Lemma 9;
= Vk−1 + 5× 3k−2 by mere simplification (still only for k ≥ 3);
= V2 + 5

(
31 + · · ·+ 3k−2) by propagation;

= V2 + 53k−1 − 2
2 by resolution of a geometric series;

= 7 + 5
2(3k−1 − 2) because V2 = 7;

= 5
23k−1 + 2 by simplification.

Since f100(n) = Vn
2
when n is even, the solution above yields f100(n) = 5

2 3 n
2−1 + 2 if n is

even.
Reporting those results in the definition of f100 yields the final formula:

f100(n) =

0 if n = 0;
1 if n = 1;
2 if n = 2;
4 if n = 3;
5
2 × 3 n

2−1 + 2 where n ≥ 4 is even; and
3

n+1
2 −1
2 where n ≥ 5 is odd.

J

Finally, the expression for the function f100 directly yields the expression for the function
f000:

I Lemma 11.

f000(n) =

1 if n = 1
3 if n = 2
5 if n = 3
3 n

2 where n ≥ 4 is even; and
5(3 n−3

2 + 1) where n ≥ 5 is odd.

Proof.

f100(n) =

1 if n = 1;
2 if n = 2;
4 if n = 3;
5
2 3 n

2−1 + 2 where n ≥ 4 is even; and
3

n+1
2 −1
2 where n ≥ 5 is odd.

From these results, deduce the value of f000(n) using the fact that f000(n) = 2f100(n−
1) + 1.

FUN 2016

5:12 Selenite Towers Move Faster Than Hanoï Towers

f000(n) =

1 if n = 1
3 if n = 2
5 if n = 3
5× 3 n−1

2 −1 + 5 where n ≥ 5 is odd; and
3 n

2 where n ≥ 6 is even.

J

As
√

3 ≈ 1.73 < 2, this value is smaller than the number 2n − 1 of steps required to move
a Hanoï Tower. We prove that this is optimal in the next section.

4 Optimality

Each legal state of the Selenite Tower problem with three pegs and n disks can be
uniquely described by a word of length n on the alphabet {A,B,C}, where the i-th letter
indicates on which peg the i-th largest disk stands. Moreover, each word of {A,B,C}n
corresponds to a legal state of the tower, so there are 3n different legal states (even though
not all of them are reachable from the initial state).

To prove the optimality of our algorithm, we prove that it moves the disks along the
shortest path in the configuration graph (defined in Section 4.1) by a simple induction proof
(in Section 4.2).

4.1 The configuration graph
The configuration graph of a Selenite Tower has 3n vertices corresponding to the 3n legal
states, and two states s and t are connected by an edge if there is a legal move from state s to
state t. The reversibility of moves (seen in Section 2.3) implies that the graph is undirected.

Consider the initial state A . . . A (= An). The smallest disk 1 cannot be moved before the
other disks are all moved to peg B or all moved to peg C: we cannot remove disk 1 from peg
A if there is a disk under it, and we cannot put it on another peg if a larger disk is already
there. This partitions G into three parts, each part being characterized by the position of
disk 1; these parts are connected by edges representing a move of disk 1 (see the recursive
decomposition of G(n) in Figure 13).

Each part is an instance of the configuration graph G′(n− 1) defining all legal steps of
(n− 1) disks {2, . . . , n} given that disk 1 is fixed on its peg.

Let us consider this subgraph G′(n− 1), when disk 1 (the smallest) is fixed on one peg
(say on peg A). Note each state of this graph aX . . . Z, where a stands for the disk 1 fixed on
peg A, and X . . . Z ∈ {A,B,C}n−1 describes the positions of the other disks. The removal
order changes from those observed in G each time |A| is odd.

To remove the two extreme disks 2 and n (not moving disk 1, since it is fixed), it is
necessary to move all other disks to a single other peg (same argument as for G(n)), so we
can divide our configuration graph in subsets of states corresponding to different positions
where disks 2 and n are fixed.

This defines 9 parts, as each of the two fixed disks can be on one of the three pegs. Of
those 9 parts, we need to focus only on 5:

two parts of the graph cannot be accessed from the initial state aA . . . A, (see an illustration
in Figure 14); and

J. Barbay 5:13

Figure 13 First decomposition of the configuration graph of the Selenite Tower problem.

1
2 n

3
...
n−1

A B C

1
2

3
...
n−1 n

A B C

Figure 14 States where disk 2 is on A and disk n is on another peg (i.e. B or C) cannot be
accessed from the initial state A . . . A for n > 4. No move is possible from these states as A cannot
receive a larger disk than 2 (and all are), B cannot receive a smaller disk than n (and all disks are
of size smaller or equal to n), and C cannot receive the disks 2 nor n if n > 4.

1
3
...
n−1 2 n

A B C

1

2
3
...
n−1 n

A B C

Figure 15 States aBA . . . AC and aBB . . . BC are not connected in the subgraph where disks 2
and n are fixed on B and C, and disk 1 is fixed on A: As no disk can be inserted under n, if n > 4
it is impossible to move the n− 3 > 1 unfixed disks from A to B (as to move more than one disk
between two pegs of same parity require a third peg).

the part of the graph where disk 2 is fixed on B and disk n is fixed on C contains two
parts, which are not connected for n > 4 (see an illustration in Figure 15).

The five remaining parts are very similar. Three of them are of particular importance
as each contains one key state, which are aA . . . A, aB . . . B and aC . . . C. Consider first
the graphs G′(n) for n ∈ {1, 2, 3} (n+ 1 disks in total if we count the fixed one): they are
represented in Figure 16. When one disk is fixed on A, the task of moving disks from A to
B is symmetric with moving them from A to C, but quite distinct from the task of moving
disks from B to C.

Now, consider the part of the graph G′(n− 1) where the smallest and the largest disks (2
and n) are fixed on A. This part contains the initial state A . . . A. The only way to free the
smallest disk is to move the n− 3 other disks to another peg.

Once disks 2 and n are fixed on the same peg (in addition to disk 1), the situation is
similar to the entire graph, with two fewer disks. It is the case each time two extreme disks

FUN 2016

5:14 Selenite Towers Move Faster Than Hanoï Towers

G’(2)

(3 disks)

aBB aCB

aAC aAB

aBA aCA

aAA

aBC

aB aC

aAG’(1)

aCC

(2 disks)

aBBB aBAB

aBCB

aBCA

aACA aABA

aBAC

aCBA

aCCCaCAB aCAC

aCBC

aAAA

aAAC aAAB

G’(3)
(4 disks)

aCBBaBCC aBAA

aBBA aCCA

aCAA

aCCBaBBC

Figure 16 Subgraphs G′(n) with one disk fixed on the peg A for n ∈ {1, 2, 3}.

are fixed on the same peg: when 2 and n are fixed on peg C or B, or when 1 and n are fixed
on peg A; the process can then ignore the two fixed disks to move the n− 3 remaining disks,
as the parity of the peg is unchanged. See the definitions of the graph G′(n) in Figure 16 for
n ∈ {1, 2, 3} and in Figure 17 for n > 3.

4.2 Proof of optimality
To prove the optimality of the solution described in Section 3, we prove that the algorithm is
taking the shortest path in the configuration graph defined in the last section. A side result
is that this is the unique shortest solution.

I Theorem 12. ∀(x, y, z) ∈ {0, 1}3, ∀n ≥ 0, movexyz(n,A,B,C) moves optimally n disks
from A to C.

Proof. Define the induction hypothesis H(n) as “∀(x, y, z) ∈ {0, 1}3 movexyz(n,A,B,C)
moves optimally n disks from A to C”. Trivially H(0) and H(1) are true. Suppose that there
exists an integer N > 1 such that ∀n < N , the induction hypothesis H(n) is true. We prove
that H(N) is then also true.

move000(N,A,B,C) is optimal: move000(N,A,B,C) for N > 0 consists of one call to
move100(N,A,C,B), one unitary step, and one call to move001(N,B,A,C).
Therefore it moves optimally (by H(N − 1)) from aA . . . A to aB . . . B, and then to
cB . . . B, and after that to cC . . . C. (In Figure 13 the right edge of the triangle.)
A path not going through states aB . . . B or cB . . . B would take more steps:

if we do not go through the state aB . . . B, then the state aC . . . C is necessary, with a
cost of f100(N − 1), and also the state bC . . . C (with a cost of 1), and at the end of the
path we have to go through the state cA . . . A, which optimal path to go to the final
cC . . . C state is of length f100(N−1): this path is of length f100(N−1)+1+f100(N−1)
and is already as long as the one given by move000(N,A,B,C).

J. Barbay 5:15

aBC...CA aCB...BA

aCC...CAaBB...BA

aCB...BC

aCA...AC

aAB...BA

aBC...CB

aAC...CA

aBB...BC

aBA...AC

aCC...CB

aCA...AB

aCA...AAaBA...AA

aAA...AA

aCC...CC
aBA...ABaBB...BB

G’(n−1)=

G’(n−3)

1 on A

2 and n on C

G’(n−3)

G’(n−3)

G’(n−3)

G’(n−3)

2 and n on C

1 on A

2 on C

1 and n on A

2 on B

1 and n on A

1,2 and n on A

Figure 17 Recursive definition of G′(n), the graph of all legal steps when one disk is fixed on the
first peg, for n > 3. There is no way to connect the states aBB....BC, aBA...AC, aCC...CB and
aCA...AB without moving some of the disks from {1, 2, n}.

if we go through aB . . . B, but not through cB . . . B, then the path is not optimal as
it must go through aC . . . C and the optimal path from aA . . . A to aC . . . C does not
go through aB . . . B.

So move000(N,A,B,C) is optimal.
move100(N,A,B,C) is optimal:
move100(N,A,B,C) for N > 1 consists of one call to move100(N − 2, A,C,B)), two
steps, and one call to move010(N − 2, B,A,C)).
As before, we shall consider these recursive calls of order smaller than N as optimal
because of H(N−2). So we know how to move optimally from aAA . . . AA to aAB . . . BA,
to aCB . . . BA, then to aCB . . . BC and to aCC . . . CC (in Figure 17), this corresponds
to the left edge of the triangle).
We must now prove that other paths take more steps:

We cannot avoid the state aCB . . . BC, neither aCB . . . BA, as there is no other way
out of aCC . . . CC.
if we avoid the state aAB . . . BA then the optimal path to aCB . . . BA necessarily
passes by aBA . . . AA and aCA . . . AA, and is of length f100(N − 2) + 1 + f010(N −
2) + 1 + f010(N − 2), which is longer than the whole solution given by the algorithm,
of length f100(N) = f100(N − 2) + 2 + f010(N − 2).

So move100(N,A,B,C) is optimal.
move010(N,A,B,C) is optimal:
move010(1, A,B,C) and move010(2, A,B,C) are special cases, we can see in graphs G′(1)
and G′(2) on figure 16 page 14 that the optimal paths between aB . . . B and aC . . . C are
of length 1 and 3, as the solutions produced by the algorithm. So move010(1, A,B,C)
and move010(2, A,B,C) are proven optimal.
move010(N,A,B,C) for N > 2 corresponds to a path going through the states (the first
disk being fixed on b): (please report to Fig. 17 from aCC . . . CC to aBB . . . BB down
left to down right.)

aCC . . . CC
f010(N−2)−→ aCB . . . BC

2−→ aAB . . . BC

f010(N−2)−→ aAC . . . CC
2−→ aBC . . . CB

f010(N−2)−→ aBB . . . BB

FUN 2016

5:16 Selenite Towers Move Faster Than Hanoï Towers

We shall demonstrate that all other paths take more steps:
The states bAC . . . CA and bCA . . . AC are mandatory, for connectivity, and so are
bAC . . . CB and bCA . . . AB.
going through the state bBC . . . CB makes the state bBA . . . AB mandatory.
going around the state bBC . . . CB makes the states bAB . . . BB, bCB . . . BB and
bCA . . . AB mandatory: the total path would be of length 3 + 4f010(N − 2), to be
compared with 4 + 3f010(N − 2) (We trade one step with one recursive call). As
f010(N − 2) ≥ 1 for N − 2 ≥ q (i.e. N ≥ 3 > 2), move010(N,A,B,C) is optimal for
N > 2.

So move010(N,A,B,C) is optimal. J

We discuss further extensions of those results in the next section.

5 Discussion

All the usual research questions and extensions about the Hanoï Tower problem are still
valid about the Selenite Tower problem. We discuss only a selection of them, such as
the space complexity in Section 5.1, and the extension to other proportional insertion and
removal points in Section 5.2.

5.1 Space Complexity
Allouche and Dress [1] showed that the optimal sequence of steps required to move a Hanoï
Tower of n disks can be obtained by a simple function from the prefix of an infinite unique
sequence, which itself can be produced by a finite automaton. This proves that the space
complexity of the Hanoï Tower problem is constant.

The same technique does not seem to yield constant space for Selenite Towers:
whereas the sequences of steps generated by each of the functions move100(n,A,B,C),
move010(n,A,B,C) and move001(n,A,B,C) are prefixes of infinite sequences, extracting
those suffixes and combining them in a sequence corresponding to move000(n,A,B,C) would
require a counter using logarithmic space in the length of the sequences to be extracted, i.e.
log2(

√
3n) ∈ Θ(n), which would still be linear in the number of disks.

5.2 Levitating Towers
An extension of the Selenite Tower problem is to parametrize the insertion point, so
that the removal point is at position bαnc+ 1 and the insertion point is under the disk at
position bα(n + 1)c in a tower of n disks, for α ∈ [0, 1

2] fixed (the problem is symmetrical
for α ∈ [1

2 , 1]). By analogy with Selenite Towers, we call this variant a α-Levitating
Tower. This parametrization creates a continuous range of variants, of which the Hanoï
Tower problem and the Selenite Tower problem are the two extremes:

for α = 0, the removal/insertion point is always at the top, which corresponds to a
Hanoï Tower, while
for α = 1

2 the problem corresponds to a Selenite Tower.

The complexity of moving a α-Levitating Tower cannot be smaller than the one of a
Selenite Tower, as the key configuration permitting to move 2 disks in 2 steps between
the same pegs is less often obtainable in a α-Levitating Tower.

J. Barbay 5:17

Acknowledgements. We would like to thank Claire Mathieu, Jean-Paul Allouche and
Srinivasa Rao for corrections and encouragements, and Javiel Rojas-Ledesma and Carlos
Ochoa-Méndez for their comments on preliminary drafts.

Funding. Jérémy Barbay is partially funded by the Millennium Nucleus RC130003 “Inform-
ation and Coordination in Networks”.

References
1 J.-P. Allouche and F. Dress. Tours de Hanoï et automates. RAIRO, Informatique Théorique

et applications, 24(1):1–15, 1990.
2 M.D. Atkinson. The cyclic towers of Hanoï. Information Processing Letters (IPL), 13(118-

119), 1981.
3 W. R. Ball. Mathematical Recreations and Essays. McMillan, London, 1892.
4 J. S. Frame and B. M. Stewart. Solution of problem no 3918. American Mathematics

Monthly (AMM), 48:216–219, 1941.
5 Édouard Lucas. La tour d’Hanoï, véritable casse-tête annamite. In a puzzle game., Amiens,

1883. Jeu rapporté du Tonkin par le professeur N.Claus (De Siam).
6 Édouard Lucas. Récréations Mathématiques, volume II. Gauthers-Villars, Paris, quai des

Augustins, 55, 1883.
7 D. Wood. The towers of Brahma and Hanoï revisited. Journal of Recreational Mathematics

(JRM), 14(1):17–24, 1981.

A Disk Pile Problem

The Hanoï Tower problem is a classic example on recursivity, originally proposed by
Édouard Lucas [5] in 1883. A recursive algorithm is known since 1892, moving the n disks of
a Hanoï Tower in 2n − 1 unit moves, this value being proven optimal by a simple lower
bound [3].

Consider the Disk Pile problem, a very simple variant where we allow some disks to be
of the same size. This obviously introduces some much easier instances, including an extreme
one where the disks are all the same size and the resulting tower can be moved in linear time
(see Figure 18 for the sequence of steps moving such a tower of size 3 with a single size of
disks).

1. Give a recursive algorithm to move a Disk Pile from one peg to the other, using only
one extra peg, knowing that ∀i ∈ {1, . . . , s}, ni is the number of disks of size i. Your
algorithm must be efficient for the cases where all the disks are the same size, and where
all the disks are of distinct sizes.
Solution: We present an algorithm in Figure 19. It is very similar to the algorithm for
moving a Hanoï Tower, the only difference being that it moves the ni disks of size i at
the same time, in ni consecutive moves. J

c
b
a
A B C

b
a c
A B C

a
b
c

A B C

a
b
c

A B C

Figure 18 Moving a Disk Pile of size 3.

FUN 2016

5:18 Selenite Towers Move Faster Than Hanoï Towers

def diskPileMove (n,sizes ,a,b,c):
if n>0 :

move(n-sizes [-1], sizes [0: -1] ,a,c,b)
for i in range (0, sizes [-1]):

move(a,c)
move(n-sizes [-1], sizes [0: -1] ,b,a,c)

Figure 19 Python code to move a Disk Pile.

2. Give and prove the worst case performance of your algorithm over all instances of fixed s
and vector (n1, . . . , ns).
Solution: By solving the recursive formula directly given by the recursion of the algorithm,
one gets that the ns largest disks are moved once, the ns−1 second largest disks are moved
twice, the ns−2 third largest disks are moved four times, and so on to the n1 smallest
disks, which are each moved 2s−1 times. Summing all those moves gives the number of
moves performed by the algorithm:∑

i∈{1,...,s}

ni2s−i .

Note that for s = n and n1 = · · · = ns = 1, this yields
∑s−1
i=1 2i = 2n − 1, the solution to

the traditional Hanoï Tower problem. J
3. Prove that a performance of

∑
i∈{1,...,s} ni2s−i is optimal.

Solution: We prove a lower bound of
∑
i∈{1,...,s} ni2s−i, for n disks of s distinct sizes, with

ni disks of size i by induction on the number of types of disks. We prove by induction
on the number of types of disk s that any pile of disks of sizes (n1, . . . , ns) requires∑
i∈{1,...,s} ni2s−i disk moves to be moved to another peg.
Initial Case: for s = 1 the bound is n1 and is obviously true, since each disk must be
individually moved from one peg to the other.
Inductive Hypothesis: suppose there is some σ ≥ 1 so that any pile of disks sizes
(n1, . . . , nσ) requires

∑
i∈{1,...,σ} ni2σ−i disk moves to be moved to another peg.

Inductive Step: consider a pile of disks of sizes (n1, . . . , nσ+1): clearly all the disks of
sizes smaller than σ + 1 need to be gathered on a unique peg before the largest disks
can be moved, to allow those last ones to be moved in nσ+1 disk moves, after which
all the disks of sizes smaller than σ + 1 need to be stacked above the largest ones. By
the inductive hypothesis, moving the smaller disks will require 2

∑
i∈{1,...,σ} ni2σ−i

disk moves, to be added to the nσ+1 disk moves. Hence, any pile of disks of sizes
(n1, . . . , nσ+1) requires

∑
i∈{1,...,σ+1} ni2σ+1−i disk moves to be moved to another peg.

Conclusion: The inductive hypothesis is verified for the initial case where s = 1, and
propagates to any value of s ≥ 1 through the inductive step. We conclude that any
pile of disks of sizes (n1, . . . , ns) for s ≥ 1 requires

∑
i∈{1,...,s} ni2s−i disk moves to be

moved to another peg.
J

4. What is the worst case complexity of the Disk Pile problem over all instances of fixed
value s and fixed total number of disks n? Solution: The worst case (of both the
algorithms and the most precise lower bound with the number of disks of each size fixed)
occurs when n1 = n− s+ 1 and n2 = . . . = ns = 1. Using the previous results, it yields a
complexity of 2s−1(n− s+ 1) +

∑s−1
i=1 2i = 2s−1(n− s+ 2)− 1 steps in the worst case over

all instances of fixed value s and fixed total number of disks n. This correctly yields 2n−1
when s = n, in the worst case over all instances of fixed total number of disks n. J

J. Barbay 5:19

B Code to generate the sequences of moves

See Figure 20 for the python code used to print the sequence of moves for a given Selenite
Tower. For n = 10 it generates the following sequences:

move000 (1,’a’,’b’,’c’) = (a,c)

move000 (2,’a’,’b’,’c’) = (a,b) (a,c) (b,c)

move000 (3,’a’,’b’,’c’) = (a,b) (a,b) (a,c) (b,c) (b,c)

move000 (4,’a’,’b’,’c’) = (a,c) (a,b) (a,b) (c,b) (a,c) (b,a) (b,c)
(b,c) (a,c)

move000 (5,’a’,’b’,’c’) = (a,c) (a,c) (a,b) (a,b) (c,a) (c,b) (a,b)
(a,c) (b,c) (b,a) (c,a) (b,c) (b,c) (a,c) (a,c)

move000 (6,’a’,’b’,’c’) = (a,b) (a,c) (a,c) (b,c) (a,b) (a,b) (c,b)
(c,a) (c,a) (b,c) (a,b) (a,b) (c,b) (a,c) (b,a) (b,c) (b,c) (a,b)
(c,a) (c,a) (b,a) (b,c) (b,c) (a,b) (a,c) (a,c) (b,c)

move000 (7,’a’,’b’,’c’) = (a,b) (a,b) (a,c) (a,c) (b,a) (b,c) (a,c)
(a,b) (a,b) (c,a) (c,b) (a,b) (c,a) (c,a) (b,a) (b,c) (a,c) (a,b)
(a,b) (c,a) (c,b) (a,b) (a,c) (b,c) (b,a) (c,a) (b,c) (b,c) (a,c)
(a,b) (c,b) (c,a) (c,a) (b,c) (b,a) (c,a) (b,c) (b,c) (a,c) (a,b)
(c,b) (a,c) (a,c) (b,c) (b,c)

move000 (8,’a’,’b’,’c’) = (a,c) (a,b) (a,b) (c,b) (a,c) (a,c) (b,c)
(b,a) (b,a) (c,b) (a,c) (a,c) (b,c) (a,b) (a,b) (c,b) (c,a) (c,a)
(b,c) (a,b) (a,b) (c,b) (c,a) (c,a) (b,c) (b,a) (b,a) (c,b) (a,c)
(a,c) (b,c) (a,b) (a,b) (c,b) (c,a) (c,a) (b,c) (a,b) (a,b) (c,b)
(a,c) (b,a) (b,c) (b,c) (a,b) (c,a) (c,a) (b,a) (b,c) (b,c) (a,b)
(a,c) (a,c) (b,a) (c,b) (c,b) (a,b) (c,a) (c,a) (b,a) (b,c) (b,c)
(a,b) (c,a) (c,a) (b,a) (b,c) (b,c) (a,b) (a,c) (a,c) (b,a) (c,b)
(c,b) (a,b) (a,c) (a,c) (b,a) (b,c) (b,c) (a,c)

C Code used to generate the values of the complexity

See Figure 21 for the python code used to experimentally generate the values of the complexity.
For n = 16, it generates the following array:

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
f010 0 1 3 7 13 25 43 79 133 241 403 727 1213 2185 3643 6559
f100 0 1 2 4 7 13 22 40 67 121 202 364 607 1093 1822 3280
f000 0 1 3 5 9 15 27 45 81 135 243 405 729 1215 2187 3645

3dn/2e 1 3 3 9 9 27 27 81 81 243 243 729 729 2187 2187 6561

FUN 2016

5:20 Selenite Towers Move Faster Than Hanoï Towers

def move(a,b):
print "("+a+" ,"+b+")" ,

def move010 (n,a,b,c):
if n == 1 :

move(a,c)
elif n == 2:

move(a,b)
move(a,c)
move(b,c)

elif n>2 :
move010 (n-2,a,b,c)
move(a,b)
move(a,b)
move010 (n-2,c,b,a)
move(b,c)
move(b,c)
move010 (n-2,a,b,c)

def move100 (n,a,b,c):
if n == 1 :

move(a,c)
elif n>1 :

move100 (n-2,a,c,b)
move(a,c)
move(a,c)
move010 (n-2,b,a,c)

def move001 (n,a,b,c):
if n == 1 :

move(a,c)
elif n >1:

move010 (n-2,a,c,b)
move(a,c)
move(a,c)
move001 (n-2,b,a,c)

def move000 (n,a,b,c):
if n == 1 :

move(a,c)
elif n>1 :

move100 (n-1,a,c,b)
move(a,c)
move001 (n-1,b,a,c)

for i in range (1 ,9):
print (" move000 ("

+str(i)+",’a’"
+",’b’"+",’c’) = "),

move000 (i,’a’,’b’,’c’)
print
print

Figure 20 Python code to move a
Selenite Tower.

def f010(n):
if n < 2 :

return n
elif n == 2:

return 3
else:

return 3* f010(n -2)+4

def f100(n):
if n < 2 :

return n
else:

return f100(n -2)+ f010(n -2)+2

def f000(n):
if n < 2 :

return n
else:

return 2* f100(n -1)+1

def power(n):
if n % 2 == 0 :

return 3**(n/2)
else:

return 3**((n +1)/2)

def printArray (n):
print ("n\t "),
for i in range (0,n):

print (" &\t "+ str(i)),
print ("\\\\ \\ hline ")
print (" f_ {010}\ t "),
for i in range (0,n):

print (" &\t" + str(f010(i))),
print ("\\\\ \\ hline ")
print (" f_ {100}\ t "),
for i in range (0,n):

print (" &\t" + str(f100(i))),
print ("\\\\ \\ hline ")
print (" f_ {000}\ t "),
for i in range (0,n):

print (" &\t" + str(f000(i))),
print ("\\\\ \\ hline ")
print ("3^{\\ lceil n/2\\ rceil }\t "),
for i in range (0,n):

print (" &\t "+ str(power(i))),
print ("\\\\")

printArray (16)

Figure 21 Python code to generate experimentally the
values of the complexity.

	Introduction
	Formal Definition and Basic Facts
	Formal Definition
	Moving small towers – differences with Hanoï
	Structural facts on a single Peg

	Solution
	Algorithm
	Correctness of the algorithm
	Complexity of the algorithm

	Optimality
	The configuration graph
	Proof of optimality

	Discussion
	Space Complexity
	Levitating Towers

	Disk Pile Problem
	Code to generate the sequences of moves
	Code used to generate the values of the complexity

