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ABSTRACT The Hwang-Lin mergmg algorithm is the best general-purpose merging algorithm that has been 
found Many improvements to ~t have been devtsed, but these are etther for special values of m and n, the 
number of ~tems being merged, or else zmprovements by a term less than hnear m n + m when the ratm n/m ~s 
fixed 

A new methodology is developed m which, for fixed ratio n/m, It ts possible to decrease the number of 
comparisons by a factor proporUonal to m, m fact m/12, provided n/m _> 8 and m >_ 24 It is shown that the 
coefficient ~ s  not best possible, and a techmque for lmprowng it shghtly to ~ is sketched 
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1. Introduction 

In [4], H w a n g  and L m  present a merging a lgor i thm that  combines  the virtues o f  binary 
insert ion and l inear merging.  It is the best s imple genera l -purpose  merging a lgor i thm 
known for arbi t rary list size. 

Let  m and n be the n u m b e r  o f  i tems being merged,  with m _< n. This  lists " smal l "  and 
" large ,"  contaimng,  respectively, m and n items, are supposed sorted, so that the least i tem 
has the lowest index. As an i tem is located in the evolv ing  merged  hst, it is deleted f rom 
the list or iginal ly conta ining it. Indexing,  as we define it, is a little unusual;  we wdl  say that  
the first remaining element  in a list has index 1, the next  index 2, and so forth. 

Linear merging consists in running down  both lists, looking for the least e lement  by 
compar ing  e lement  1 o f  both lists. The  process cont inues untd  one  list is exhausted,  
whereupon  the remaining  elements  o f  the other  list are merged  onto  the bot tom o f  the 
merged  hst. In  the worst case, m + n - 1 compar isons  are needed.  

Binary insertion ts the best me thod  for merg ing  one e lement  into n. In the simplest  case, 
n ffi 2 k - I. The  singleton e lement  ts first compared  with e lement  2 ~l - 1; i f  the singleton 
e lement  is smaller, it belongs in the upper  half, so the next  compar ison  is with e lement  
2 k2 - 1, etc. In  the worst  case k compar isons  are required,  and this is best possible when  
merging  one e lement  into n, 2 kq _< n _< 2 k - 1. 

The  H w a n g - L i n  a lgor i thm (HLA)  [4] breaks the big list into blocks of  size T -= 
2 tl°gtn/m}j. The  first e lement  o f  the small  list, denoted  smal l ( l )  is compared  with large(T) .  
I f  the first e lement  o f  the small  list ts larger than large(2*), then T elements  f rom the large 
list are annexed, i.e., r emoved  from the large list. I f  the first e lement  o f  the small  list ts less 
than  or  equa l  to la rge(T) ,  smal l ( l )  is merged  into {large(l),  large(2) . . . .  l a rge(T  - l)} by 
binary insert ion in ¢ comparisons.  (We are using a mode l  in which only compar isons  are 
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computationally relevant.) Then element 1 Is removed from small, and the elements in 
large that are smaller than small( l)  are annexed. The same process is iterated until one hst 
is exhausted In the companion paper [7] we state the algorithm formally and indicate that 
we shall use a "static" variant in which z is computed only once. We also provide the 
explanation for a diagrammatic convenUon for the algorithm, in which the iterated core is 
illustrated as a simple, stylized flowchart. The diagram for the static Hwang-Lin  algorithm 
is shown in Figure 1. 

In Figure 1, no annexation is shown in connection with an insertion because in the 
worst case, no elements will be annexed. 

In [7] we analyze the static variant of  the algorithm and discover that the number of 
comparisons in the worst case is identical to the number reqmred [6] by the HLA. The 
idea is that m the worst case there will be m insertions requiring z + I comparisons each, 
together with [ n / T j  - 1 annexations requiring 1 comparison each. Therefore, if  HL(m, n) 
Is the number  of  comparisons required by the HLA or its static variant, then 

HE(m, n) = m(r  + 1) + [ n / 2 q  - 1. (1) 

Definition. Let the HLA operate on lists of  size m (the small list) and n (the large list). 
The operation of  the algorithm will be called a complete run if  at the end, no element of  
the small list is uninserted and, at most, one block of  the large list is unannexed. 

Clearly, for every m and n, there exist orderings of  the small and large lists that will 
produce a complete run of  the algorithm. This fact ammates a simple characterization of  
worst-case runs, namely: 

PROPOSITION 1. Among the complete runs there is always at least one worst-case run. 
To prove Proposition 1, we require a few simple observations First, we note that 

insertions of  one element of  small Into 2" - 1 elements of  large may in themselves produce 
the annexation of  between 0 and 2" - 1 elements of  large, depending on where the insertion 
is made into the 2" - 1 elements. Clearly, annexing more than 0 elements cannot serve to 
mcrease the total number of  comparisons; it must either reduce it or leave it unaltered. 
Therefore, if we consider only worst-case runs, we may safely assume that an insertion 
produces no annexation. 

Second, we note that a merge, in order to run to completion, may leave one or more 
elements "uninserted" from small or unannexed from large, but not both. 

We are now ready to prove the proposition. Consider a purportedly worst-case run in 
which, at the end, there are k > 1 elements remaining in small, and none in large. 
Necessarily, the last step (Figure 1) must have been the annexation of  the last block of  
large (or fragment, if the number of elements in large is not a mulUple of  2 ~) by the first 
(remaining) element of  small. There clearly exists an alternaUve run, with different data, 
which is identical to the first run up to the insertion of  the first m - k elements of  small but 
which, at greater cost, then inserts k - 1 elements and finally annexes the last block or 
fragment of  large with the last element of  small. Hence the former run is not worst case. 
An essentially identical argument shows that runs in which no element of  small, but more 
than one block of  large, remains, also cannot be worst case. Last, consider the case in 
which just one element of  small is uninserted, and no elements of  large are unannexed. 
The last step was necessarily the annexation of  the last block or fragment by the last 
element of  small. If  this last block or fragment contains more than one element, then 
insertion of  the last element of  small will cost more than annexation. I f  it contains exactly 
one element, then insertion and annexation will cost the same, namely, one comparnson. 
This complete the proof. []  

~ annex 2 z elements wlth 1 comparison 

1:2 T 

"M~"~ lnse r t  1 e l e m e n t  i n  T+ 1 c o m p a r i s o n s  

FIG 1 
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Our main tool for making the analysis of our merging schemes tractable is a variant of 
cost accounting appropriate only to complete runs. Its relevance to worst-case analysis is 
guaranteed by Proposition 1 The idea is that since both the number of annexations and 
insertions in a complete run are known, the total cost of annexations may be averaged 
over each element of small and "charged" at the time the element is inserted. This zs 
counterbalanced by setting the "cost" of an annexation to 0. Mutatis mutandis, the original 
charging scheme is transformed into one vastly easier to analyze. We shall call costs 
reckoned in this way effective costs. 

Specmllzlng now to the case n = 2am, the number of annexations m a complete run 
equals the number of insertions minus 1. Hence assigning an effective cost of 1 to each 
insertion to cover the aggregate cost of insertion, we shall overcalculate the total number  
of comparzsons by just 1. Our objectwe is an analysis correct to order m, so thzs is 
acceptable. 

This effectwe cost for each step of Figure 1 is then 

Step Cost 

"Annex 2 d " Zero 
"Insert one element " d + 2 

This method, trivial for Figure 1, wdl permit easy analysis of the more complex schemes 
m this paper and its companion [7]. In the sequel and m [7], the term "cost" applied to 
diagrams like that of Figure 1 will be understood to mean effectwe cost. 

2. Slgntficant Improvements 

We now introduce the notion of a significant improvement over the HLA. Let M(m, n) be 
the number of comparisons required to merge lists of length m and n. We note that to date, 
improvements in the HLA, in the sense that they yield smaller results than (1), have been 
presented either for spectal values of m or n (or both), or are similar to Hwang and Lm's 
demonstration [5] that M(m, 2m) _< 3m - 2, or else [2] have been achieved for a broad 
spectrum of values of n and m wRhout achieving sigmficant improvement in the sense of 
this paper. By a significant improvement, we mean an improvement that for fixed n/m 
increases linearly with m. Such schemes have not been demonstrated, It is the purpose of 
this paper to show that they exist. 

For constant n/m, if an algorithm can be found that requires 6(n/m)m comparisons (to 
order m), then easy information-theoretic arguments show that [6] 

HL(m, n) - ~(n/m)m < m, (2) 

so that if HL(m, n) = h(n/m)m - c, for some constant c, then 6(n/m) can differ from h(n/ 
m) only by some number  less than one. Thus the margins for improvement are not very 
great. 

A significant improvement for n/m = 8 was presented m [7]. Its diagram is shown m 
Figure 2. This diagram depends on the fact that M(2, 8) = 6 and M(3, 8) = 8. M(2, 8) 
comes from the exphcR formula 

M(2, n) = [log(-~)(n + 1)] + [log(~-)(n + 1)] (3) 

derived first by Graham [1] and then by Hwang and Lm [3]. M(3, 8) ts easily derivable 
from M(3, 6) = 7, which was derived by Hwang and Lin (see [6] for their proof). The 
diagram indicates that the first three elements of the small list are compared, respectively, 
to the eighth, ninth, and ninth elements of the large hst The costs are now calculated by 
assuming that an inserted element should annex eight elements in order to be at "pa r"  

"Par" means that no annexauon cost is factored m If the second step read "insert 1 m 5 and annex 8,'" its cost 
would be 5 "Insert I m 5" would cost 6, the extra comparison compensating for the unperformed annexation 
that must be averaged in 
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/ ~ - a n n e x  8 in 1 comparison 

1:8 " x ~  ~ /  i n s e r t  1 in 5 [comparisons] 
7 

2:9 

and annex 9 

• insert 2 in 9 and annex 9 

3:9 

%insert 3 in II 
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FIG 2 

The step "insert  1 in 5 comparisons  and annex 9" now has cost o f  only 4~ because it 
annexes not only its "pa r "  but  also one-eighth o f  the next group of  eight. The  costs (per 
e lement)  o f  Figure  2 are thus 

Step Cost 

"Annex 8 " Zero 
"Insert I 478 
"Insert 2 "' 4 ~ 
"Insert 3 43 

The highest cost is that o f  "insert  2 . . . .  " It is clear that for n /m  = 8 and m sufficiently, 
large, we will obtain for H(m, n) 4-~ comparisons per  e lement  rather  than the 5 r eqmred  
by the H L A  where H(m, n) is the number  o f  comparisons required by the new algori thm, z 

We  would  now hke to generalize this construction in four  ways: 
(1) To  find analogs to Figure  2 for n/m = 2 d for d > 3 (none are known to exist for 

d <  3) 
(2) To generalize further to n/m not a power  o f  2. 
(3) To  find just  how big m must  be to make  H(m, n) smaller  than HL(m, n). 
(4) To  discover whether  for sufficiently large n/m there exists a single a lgor i thm for 

which 6(n/m) is larger than some fixed constant, and if  so to find the constant. 
The  main result is contained m our  

THEOREM. For n /m _> 8, there exists a merging algorithm, which we present exphcttly, 
requiring H(m, n) comparisons, where 

HL(m, n) - H(m, n) = m/12 - e (4) 

13 where - ~  < e < 2. 
We now develop the p roof  o f  the theorem. 
LEMMA 1. M(2, 2 d) = 2d for  d _> 3. 
PROOF. Equat ion  (3). []  
LEMMA 2 M ( 3 , 2  d ) _ < 3 d -  l f o r d _ > 3 .  
Note. HL(3, 2 a) = 3d for d_> 2. 
PROOF. Figure  3, together with the fact that M(3, 8) = 8. []  
LEMMA 3. For d _> 3, 
(a) M(3, 31 a [ ( ~ ) 2  ] - -  l ) _ < 3 d -  1, 

2 This is achmved by combining "insert 2 "and annexation in just the right proportion and sequence to produce 
a complete run Clearly th~s m possible and wdl produce a run with the largest possible coefficient of m We 
should also mention that the problem of maximizing the number of comparisons for Figure 2 has an alternative 
formulation In terms of integer programming to find values of integer variables xa, x2. x3 and x4 that wdl 
maximize the value of xl + 5x2 + 9x3 + 1 Ix4 subject to the constraints m = xz + 2x3 + 3x4 and 8m = 8xl + 9xz 
+ 9x3 
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(b) M(3, t (~)2q - 1) ~ 3d, 

(c) M(3, t (~)2q - 1) _< 3d + l, 

(d) M(3, Lq2aJ - 1) <_ 3d  + 2for ~ _< q _< 2. 
PROOF. (d) is almost trivial, if  q = 2 then by Lemma 2, M(3, 2 a+l) _< 3(d + 1) - I = 

3d  + 2. The inequality obviously holds for lesser q. To prove (c) from (d), we use Figure 
4. We then prove (b) from (c) using virtually the same scheme as that of  Figure 5. To 
prove (a) from (b), we use Figure 5. []  

LEMMA 4. M(4,[(~)2dJ - 1) ~ 4d  -- 1. 
PROOF. The HLA. []  
It turns out that for the case n/m = 8, a highly efficient a lgor i thm--considerably  more 

efficient than that of  Figure 2-- involves  four elements from the small list rather than three. 
(The reader should consult [7] for details.) We now generalize this four-element diagram, 
using also the fact that 17 d M(2,[(-~)2 J - 1) = 2d, as can be derived directly from (3). The 

,, 23 Following similar analysis in highest cost is for the "insert 3 ... step; the cost is d + ~ .  
[7], it can be shown that when m rood 3 = 0, then the worst case is realized when all the 
elements in the small list are inserted by means of  this step. Let HB(m, n) be the number  
of  comparisons required. Then 

HB(m, n) ---- (d  + 4 g)m + [(n - [(~)2aJ(m/3))/2dJ. (5) 

By using [a] = a - 0, where 0 _< 0 < l, we obtain 

11 ns (m,  n) ---- (d + -~)m + n/2 a - 81 (Sa) 

which reduces to (d  + 23 ~ ) m  - 01 when n = 2din. 
We now consider n/m not a power of  2. Suppose we consider n m the range n ~ oa = 

[2dm, 2am + 1 . . . . .  2a+lm -- 1}. Clearly, ¢ = [log n/raJ will be just  d for all n in this range. 

1:2 d-2 

/ ~ j . M ( 1 , 2  d - 2 -  1) = d -  2; M(2,2 d) = 2d f o r  d > 3 

~ M(1,2 d-2 - 1.) 

1 :2 d-1 

= d - 2 ;  M(2, (3 /4)2  d) = 2 d - 1  fo r  d _> 3 

~ M ( 3 , 2  d - l )  < 
M(3,8) = 8. 

3 ( d -  1) f o r  d _> 4 by HLA; 

FiG 3 

• . . •  M(1,2 d-1 - 1) = d -  2; M(2 , [ (3 /2)2  d] - 1) = 2d+ 1 

1:2 d-2 

~ .~.~.~.~ M(1,2 d - 2 -  1) = d -  2; M(2, [ (5 /4)2  d] - 1) = 2d+ 1 

1:2 d-1 

\ 
N(3,2 d -  1) < 3 d -  1 

FIG 4 
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Now the HLA can be reexpressed as 

HL(m, n) = m(d + 1) + n/2 a -  1 - 02 (6) 

in the same range. We need to have a formula for HB(m, n) when m is not  a mult iple  of  3. 
I f  m is congruent  to 1 mod 3, then the worst case for Algori thm B is realized when  all but  
one of  the elements are inserted by means  of  "insert  3 ..." and  one is inserted by means  of  
"insert  1 .... " I f  m is congruent  to 2 mod 3, then all but  2 are inserted by means  of  "insert  
3 .... " and  2 are inserted by means  of  "insert 2 .... " The net effect is to reduce expression 
(5a) for Algor i thm B by a small  constant,  which is zero when  m -= 0 mod  3 and  nonzero 
but  qmte a bit smaller than  1 when  m # 0 mod 3. We will denote this constant  E; it proves 
easy to show that ¢ _< i~ We then have 

HL(m, n) - HB(m, n) = m/12 - 1 + 01 + ~ -- 02, (7) 

so that in this range, the difference is just  m/12 - e, where - 2  < ¢ < 1 + e 
Conmder  now n in any range aa, d-> 3. The analyms just  given is still exact, since [(~)2dj 

---- (~)2 a when  d > 3. Consequently,  (7) still holds in every range oa for d > 3. 
Final ly,  we observe that (7) must  yield a pomtive result whenever  m _> 24. This completes 

the proof  of  the theorem. 

3. A Still Better Improvement 

It is possible to improve (7) so that the term m/12 may be tmproved to 3x (-~g)m. The  proof  

~J~M(i,2 d-2- 1) = d- 2; M(2,[(31/28)2 d] - 1) = 2d 

1:2 d-2 

.~[_~M(1,2 d-2- i) = d- 2; M(2,[(6/7)2 d] - 1) = 2d- 1 

1:2 d-I 

~ M(3,[(17/28)2dj - i) = M(3,[(17/14)2 d-l] - I) = 3d- 3 

FIG. 5 

~.------annex 2 d 
1:2 d ' - ~  

• . _ ~  i n s e r t  1 in  d + 2 and annex [(17/14)2dl  

2:[(17/14)2dj 

~ ~  i n s e r t  2 in  2d + 3 and annex [(5/4)2d1 

3 : [ ( 5 / 4 ) 2 d j  

~ i n s e r t  3 in  3d+4  and annex [ (5/4)2  d] 

4 : [ ( 5 / 4 ) 2  d] 

i n s e r t  4 in  4d+ 3 

FIG 6. Algorithm B 
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will only  be sketched,  since this improvemen t  is marginal .  
LEMMA 5. For d _> 3, 
(a)  M(3, al a [(-~)2 J -  1)_< 3 d -  l,  

(b) M(3, t((~) + (~))2d]  -- 1) _< 3d, 

(c) M(3, L((~) + (~-))2d] -- l)  _< 3d  + 1, 
31 (d)  M(3, 1. q2a] - 1) _< 3d  + 2 f o r  (~-) <_ q _< (-i~)" 

PROOF (sketch). Ins tead  of  proving  (d) f rom L e m m a  2, we observe that  it is jus t  a 
res ta tement  o f  L e m m a  3(a). W e  then  prove (c) f rom (d) and  (b) f rom (c), using the same 
d iagrams  as those for the cor responding  steps in L e m m a  3. At t empt ing  the same thing for 
(a) f rom (b), we discover  that  we cannot  improve  (a). [ ]  

LEMMA 6 
3 d (a) m(4,  L(I + ~-)2 J - 1) _< 4d  - 2. 

8 d (b) M(4, L((~) + (-i-i~)) 2 J - 1) _< 4 d  - 1. 
PROOF (sketch). (a) m a y  be proved  by  means  of  essential ly the same d iagrams  as those 

o f  Figures  4, 5, etc.; one needs to put  in 3's for 2's and  4's for 3's. By using L e m m a  3(a) 
and  3(c) careful ly  and  not ing that  m(4 ,  L(({) + (~))2a] - 1) = m(4,  L(l + ~)2a-l] - 1) _< 
M(4, [(~)2a~] - 1) _< 4 d  - 5 by  the HLA,  one completes  the proof.  (b) follows f rom (a) in 
the same fashion that  L e m m a  5(c) is der ived f rom 5(d) [ ]  

One now uses L e m m a  6(b) to subst i tute 4: [((~) + (-i~))2 a] for 4: [(~)2dj in Algor i thm 
B. The  result  is to decrease  the cost per  e lement  inser ted by  -iT~.~ The  coefficient of  m m 

1 31 (7) is then improved  to ~ + ~2 - aa6" 

4. Concluding Remarks on Another Class o f  Algorithms 

Anothe r  a lgor i thm in the l i terature  domina tes  the H L A  for p robab ly  more  values o f m  and 
n than  the present  a lgori thm. This  is the a lgor i thm of  Hwang  and  Deutsch [2], which is 
op t imal  over  a class of  Algor i thms  R, all  of  which i terat lvely pe r fo rm the fol lowing steps: 

1 Determine  dynamica l ly  which  a r ray  ~s smallest, call it small  and  the other  large 
2 Compare small [l] large [y], or large [1] small Ix] 
3 If small [l] were compared with large [y] in step 2, and small [1] < large [y], then insert small [ 1] into {large 

[1],  , l a r g e  [ y  - l]}, if small [l] _> large [y], then annex y elements A symmetrical operation is performed if 
large [I] us compared with small Ix] m step 2. 

4 Perform steps 1 through 3 until one of the hsts is exhausted 

Hwang  and  Deutsch  show (a) that  the op t imal  a lgor i thm in R always per forms  smal l  
[1]: large [y], and  (b) that  for this op t imal  a lgori thm, it is possible  to specify y induct ively  
in terms o f  m and n. 

The  d o m a i n  o f  dominance  over  the H L A  appears  to be as robust  as ours, if  not  more  so. 
However ,  the improvemen t  for f ixed n /m  over  the H L A  increases more  s lowly than  
l inear ly  in m [8]. 
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