
A REPRESENTATION FOR LINEAR LISTS WITH MOVABLE FINGERS

Mark R. Brown
Computer Science Department
Yale University
New Haven, Connecticut 06520

Robert E. Tarjan *-/
Computer Science Department
Stanford University
Stanford3 California 94305

Abstract.

This paper describes a data structure which is useful for representing linear lists when the pattern
of accesses to a list exhibits a (perhaps time-varying) locality of reference. The structure has many of
the properties of the representation proposed by Guibas, McCreight, Plass, and Roberts [4], but is
substantially simpler and may be practical for lists of moderate size. The analysis of our structure
includes a general treatment of the worst-case node splitting caused by consecutive insertions into a

2-3 tree.

O. Introduction.

In [4], a representation for linear lists was introduced which allows very efficient access in the
neighborhood of selected positions of a list. More precisely, if a finger is defined to be a fixed value
in the space of keys stored in the list, then the structure allows one to access, insert, or delete a list
item located within d positions of the finger in O(log d) time. (Throughout the paper, we understand
O(log d) to mean O(log(max(d,2))) when appropriate.) The structure also supports multiple fingers;
when f fingers are present the time bound grows to O(f+ log d) per access.

This data structure has certain limitations, however. First, the structure and the algorithms which
maintain it are very complicated, making implementation difficult. The representation is based on B-trees
[2; 6, p. 473] having a minimum order (degree of branching) of 25 ; hence it seems unsuitable for small
or moderate-sized lists which can be kept in core. The large overhead associated with the structure makes
it applicable only to extremely large lists kept in external storage.

Another limitation is that the structure does not support the operation of efficiently moving a
finger. To move a finger to a new position in the key space requires that the finger be abandoned and a

new finger created from scratch at a cost of @(log n) ,~-~/ even if the finger moves only a few positions
in the list. It would be useful to be able to move a finger d positions in O(log d) steps.

In this paper we give a list structure which partially solves the problems described above. With
this structure the cost of moving a finger d positions is O(log d) , the same as the cost of searching
d positions from a finger. The cost of inserting a new item at a distance d from a finger can be
 (log n) , where n is the list size; but when consecutive insertions m de at distances %,%, .,%

+

\ l<i<k J
[1] and is practical for lists of moderate size, while an obvious generalization of the structure to
B-trees makes it suitable for very large lists. The major limitation of our structure is that when
deletions are mixed with insertions, a worst case of @(log n) steps per insertion or deletion can occur.

In the next section we describe the list structure and give the search and insertion algorithms. In
Section 2 we prove the time bound for consecutive insertions; this requires an analysis of node splitting
in 2-3 tree insertion which applies to other algorithms using 2-3 trees. In the final section we discuss
some practical issues arising in an implementation of the structure, describe some applications, and
indicate directions for future work.

*-/ This research was supported in part by National Science Foundation grant MCS75-22870 and by Office of
Naval Research contract NOOO14-76-C-O688.

*~/ A function g(n) is @(f(n)) if there exist positive constants c , c' , and n O with

of(n) ~ g(n) ~ c'(f(n)) for all n ~ n o . Hence the ' @ ' can be read 'order exactly'; see [7] for

further discussion of the @ notation.

- 19 -

1. The Structure.

We use a data structure based on 2-3 trees [1;6]. A 2-3 tree is a tree such that 2- or 3-way
branching takes place at every internal node, and all external nodes occur on the same level. An internal
node with 9-way branching is called a 2-node, and one with 3-way branching a 3-node. It is easy to see

that the height of a 2-3 tree with n external nodes lies between [log~ n~ and Llgn] .~/ An
example of a 2-3 tree is given in Figure 1.

Figure i. A 2-3 tree.

There are many scheme~ for associating data with the nodes of a 2-3 tree; the usefulness of a
particular organization depends on the operations to be performed on the data. All of these schemes use
essentially the same method for updating the tree structure to accomodate insertions, where insertion
means the addition of a new external node at a given position in the tree. (Sometimes the operation of
insertion is considered to include searching for the position to add the new node, but we shall
consistently treat searches separately in what follows.)

Insertion is accomplished by a sequence of node expansions and splittings, as shown by example in
Figure 2. When a new external node is attached to a terminal node p (an internal node having only
external nodes as offspring), this node expands to accomodate the extra edge. If p was a 2-node prior
to the expansion, it is now a 3-node, and the insertion is complete. If p was a 3-node prior to
expansion, it is now a "4-node", which is not allowed in a 2-13 tree; therefore p is split into a pair
of 2-nodes. This split causes an expansion of p's parent, and the process repeats until either a 2-node
expands to a 3-node, or the root is split. If the root splits, a new 2-node is created which has the two
pieces of the root as its children, and this new node becomes the root.

One way to represent a sorted list using a 2-3 tree is slhown in Figure 5. The elements of the list
are assigned to the external nodes of the tree, with key values of the list elements increasing from left
to right. Keys from the list elements are also assigned to internal nodes of the tree in a "symmetric"
order analogous to that of binary search trees. More preciseily, each internal node is assigned one key
for each of its subtrees other than the rightmost, this key being the largest which appears in an external
node of the subtree. Therefore each key except the largest appears in an internal node, and by starting
from the root of the tree we can locate any element of the list in O(log n) steps, using a generaliza-
tion of binary tree search. (This 2-3 search tree organization is similar but not identical to those
given in [i, p. lh7; 63 p. 468].)

This structure is elaborated in Figure 4 to support efficient access in the neighborhood of a finger.
The arrangement of list elements and keys is not changed, but the edges between internal nodes are made
traversible upwards as well as downwards, and horizontal links are added between internal nodes which are
neighbors (adjacent on the same level).

A finger into this structure consists of a pointer to a terminal node of the tree. It would seem
more natural for the finger to point directly to an external node, but no upward links leading away from
the external nodes are provided in our structure; the reasons for this decision will become evident when
implementation considerations are discussed in Section 3. Note that the presence of a finger requires no
change to the structure.

*-/ We use lg n to denote log 2 n .

- 20 -

Figure 2. A 2-3 tree insertion.

Figure 3- A 2-3 tree structure for sorted lists.

- 21 -

Figure h. A structure to support finger searching.

If t is an internal node, then we define Largestkey(t) ~id
smallest keys contained in t , and let Leftmostlink(t) and
leftmost and rightmost downward edges leaving t . The fields
right neighbors of t , and are Nil if no such nodes exist~
Nil if t is the root.

Roughly speaking, the search for a key k using a flnger f proceeds by climbing the path from f
toward the root of the tree. We stop ascending when we discover a node (or a pair of neighboring nodes)
which subtends a range of the key space in which k lies. We then search downward for k using the
standard search technique.

A more precise description of the entire search procedtu:e is given below in an Algol-like notation.
Smallestkey(t) to be the largest and

Rightmostlink(t) denote respectively the
~Nbr(t) and rNbr(t) give the left and

Parent(t) is the parent of t , and is

procedure FingerSearch (f, k)

end

hb-n~ent Here f is a finger (a pointer to a terminal node) and

external node with key k in the structure fingered by f ~ then

the parent of the rightmost such node.

beneath which an external node with key

used as a (new) finger.

if k ~I~rgestKey(f) then return SearchUpRight(f,k)

elseif k < SmallestKey(f) then return SearchUpLeft(f,k)

else return f

endif

FingerSearch

k is a key. If there is an

FingerSearch returns a pointer to

Otherwise the procedure returns a pointer to a terminal node

k may be inserted. Hence in either case the result may be

loop

SearchUpRight (p, k)

comment At this point either f = p , or f lies to the left of p's right subtree.

k is larger than the leftmost (smallest) descendant of p .

if k < L~gestKey(p) or rNbr(p) = Nil then return SearchDown(p,k)

else q ~ rNbr(p)

if k < SmallestKey(q)

elseif k < LargestKey(q)

else p ~ Parent(q)

endif

endif

repeat

end SearchUpRight

{procedure SearchUpLeft is similar}

then return

then return

SearchDown2 (p, q~ k)

SearchDown (q~ k)

The key

- 22 -

procedure

loop

end

SearehDown2 (p, ~ k)

until p and q are terminal:

comment Here p is the left neighbor of

spanned by the children of p and q .

if

elseif

else

k <LargestKey(p) then return

k ~ ~nallestKey(q) then return

p ~RightmostLink(p)

q ~LeftmostLink(q)

endif

repeat

if k < Key[RightmostLink(p)]

endif

SearchDown2

then return p

else return q

q , and k is contained in the range of key values

SearchDown(p,k)

SearchDown(~k)

procedure SearchDown(p,k)

[the standard 2-3 tree search procedure]

The running time of FingerSearch is bounded by a constant times the height of the highest node
examined, since it examines at most four of the nodes at each level. But it is not hard to see from the
invariants in SearchUpRight (and SearchUpLeft) that in order for the search to ascend ~ levels in
the tree, there must exist an entire subtree of height ~-2 all of whose keys lie between k and the
keys of the finger node. Hence we have established the following property of FingerSearch :

Property 1. If the key k is d keys away from a finger f , then FingerSearch(f,k) runs in
@ (log d) steps.

Now consider the operation of inserting a new external node with key k into the structure. It is
clearly possible to update all of the links which are changed by a node splitting in constant time. The
insertion procedure must also maintain the organization of keys in the internal nodes. If k is not the
largest (rightmost) offspring of its parent p , then by the rule for key assignments k will be placed
in node p • (If k is the largest, then k may be inserted into p's right neighbor unless k is
larger than all keys in the tree; in that case, the key which was previously largest is placed in p , and
k is unused.) If a "4-node" q splits during insertion, it will contain 3 keys; to maintain consistency
the left and right keys are placed in the new 2-nodes, and the middle key is placed in the parent of q .
This informal description forms the basis of a proof of the following property:

Property 2. A new external node can be inserted at a given position in the structure used by
FingerSearch in @(l+s) steps, where s is the number of node splittings caused by the insertion.

Finally, consider the process of creating a new finger. This operation consists of copying a pointer
to the desired terminal node, and hence requires @(1) time once we have reached this node by means of a
search from another finger. Similarly, since a finger requires no change to the structure, any finger may
be abandoned in constant time.

2. The Analysis of 2-3 Tree Splitting.

Any individual insertion into a 2-3 tree of size n may cause up to about lg n splittings of
internal nodes to take place. On the other hand, if n consecutive insertions are made into such a tree,

splits is bounded by about ~ n instead of n lg n , because each split generates a the total number of

new internal node and the number of internal nodes is less than the tree size. The following theorem
gives a general bound on the worst-case splitting which can occur due to consecutive insertions into a
2-3 tree.

Theorem 1. Let T be a 2-3 tree of size n , and suppose that k insertions are made into T . If the
positions of the newly-inserted nodes in the resulting tree are Pl < P2 < "'" < Pk ' then the number of

node splittings which took place during the insertions is bounded by

2(Flg(n+k)n + l<i<__kr [ig(Pi-Pi_l+l)])

The proof divides into two parts. In the first, we define a rule for (conceptually) marking nodes
during a 2-3 tree insertion. This marking rule has two important properties when a sequence of insertions
is made: the number of marked nodes is greater than the number of splits, and the marked nodes are
arranged to form paths from the inserted external nodes toward the root of the tree.

- 23-

The effect of marking the tree in this way is to shift the problem from being concerned with a
dynamic situation (the 2-3 tree as it changes due to insertions) to focus on a static object (the 2-3 tree
which results from the sequence of insertions). The second part of the proof then consists of showing
that in any 2-3 tree, the number of nodes lying on the paths from the external nodes in positions
Pl < P2 < "'" < Pk to the root is bounded by the expression given in the statement of the theorem.

We now define the marking rule described above. On each insertion into a 2-3 tree, one or more nodes
are marked as follows:

(1) The inserted (external) node is marked.

(2) When a marked node splits, both resulting nodes are marked. When an unmarked node splits,
a choice is made and one of the resulting nodes is marked; if possible, a node is marked which
has a marked child.

We establish the required properties of these rules by a series of l~s.

Lemma i. After a sequence of insertions, the number of marked internal nodes equals the number of splits.

Proof. No nodes are marked initially, and each split causes the number of marked internal nodes to
increase by one. []

Lemma 2. If a 2-node is marked~ then at least one of its children is marked; if a 3-node is marked, then
at least two of its children are marked.

Proof. We use induction on the number of marked internal nodes. Since both assertions hold vacuously
when there are no marked internal nodes, it is sufficient to show that a single application of the marking
rules preserves the assertions. There are two cases to consider when a 3-node X splits:

Case i. X is marked. Then before the insertion which causes X to split, X has at least two
marked children. When the insertion expands X to overflow, this adds a third marked child (by
rule 1 or rule 2). Thus the two marked 2-nodes which result from the split of X each have at least
one marked child.

Case 2. X is unmarked. Then before the insertion which causes X to split, X may have no
marked children. When the insertion expands X to overflow, a new marked child is created. Thus
the single marked 2-node which results from the split of X can be chosen to have a marked child.

A marked 3-node is created when a marked 2-node expands. This expansion always increases the number of
marked children by one. Since a marked 2-node has at least one marked child~ it follows that a marked
3-node has at least two marked children. N

Lemma 3. After a sequence of insertions, there is a path of marked nodes from any marked node to a
marked external node.

Proof. Obvious from Lenma 2. []

Lersna ~. The number of splits in a sequence of insertions is no greater than the number of internal
nodes in the resulting tree which lie on paths from the inserted external nodes to the root.

Proof. In~ediate from Lemmas 1 and 3. []

This completes the first part of the proof as outlined earlier; to finish the proof we must bound the
quantity in Len~na ~. We shall require the following two facts about binary arithmetic. For any
non-negative integer k , let ~(k) be the number of one bits in the binary representation of k .

Lem~a 5 [5, P. ~83 (answer to ex. 1.2.6-11)]. Let a and b be non-negative integers, and let c be
the number of carries when the binary representations of a ~md b are added. Then
~(a) + ~(h) -- ~(a+b) + e

Lemma 6. Let a and b be non-negative integers such that a < b and let i be the number of bits
to the right of and including the leftmost bit in which the binary representations of a and b differ.
Then i < 9(a) - ~(b) + 2[lg(b-a+l)7 .

Proof. If k is any positive integer, the length of the binary representation of k is [ig(k+l)7 .
Let c be the number of carries when a and b-a are added. By Lemma 5, 9(a) + 9(b-a) = 9(b)+ c .
When a and b-a are added, at least i - [lg(b-a+l)7 carries are required to produce a number which
differs from a in the i-th bit. Thus i- [lg(b-a+l)~ < c . Combining inequalities, we find that

i < c+rlg(ba+l)7 < ~(a)-~(b)+~(ba)+[lg(b-a+l)7

< ~(a) - ~(b) + 2 [lg(b-a+l)7 []

Lemma 7. Let T be a 2-3 tree with n external nodes numbered O, 1, ,..,n-1 from left to right. The
number M of nodes (internal and external) which lie on the paths from external nodes Pl < P2 < """ < Pk
to the root of T satisfies

M _< 2<Flg n] + l<i<k~ Flg(Pi-Pi-l+l)]) "

- 24 -

Proof. For any two external nodes p and q , let M(p, q) be the number of nodes which are on the path
from q to the root but not on the path frcm p to the root. Since the path from Pl to the root
contains at most [lg nl+l nodes, we have

M < Fig n l + l + ~ M(Pi_l,p i)
l<i<k

We define a label ~ for each external node as follows. If t is an internal node of T which is
a 2-node, we label the left edge out of t with a 0 and the right edge out of t with a 1 o If t
is a 3-node, we label the left edge out of t with a 0 and the middle and right edges out of t with
a 1 . Then the label ~(p) of an external node p is the integer whose binary representation is the
sequence of 0 's and l's on the path from the root to p .

Note that if p and q are external nodes such that q is the right neighbor of p , then
~(q) <_ ~(p)+l . It follows by induction that ~(pi) - ~(Pi_l) J pi-Pi_l for 1 < i < k .

Consider any two nodes Pi-1 ' Pi " Let t be the internal node which is farthest from the root and

which is on the path frem the root to Pi-1 and on the path from the root to Pi " We must consider two
cases.

Case i. The edge out of t leading toward Pi-i is labelled 0 and the edge out of t leading

toward Pi is labelled 1 . Then ~(pi) > ~(Pi_l) . Furthermore M(Pi_l, Pi) , which is the number

of nodes on the path from t to Pi (not including t), is equal to the number of bits to the

in which the binary representations of ~(Pi_l) and ~(pi) right of and including the leftmost bit

differ. By Lemma 6,

~(pi 1,Pi) < ' ~ (~ (P i_ l)) - ~ (~ (p i)) + 2 F l g (~ (p i) - ~ (P i _ l) + l) l

< m(~ (P i _ l)) - m(~ (p i)) + 2 F l g (p i - P i _ l + l)]

Case 2. The edge out of t leading toward Pi-i is labelled i and the edge out of t leading

toward Pi is also labelled 1 . Let ~' (Pi_l) be the label of Pi if the edge out of t leading

toward Pi-1 is relabelled 0 . Then ~(pi) - ~' (Pi_l) < pi-Pi_l and ~(pi) > ~' (Pi_l) .

Furthermore M(Pi_l, Pi) is equal to the number of bits to the right of and including the leftmost

bit in which the binary representations of ~' (Pi_l) and ~(pi) differ. By Lemma 6,

M (Pi-l' Pi) -< ~ (~' (Pi-i)) - ~ (~ (Pi)) + 2 [ig (~ (Pi) - ~' (Pi-i)+I) 1

_< 9(~' (Pi_l)) - 9(~(pi)) + 2[lg(pi-Pi_l+l) 7

_< V(L(Pi_I)) - ~(~(pi)) + 2[ig(pi-Pi_l+l)l

since ~(L(Pi_l)) = 9(~' (Pi_l))+l .

Substituting into the bound on M given above yields

M <_ Fig nl +i+ ~ (~(~(Pi_l)) -,~(~(pi))+2Flg(pi-Pi_l+l)])
l<i<k •

But much of this sum telescopes, giving

M _< Fig n] +l+~(~(pl)) -~(L(pk))+2 D Fmg(pi-Pi_i+l)l
l<i<k

< 2 Fig nl + D F~(pi-Pi_l+l)l
l<i<k

(since 9(#(pk)) _> 1 and ~(~(pl)) _< Flg n] unless k = 1). This completes the proof of Lenmla 7 and

Theorem 1.

The bound given in Theorem 1 is tight to within a constant factor~ i.e., for an~v n and k there is
a 2-3 tree with n external nodes which some sequence of k insertions causes within a constant factor
of the given number of splits. We omit the proof of this fact.

Our goal in applying Theorem 1 to FingerSeareh is to show that for any sequence of insertions, the
cost (in steps) of the insertions is dominated by the cost of the searches. (This is clearly the case
when searches are made from the root, but is less obvious when the tree is searched from the bottom up.)

Theorem 2. Let L be a linear list of size n , represented using the structure of Figure 4, with one
finger established. Then in any sequence of searches, finger creations, and k insertions, the total
cost of the k insertions is O(log(n+k) + total cost of searches) .

- 25-

Proof. Let S be any sequence of searches• finger creations• and insertions which includes exactly k
insertions. Let the external nodes of L after the insertions have been performed be named
O, 1,...,n+k-1 from left to right. Assign to each external node p a label ~(p) , whose value is the
number of external nodes lying strictly to the left of p which were present before the insertions took
place; these labels lie in the range O,l• ...,n .

Consider the searches in S which lead either to the creation of a new finger (or the movement of
an old one) or to the insertion of a new item. Call an item of L accessed if it is either the source
or the destination of such a search. (We regard an inserted item as the destination of the search which
discovers where to insert it.) Let Pl < P2 < "'" < P~ be the accessed items.

We shall consider graphs whose vertex set is a subset of {Pi I 1 (i < ~} . We denote an edge

joining Pi < Pj in such a graph by pi-Pj and we define the cost of this edge to be

max([lg(~(pj) - ~(pi)+l)7, l) . For each item Pi (except the initially fingered item) let qi be the

fingered itom from which the search to Pi was made. Each qd is also in [Pi I 1 (i < L] since each

finger except the first must be established by a search. Consider the graph G with vertex set

[Pi I 1 < i < ~} and edge set {(qi'Pi) ll (i < ~ and Pi is not the originally fingered item] .

Some constant times the sum of edge costs in G is a lower bound on the total search cost, since
l~(pi) - ~(qi)l+l can only underestimate the actual distance between qi and Pi when Pi is accessed.

We shall describe a way to modify G • while never increasing its cost• until it becomes

r I - r 2 _ r k

where r I (r 2 < -.. (r k are the k inserted items. Since the cost of this graph is

[ig(ri-ri ~+l) 7 ~ , the theorem then follows from Theorem 1.
l<i<k

The initial graph G is connected, since every accessed item must be reached from the intially
fingered item. We first delete a17 but ~-l edges from G so as to leave a spanning tree; this only
decreases the cost of G .

Next~ we repeat the following step until it is no longer applicable: let pi-Pj be an edge of G

such that there is an accessed item Pk satisfying Pi < Pk < Pj " Removing edge pi-Pj now divides G

into exactly two connected components. If Pk is in the same connected component as Pi ' we replace

pi-Pj by pk-Pj ; otherwise~ we replace pi-Pj by pi-Pk . The new graph is still a tree spanning

[Pill < i < ~] and the cost has not increased.

Final!y, we eliminate each item pj which is not an inse~ed item by transforming pi-Pj-Pk to

pi-Pk , and by removing edges Pj-Pk where there is no other edge incident to pj . This does not

increase cost, and it results in the tree of inserted items

r I - r 2 r k

as desired. []

3- Implementation and Applications.

In Section 1 we described our structure in terms of internal and external nodes. The external nodes
contain the items stored in the list• while the internal nodes are a form of "glue" which binds the items
together. The problem remains of how to represent these objects in storage.

External nodes present no difficulty: they can be represented by the items themselves• since we only
maintain links going to these nodes (and none coming from them). Internal nodes may be represented in an
obvious way by a suitab---le record structure containing space for up to two keys and three downward links•
a tag to distinguish between 2- and 3-nodes• and other fields. One drawback of this approach is that
because the number of internal nodes is unpredictable• the insertion and deletion routines must allocate
and deallocate nodes. In the model of random 2-3 trees studie& in [9]• the ratio of 2-nodes to 3-nodes
in a random tree is about 2 to l• so we waste storage by leaving room for two keys in each node. Having
different record structures for the two node types might save s~torage at the expense of making storage
management much more complicated.

Figure 5 shows a representation which avoids these problems. A 3-node is represented in a linked
fashion• analogous to the binary tree structure for 2-3 trees mentioned in [6~ p. 469]. The internal node
component containing a key k is combined as a single record ~ith the representation of the item
(external node) with key k . Hence, storage is allocated and deallocated only when items are created and
destroyed, and storage is saved because the keys in the internal nodes are not represented explicitly.
(The idea of combining the representations of internal and external nodes is also found in the "loser-
oriented" tree for replacement selectioh [6, p. 256].)

- 26 -

node representation:

parent

INbr ! rNbr
iLink rLink

key

item-related
infermation

f

I
~q-- --@ @___

J K \

>/
• •

K 2
\

Figure 5. A storage representation for internal and external nodes.

An example which illustrates this representation is shown in Figure 6. Each external node except the
largest participates in representing an internal node, so it is convenient to assume the presence of an
external node with key +~ in the list• This node need not be represented explicitly, but can be given
by a null pointer as in the figure. Null rLinks are also used to distinguish a 3-node from a pair of
neighboring 2-nodes. There are several ways to determine those ~Links and rLinks which point to
external nodes: one is to keep track of height in the tree during FingerSearch , since all external
nodes lie on the same level. Another method is to note that a node p is terminal if and only if
~Link(p) = p .

We now consider the potential applications of this list representation. One application, described
in [4], is in sorting files which have a bounded number of inversions. The result proved in [4], that
insertion sort using a list representation with one finger gives asymptotically optimal results, applies
equally to our structure since insertion sort does not require deletions.

A second application is in merging: given sorted lists of lengths m and n , with m < n , we wish
to merge them into a single sorted list. Any comparison-based algorithm for this problem must use at

least |lg(m~n~' = @(m log n~ comparisons~ we would like an algorithm whose running time has this
| ~ , m / j L m ,/

magnitude. We solve this problem using our list structure by inserting the items from the smaller list
in increasing order into the larger list, keeping the finger positioned at the most recently inserted

item. This process requires O(m) steps to dismantle the smaller list, and Oflog n+ ~ log di~
\ l<i<m /

steps for the insertions, where d. is the distance from the finger to the i-th insertion• Since the
I

items are inserted in increasing order, the finger moves from left to right through the larger list, and

- 27 -

node format:

parent key

iNbr rNbr

iLink rLink

Figure 6. A structure and its storage representation.

thus ~ d. < n . To maximize ~ log d i subject to this constraint we choose the d. to be
I n i

l<i<m l<i<m

equal, and this gives the desired bound of O(m log(n/m)) steps for the algorithm. (The usual height-
balanced or 2-3 trees can be used to perform fast merging [3], but the algorithm is not obvious and the
time bound requires an involved proof.)

When an ordered set is represented as a sorted list3 the merging algorithm just described can be
modified to perform the set union operation: we simply check for, and discard, duplicates when inserting
items from the smaller list into the larger list. This obviously gives an O(m log(n/m)) algorithm for
set intersection as well, if we retain the duplicates rather than discarding them. Trabb Pardo [8] has
developed algorithms bas@d on trie structures which also solve the set intersection problem (and the union
or merging problems) in O(m log(n/m)) time, but only on the average.

An obvious question relating to our structure is whether it can be generalized so that deletions will
not change the worst-case time bound for a sequence of accesses. This seems to be difficult, since the
requirement for a movable finger conflicts with the need to maintain path regularity constraints (see [4]).
Thus a compromise between the unconstrained structure given here and the highly constrained structure of
[4] should be explored.

Even if such a more general structure could be found, it might be less practical than ours. To put
the problem of deletions in perspective, it would be interesting to derive bounds on the average case
performance of our structure under insertions and deletions, using a suitable model of random insertions
and deletions. It may be possible, even without detailed knowledge of random 2-3 trees, to show that
operations which require @(log n) time are very unlikely.

- 28 -

References.

[i] Alfred V. Aho, John E. Hopcroft, and Jeffrey D. Ullms~. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., (1974).

[2] Rudolf Bayer and Edward M. McCreight. "Organization and maintenance of large ordered indexes, "
Acta Informatica 1 (1972), 173-189.

[3] Mark R. Brown and Robert Eo Tarjan. "A fast merging algorithm," Stanford Computer Science Dept.
Report STAN-CS-77-625, August 1977; Journal ACM (to appear).

[4] Leo J. Guibas, Edward M. McCreight, Michael F. Plass, and Janet R. Roberts. "A new representation
for linear lists," Proc. Ninth Annual ACM Syrup. on Theory of Computing (1977), 49-60.

[5] Donald E. Knuth. The Art of Computer Programming, Volume l, Fundamental Algorithms. Addison-Wesle~
Reading, Mass., (1975 - Second Edition).

[6] Donald E. Knuth. The Art of Computer Programming, Volume 3, Sorting and Searching. Addison-Wesley,
Reading, Mass., (1975).

[7] Donald E. Knuth, "Big omicron and big omega and big theta," SIGACT News 8, 2 (April 1976), 18-24.

[8] Luis Trabb Pardo. "Set Representation and Set Intersection," Stanford Computer Science Dept.
Ph.D. thesis, to appear.

[9] Andrew C.-C. Yao. "On random 2-3 trees," Acta Informatica (to appear).

- 29 -

