
Java Refresher
Alexandre Bergel
http://bergel.eu

02/08/2017

Goal of this lecture

This lecture will essentially be a Java refresher

Understand what an object is

Understanding some important particularities of Java

2

Outline

1.Java refresher
1.Small illustrative scenario with the class Point

2.Extending Point into PositivePoint

2.Class inheritance

3.Terminology

3

Outline

1.Java refresher
1.Small illustrative scenario with the class Point

2.Extending Point into PositivePoint

2.Class inheritance

3.Terminology

4

Defining point as a first example...

 We will model points as a first example

 A point, is a particular entity that represents a spacial
location

 It contains two values, x and y

5

Defining point as a first example...

 It answers to four messages

 moveTo(newX, newY) - move the point to a new location

 moveBy(deltaX, deltaY) - incrementally move the point

 getX() - return the X value

 getY() - return the Y value

 We will now play with one point

6

What do we need next?

 We know the principal character (the point), but this is
not enough to make a movie! We still need:

 To determine where the point comes from

 Point will be the name of the factory

 An execution scenario

 PointExample will be the name of the scenario

7

A simple execution scenario

 It may not be as good a Hollywood movie scenario,
but it will be shorter:

 1 - PointExample creates the hero of our story, a point called
myLittlePoint.

 2 - PointExample tells to the World where myLittlePoint is

 3 - myLittlePoint, who wants to discover the World, jumps to a
position

 4 - He/She/It then does a little step

 5 - End of the movie!

8

Point

Screen-cast

9

The factory The scenario

...

The hero

PointExample

...

System.out

Point

A simple execution scenario

10

PointExample

Point

PointExample asks the factory to
create our hero

11

create a point!
PointExample

Point

PointExample asks the factory to
create our hero

12

0,0

creates
a point

PointExample

PointExample gives a name to our
hero

13

0,0

myLittlePoint

PointExample

PointExample gives a name to our
hero

14

0,0

myLittlePoint

PointExample

The name “myLittlePoint”
is known only by

PointExample

PointExample says to the World
where our hero is

15

0,0

myLittlePoint

PointExample

Initial position is 0,0

System.out ...

print(...)!

PointExample asks our hero to jump
to a new location

16

myLittlePoint,
move to 4,2!

4,2

PointExample

... say to the World where the hero
is...

17

myLittlePoint,
move to 4,2!

4,2

PointExample

Initial position is 0,0
Position after a moveTo is 4,2

System.out ...

print(...)!

... now a little step...

18

myLittlePoint,
move by 1,3!

5,5

PointExample

... and finally, tell to the World where
our hero is!

19

myLittlePoint,
move by 1,3!

5,5

PointExample

Initial position is 0,0
Position after a moveTo is 4,2
Position after a moveBy 5,5

System.out ...

print(...)!

20

Some of the important parts that you
should not have missed! ...

 Point is the only character who knows what
myLittlePoint looks like and how it behaves

 Point knows how to interpret the orders given to myLittlePoint

 myLittlePoint only knows
 the value of X and the value of Y

 who created it

 Only PointExample knows that the hero is named
myLittlePoint

 Other character, if any, can call the hero as they wished

21

Some of the important parts that you
should not have missed!

 PointExample sends to myLittlePoint some orders,
defined in term of messages

 PointExample cannot move myLittlePoint directly (by
changing the value of x and y), it has to ask
myLittlePoint to do it

 Only myLittlePoint can do the job to move to a new
location

 PointExample cannot send a message to myLittlePoint
that is not understood

22

A first example, the code
Definition of Point

 package cc3002;

 public class Point {

 protected int x;

 protected int y;

 ...

Initialize point creation

 ...

 public Point() {

 x = 0;

 y = 0;

 }

 ...

moveTo and moveBy

 ...

 public void moveTo(int newX, int newY) {

 x = newX;

 y = newY;

 }

 public void moveBy(int deltaX, int deltaY) {

 x = x + deltaX;

 y = y + deltaY;

 }

 ...

getting the location

 ...

 public int getX() {

 return x;

 }

 public int getY() {

 return y;

 }

 }

Definition of PointExample

 package cc3002;

 public class PointExample {

 public static void main(String[] argv) {

 Point myLittlePoint = new Point();

 System.out.println("Initial position " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 myLittlePoint.moveTo(4, 2);

 System.out.println("Position after a moveTo " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 ...

Magic invocation, we will see that
later

 package cc3002;

 public class PointExample {

 public static void main(String[] argv) {

 Point myLittlePoint = new Point();

 System.out.println("Initial position " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 myLittlePoint.moveTo(4, 2);

 System.out.println("Position after a moveTo " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 ...

Entry point of the program

Creation of an unnamed point

 package cc3002;

 public class PointExample {

 public static void main(String[] argv) {

 Point myLittlePoint = new Point();

 System.out.println("Initial position " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 myLittlePoint.moveTo(4, 2);

 System.out.println("Position after a moveTo " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 ...

Give the name of the new point

 package cc3002;

 public class PointExample {

 public static void main(String[] argv) {

 Point myLittlePoint = new Point();

 System.out.println("Initial position " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 myLittlePoint.moveTo(4, 2);

 System.out.println("Position after a moveTo " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 ...

Give the name of the new point

 package cc3002;

 public class PointExample {

 public static void main(String[] argv) {

 Point myLittlePoint = new Point();

 System.out.println("Initial position " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 myLittlePoint.moveTo(4, 2);

 System.out.println("Position after a moveTo " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 ... Again, the object may have a different
name in a different context

Ask to myLittlePoint for its position

 package cc3002;

 public class PointExample {

 public static void main(String[] argv) {

 Point myLittlePoint = new Point();

 System.out.println("Initial position " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 myLittlePoint.moveTo(4, 2);

 System.out.println("Position after a moveTo " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 ...

Show it in a standard output stream

 package cc3002;

 public class PointExample {

 public static void main(String[] argv) {

 Point myLittlePoint = new Point();

 System.out.println("Initial position " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 myLittlePoint.moveTo(4, 2);

 System.out.println("Position after a moveTo " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 ...

Ask the hero to move to a new
location

 package cc3002;

 public class PointExample {

 public static void main(String[] argv) {

 Point myLittlePoint = new Point();

 System.out.println("Initial position " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 myLittlePoint.moveTo(4, 2);

 System.out.println("Position after a moveTo " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 ...

Ask the location once more

 package cc3002;

 public class PointExample {

 public static void main(String[] argv) {

 Point myLittlePoint = new Point();

 System.out.println("Initial position " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 myLittlePoint.moveTo(4, 2);

 System.out.println("Position after a moveTo " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 ...

Print the result in the output
standard stream

 package cc3002;

 public class PointExample {

 public static void main(String[] argv) {

 Point myLittlePoint = new Point();

 System.out.println("Initial position " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 myLittlePoint.moveTo(4, 2);

 System.out.println("Position after a moveTo " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 ...

myLittlePoint is asked to move by
1,3

 myLittlePoint.moveBy(1, 3);

 System.out.println("Position after a moveBy " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 }

 }

The location is asked once more

 myLittlePoint.moveBy(1, 3);

 System.out.println("Position after a moveBy " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 }

 }

The position is displayed

 myLittlePoint.moveBy(1, 3);

 System.out.println("Position after a moveBy " +

 myLittlePoint.getX()+ ","+ myLittlePoint.getY());

 }

 }

Running the example

 > java -cp bin cc3002.PointExample

 My initial position 0,0

 My position after a moveTo 4,2

 My position after a moveBy 5,5

Java particularities

 Java is a class-based object-oriented language

 ... but not completely

 a class instantiation is not done through message sending, but with
an operator

 Java contains primitive types, which are not objects

 Static methods are not looked up
 only methods (or also called instance methods) that are not private
are looked up

 we will come back on that point in the future

 E.g., the main() method is called directly by the VM, without
instantiating PointExample

41

Defining a positive point...

 package cc3002;

 public class PositivePoint extends Point {

 public void moveBy(int deltaX, int deltaY) {

 super.moveBy(deltaX, deltaY);

 x = (x < 0) ? 0 : x;

 y = (y < 0) ? 0 : y;

 }

 ...

42

Defining a positive point

 ...

 public void moveTo(int newX, int newY) {

 if (newX < 0) { newX = 0; }

 if (newY < 0) { newY = 0; }

 super.moveTo(newX, newY);

 }

 }

43

Outline

1.Java refresher
1.Small illustrative scenario with the class Point

2.Extending Point into PositivePoint

2.Class inheritance

3.Terminology

44

Class inheritance

45

moveTo(newX, newY)
moveBy(deltaX, deltaY)

PositivePoint

moveTo(newX, newY)
moveBy(deltaX, deltaY)

getX()
getY()

x
y

Point

Defining a positive point

46

moveTo(newX, newY)
moveBy(deltaX, deltaY)

getX()
getY()

Point

moveTo(newX, newY)
moveBy(deltaX, deltaY)

PositivePoint

x = x + deltaX;
y = y + deltaY;

super.moveBy(dX, dY);
x = (x < 0) ? 0 : x;
y = (y < 0) ? 0 : y;

Class inheritance

47

Point aPoint = new Point();
aPoint.moveTo(4, 2);

=> execute Point.moveTo(...)

moveTo(newX, newY)
moveBy(deltaX, deltaY)

getX()
getY()

Point

moveTo(newX, newY)
moveBy(deltaX, deltaY)

PositivePoint

Class inheritance

48

moveTo(newX, newY)
moveBy(deltaX, deltaY)

getX()
getY()

Point

moveTo(newX, newY)
moveBy(deltaX, deltaY)

PositivePoint
aPoint

instantiation

aPoint = new PositivePoint();

Class inheritance

49

moveTo(newX, newY)
moveBy(deltaX, deltaY)

getX()
getY()

Point

moveTo(newX, newY)
moveBy(deltaX, deltaY)

PositivePoint

Point aPoint = new PositivePoint();
aPoint.moveTo(4, 2);

=> execute PositivePoint.moveTo(...)

Class inheritance

50

moveTo(newX, newY)
moveBy(deltaX, deltaY)

getX()
getY()

Point

moveTo(newX, newY)
moveBy(deltaX, deltaY)

PositivePoint

Point aPoint = new PositivePoint();
aPoint.getX();

=> execute Point.getX(...)

Class inheritance

 During the first weeks of the semester we will explain
how inheritance works

 However, understand when to use inheritance is the
topic of the whole semester

 Class inheritance is highly powerful:
 It may bring fantastic property regarding extensibility in a software
system

 But it may be devastating if not properly used

51

Outline

1.Java refresher
1.Small illustrative scenario with the class Point

2.Extending Point into PositivePoint

2.Class inheritance

3.Terminology

52

Terminology

 Object
 “An object is a software machine allowing programs to access and
modify a collection of data” -- Class of Touch, Bertrand Meyer

 “Objects are not just simple bundles of logic and data. They are
responsible members of an object community” -- Object Design,
Rebecca Wirfs-Brock and Alan McKean

 An object has a unique position in memory, often assimilated as its
identify

 An object knows from which class it has been created from (for
class-based object-oriented programming languages like Java, C#,
Smalltalk)

 An object understands the messages for the methods inherited
and defined in its class

53

Terminology

 Class

 A class is primarily an object factory

 It is defined as a set of variable declarations and method
definitions

 Conceptually: class = name + variables + methods + superclass

 In Java: class = name + variables + methods + superclass +
interfaces + static methods + ...

54

Terminology

 Method
 Executable piece of code

 A method execution ends (i) when no more instruction have to be
executed; (ii) when a return statement is reached; (ii) when an
exception is raised

 The control flow is returned to its caller method when the method
return

 Can access to the this and super pseudo-variables (only in
instance method; cannot be used in a static method in Java)

55

Terminology

 Inheritance

 relation of specialization between classes

 a subclass inherits attributes and behavior from its superclass

 it is considered bad programming style to use inheritance for code
reuse only

56

Terminology

 Polymorphism
 is the ability of one type A to appear as and be used like another
type B

 polymorphism plays a key difference between message sending
and function invocation

57

Point aPoint = new PositivePoint();

What you should know!

 What is the difference between an object and class?

 What is the difference between class reuse and class
specialization?

 The difference between function invocation and
sending messages

 The difference between a pointer (à la C/C++) and a
reference

58

Can you answer these questions?

 Why do objects “send messages” instead of
“executing methods”?

 Can you imagine an object model in which a class is
also an object?

 Why polymorphism and class inheritance are so
tightly related in Java?

59

Attribution-ShareAlike 2.5
You are free:
• to copy, distribute, display, and perform the work
• to make derivative works
• to make commercial use of the work

Under the following conditions:

Attribution. You must attribute the work in the manner specified by the author or licensor.

Share Alike. If you alter, transform, or build upon this work, you may distribute the resulting
work only under a license identical to this one.

• For any reuse or distribution, you must make clear to others the license terms of this work.
• Any of these conditions can be waived if you get permission from the copyright holder.

Your fair use and other rights are in no way affected by the above.

http://creativecommons.org/licenses/by-sa/2.5

License

