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ABSTRACT The Hwang-Lin merging algorithm 1s the best general-purpose merging algorithm that has been
found Many unprovements to 1t have been devised, but these are either for special values of m and n, the
number of 1tems bemng merged, or else improvements by a term less than hinear in n + m when the ratio n/m 15
fixed

A new methodology 1s developed in which, for fixed ratio n/m, it 1s possible to decrease the number of
companisons by a factor proportional to m, in fact m/12, provided n/m = 8 and m = 24 It i1s shown that the
coefficient .5 1s not best possible, and a technique for improving it shghtly to - is sketched
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1. Introduction

In [4}, Hwang and Lin present a merging algorithm that combines the virtues of binary
insertion and linear merging. It is the best simple general-purpose merging algorithm
known for arbitrary list size.

Let m and n be the number of items being merged, with m < n. Ths lists “small” and
“large,” containing, respectively, m and n items, are supposed sorted, so that the least item
has the lowest index. As an 1tem is located in the evolving merged list, it is deleted from
the list originally containing it. Indexing, as we define it, 1s a little unusual; we will say that
the first remaining element in a list has index 1, the next index 2, and so forth.

Linear merging consists in running down both lists, looking for the least element by
comparing element 1 of both lists. The process continues until one list is exhausted,
whereupon the remaining elements of the other list are merged onto the bottom of the
merged list. In the worst case, m + n — 1 comparisons are needed.

Binary insertion 1s the best method for merging one element into n. In the simplest case,
n=2*—1 The singleton element 1s first compared with element 28! — 1; if the singleton
element is smaller, it belongs in the upper half, so the next comparison is with element
2¥% — 1, etc. In the worst case k comparisons are required, and this is best possible when
merging one element into n, 2*' s n < 2% — 1.

The Hwang-Lin algorithm (HLA) [4] breaks the big list into blocks of size 2" =
2los»/m) The first element of the small list, denoted small(l) is compared with large(2").
If the first element of the small list 1s larger than large(2"), then 27 elements from the large
list are annexed, i.e., removed from the large list. If the first element of the small list 15 less
than or equal to large(2"), small(1) 1s merged into {large(1), large(2), . . , large(2" — 1)} by
binary insertion in 7 comparisons. (We are using a model in which only comparisons are
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computationally relevant.) Then element 1 1s removed from small, and the elements in
large that are smaller than small(1) are annexed. The same process is iterated until one list
is exhausted In the companion paper [7] we state the algorithm formally and indicate that
we shall use a “static” vanant in which 7 is computed only once. We also provide the
explanation for a diagrammatic convention for the algorithm, in which the iterated core is
illustrated as a simple, stylized flowchart. The diagram for the static Hwang-Lin algornithm
is shown in Figure 1.

In Figure 1, no annexation is shown in connection with an insertion because in the
worst case, no elements will be annexed.

In {7] we analyze the static vanant of the algorithm and discover that the number of
compansons in the worst case is identical to the number required [6] by the HLA. The
idea is that in the worst case there will be m insertions requiring 7 + | comparisons each,
together with [n/27) — 1 annexations requiring 1 comparison each. Therefore, if HL(m, n)
1s the number of comparisons required by the HLA or its static variant, then

HL(m, n) = m(r + 1) + [n/2") = L. M

Definition. Let the HLA operate on lists of size m (the small list) and » (the large list).
The operation of the algorithm will be called a complete run if at the end, no element of
the small list 1s uninserted and, at most, one block of the large list is unannexed.

Clearly, for every m and n, there exist orderings of the small and large lists that will
produce a complete run of the algorithm. This fact animates a simple characterization of
worst-case runs, namely:

PRrOPOSITION 1. Among the complete runs there is always at least one worst-case run.

To prove Proposition 1, we require a few simple observations First, we note that
insertions of one element of small into 2" — 1 elements of large may in themselves produce
the annexation of between 0 and 27 — 1 elements of large, depending on where the insertion
1s made into the 2" — 1 elements. Clearly, annexing more than 0 elements cannot serve to
increase the total number of compansons; it must either reduce it or leave it unaltered.
Therefore, if we consider only worst-case runs, we may safely assume that an insertion
produces no annexation.

Second, we note that a merge, in order to run to completion, may leave one or more
elements “uninserted” from small or unannexed from large, but not both.

We are now ready to prove the proposition. Consider a purportedly worst-case run in
which, at the end, there are kK > 1 elements remaining in small, and none in large.
Necessarily, the last step (Figure 1) must have been the annexation of the last block of
large (or fragment, if the number of elements in large 15 not a multiple of 27) by the first
(remaining) element of small. There clearly exists an alternative run, with different data,
which is identical to the first run up to the insertion of the first m — k elements of small but
which, at greater cost, then inserts k — 1 elements and finally annexes the last block or
fragment of large with the last element of small. Hence the former run is not worst case.
An essentially identical argument shows that runs in which no element of small, but more
than one block of large, remains, also cannot be worst case. Last, consider the case in
which just one element of small is uninserted, and no elements of large are unannexed.
The last step was necessanily the annexation of the last block or fragment by the last
element of small. If this last block or fragment contains more than one element, then
insertion of the last element of small will cost more than annexation. If 1t contains exactly
one element, then insertion and annexation will cost the same, namely, one comparison.
This complete the proof. O

annex 2' elements with 1 comparison

1 ZT\T\
insert 1 element in T + 1 comparasons
Fic 1
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Our main tool for making the analysis of our merging schemes tractable is a variant of
cost accounting appropriate only to complete runs. Its relevance to worst-case analysis is
guaranteed by Proposition 1 The 1dea 1s that since both the number of annexations and
insertions in a complete run are known, the total cost of annexations may be averaged
over each element of small and “charged” at the time the element is inserted. This 1s
counterbalanced by setting the “cost” of an annexation to 0. Mutatis mutandis, the original
charging scheme is transformed into one vastly easier to analyze. We shall call costs
reckoned in this way effective costs.

Speciahzing now to the case n = 29m, the number of annexations in a complete run
equals the number of insertions minus 1. Hence assigning an effective cost of | to each
insertion to cover the aggregate cost of insertion, we shall overcalculate the total number
of comparisons by just 1. Our objective is an analysis correct to order m, so this is
acceptable.

This effective cost for each step of Figure 1 is then

Step Cost

“Annex 27 7 Zero
“Insert one element 7 d+2

This method, trivial for Figure 1, will permit easy analysis of the more complex schemes
1n this paper and its companion [7]. In the sequel and 1n [7), the term “cost” applied to
diagrams like that of Figure 1 will be understood to mean effective cost.

2. Significant Improvements

We now introduce the notion of a significant improvement over the HLA. Let M(m, n) be
the number of comparisons required to merge lists of length m and n. We note that to date,
mmprovements in the HLA, in the sense that they yield smaller results than (1), have been
presented either for special values of m or n (or both), or are similar to Hwang and Lin’s
demonstration 5] that M(m, 2m) < 3m — 2, or else [2] have been achieved for a broad
spectrum of values of n and m without achieving significant improvement in the sense of
this paper. By a significant improvement, we mean an improvement that for fixed n/m
increases linearly with m. Such schemes have not been demonstrated, 1t 1s the purpose of
this paper to show that they exist.

For constant n/m, if an algorithm can be found that requires §(n/m)m comparisons (to
order m), then easy information-theoretic arguments show that [6]

HL(m, n) ~ 8(n/m)m < m, 2)

so that if HL(m, n) = h(n/m)m — ¢, for some constant ¢, then 8(n/m) can differ from h(n/
m) only by some number less than one. Thus the margins for improvement are not very
great.

A significant improvement for n/m = 8 was presented 1n [7)]. Its diagram is shown in
Figure 2. This diagram depends on the fact that M(2, 8) = 6 and M(3, 8) = 8. M(2, 8)
comes from the explicit formula

M(2, n) = [log(1)(n + 1] + log(s)(n + D] 3

derived first by Graham {1] and then by Hwang and Lin [3]. M(3, 8) s easily derivable
from M(3, 6) = 7, which was derived by Hwang and Lin (see [6] for their proof). The
diagram indicates that the first three elements of the small list are compared, respectively,
to the eighth, ninth, and minth elements of the large st The costs are now calculated by
assuming that an inserted element should annex eight elements in order to be at “par '

' “Par” means that no annexation cost 1s factored 1n If the second step read “msert 1 1n 5 and annex 8, 1ts cost
would be 5 “Insert | 1n 5” would cost 6, the extra comparison compensating for the unperformed annexation
that must be averaged n
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)/annex 8 1n 1 comparison
T\ ;/ insert 1 in 5 [comparisons] and annex 9

2:9
\K )/ insert 2 in 9 and annex 9
3:9

1:8

insert 3 in 11
Fic 2

The step “insert 1 in 5 comparisons and annex 9” now has cost of only 47 because it

annexes not only its “par” but also one-eighth of the next group of eight. The costs (per
element) of Figure 2 are thus

Step Cost
“Annex 8 ” Zero
“Insert 1 7 4%
“Insert 2~ 4%
“Insert 3 7 42
The highest cost is that of “insert 2 ... .”” It is clear that for n/m = 8 and m sufficientl

large, we will obtain for H(m, n) 41 comparisons per element rather than the 5 required
by the HLA where H(m, n) is the number of comparnisons required by the new algorithm.”

We would now like to generalize this construction in four ways:

(1) To find analogs to Figure 2 for n/m = 2¢ for d > 3 (none are known to exist for
d<3)

(2) To generalize further to n/m not a power of 2.

(3) To find just how big m must be to make H(m, n) smaller than HL(m, n).

(4) To discover whether for sufficiently large n/m there exists a single algorithm for
which 8(n/m) is larger than some fixed constant, and if so to find the constant.
The main result is contained 1n our

THEOREM. For n/m = 8, there exists a merging algorithm, which we present explicitly,
requiring H(m, n) comparisons, where

HL(m, n) — Him,n) =m/12 — ¢ G

where —13 < e < 2.
We now develop the proof of the theorem.
LemMa 1. M(2,29) =2dford=3.
Proor. Equation (3). O
Lemma 2 M(3,2%) =3d— 1 ford=3.
Note. HL(3,2%) =3dford=2.
Proor. Figure 3, together with the fact that M(3,8)=8. O
LemMA 3. Ford=3,
(@ MGG -1)=3d-1,

% This 1s achieved by combining “msert 2~ and annexation 1n just the nght proportion and sequence to produce
a complete run Clearly this 1s possible and will produce a run with the largest possible coefficient of m We
should also mention that the problem of maximizing the number of compansons for Figure 2 has an alternative
formulation 1n terms of integer programmung to find values of integer vanables x;, x2. x3 and x4 that will
maximize the value of x; + 5x, + 9x3 + 11x, subject to the constrants m = x2 + 2x3 + 3x, and 8m = 8x, + Ix
+ 9x3
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() MG, (2] - 1) =34,

(0 MG, 12 )-D=3d+1,

d MG, 192°)-1)=<3d+2fori=sqg=2.

PrOOF. (d) is almost trivial, if ¢ = 2 then by Lemma 2, M(3,2*") <3(d+ 1) - | =
3d + 2. The inequality obviously holds for lesser g. To prove (c) from (d), we use Figure
4. We then prove (b) from (c) using virtually the same scheme as that of Figure 5. To
prove (a) from (b), we use Figure 5. [

LemMa 4. M@(32% - 1) <4d- 1.

Proor. The HLA. O

It turns out that for the case n/m = 8, a highly efficient algorithm—considerably more
efficient than that of Figure 2—involves four elements from the small list rather than three.
(The reader should consult [7] for details.) We now generalize this four-element diagram,
using also the fact that M(2,[($5)2%] — 1) = 2d, as can be derived directly from (3). The
highest cost is for the “insert 3 ...” step; the cost is d + 23. Following similar analysis in
[7}, 1t can be shown that when m mod 3 = 0, then the worst case is realized when all the
elements in the small list are inserted by means of this step. Let Hg(m, n) be the number
of comparisons required. Then

Hg(m, n) = (d + )m + [(n — 1(§)2°)m/3))/2°). )
By using |a] = a — 6, where 0 < @ < 1, we obtain
Hg(m, n) = (d + 3)ym + n/2? — 6, (5a)

which reduces to (d + 2)m — 6, when n = 2%m.
We now consider n/m not a power of 2. Suppose we consider n 1n the range n € o4 =
£27m, 2°m + 1, ..., 2%'m — 1}. Clearly, 7 = [log n/m} will be just d for all » in this range.

j/M(l,Zd'Z— 1) = d-2; M2,2% = 2d for d > 3
B

I:Zd_2
l T d-2 . dy
’///, M(1,2 -1) = d-2; M(2,(3/4)27) = 2d-1 for d 2 3
1:2d‘1

¢

M3,29 1y < 3(d-1) for d > 4 by HLA;
M(3.8) = 8.
Fic 3

}M(l,zd‘l-u = d-2; M2,103/2)2%) - 1) = 2d+1

1:29-2

\ Lowa® iy s a2 et 1 = 2aen

1:2d'1

m3,29-1) <3d-1

Fic 4
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Now the HLA can be reexpressed as
HL(m, n)y=m(d+ 1)+ n/2°— 1 -6, )

in the same range. We need to have a formula for Hg(m, n) when m 1s not a multiple of 3.
If m is congruent to 1 mod 3, then the worst case for Algorithm B is realized when all but
one of the elements are inserted by means of “insert 3 ...”” and one 1s inserted by means of
“insert 1 ....” If m is congruent to 2 mod 3, then all but 2 are inserted by means of “insert
3..,” and 2 are inserted by means of “insert 2 ... .” The net effect 1s to reduce expression
(5a) for Algorithm B by a small constant, which 1s zero when m = 0 mod 3 and nonzero
but quite a bit smaller than 1 when m # 0 mod 3. We will denote this constant ¢; it proves
easy to show that € < ;- We then have
HL(m, n) — He(m,n)=m/12 - 1 + 6, + € — 0, 0]

so that in this range, the difference is just m/12 — ¢, where -2 <c¢ <1+ e

Consider now n in any range o4, d = 3. The analysis just given 1s still exact, since [( 329]
= ()2 when d = 3. Consequently, (7) still holds in every range o4 for d = 3.

Finally, we observe that (7) must yield a positive result whenever m = 24. This completes
the proof of the theorem.

3. A Stll Better Improvement
It is possible to improve (7) so that the term m/12 may be improved 10 (35)m. The proof

1oma,2® 2oy = d-2; Mz, 131/28)2% - 1) = 2d
L d-2

1:2
Y
\K Lomaed oy s a-2 Meem2d - = 2a-1
1 Zd-—l

M(3,1007/28)28 - 1) = M3, 1710028 2 1) = 3d-3
FiG. 5§

____1_..-—-— annex 2‘:1

1:2d

!
\f_,_l-——' insert 1 in d+ 2 and annex [(17/14)2dj
2:[(17/14)2dj

_/__L,_— insert 2 1n 2d + 3 and annex [(5/4)2dj
3:1(5/4) Zd]
/Linsert 3 in 3d+4 and annex [(5/4)2dj

a1 (5/4)29;

{

insert 4 i1n 4d+ 3

Fic 6. Algonthm B
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will only be sketched, since this improvement is marginal.

LEMMA 5. Ford=3,

(@) MG, (32l -)s3d—1,

®) MG, UG + Gl - D =34

© MG, U+ @EN2)-1)=3d+1,

@) M3, 1q2°| - ) =3d+2for3) = g= ().

ProoF (sketch). Instead of proving (d) from Lemma 2, we observe that it 1s just a
restatement of Lemma 3(a). We then prove (c) from (d) and (b) from (c), using the same
diagrams as those for the corresponding steps in Lemma 3. Attempting the same thing for
(a) from (b), we discover that we cannot improve (a). [J

LEMMA 6

(@ M@, (1 +3)2Y-1)<s4d4d-2.

(B) M4, L) + (2] — D=4d - 1.

PrOOF (sketch). (a) may be proved by means of essentially the same diagrams as those
of Figures 4, 5, etc.; one needs to put in 3’s for 2’s and 4’s for 3’s. By using Lemma 3(a)
and 3(c) carefully and noting that M4, [((3) + (2] — ) = M@, |(1 + 22| - ) =<
M@, I_(;,5-)2‘“_| — 1) = 4d - 5 by the HLA, one completes the proof. (b) follows from (a) in
the same fashion that Lemma 5(c) 1s derived from 5(d) O

One now uses Lemma 6(b) to substitute 4: [((3) + (35)2°] for 4: [(3)2°] in Algorithm
B. The result is to decrease the cost per element inserted by 3. The coefficient of m

(7) is then improved to 3 + 13 = =

4. Concluding Remarks on Another Class of Algortthms

Another algorithm 1n the literature dominates the HLA for probably more values of m and
n than the present algorithm. This is the algorithm of Hwang and Deutsch [2], which 1s
optimal over a class of Algorithms R, all of which iteratively perform the following steps:

1 Determine dynamucally which array 1s smallest, call 1t small and the other large

2 Compare small [1] large [ yl, or large {1] small {x]

3 If small [1] were compared with large { y] 1n step 2, and small [1] < large [ 1. then nsert small {1] into {large
[1}, ,large [y — 11}, if small [1] = large [ y], then annex y elements A symmetrical operation 1s performed 1f
large [1] 1s compared with small [x] 1n step 2.

4 Perform steps | through 3 unti! one of the lists 1s exhausted

Hwang and Deutsch show (a) that the optimal algorithm 1n R always performs small
(1): large [ ], and (b) that for this optimal algorithm, 1t is possible to specify y inductively
1 terms of m and n.

The domain of dominance over the HLA appears to be as robust as ours, 1f not more so.
However, the improvement for fixed n/m over the HLA increases more slowly than
linearly in m (8].
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