
In the previous chapters we have considered a variety of topics concerning the motion of

fluids. The basic governing principles concerning mass, momentum, and energy were de-

veloped and applied, in conjunction with rather severe assumptions, to numerous flow situ-

ations. In this chapter we will apply the basic principles to a specific, important topic—the

flow of viscous, incompressible fluids in pipes and ducts.

The transport of a fluid 1liquid or gas2 in a closed conduit 1commonly called a pipe if

it is of round cross section or a duct if it is not round2 is extremely important in our daily

operations. A brief consideration of the world around us will indicate that there is a wide va-

riety of applications of pipe flow. Such applications range from the large, man-made Alaskan

pipeline that carries crude oil almost 800 miles across Alaska, to the more complex 1and cer-

tainly not less useful2 natural systems of “pipes” that carry blood throughout our body and

air into and out of our lungs. Other examples include the water pipes in our homes and the

distribution system that delivers the water from the city well to the house. Numerous hoses

and pipes carry hydraulic fluid or other fluids to various components of vehicles and ma-

chines. The air quality within our buildings is maintained at comfortable levels by the dis-

tribution of conditioned 1heated, cooled, humidifiedydehumidified2 air through a maze of

pipes and ducts. Although all of these systems are different, the fluid-mechanics principles

governing the fluid motions are common. The purpose of this chapter is to understand the

basic processes involved in such flows.

Some of the basic components of a typical pipe system are shown in Fig. 8.1. They in-

clude the pipes themselves 1perhaps of more than one diameter2, the various fittings used to

connect the individual pipes to form the desired system, the flowrate control devices 1valves2,
and the pumps or turbines that add energy to or remove energy from the fluid. Even the most

simple pipe systems are actually quite complex when they are viewed in terms of rigorous

analytical considerations. We will use an “exact” analysis of the simplest pipe flow topics1such as laminar flow in long, straight, constant diameter pipes2 and dimensional analysis

considerations combined with experimental results for the other pipe flow topics. Such an

approach is not unusual in fluid mechanics investigations. When “real world” effects are

important 1such as viscous effects in pipe flows2, it is often difficult or “impossible” to use
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only theoretical methods to obtain the desired results. A judicious combination of experi-

mental data with theoretical considerations and dimensional analysis often provides the de-

sired results. The flow in pipes discussed in this chapter is an example of such an analysis.
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8.1 General Characteristics of Pipe Flow

Before we apply the various governing equations to pipe flow examples, we will discuss

some of the basic concepts of pipe flow. With these ground rules established we can then

proceed to formulate and solve various important flow problems.

Although not all conduits used to transport fluid from one location to another are round

in cross section, most of the common ones are. These include typical water pipes, hydraulic

hoses, and other conduits that are designed to withstand a considerable pressure difference

across their walls without undue distortion of their shape. Typical conduits of noncircular

cross section include heating and air conditioning ducts that are often of rectangular cross

section. Normally the pressure difference between the inside and outside of these ducts is

relatively small. Most of the basic principles involved are independent of the cross-sectional

shape, although the details of the flow may be dependent on it. Unless otherwise specified,

we will assume that the conduit is round, although we will show how to account for other

shapes.

For all flows involved in this chapter, we assume that the pipe is completely filled with

the fluid being transported as is shown in Fig. 8.2a. Thus, we will not consider a concrete

pipe through which rainwater flows without completely filling the pipe, as is shown in

Fig. 8.2b. Such flows, called open-channel flow, are treated in Chapter 10. The difference

between open-channel flow and the pipe flow of this chapter is in the fundamental mecha-

nism that drives the flow. For open-channel flow, gravity alone is the driving force—the wa-
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ter flows down a hill. For pipe flow, gravity may be important 1the pipe need not be hori-

zontal2, but the main driving force is likely to be a pressure gradient along the pipe. If the

pipe is not full, it is not possible to maintain this pressure difference,

8.1.1 Laminar or Turbulent Flow

The flow of a fluid in a pipe may be laminar flow or it may be turbulent flow. Osborne

Reynolds 11842–19122, a British scientist and mathematician, was the first to distinguish the

difference between these two classifications of flow by using a simple apparatus as shown

in Fig. 8.3a. If water runs through a pipe of diameter D with an average velocity V, the fol-

lowing characteristics are observed by injecting neutrally buoyant dye as shown. For “small

enough flowrates” the dye streak 1a streakline2 will remain as a well-defined line as it flows

along, with only slight blurring due to molecular diffusion of the dye into the surrounding

water. For a somewhat larger “intermediate flowrate” the dye streak fluctuates in time and

space, and intermittent bursts of irregular behavior appear along the streak. On the other hand,

for “large enough flowrates” the dye streak almost immediately becomes blurred and spreads

across the entire pipe in a random fashion. These three characteristics, denoted as laminar,

transitional, and turbulent flow, respectively, are illustrated in Fig. 8.3b.

The curves shown in Fig. 8.4 represent the x component of the velocity as a function

of time at a point A in the flow. The random fluctuations of the turbulent flow 1with the as-

sociated particle mixing2 are what disperse the dye throughout the pipe and cause the blurred

appearance illustrated in Fig. 8.3b. For laminar flow in a pipe there is only one component

p1 2 p2.
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of velocity, For turbulent flow the predominant component of velocity is also along

the pipe, but it is unsteady 1random2 and accompanied by random components normal to the

pipe axis, Such motion in a typical flow occurs too fast for our eyes to

follow. Slow motion pictures of the flow can more clearly reveal the irregular, random, tur-

bulent nature of the flow.

As was discussed in Chapter 7, we should not label dimensional quantities as being

“large” or “small,” such as “small enough flowrates” in the preceding paragraphs. Rather,

the appropriate dimensionless quantity should be identified and the “small” or “large” char-

acter attached to it. A quantity is “large” or “small” only relative to a reference quantity. The

ratio of those quantities results in a dimensionless quantity. For pipe flow the most impor-

tant dimensionless parameter is the Reynolds number, Re—the ratio of the inertia to viscous

effects in the flow. Hence, in the previous paragraph the term flowrate should be replaced

by Reynolds number, where V is the average velocity in the pipe. That is, the

flow in a pipe is laminar, transitional, or turbulent provided the Reynolds number is “small

enough,” “intermediate,” or “large enough.” It is not only the fluid velocity that determines

the character of the flow—its density, viscosity, and the pipe size are of equal importance.

These parameters combine to produce the Reynolds number. The distinction between lami-

nar and turbulent pipe flow and its dependence on an appropriate dimensionless quantity was

first pointed out by Osborne Reynolds in 1883.

The Reynolds number ranges for which laminar, transitional, or turbulent pipe flows

are obtained cannot be precisely given. The actual transition from laminar to turbulent flow

may take place at various Reynolds numbers, depending on how much the flow is disturbed

by vibrations of the pipe, roughness of the entrance region, and the like. For general engi-

neering purposes 1i.e., without undue precautions to eliminate such disturbances2, the fol-

lowing values are appropriate: The flow in a round pipe is laminar if the Reynolds number

is less than approximately 2100. The flow in a round pipe is turbulent if the Reynolds num-

ber is greater than approximately 4000. For Reynolds numbers between these two limits, the

flow may switch between laminar and turbulent conditions in an apparently random fashion1transitional flow2.

Re 5 rVD/m,

V 5 uî 1 vĵ 1 wk̂.

V 5 uî.
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EXAMPLE
8.1

Water at a temperature of flows through a pipe of diameter 1a2 Determine

the minimum time taken to fill a 12-oz glass with water if the flow

in the pipe is to be laminar. 1b2 Determine the maximum time taken to fill the glass if the

flow is to be turbulent. Repeat the calculations if the water temperature is 

SOLUTION

(a) If the flow in the pipe is to remain laminar, the minimum time to fill the glass will oc-

cur if the Reynolds number is the maximum allowed for laminar flow, typically

Thus, where from Table B.1,

and at while and

at Thus, the maximum average velocity for lami-

nar flow in the pipe is

Similarly, at With of glass and we 

obtain

V2 5 QtV2 5 volume140 °F.V 5 0.176 ft/s

 5 0.486 ft/s

 V 5
2100m

rD
5

210012.73 3 1025 lb # s/ft
22

11.94 slugs/ft
32 10.73/12 ft2 5 0.486 lb # s/slug

140 °F.m 5 0.974 3 1025 lb # s/ft
2

r 5 1.91 slugs/ft
350 °F,m 5 2.73 3 1025 lb # s/ft

2slugs/ft
3

r 5 1.94V 5 2100 m/rD,Re 5 rVD/m 5 2100.

140 °F.

1volume 5 0.0125 ft32D 5 0.73 in.50 °F

Pipe flow character-

istics are dependent

on the value of the

Reynolds number.



8.1.2 Entrance Region and Fully Developed Flow

Any fluid flowing in a pipe had to enter the pipe at some location. The region of flow near

where the fluid enters the pipe is termed the entrance region and is illustrated in Fig. 8.5. It

may be the first few feet of a pipe connected to a tank or the initial portion of a long run of

a hot air duct coming from a furnace.

As is shown in Fig. 8.5, the fluid typically enters the pipe with a nearly uniform ve-

locity profile at section 112. As the fluid moves through the pipe, viscous effects cause it to

stick to the pipe wall 1the no-slip boundary condition2. This is true whether the fluid is rela-

tively inviscid air or a very viscous oil. Thus, a boundary layer in which viscous effects are

important is produced along the pipe wall such that the initial velocity profile changes with

distance along the pipe, x, until the fluid reaches the end of the entrance length, section 122,
beyond which the velocity profile does not vary with x. The boundary layer has grown in
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Similarly, at To maintain laminar flow, the less viscous hot water re-

quires a lower flowrate than the cold water.

(b) If the flow in the pipe is to be turbulent, the maximum time to fill the glass will occur

if the Reynolds number is the minimum allowed for turbulent flow, Thus,

and at while and

at 

Note that because water is “not very viscous,” the velocity must be “fairly small” to

maintain laminar flow. In general, turbulent flows are encountered more often than laminar

flows because of the relatively small viscosity of most common fluids 1water, gasoline, air2.
If the flowing fluid had been honey with a kinematic viscosity times greater

than that of water, the above velocities would be increased by a factor of 3000 and the times

reduced by the same factor. As we will see in the following sections, the pressure needed to

force a very viscous fluid through a pipe at such a high velocity may be unreasonably large.

1n 5 m/r2 3000

140 °F.t 5 12.8 s

V 5 0.335 ft/s50 °F,t 5 4.65 sV 5 4000m/rD 5 0.925 ft/s

Re 5 4000.

140 °F.t 5 24.4 s

 5 8.85 s at T 5 50 °F

 t 5
V2

Q
5

V2

1p/42D2V
5

410.0125 ft32
1p 30.73/12 4 2ft22 10.486 ft/s2

Flow in the en-

trance region of 

a pipe is quite 

complex.



thickness to completely fill the pipe. Viscous effects are of considerable importance within

the boundary layer. For fluid outside the boundary layer [within the inviscid core surround-

ing the centerline from 112 to 122], viscous effects are negligible.

The shape of the velocity profile in the pipe depends on whether the flow is laminar

or turbulent, as does the length of the entrance region, As with many other properties of

pipe flow, the dimensionless entrance length, correlates quite well with the Reynolds

number. Typical entrance lengths are given by

(8.1)

and

(8.2)

For very low Reynolds number flows the entrance length can be quite short if

whereas for large Reynolds number flows it may take a length equal to many pipe

diameters before the end of the entrance region is reached for For

many practical engineering problems, so that 

Calculation of the velocity profile and pressure distribution within the entrance region

is quite complex. However, once the fluid reaches the end of the entrance region, section 122
of Fig. 8.5, the flow is simpler to describe because the velocity is a function of only the dis-

tance from the pipe centerline, r, and independent of x. This is true until the character of the

pipe changes in some way, such as a change in diameter, or the fluid flows through a bend,

valve, or some other component at section 132. The flow between 122 and 132 is termed fully

developed. Beyond the interruption of the fully developed flow [at section 142], the flow grad-

ually begins its return to its fully developed character [section 152] and continues with this

profile until the next pipe system component is reached [section 162]. In many cases the pipe

is long enough so that there is a considerable length of fully developed flow compared with

the developing flow length and In other cases the

distances between one component 1bend, tee, valve, etc.2 of the pipe system and the next

component is so short that fully developed flow is never achieved.

8.1.3 Pressure and Shear Stress

Fully developed steady flow in a constant diameter pipe may be driven by gravity andyor

pressure forces. For horizontal pipe flow, gravity has no effect except for a hydrostatic pres-

sure variation across the pipe, that is usually negligible. It is the pressure difference,

between one section of the horizontal pipe and another which forces the fluid

through the pipe. Viscous effects provide the restraining force that exactly balances the pres-

sure force, thereby allowing the fluid to flow through the pipe with no acceleration. If vis-

cous effects were absent in such flows, the pressure would be constant throughout the pipe,

except for the hydrostatic variation.

In non-fully developed flow regions, such as the entrance region of a pipe, the fluid

accelerates or decelerates as it flows 1the velocity profile changes from a uniform profile at

the entrance of the pipe to its fully developed profile at the end of the entrance region2. Thus,

in the entrance region there is a balance between pressure, viscous, and inertia 1acceleration2
forces. The result is a pressure distribution along the horizontal pipe as shown in Fig. 8.6.

The magnitude of the pressure gradient, is larger in the entrance region than in the

fully developed region, where it is a constant,

The fact that there is a nonzero pressure gradient along the horizontal pipe is a result

of viscous effects. As is discussed in Chapter 3, if the viscosity were zero, the pressure would

not vary with x. The need for the pressure drop can be viewed from two different standpoints.

0p/0x 5 2¢p// 6 0.

0p/0x,

¢p 5 p1 2 p2,

gD,

1x6 2 x52 @ 1x5 2 x42 4 .3 1x3 2 x22 @ /e

20D 6 /e 6 30D.104
6 Re 6 105

Re 5 20002.1/e 5 120D

Re 5 102, 1/e 5 0.6D

/e

D
5 4.4 1Re21/6 for turbulent flow

/e

D
5 0.06 Re for laminar flow

/e/D,

/e.
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In terms of a force balance, the pressure force is needed to overcome the viscous forces gen-

erated. In terms of an energy balance, the work done by the pressure force is needed to over-

come the viscous dissipation of energy throughout the fluid. If the pipe is not horizontal, the

pressure gradient along it is due in part to the component of weight in that direction. As is

discussed in Section 8.2.1, this contribution due to the weight either enhances or retards the

flow, depending on whether the flow is downhill or uphill.

The nature of the pipe flow is strongly dependent on whether the flow is laminar or

turbulent. This is a direct consequence of the differences in the nature of the shear stress in

laminar and turbulent flows. As is discussed in some detail in Section 8.3.3, the shear stress

in laminar flow is a direct result of momentum transfer among the randomly moving mole-

cules 1a microscopic phenomenon2. The shear stress in turbulent flow is largely a result of

momentum transfer among the randomly moving, finite-sized bundles of fluid particles 1a
macroscopic phenomenon2. The net result is that the physical properties of the shear stress

are quite different for laminar flow than for turbulent flow.
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8.2 Fully Developed Laminar Flow

As is indicated in the previous section, the flow in long, straight, constant diameter sections

of a pipe becomes fully developed. That is, the velocity profile is the same at any cross sec-

tion of the pipe. Although this is true whether the flow is laminar or turbulent, the details of

the velocity profile 1and other flow properties2 are quite different for these two types of flow.

As will be seen in the remainder of this chapter, knowledge of the velocity profile can lead

directly to other useful information such as pressure drop, head loss, flowrate, and the like.

Thus, we begin by developing the equation for the velocity profile in fully developed lami-

nar flow. If the flow is not fully developed, a theoretical analysis becomes much more com-

plex and is outside the scope of this text. If the flow is turbulent, a rigorous theoretical analy-

sis is as yet not possible.

Although most flows are turbulent rather than laminar, and many pipes are not long

enough to allow the attainment of fully developed flow, a theoretical treatment and full un-

derstanding of fully developed laminar flow is of considerable importance. First, it repre-

sents one of the few theoretical viscous analyses that can be carried out “exactly” 1within the

framework of quite general assumptions2 without using other ad hoc assumptions or ap-

proximations. An understanding of the method of analysis and the results obtained provides

a foundation from which to carry out more complicated analyses. Second, there are many

practical situations involving the use of fully developed laminar pipe flow.
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There are numerous ways to derive important results pertaining to fully developed lam-

inar flow. Three alternatives include: 112 from applied directly to a fluid element, 122
from the Navier–Stokes equations of motion, and 132 from dimensional analysis methods.

8.2.1 From Applied Directly to a Fluid Element

We consider the fluid element at time t as is shown in Fig. 8.7. It is a circular cylinder of

fluid of length and radius r centered on the axis of a horizontal pipe of diameter D. Be-

cause the velocity is not uniform across the pipe, the initially flat ends of the cylinder of

fluid at time t become distorted at time when the fluid element has moved to its new

location along the pipe as shown in the figure. If the flow is fully developed and steady, the

distortion on each end of the fluid element is the same, and no part of the fluid experiences

any acceleration as it flows. The local acceleration is zero because the flow is

steady, and the convective acceleration is zero because the flow

is fully developed. Thus, every part of the fluid merely flows along its pathline parallel to

the pipe walls with constant velocity, although neighboring particles have slightly different

velocities. The velocity varies from one pathline to the next. This velocity variation, com-

bined with the fluid viscosity, produces the shear stress.

If gravitational effects are neglected, the pressure is constant across any vertical cross

section of the pipe, although it varies along the pipe from one section to the next. Thus, if

the pressure is at section 112, it is at section 122. We anticipate the fact

that the pressure decreases in the direction of flow so that A shear stress, acts

on the surface of the cylinder of fluid. This viscous stress is a function of the radius of the

cylinder,

As was done in fluid statics analysis 1Chapter 22, we isolate the cylinder of fluid as is

shown in Fig. 8.8 and apply Newton’s second law, In this case even though the

fluid is moving, it is not accelerating, so that Thus, fully developed horizontal pipe

flow is merely a balance between pressure and viscous forces—the pressure difference act-

ing on the end of the cylinder of area and the shear stress acting on the lateral surface

of the cylinder of area This force balance can be written as

which can be simplified to give

(8.3)
¢p

/
5

2t

r

1p12pr 2
2 1p1 2 ¢p2pr 2

2 1t22pr/ 5 0

2pr/.

pr2,

ax 5 0.

Fx 5 max.

t 5 t1r2.
t,¢p 7 0.

p2 5 p1 2 ¢pp 5 p1

1V ? = V 5 u 0u/0x î 5 0210V/0t 5 02

t 1 dt

/

F 5 ma

F 5 ma
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Equation 8.3 represents the basic balance in forces needed to drive each fluid particle

along the pipe with constant velocity. Since neither are functions of the radial

coordinate, r, it follows that must also be independent of r. That is, where C

is a constant. At 1the centerline of the pipe2 there is no shear stress At  1the pipe wall2 the shear stress is a maximum, denoted the wall shear stress. Hence,

and the shear stress distribution throughout the pipe is a linear function of the

radial coordinate

(8.4)

as is indicated in Fig. 8.9. The linear dependence of on r is a result of the pressure force

being proportional to 1the pressure acts on the end of the fluid cylinder; 2 and

the shear force being proportional to r 1the shear stress acts on the lateral sides of the cylin-

der; area 2. If the viscosity were zero there would be no shear stress, and the pres-

sure would be constant throughout the horizontal pipe As is seen from Eqs. 8.3

and 8.4, the pressure drop and wall shear stress are related by

(8.5)

A small shear stress can produce a large pressure difference if the pipe is relatively long

Although we are discussing laminar flow, a closer consideration of the assumptions in-

volved in the derivation of Eqs. 8.3, 8.4, and 8.5 reveals that these equations are valid for

both laminar and turbulent flow. To carry the analysis further we must prescribe how the

shear stress is related to the velocity. This is the critical step that separates the analysis of

laminar from that of turbulent flow—from being able to solve for the laminar flow proper-

ties and not being able to solve for the turbulent flow properties without additional ad hoc

assumptions. As is discussed in Section 8.3, the shear stress dependence for turbulent flow

is very complex. However, for laminar flow of a Newtonian fluid, the shear stress is simply

proportional to the velocity gradient, 1see Section 1.62. In the notation asso-

ciated with our pipe flow, this becomes

(8.6)

The negative sign is included to give with 1the velocity decreases from the

pipe centerline to the pipe wall2.
Equations 8.3 and 8.6 represent the two governing laws for fully developed laminar

flow of a Newtonian fluid within a horizontal pipe. The one is Newton’s second law of mo-

tion and the other is the definition of a Newtonian fluid. By combining these two equations

we obtain

du/dr 6 0t 7 0

t 5 2m 
du

dr

“t 5 m du/dy”

1//D @ 12.

¢p 5
4/tw

D

1¢p 5 02.5 2pr/

area 5 pr 2r2

t

t 5
2twr

D

C 5 2tw/D

tw,

r 5 D/21t 5 02.r 5 0

t 5 Cr,2t/r

¢p nor /
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which can be integrated to give the velocity profile as follows:

or

where is a constant. Because the fluid is viscous it sticks to the pipe wall so that 

at Thus, Hence, the velocity profile can be written as

(8.7)

where is the centerline velocity. An alternative expression can be writ-

ten by using the relationship between the wall shear stress and the pressure gradient 1Eqs. 8.5

and 8.72 to give

where is the pipe radius.

This velocity profile, plotted in Fig. 8.9, is parabolic in the radial coordinate, r, has a

maximum velocity, at the pipe centerline, and a minimum velocity 1zero2 at the pipe wall.

The volume flowrate through the pipe can be obtained by integrating the velocity profile

across the pipe. Since the flow is axisymmetric about the centerline, the velocity is constant

on small area elements consisting of rings of radius r and thickness dr. Thus,

or

By definition, the average velocity is the flowrate divided by the cross-sectional area,

so that for this flow

(8.8)

and

(8.9)

As is indicated in Eq. 8.8, the average velocity is one-half of the maximum velocity. In gen-

eral, for velocity profiles of other shapes 1such as for turbulent pipe flow2, the average velocity

is not merely the average of the maximum and minimum 102 velocities as it is for the

laminar parabolic profile. The two velocity profiles indicated in Fig. 8.9 provide the same
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flowrate—one is the fictitious ideal profile; the other is the actual laminar flow

profile.

The above results confirm the following properties of laminar pipe flow. For a hori-

zontal pipe the flowrate is 1a2 directly proportional to the pressure drop, 1b2 inversely pro-

portional to the viscosity, 1c2 inversely proportional to the pipe length, and 1d2 proportional

to the pipe diameter to the fourth power. With all other parameters fixed, an increase in di-

ameter by a factor of 2 will increase the flowrate by a factor of 16—the flowrate is very

strongly dependent on pipe size. A 2% error in diameter gives an 8% error in flowrate 

or  so that This flow, the properties of which were first es-

tablished experimentally by two independent workers, G. Hagen 11797–18842 in 1839 and

J. Poiseuille 11799–18692 in 1840, is termed Hagen–Poiseuille flow. Equation 8.9 is com-

monly referred to as Poiseuille’s law. Recall that all of these results are restricted to laminar

flow 1those with Reynolds numbers less than approximately 21002 in a horizontal pipe.

The adjustment necessary to account for nonhorizontal pipes, as shown in Fig. 8.10,

can be easily included by replacing the pressure drop, by the combined effect of pres-

sure and gravity, , where is the angle between the pipe and the horizontal.1Note that if the flow is uphill, while if the flow is downhill.2 This can be seen

from the force balance in the x direction 1along the pipe axis2 on the cylinder of fluid shown

in Fig. 8.10b. The method is exactly analogous to that used to obtain the Bernoulli equation1Eq. 3.62 when the streamline is not horizontal. The net force in the x direction is a combi-

nation of the pressure force in that direction, and the component of weight in that

direction, The result is a slightly modified form of Eq. 8.3 given by

(8.10)

Thus, all of the results for the horizontal pipe are valid provided the pressure gradient is ad-

justed for the elevation term, that is, is replaced by so that

(8.11)

and

(8.12)

It is seen that the driving force for pipe flow can be either a pressure drop in the flow direction,

or the component of weight in the flow direction, If the flow is downhill,

gravity helps the flow 1a smaller pressure drop is required; 2. If the flow is uphill,sin u 6 0

2g/ sin u.¢p,

Q 5
p1¢p 2 g/ sin u2D4

128m/

V 5
1¢p 2 g/ sin u2D2

32m/

¢p 2 g/ sin u¢p

¢p 2 g/ sin u

/
5

2t

r

2gpr 2
/ sin u.

¢ppr 2,

u 6 0u 7 0

u¢p 2 g/ sin u

¢p,

dQ/Q 5 4 dD/D2.dQ , 4D3 dD,

1Q , D4

1m 5 02
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0

0 sin    =    r2
, sinθ θγπ

πp   r2
x

θ
(p + ∆p)   r2

r

,

2   r,τ

(b)(a)

,

Fluid cylinder

θ

Q

π

π

■ F I G U R E  8 . 1 0 Free-body diagram of a fluid cylinder for flow in a nonhorizontal
pipe.

Poiseuille’s law is

valid for laminar

flow only.



gravity works against the flow 1a larger pressure drop is required; 2. Note that1where is the change in elevation2 is a hydrostatic type pressure term. If

there is no flow, as expected for fluid statics.V 5 0 and ¢p 5 g/ sin u 5 g¢z,

¢zg/ sin u 5 g¢z

sin u 7 0
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EXAMPLE
8.2

An oil with a viscosity of and density flows in a pipe of

diameter 1a2What pressure drop, is needed to produce a flowrate of

if the pipe is horizontal with and 1b2 How steep a

hill, must the pipe be on if the oil is to flow through the pipe at the same rate as in part1a2, but with 1c2 For the conditions of part 1b2, if what is the pressure

at section where x is measured along the pipe?

SOLUTION

(a) If the Reynolds number is less than 2100 the flow is laminar and the equations derived

in this section are valid. Since the average velocity is 

the Reynolds number is 

Hence, the flow is laminar and from Eq. 8.9 with the

pressure drop is

or

(Ans)

(b) If the pipe is on a hill of angle such that Eq. 8.12 gives

(1)

or

Thus, (Ans)

This checks with the previous horizontal result as is seen from the fact that a

change in elevation of is equivalent

to a pressure change of 

which is equivalent to that needed for the horizontal pipe. For the horizontal pipe

it is the work done by the pressure forces that overcomes the viscous dissipation. For

the zero-pressure-drop pipe on the hill, it is the change in potential energy of the fluid

“falling” down the hill that is converted to the energy lost by viscous dissipation. Note

that if it is desired to increase the flowrate to with the

value of given by Eq. 1 is  Since the sine of an angle cannot be greater

than 1, this flow would not be possible. The weight of the fluid would not be large

enough to offset the viscous force generated for the flowrate desired. A larger diame-

ter pipe would be needed.

sin u 5 21.15.u

p1 5 p2,Q 5 1.0 3 1024 m3
/s

N/m
2,

¢p 5 rg ¢z 5 1900 kg/m
32 19.81 m/s

22 12.31 m2 5 20,400

¢z 5 / sin u 5 110 m2 sin1213.34°2 5 22.31 m

u 5 213.34°.

sin u 5
212810.40 N # s/m

22 12.0 3 1025 m3
/s2

p1900 kg/m
32 19.81 m/s

22 10.020 m24

sin u 5 2
128mQ

prgD4

¢p 5 p1 2 p2 5 0,u

¢p 5 20,400 N/m
2

5 20.4 kPa

 5
12810.40 N # s/m

22 110.0 m2 12.0 3 1025 m3
/s2

p10.020 m24

 ¢p 5 p1 2 p2 5
128m/Q

pD4

/ 5 x2 2 x1 5 10 m,6 2100.

Re 5 rVD/m 5 2.87m3
/s2/ 3p10.02022m2

/4 4 5 0.0637 m/s,

V 5 Q/A 5 12.0 3 1025

x3 5 5 m,

p1 5 200 kPa,p1 5 p2?

u,

x2 5 10 m?x1 5 0Q 5 2.0 3 1025 m3
/s

p1 2 p2,D 5 0.020 m.

r 5 900 kg/m
3m 5 0.40 N # s/m

2



8.2.2 From the Navier–Stokes Equations

In the previous section we obtained results for fully developed laminar pipe flow by apply-

ing Newton’s second law and the assumption of a Newtonian fluid to a specific portion of

the fluid—a cylinder of fluid centered on the axis of a long, round pipe. When this govern-

ing law and assumptions are applied to a general fluid flow 1not restricted to pipe flow2, the

result is the Navier–Stokes equations as discussed in Chapter 6. In Section 6.9.3 these equa-

tions were solved for the specific geometry of fully developed laminar flow in a round pipe.

The results are the same as those given in Eq. 8.7.

We will not repeat the detailed steps used to obtain the laminar pipe flow from the

Navier–Stokes equations 1see Section 6.9.32 but will indicate how the various assumptions

used and steps applied in the derivation correlate with the analysis used in the previous

section.

General motion of an incompressible Newtonian fluid is governed by the continuity

equation 1conservation of mass, Eq. 6.312 and the momentum equation 1Eq. 6.1272, which are

rewritten here for convenience:

(8.13)

(8.14)

For steady, fully developed flow in a pipe, the velocity contains only an axial component,

which is a function of only the radial coordinate For such conditions, the left-

hand side of the Eq. 8.14 is zero. This is equivalent to saying that the fluid experiences no

acceleration as it flows along. The same constraint was used in the previous section when

considering for the fluid cylinder. Thus, with the Navier–Stokes equations

become

(8.15)

The flow is governed by a balance of pressure, weight, and viscous forces in the flow di-

rection, similar to that shown in Fig. 8.10 and Eq. 8.10. If the flow were not fully developed1as in an entrance region, for example2, it would not be possible to simplify the Navier–Stokes

equations to that form given in Eq. 8.15 1the nonlinear term would not be zero2, and

the solution would be very difficult to obtain.

V ? =V

 =p 1 rgk̂ 5 m=
2V

 = ? V 5 0

g 5 2gk̂F 5 ma

3V 5 u1r2 î 4 .

 
0V

0t
1 V ? =V 5 2

=p

r
1 g 1 n=2V

 = ? V 5 0
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(c) With the length of the pipe, does not appear in the flowrate equation 1Eq. 12.
This is a statement of the fact that for such cases the pressure is constant all along

the pipe 1provided the pipe lies on a hill of constant slope2. This can be seen by sub-

stituting the values of Q and from case 1b2 into Eq. 8.12 and noting that for

any For example, if Thus, so

that

(Ans)

Note that if the fluid were gasoline and 

the Reynolds number would be the flow would probably not be lam-

inar, and a use of Eqs. 8.9 and 8.12 would give incorrect results. Also note from Eq. 1

that the kinematic viscosity, is the important viscous parameter. This is a state-

ment of the fact that with constant pressure along the pipe, it is the ratio of the viscous

force to the weight force that determines the value of u.1,g 5 rg21,m2
n 5 m/r,

Re 5 2790,m32, r 5 680 kg/1m 5 3.1 3 1024 N # s/m
2

p3 5 200 kPa

p1 5 p2 5 p3/ 5 x3 2 x1 5 5 m.¢p 5 p1 2 p3 5 0/.

¢p 5 0u

/,p1 5 p2

Poiseuille’s law can

be obtained from

the Navier–Stokes

equations.



Because of the assumption that the continuity equation, Eq. 8.13, is auto-

matically satisfied. This conservation of mass condition was also automatically satisfied by

the incompressible flow assumption in the derivation in the previous section. The fluid flows

across one section of the pipe at the same rate that it flows across any other section 1see

Fig. 8.82.
When it is written in terms of polar coordinates 1as was done in Section 6.9.32, the

component of Eq. 8.15 along the pipe becomes

(8.16)

Since the flow is fully developed, and the right-hand side is a function of, at most,

only r. The left-hand side is a function of, at most, only x. It was shown that this leads to

the condition that the pressure gradient in the x direction is a constant—

The same condition was used in the derivation of the previous section 1Eq. 8.32.
It is seen from Eq. 8.16 that the effect of a nonhorizontal pipe enters into the Navier–

Stokes equations in the same manner as was discussed in the previous section. The pressure

gradient in the flow direction is coupled with the effect of the weight in that direction to pro-

duce an effective pressure gradient of 

The velocity profile is obtained by integration of Eq. 8.16. Since it is a second-order

equation, two boundary conditions are needed—112 the fluid sticks to the pipe wall 1as was

also done in Eq. 8.72 and 122 either of the equivalent forms that the velocity remains finite

throughout the flow 1in particular at 2, or because of symmetry, at

In the derivation of the previous section, only one boundary condition 1the no-slip

condition at the wall2 was needed because the equation integrated was a first-order equation.

The other condition was automatically built into the analysis because

of the fact that and at 

The results obtained by either applying to a fluid cylinder 1Section 8.2.12 or

solving the Navier–Stokes equations 1Section 6.9.32 are exactly the same. Similarly, the basic

assumptions regarding the flow structure are the same. This should not be surprising because

the two methods are based on the same principle—Newton’s second law. One is restricted

to fully developed laminar pipe flow from the beginning 1the drawing of the free-body dia-

gram2, and the other starts with the general governing equations 1the Navier–Stokes equa-

tions2 with the appropriate restrictions concerning fully developed laminar flow applied as

the solution process progresses.

8.2.3 From Dimensional Analysis

Although fully developed laminar pipe flow is simple enough to allow the rather straight-

forward solutions discussed in the previous two sections, it may be worthwhile to consider

this flow from a dimensional analysis standpoint. Thus, we assume that the pressure drop in

the horizontal pipe, is a function of the average velocity of the fluid in the pipe, V, the

length of the pipe, the pipe diameter, D, and the viscosity of the fluid, We have not in-

cluded the density or the specific weight of the fluid as parameters because for such flows

they are not important parameters. There is neither mass 1density2 times acceleration nor a

component of weight 1specific weight times volume2 in the flow direction involved. Thus,

There are five variables that can be described in terms of three reference dimensions 1M, L,

T 2. According to the results of dimensional analysis 1Chapter 72, this flow can be described

in terms of dimensionless groups. One such representation isk 2 r 5 5 2 3 5 2

¢p 5 F1V, /, D, m2

m./,

¢p,

F 5 ma

r 5 0.t 5 2twr/D 5 0t 5 2m du/dr

10u/0r 5 0 at r 5 02
r 5 0.

0u/0r 5 0r 5 0u 6 `

2¢p// 1 rg sin u.

0p/0x 5 2¢p//.

u 5 u1r2

0p

0x
1 rg sin u 5 m 

1

r
 
0

0r
 ar 
0u

0r
b

V 5 u1r2 î,
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The governing dif-

ferential equations

can be simplified 

by appropriate 

assumptions.



(8.17)

where is an unknown function of the length to diameter ratio of the pipe.

Although this is as far as dimensional analysis can take us, it seems reasonable to im-

pose a further assumption that the pressure drop is directly proportional to the pipe length.

That is, it takes twice the pressure drop to force fluid through a pipe if its length is doubled.

The only way that this can be true is if where C is a constant. Thus, Eq. 8.17

becomes

which can be rewritten as

or

(8.18)

The basic functional dependence for laminar pipe flow given by Eq. 8.18 is the same as that

obtained by the analysis of the two previous sections. The value of C must be determined

by theory 1as done in the previous two sections2 or experiment. For a round pipe,

For ducts of other cross-sectional shapes, the value of C is different 1see Section 8.4.32.
It is usually advantageous to describe a process in terms of dimensionless quantities.

To this end we rewrite the pressure drop equation for laminar horizontal pipe flow, Eq. 8.8,

as and divide both sides by the dynamic pressure, to obtain the di-

mensionless form as

This is often written as

where the dimensionless quantity

is termed the friction factor, or sometimes the Darcy friction factor [H. P. G. Darcy

(1803–1858)]. 1This parameter should not be confused with the less-used Fanning fric-

tion factor, which is defined to be In this text we will use only the Darcy friction

factor.2 Thus, the friction factor for laminar fully developed pipe flow is simply

(8.19)

By substituting the pressure drop in terms of the wall shear stress 1Eq. 8.52, we obtain an al-

ternate expression for the friction factor as a dimensionless wall shear stress

(8.20)f 5
8tw

rV 2

f 5
64

Re

f/4.

f 5 ¢p1D//2/ 1rV 2
/22

¢p 5 f 
/

D
 
rV 2

2

¢p
1
2 rV

2
5
132m/V/D

22
1
2 rV

2
5 64 a m

rVD
b a /

D
b 5

64

Re
 a /

D
b

rV 2
/2,¢p 5 32m/V/D

2

C 5 32.

Q 5 AV 5
1p/4C2 ¢pD4

m/

¢p

/
5

Cm V

D2

D ¢p

mV
5  

C/

D

f1//D2 5 C//D,

f1//D2

D ¢p

mV
5 f a /

D
b
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Dimensional analy-

sis can be used to

put pipe flow para-

meters into dimen-

sionless form.



Knowledge of the friction factor will allow us to obtain a variety of information regarding

pipe flow. For turbulent flow the dependence of the friction factor on the Reynolds number

is much more complex than that given by Eq. 8.19 for laminar flow. This is discussed in

detail in Section 8.4.

8.2.4 Energy Considerations

In the previous three sections we derived the basic laminar flow results from application of

or dimensional analysis considerations. It is equally important to understand the im-

plications of energy considerations of such flows. To this end we consider the energy equa-

tion for incompressible, steady flow between two locations as is given in Eq. 5.89

(8.21)

Recall that the kinetic energy coefficients, and compensate for the fact that the ve-

locity profile across the pipe is not uniform. For uniform velocity profiles whereas

for any nonuniform profile, The head loss term, accounts for any energy loss as-

sociated with the flow. This loss is a direct consequence of the viscous dissipation that occurs

throughout the fluid in the pipe. For the ideal 1inviscid2 cases discussed in previous chapters,

and the energy equation reduces to the familiar Bernoulli equation dis-

cussed in Chapter 3 1Eq. 3.72.
Even though the velocity profile in viscous pipe flow is not uniform, for fully devel-

oped flow it does not change from section 112 to section 122 so that Thus, the kinetic

energy is the same at any section and the energy equation becomes

(8.22)

The energy dissipated by the viscous forces within the fluid is supplied by the excess work

done by the pressure and gravity forces.

A comparison of Eqs. 8.22 and 8.10 shows that the head loss is given by

1recall and which, by use of Eq. 8.4, can be rewritten in

the form

(8.23)

It is the shear stress at the wall 1which is directly related to the viscosity and the shear stress

throughout the fluid2 that is responsible for the head loss. A closer consideration of the as-

sumptions involved in the derivation of Eq. 8.23 will show that it is valid for both laminar

and turbulent flow.

hL 5
4/tw

gD

z2 2 z1 5 / sin u2,p1 5 p2 1 ¢p

hL 5
2t/

gr

ap1

g
1 z1b 2 ap2

g
1 z2b 5 hL

1a1 V 1
2
/2 5 a2 V 2

2
/22

a1 5 a2.

a1 5 a2 5 1, hL 5 0,

hL,a 7 1.

a 5 1,

a2,a1

p1

g
1 a1 

V 1
2

2g
1 z1 5

p2

g
1 a2 

V 2
2

2g
1 z2 1 hL

F 5 ma
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EXAMPLE
8.3

The flowrate, Q, of corn syrup through the horizontal pipe shown in Fig. E8.3 is to be mon-

itored by measuring the pressure difference between sections 112 and 122. It is proposed that

where the calibration constant, K, is a function of temperature, T, because of the

temperature variation of the syrup’s viscosity and density. These variations are given in

Table E8.3. 1a2 Plot versus T for 1b2Determine the wall shear stress60 °F # T # 160 °F.K1T 2
Q 5 K ¢p,

The head loss in a

pipe is a result of

the viscous shear

stress on the wall.
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and the pressure drop, for and 1c2 For the condi-

tions of part 1b2, determine the net pressure force, and the net shear force,

on the fluid within the pipe between the sections 112 and 122. pD/tw ,1pD2
/42 ¢p,

T 5 100 °F.Q 5 0.5 ft3
/s¢p 5 p1 2 p2,

3-in.

diameter

6 ft

(1)

(a)

(b)

(2)

Q

100

10–1

10–2

10–3

10–4

60 100 140

T, °F

180

K
, 
ft

5
/(

lb
•
s)

■ F I G U R E  E 8 . 3

■ TA B L E E 8 - 3

T ( ) (slugsy ) ( )

60 2.07

80 2.06

100 2.05

120 2.04

140 2.03

160 2.02 2.3 3 1025

9.2 3 1025

4.4 3 1024

3.8 3 1023

1.9 3 1022

4.0 3 1022

lb # s/ft
2Mft3R8F

SOLUTION

(a) If the flow is laminar it follows from Eq. 8.9 that

or

(1)

where the units on and are and respectively. Thus

(Ans)

where the units of K are By using values of the viscosity from Table E8.3, the

calibration curve shown in Fig. E8.3b is obtained. This result is valid only if the flow

is laminar. As shown in Section 8.5, for turbulent flow the flowrate is not linearly re-

lated to the pressure drop so it would not be possible to have Note also that

the value of K is independent of the syrup density 1 was not used in the calculations2
since laminar pipe flow is governed by pressure and viscous effects; inertia is not im-

portant.

(b) For the viscosity is so that with a flowrate of

the pressure drop 1according to Eq. 8.92 isQ 5 0.5 ft3
/s

m 5 3.8 3 1023 lb # s/ft
2T 5 100 °F,

r

Q 5 K ¢p.

ft5
/lb # s.

K 5
1.60 3 1025

m

lb # s/ft
2,ft3

/s, lb/ft
2,mQ, ¢p,

Q 5 K ¢p 5
1.60 3 1025

m
 ¢p

Q 5
pD4 ¢p

128m/
5
p1 3

12 ft24 ¢p

128m16 ft2
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(Ans)

provided the flow is laminar. For this case

so that

Hence, the flow is laminar. From Eq. 8.5 the wall shear stress is

(Ans)

(c) For the conditions of part 1b2, the net pressure force, on the fluid within the pipe be-

tween sections 112 and 122 is
(Ans)

Similarly, the net viscous force, on that portion of the fluid is

(Ans)

Note that the values of these two forces are the same. The net force is zero; there is no

acceleration.

 5 2p c 3

21122  ft d 16 ft2 11.24 lb/ft
22 5 5.84 lb

 F
v

5 2p aD

2
b /tw

F
v
,

Fp 5
p

4
 D2 ¢p 5

p

4
 a 3

12
 ftb2

 1119 lb/ft
22 5 5.84 lb

Fp,

tw 5
¢pD

4/
5
1119 lb/ft

22 1 3
12 ft2

416 ft2 5 1.24 lb/ft
2

 5 1380 6 2100

 Re 5
rVD

m
5
12.05 slugs/ft

32 110.2 ft/s2 1 3
12 ft2

13.8 3 1023 lb # s/ft
22

V 5
Q

A
5

0.5 ft3
/s

p

4
 1 3

12 ft22
5 10.2 ft/s

 5 119 lb/ft
2

 ¢p 5
128m/Q

pD4
5

12813.8 3 1023 lb # s/ft
22 16 ft2 10.5 ft3

/s2
p1 3

12 ft24

8.3 Fully Developed Turbulent Flow

In the previous section various properties of fully developed laminar pipe flow were dis-

cussed. Since turbulent pipe flow is actually more likely to occur than laminar flow in prac-

tical situations, it is necessary to obtain similar information for turbulent pipe flow. How-

ever, turbulent flow is a very complex process. Numerous persons have devoted considerable

effort in attempting to understand the variety of baffling aspects of turbulence. Although a

considerable amount of knowledge about the topic has been developed, the field of turbulent

flow still remains the least understood area of fluid mechanics. In this book we can provide

only some of the very basic ideas concerning turbulence. The interested reader should con-

sult some of the many books available for further reading 1Refs. 1, 2, and 32.

Much remains to be

learned about the

nature of turbulent

flow.
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8.3.1 Transition from Laminar to Turbulent Flow

Flows are classified as laminar or turbulent. For any flow geometry, there is one 1or more2
dimensionless parameter such that with this parameter value below a particular value the flow

is laminar, whereas with the parameter value larger than a certain value the flow is turbulent.

The important parameters involved 1i.e., Reynolds number, Mach number2 and their critical

values depend on the specific flow situation involved. For example, flow in a pipe and flow

along a flat plate 1boundary layer flow, as is discussed in Section 9.2.42 can be laminar or

turbulent, depending on the value of the Reynolds number involved. For pipe flow the value

of the Reynolds number must be less than approximately 2100 for laminar flow and greater

than approximately 4000 for turbulent flow. For flow along a flat plate the transition between

laminar and turbulent flow occurs at a Reynolds number of approximately 500,000 1see Sec-

tion 9.2.42, where the length term in the Reynolds number is the distance measured from the

leading edge of the plate.

Consider a long section of pipe that is initially filled with a fluid at rest. As the valve

is opened to start the flow, the flow velocity and, hence, the Reynolds number increase from

zero 1no flow2 to their maximum steady-state flow values, as is shown in Fig. 8.11. Assume

this transient process is slow enough so that unsteady effects are negligible 1quasisteady flow2.
For an initial time period the Reynolds number is small enough for laminar flow to occur.

At some time the Reynolds number reaches 2100, and the flow begins its transition to tur-

bulent conditions. Intermittent spots or bursts of turbulence appear. As the Reynolds number

is increased the entire flow field becomes turbulent. The flow remains turbulent as long as

the Reynolds number exceeds approximately 4000.

A typical trace of the axial component of velocity measured at a given location in the

flow, is shown in Fig. 8.12. Its irregular, random nature is the distinguishing fea-

ture of turbulent flow. The character of many of the important properties of the flow 1pres-

sure drop, heat transfer, etc.2 depends strongly on the existence and nature of the turbulent

fluctuations or randomness indicated. In previous considerations involving inviscid flow, the

Reynolds number is 1strictly speaking2 infinite 1because the viscosity is zero2, and the flow

most surely would be turbulent. However, reasonable results were obtained by using the in-

viscid Bernoulli equation as the governing equation. The reason that such simplified invis-

cid analyses gave reasonable results is that viscous effects were not very important and the

velocity used in the calculations was actually the time-averaged velocity, indicated in

Fig. 8.12. Calculation of the heat transfer, pressure drop, and many other parameters would

u,

u 5 u1t2,

3

2

1

0 0

2000

4000

R
e
 =

 V
D

/v

t, sec

u
, 
ft

/s

Turbulent

bursts

Random,

turbulent fluctuations
Turbulent

Transitional

Laminar

■ F I G U R E  8 . 1 1 Transition from laminar to turbulent flow in a pipe.

Turbulent flows 

involve randomly

fluctuating param-

eters.



not be possible without inclusion of the seemingly small, but very important, effects associ-

ated with the randomness of the flow.

Consider flow in a pan of water placed on a stove. With the stove turned off, the fluid

is stationary. The initial sloshing has died out because of viscous dissipation within the wa-

ter. With the stove turned on, a temperature gradient in the vertical direction, is pro-

duced. The water temperature is greatest near the pan bottom and decreases toward the top

of the fluid layer. If the temperature difference is very small, the water will remain station-

ary, even though the water density is smallest near the bottom of the pan because of the de-

crease in density with an increase in temperature. A further increase in the temperature gra-

dient will cause a buoyancy-driven instability that results in fluid motion—the light, warm

water rises to the top, and the heavy cold water sinks to the bottom. This slow, regular “turn-

ing over” increases the heat transfer from the pan to the water and promotes mixing within

the pan. As the temperature gradient increases still further, the fluid motion becomes more

vigorous and eventually turns into a chaotic, random, turbulent flow with considerable mix-

ing and greatly increased heat transfer rate. The flow has progressed from a stationary fluid,

to laminar flow, and finally to turbulent flow.

Mixing processes and heat and mass transfer processes are considerably enhanced in

turbulent flow compared to laminar flow. This is due to the macroscopic scale of the ran-

domness in turbulent flow. We are all familiar with the “rolling,” vigorous eddy type motion

of the water in a pan being heated on the stove 1even if it is not heated to boiling2. Such

finitesized random mixing is very effective in transporting energy and mass throughout the

flow field, thereby increasing the various rate processes involved. Laminar flow, on the other

hand, can be thought of as very small but finite-sized fluid particles flowing smoothly in lay-

ers, one over another. The only randomness and mixing take place on the molecular scale

and result in relatively small heat, mass, and momentum transfer rates.

Without turbulence it would be virtually impossible to carry out life as we now know

it. In some situations turbulent flow is desirable. To transfer the required heat between a solid

and an adjacent fluid 1such as in the cooling coils of an air conditioner or a boiler of a power

plant2 would require an enormously large heat exchanger if the flow were laminar. Similarly,

the required mass transfer of a liquid state to a vapor state 1such as is needed in the evaporated

cooling system associated with sweating2 would require very large surfaces if the fluid flow-

ing past the surface were laminar rather than turbulent.

Turbulence is also of importance in the mixing of fluids. Smoke from a stack would

continue for miles as a ribbon of pollutant without rapid dispersion within the surrounding

0T/0z,
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air if the flow were laminar rather than turbulent. Under certain atmospheric conditions this

is observed to occur. Although there is mixing on a molecular scale 1laminar flow2, it is sev-

eral orders of magnitude slower and less effective than the mixing on a macroscopic scale1turbulent flow2. It is considerably easier to mix cream into a cup of coffee 1turbulent flow2
than to thoroughly mix two colors of a viscous paint 1laminar flow2.

In other situations laminar 1rather than turbulent2 flow is desirable. The pressure drop

in pipes 1hence, the power requirements for pumping2 can be considerably lower if the flow

is laminar rather than turbulent. Fortunately, the blood flow through a person’s arteries is

normally laminar, except in the largest arteries with high blood flowrates. The aerodynamic

drag on an airplane wing can be considerably smaller with laminar flow past it than with tur-

bulent flow.

8.3.2 Turbulent Shear Stress

The fundamental difference between laminar and turbulent flow lies in the chaotic, random

behavior of the various fluid parameters. Such variations occur in the three components of

velocity, the pressure, the shear stress, the temperature, and any other variable that has a field

description. Turbulent flow is characterized by random, three-dimensional vorticity 1i.e., fluid

particle rotation or spin; see Section 6.1.32. As is indicated in Fig. 8.12, such flows can be

described in terms of their mean values 1denoted with an overbar2 on which are superimposed

the fluctuations 1denoted with a prime2. Thus, if is the x component of in-

stantaneous velocity, then its time mean 1or time average2 value, is

(8.24)

where the time interval, T, is considerably longer than the period of the longest fluctuations,

but considerably shorter than any unsteadiness of the average velocity. This is illustrated in

Fig. 8.12.

The fluctuating part of the velocity, is that time-varying portion that differs from

the average value

(8.25)

Clearly, the time average of the fluctuations is zero, since

The fluctuations are equally distributed on either side of the average. It is also clear, as is in-

dicated in Fig. 8.13, that since the square of a fluctuation quantity cannot be negative

its average value is positive. Thus,

On the other hand, it may be that the average of products of the fluctuations, such as 

are zero or nonzero 1either positive or negative2.
The structure and characteristics of turbulence may vary from one flow situation to an-

other. For example, the turbulence intensity 1or the level of the turbulence2 may be larger in

a very gusty wind than it is in a relatively steady 1although turbulent2 wind. The turbulence
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intensity, is often defined as the square root of the mean square of the fluctuating veloc-

ity divided by the time-averaged velocity, or

The larger the turbulence intensity, the larger the fluctuations of the velocity 1and other flow

parameters2. Well-designed wind tunnels have typical values of although with ex-

treme care, values as low as have been obtained. On the other hand, values of

are found for the flow in the atmosphere and rivers.

Another turbulence parameter that is different from one flow situation to another is the

period of the fluctuations—the time scale of the fluctuations shown in Fig. 8.12. In many

flows, such as the flow of water from a faucet, typical frequencies are on the order of 10,

100, or 1000 cycles per second 1cps2. For other flows, such as the Gulf Stream current in the

Atlantic Ocean or flow of the atmosphere of Jupiter, characteristic random oscillations may

have a period on the order of hours, days, or more.

It is tempting to extend the concept of viscous shear stress for laminar flow

to that of turbulent flow by replacing u, the instantaneous velocity, by the

time-averaged velocity. However, numerous experimental and theoretical studies have shown

that such an approach leads to completely incorrect results. That is, A physi-

cal explanation for this behavior can be found in the concept of what produces a shear stress.

Laminar flow is modeled as fluid particles that flow smoothly along in layers, gliding

past the slightly slower or faster ones on either side. As is discussed in Chapter 1, the fluid

actually consists of numerous molecules darting about in an almost random fashion as is in-

dicated in Fig. 8.14a. The motion is not entirely random—a slight bias in one direction pro-

duces the flowrate we associate with the motion of fluid particles, As the molecules dart

across a given plane 1plane A–A, for example2, the ones moving upward have come from an

area of smaller average x component of velocity than the ones moving downward, which

have come from an area of larger velocity.

The momentum flux in the x direction across plane A–A gives rise to a drag 1to the

left2 of the lower fluid on the upper fluid and an equal but opposite effect of the upper fluid

on the lower fluid. The sluggish molecules moving upward across plane A–A must be

accelerated by the fluid above this plane. The rate of change of momentum in this process

produces 1on the macroscopic scale2 a shear force. Similarly, the more energetic molecules

moving down across plane A–A must be slowed down by the fluid below that plane. This

u.

t Þ m d u/dy.

u,1t 5 m du/dy2
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shear force is present only if there is a gradient in otherwise the average x com-

ponent of velocity 1and momentum2 of the upward and downward molecules is exactly the

same. In addition, there are attractive forces between molecules. By combining these effects

we obtain the well-known Newton viscosity law: where on a molecular basis

is related to the mass and speed 1temperature2 of the random motion of the molecules.

Although the above random motion of the molecules is also present in turbulent flow,

there is another factor that is generally more important. A simplistic way of thinking about

turbulent flow is to consider it as consisting of a series of random, three-dimensional eddy

type motions as is depicted 1in one dimension only2 in Fig. 8.14b. (See the photograph at the

beginning of Chapter 8.) These eddies range in size from very small diameter 1on the order

of the size of a fluid particle2 to fairly large diameter 1on the order of the size of the object

or flow geometry considered2. They move about randomly, conveying mass with an average

velocity This eddy structure greatly promotes mixing within the fluid. It also greatly

increases the transport of x momentum across plane A–A. That is, finite parcels of fluid 1not

merely individual molecules as in laminar flow2 are randomly transported across this plane,

resulting in a relatively large 1when compared with laminar flow2 shear force.

The random velocity components that account for this momentum transfer 1hence, the

shear force2 are 1for the x component of velocity2 and 1for the rate of mass transfer

crossing the plane2. A more detailed consideration of the processes involved will show that

the apparent shear stress on plane A–A is given by the following 1Ref. 22:
(8.26)

Note that if the flow is laminar, so that and Eq. 8.26 reduces to the

customary random molecule-motion-induced laminar shear stress, For tur-

bulent flow it is found that the turbulent shear stress, is positive. Hence, the

shear stress is greater in turbulent flow than in laminar flow. Note the units on are

or as expected.

Terms of the form 1or etc.2 are called Reynolds stresses in honor of Osborne

Reynolds who first discussed them in 1895.

It is seen from Eq. 8.26 that the shear stress in turbulent flow is not merely propor-

tional to the gradient of the time-averaged velocity, It also contains a contribution due

to the random fluctuations of the x and y components of velocity. The density is involved 

u1y2.
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because of the momentum transfer of the fluid within the random eddies. Although the rel-

ative magnitude of compared to is a complex function dependent on the specific

flow involved, typical measurements indicate the structure shown in Fig. 8.15a. 1Recall from

Eq. 8.4 that the shear stress is proportional to the distance from the centerline of the pipe2.
In a very narrow region near the wall 1the viscous sublayer2, the laminar shear stress is dom-

inant. Away from the wall 1in the outer layer2 the turbulent portion of the shear stress is dom-

inant. The transition between these two regions occurs in the overlap layer. The corresponding

typical velocity profile is shown in Fig. 8.15b.

The scale of the sketches shown in Fig. 8.15 is not necessarily correct. Typically the

value of is 100 to 1000 times greater than in the outer region, while the converse is

true in the viscous sublayer. A correct modeling of turbulent flow is strongly dependent on

an accurate knowledge of This, in turn, requires an accurate knowledge of the fluctua-

tions and or As yet it is not possible to solve the governing equations 1the Navier–

Stokes equations2 for these details of the flow, although numerical techniques using the largest

and fastest computers available have produced important information about some of the char-

acteristics of turbulence. Considerable effort has gone into the study of turbulence. Much re-

mains to be learned. Perhaps studies in the new areas of chaos and fractal geometry will pro-

vide the tools for a better understanding of turbulence 1see Section 8.3.52.
The vertical scale of Fig. 8.15 is also distorted. The viscous sublayer is usually a very

thin layer adjacent to the wall. For example, for water flow in a 3-in.-diameter pipe with an

average velocity of the viscous sublayer is approximately 0.002 in. thick. Since the

fluid motion within this thin layer is critical in terms of the overall flow 1the no-slip condi-

tion and the wall shear stress occur in this layer2, it is not surprising to find that turbulent

pipe flow properties can be quite dependent on the roughness of the pipe wall, unlike lami-

nar pipe flow which is independent of roughness. Small roughness elements 1scratches, rust,

sand or dirt particles, etc.2 can easily disturb this viscous sublayer 1see Section 8.42, thereby

affecting the entire flow.

An alternate form for the shear stress for turbulent flow is given in terms of the eddy

viscosity, where

(8.27)

This extension of laminar flow terminology was introduced by J. Boussinesq, a French sci-
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entist, in 1877. Although the concept of an eddy viscosity is intriguing, in practice it is not

an easy parameter to use. Unlike the absolute viscosity, which is a known value for a given

fluid, the eddy viscosity is a function of both the fluid and the flow conditions. That is, the

eddy viscosity of water cannot be looked up in handbooks—its value changes from one tur-

bulent flow condition to another and from one point in a turbulent flow to another.

The inability to accurately determine the Reynolds stress, is equivalent to not

knowing the eddy viscosity. Several semiempirical theories have been proposed 1Ref. 32 to

determine approximate values of L. Prandtl 11875–19532, a German physicist and aero-

dynamicist, proposed that the turbulent process could be viewed as the random transport of

bundles of fluid particles over a certain distance, the mixing length, from a region of one

velocity to another region of a different velocity. By the use of some ad hoc assumptions and

physical reasoning, it was concluded that the eddy viscosity was given by

Thus, the turbulent shear stress is

(8.28)

The problem is thus shifted to that of determining the mixing length, Further considera-

tions indicate that is not a constant throughout the flow field. Near a solid surface the tur-

bulence is dependent on the distance from the surface. Thus, additional assumptions are made

regarding how the mixing length varies throughout the flow.

The net result is that as yet there is no general, all-encompassing, useful model that

can accurately predict the shear stress throughout a general incompressible, viscous turbu-

lent flow. Without such information it is impossible to integrate the force balance equation

to obtain the turbulent velocity profile and other useful information, as was done for lami-

nar flow.

8.3.3 Turbulent Velocity Profile

Considerable information concerning turbulent velocity profiles has been obtained through

the use of dimensional analysis, experimentation, and semiempirical theoretical efforts. As

is indicated in Fig. 8.15, fully developed turbulent flow in a pipe can be broken into three

regions which are characterized by their distances from the wall: the viscous sublayer very

near the pipe wall, the overlap region, and the outer turbulent layer throughout the center

portion of the flow. Within the viscous sublayer the viscous shear stress is dominant com-

pared with the turbulent 1or Reynolds2 stress, and the random, eddying nature of the flow is

essentially absent. In the outer turbulent layer the Reynolds stress is dominant, and there is

considerable mixing and randomness to the flow.

The character of the flow within these two regions is entirely different. For example,

within the viscous sublayer the fluid viscosity is an important parameter; the density is unim-

portant. In the outer layer the opposite is true. By a careful use of dimensional analysis ar-

guments for the flow in each layer and by a matching of the results in the common overlap

layer, it has been possible to obtain the following conclusions about the turbulent velocity

profile in a smooth pipe 1Ref. 52.
In the viscous sublayer the velocity profile can be written in dimensionless form as

(8.29)

where is the distance measured from the wall, is the time-averaged x componentuy 5 R 2 r
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of velocity, and is termed the friction velocity. Note that u* is not an actual

velocity of the fluid—it is merely a quantity that has dimensions of velocity. As is indicated

in Fig. 8.16, Eq. 8.29 1commonly called the law of the wall 2 is valid very near the smooth

wall, for 

Dimensional analysis arguments indicate that in the overlap region the velocity should

vary as the logarithm of y. Thus, the following expression has been proposed:

(8.30)

where the constants 2.5 and 5.0 have been determined experimentally. As is indicated in

Fig. 8.16, for regions not too close to the smooth wall, but not all the way out to the pipe

center, Eq. 8.30 gives a reasonable correlation with the experimental data. Note that the hor-

izontal scale is a logarithmic scale. This tends to exaggerate the size of the viscous sublayer

relative to the remainder of the flow. As is shown in Example 8.4, the viscous sublayer is

usually quite thin. Similar results can be obtained for turbulent flow past rough walls1Ref. 172.
A number of other correlations exist for the velocity profile in turbulent pipe flow. In

the central region 1the outer turbulent layer2 the expression where

is the centerline velocity, is often suggested as a good correlation with experimental data.

Another often-used 1and relatively easy to use2 correlation is the empirical power-law velocity

profile

(8.31)

In this representation, the value of n is a function of the Reynolds number, as is indicated in

Fig. 8.17. The one-seventh power-law velocity profile is often used as a reasonable

approximation for many practical flows. Typical turbulent velocity profiles based on this

power-law representation are shown in Fig. 8.18.
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A closer examination of Eq. 8.31 shows that the power-law profile cannot be valid near

the wall, since according to this equation the velocity gradient is infinite there. In addition,

Eq. 8.31 cannot be precisely valid near the centerline because it does not give at

However, it does provide a reasonable approximation to the measured velocity pro-

files across most of the pipe.

Note from Fig. 8.18 that the turbulent profiles are much “flatter” than the laminar profile

and that this flatness increases with Reynolds number 1i.e., with n2. Recall from Chapter 3

that reasonable approximate results are often obtained by using the inviscid Bernoulli equa-

tion and by assuming a fictitious uniform velocity profile. Since most flows are turbulent and

turbulent flows tend to have nearly uniform velocity profiles, the usefulness of the Bernoulli

equation and the uniform profile assumption is not unexpected. Of course, many properties

of the flow cannot be accounted for without including viscous effects.

r 5 0.

du/dr 5 0
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EXAMPLE
8.4

Water at and flows through a horizontal pipe

of 0.1-m diameter with a flowrate of and a pressure gradient of

2.59 kPaym. 1a2 Determine the approximate thickness of the viscous sublayer. 1b2 Determine

the approximate centerline velocity, 1c2 Determine the ratio of the turbulent to laminar

shear stress, at a point midway between the centerline and the pipe wall 1i.e., at

SOLUTION

(a) According to Fig. 8.16, the thickness of the viscous sublayer, is approximately

or

where

(1)

The wall shear stress can be obtained from the pressure drop data and Eq. 8.5, which

is valid for either laminar or turbulent flow. Thus,

Hence, from Eq. 1 we obtain

so that

(Ans)

As stated previously, the viscous sublayer is very thin. Minute imperfections on the pipe

wall will protrude into this sublayer and affect some of the characteristics of the flow1i.e., wall shear stress and pressure drop2.
(b) The centerline velocity can be obtained from the average velocity and the assumption

of a power-law velocity profile as follows. For this flow with

the Reynolds number is

Thus, from Fig. 8.17, so that

u
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To determine the centerline velocity, we must know the relationship between V1the average velocity2 and This can be obtained by integration of the power-law ve-

locity profile as follows. Since the flow is axisymmetric,

which can be integrated to give

Thus, since we obtain

With in the present case, this gives

(Ans)

Recall that for laminar pipe flow.

(c) From Eq. 8.4, which is valid for laminar or turbulent flow, the shear stress at 

is

or

where From the power-law velocity profile 1Eq. 8.312 we obtain the

gradient of the average velocity as

which gives

Thus,

Thus, the ratio of turbulent to laminar shear stress is given by

(Ans)

As expected, most of the shear stress at this location in the turbulent flow is due to the

turbulent shear stress.
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The turbulent flow characteristics discussed in this section are not unique to turbulent

flow in round pipes. Many of the characteristics introduced 1i.e., the Reynolds stress, the vis-

cous sublayer, the overlap layer, the outer layer, the general characteristics of the velocity

profile, etc.2 are found in other turbulent flows. In particular, turbulent pipe flow and turbu-

lent flow past a solid wall 1boundary layer flow2 share many of these common traits. Such

ideas are discussed more fully in Chapter 9.

8.3.4 Turbulence Modeling

Although it is not yet possible to theoretically predict the random, irregular details of turbu-

lent flows, it would be useful to be able to predict the time-averaged flow fields 1pressure,

velocity, etc.2 directly from the basic governing equations. To this end one can time average

the governing Navier–Stokes equations 1Eqs. 6.31 and 6.1272 to obtain equations for the

average velocity and pressure. However, because the Navier–Stokes equations are nonlinear,

the resulting time-averaged differential equations contain not only the desired average pres-

sure and velocity as variables, but also averages of products of the fluctuations—terms of

the type that one tried to eliminate by averaging the equations! For example, the Reynolds

stress 1see Eq. 8.262 occurs in the time-averaged momentum equation.

Thus, it is not possible to merely average the basic differential equations and obtain

governing equations involving only the desired averaged quantities. This is the reason for the

variety of ad hoc assumptions that have been proposed to provide “closure” to the equations

governing the average flow. That is, the set of governing equations must be a complete or

closed set of equations—the same number of equation as unknowns.

Various attempts have been made to solve this closure problem 1Refs. 1, 322. Such

schemes involving the introduction of an eddy viscosity or the mixing length 1as introduced

in Section 8.3.22 are termed algebraic or zero-equation models. Other methods, which are

beyond the scope of this book, include the one-equation model and the two-equation model.

These turbulence models are based on the equation for the turbulence kinetic energy and re-

quire significant computer usage.

Turbulence modeling is an important and extremely difficult topic. Although consid-

erable progress has been made, much remains to be done in this area.

8.3.5 Chaos and Turbulence

Chaos theory is a relatively new branch of mathematical physics that may provide insight

into the complex nature of turbulence. This method combines mathematics and numerical1computer2 techniques to provide a new way to analyze certain problems. Chaos theory, which

is quite complex and is only now being developed, involves the behavior of nonlinear dy-

namical systems and their response to initial and boundary conditions. The flow of a viscous

fluid, which is governed by the nonlinear Navier–Stokes equations 1Eq. 6.1272, may be such

a system.

To solve the Navier–Stokes equations for the velocity and pressure fields in a viscous

flow, one must specify the particular flow geometry being considered 1the boundary condi-

tions2 and the condition of the flow at some particular time 1the initial conditions2. If, as some

researchers predict, the Navier–Stokes equations allow chaotic behavior, then the state of the

flow at times after the initial time may be very, very sensitive to the initial conditions. A

slight variation to the initial flow conditions may cause the flow at later times to be quite

different than it would have been with the original, only slightly different initial conditions.

When carried to the extreme, the flow may be “chaotic,” “random,” or perhaps 1in current

terminology2, “turbulent.”

2ru¿v¿
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Chaos theory may

eventually provide a

deeper understand-

ing of turbulence.



The occurrence of such behavior would depend on the value of the Reynolds number.

For example, it may be found that for sufficiently small Reynolds numbers the flow is not

chaotic 1i.e., it is laminar2, while for large Reynolds numbers it is chaotic with turbulent char-

acteristics.

Thus, with the advancement of chaos theory it may be found that the numerous ad hoc

turbulence ideas mentioned in previous sections 1i.e., eddy viscosity, mixing length, law of

the wall, etc.2 may not be needed. It may be that chaos theory can provide the turbulence

properties and structure directly from the governing equations. As of now we must wait until

this exciting topic is developed further. The interested reader is encouraged to consult Ref. 33

for a general introduction to chaos or Ref. 34 for additional material.
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8.4 Dimensional Analysis of Pipe Flow

As was discussed in previous sections, turbulent flow can be a very complex, difficult topic—

one that as yet has defied a rigorous theoretical treatment. Thus, most turbulent pipe flow

analyses are based on experimental data and semiempirical formulas, even if the flow is fully

developed. These results are given in dimensionless form and cover a very wide range of

flow parameters, including arbitrary fluids, pipes, and flowrates. In addition to these fully

developed flow considerations, a variety of useful data are available regarding flow through

pipe fittings, such as elbows, tees, valves, and the like. These data are conveniently expressed

in dimensionless form.

8.4.1 The Moody Chart

A dimensional analysis treatment of pipe flow provides the most convenient base from which

to consider turbulent, fully developed pipe flow. An introduction to this topic was given in

Section 8.3. As is discussed in Sections 8.2.1 and 8.2.4, the pressure drop and head loss in

a pipe are dependent on the wall shear stress, between the fluid and pipe surface. A fun-

damental difference between laminar and turbulent flow is that the shear stress for turbulent

flow is a function of the density of the fluid, For laminar flow, the shear stress is inde-

pendent of the density, leaving the viscosity, as the only important fluid property.

Thus, the pressure drop, for steady, incompressible turbulent flow in a horizontal

round pipe of diameter D can be written in functional form as

(8.32)

where V is the average velocity, is the pipe length, and is a measure of the roughness of

the pipe wall. It is clear that should be a function of V, D, and The dependence of 

on the fluid properties and is expected because of the dependence of on these parameters.

Although the pressure drop for laminar pipe flow is found to be independent of the

roughness of the pipe, it is necessary to include this parameter when considering turbulent

flow. As is discussed in Section 8.3.3 and illustrated in Fig. 8.19, for turbulent flow there is

a relatively thin viscous sublayer formed in the fluid near the pipe wall. In many instances

this layer is very thin; where is the sublayer thickness. If a typical wall rough-

ness element protrudes sufficiently far into 1or even through2 this layer, the structure and prop-

erties of the viscous sublayer 1along with and 2 will be different than if the wall were

smooth. Thus, for turbulent flow the pressure drop is expected to be a function of the wall

roughness. For laminar flow there is no thin viscous layer–viscous effects are important across

the entire pipe. Thus, relatively small roughness elements have completely negligible effects

on laminar pipe flow. Of course, for pipes with very large wall “roughness,”

such as that in corrugated pipes, the flowrate may be a function of the “roughness.” We will

consider only typical constant diameter pipes with relative roughnesses in the range

1e/D g 0.12,

tw¢p

dsds/D ! 1,

trm

¢p/.¢p

e/

¢p 5 F1V, D, /, e, m, r2
¢p,

m,

r.

tw,

Most turbulent pipe

flow information is

based on experi-

mental data.



Analysis of flow in corrugated pipes does not fit into the standard constant

diameter pipe category, although experimental results for such pipes are available 1Ref. 302.
The list of parameters given in Eq. 8.32 is apparently a complete one. That is, exper-

iments have shown that other parameters 1such as surface tension, vapor pressure, etc.2 do

not affect the pressure drop for the conditions stated 1steady, incompressible flow; round,

horizontal pipe2. Since there are seven variables which can be written in terms of the

three reference dimensions MLT Eq. 8.32 can be written in dimensionless form in

terms of dimensionless groups. As was discussed in Section 7.9.1, one such rep-

resentation is

This result differs from that used for laminar flow 1see Eq. 8.172 in two ways. First, we have

chosen to make the pressure dimensionless by dividing by the dynamic pressure,

rather than a characteristic viscous shear stress, This convention was chosen in recog-

nition of the fact that the shear stress for turbulent flow is normally dominated by which

is a stronger function of the density than it is of viscosity. Second, we have introduced two

additional dimensionless parameters, the Reynolds number, and the relative

roughness, which are not present in the laminar formulation because the two parame-

ters and are not important in fully developed laminar pipe flow.

As was done for laminar flow, the functional representation can be simplified by im-

posing the reasonable assumption that the pressure drop should be proportional to the pipe

length. 1Such a step is not within the realm of dimensional analysis. It is merely a logical as-

sumption supported by experiments.2 The only way that this can be true is if the de-

pendence is factored out as

As was discussed in Section 8.2.3, the quantity is termed the friction factor,

f. Thus, for a horizontal pipe

¢pD/ 1/rV 2
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1
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2
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474 ■ Chapter 8 / Viscous Flow in Pipes

R = D/2

δs

δs

Viscous sublayer

Velocity

profile, u = u(y)

y

x

∋

∋

Smooth wallRough wall

or

■ F I G U R E  8 . 1 9 Flow in the vis-
cous sublayer near rough and smooth
walls.

Turbulent pipe flow

properties depend

on the fluid density

and the pipe rough-

ness.



8.4 Dimensional Analysis of Pipe Flow ■ 475

(8.33)

where

For laminar fully developed flow, the value of f is simply independent of 

For turbulent flow, the functional dependence of the friction factor on the Reynolds number

and the relative roughness, is a rather complex one that cannot, as yet, be

obtained from a theoretical analysis. The results are obtained from an exhaustive set of ex-

periments and usually presented in terms of a curve-fitting formula or the equivalent graph-

ical form.

From Eq. 5.89 the energy equation for steady incompressible flow is

where is the head loss between sections 112 and 122. With the assumption of a constant di-

ameter so that horizontal pipe with fully developed flow

this becomes which can be combined with Eq. 8.33 to give

(8.34)

Equation 8.34, called the Darcy–Weisbach equation, is valid for any fully developed, steady,

incompressible pipe flow—whether the pipe is horizontal or on a hill. On the other hand,

Eq. 8.33 is valid only for horizontal pipes. In general, with the energy equation gives

Part of the pressure change is due to the elevation change and part is due to the head loss

associated with frictional effects, which are given in terms of the friction factor, f.

It is not easy to determine the functional dependence of the friction factor on the

Reynolds number and relative roughness. Much of this information is a result of experiments

conducted by J. Nikuradse in 1933 1Ref. 62 and amplified by many others since then. One

difficulty lies in the determination of the roughness of the pipe. Nikuradse used artificially

roughened pipes produced by gluing sand grains of known size onto pipe walls to produce

pipes with sandpaper-type surfaces. The pressure drop needed to produce a desired flowrate

was measured and the data were converted into the friction factor for the corresponding

Reynolds number and relative roughness. The tests were repeated numerous times for a wide

range of Re and to determine the dependence.

In commercially available pipes the roughness is not as uniform and well defined as

in the artificially roughened pipes used by Nikuradse. However, it is possible to obtain a mea-

sure of the effective relative roughness of typical pipes and thus to obtain the friction factor.

Typical roughness values for various pipe surfaces are given in Table 8.1. Figure 8.20 shows

the functional dependence of f on Re and and is called the Moody chart in honor of

L. F. Moody, who, along with C. F. Colebrook, correlated the original data of Nikuradse in

terms of the relative roughness of commercially available pipe materials. It should be noted

that the values of do not necessarily correspond to the actual values obtained by a e/D

e/D
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microscopic determination of the average height of the roughness of the surface. They do,

however, provide the correct correlation for 

It is important to observe that the values of relative roughness given pertain to new,

clean pipes. After considerable use, most pipes 1because of a buildup of corrosion or scale2
may have a relative roughness that is considerably larger 1perhaps by an order of magnitude2
than that given. Very old pipes may have enough scale buildup to not only alter the value of

but also to change their effective diameter by a considerable amount.

The following characteristics are observed from the data of Fig. 8.20. For laminar flow,

which is independent of relative roughness. For very large Reynolds numbers,

which is independent of the Reynolds number. For such flows, commonly

termed completely turbulent flow 1or wholly turbulent flow2, the laminar sublayer is so thin1its thickness decreases with increasing Re2 that the surface roughness completely domi-

nates the character of the flow near the wall. Hence, the pressure drop required is a result

of an inertia-dominated turbulent shear stress rather than the viscosity-dominated laminar

shear stress normally found in the viscous sublayer. For flows with moderate values of Re,

the friction factor is indeed dependent on both the Reynolds number and relative roughness—

The gap in the figure for which no values of f are given 1the

range2 is a result of the fact that the flow in this transition range may

be laminar or turbulent 1or an unsteady mix of both2 depending on the specific circumstances

involved.

Note that even for smooth pipes the friction factor is not zero. That is, there

is a head loss in any pipe, no matter how smooth the surface is made. This is a result of the

no-slip boundary condition that requires any fluid to stick to any solid surface it flows over.

There is always some microscopic surface roughness that produces the no-slip behavior 1and

thus 2 on the molecular level, even when the roughness is considerably less than the

viscous sublayer thickness. Such pipes are called hydraulically smooth.

Various investigators have attempted to obtain an analytical expression for 

Note that the Moody chart covers an extremely wide range in flow parameters.

The nonlaminar region covers more than four orders of magnitude in Reynolds number—

from to Obviously, for a given pipe and fluid, typical values of the

average velocity do not cover this range. However, because of the large variety in pipes 1D2,
fluids and and velocities 1V 2, such a wide range in Re is needed to accommodate nearly

all applications of pipe flow. In many cases the particular pipe flow of interest is confined

to a relatively small region of the Moody chart, and simple semiempirical expressions can

m2,1r
Re 5 108.Re 5 4 3 103

f1Re, e/D2.
f 5

f Þ 0

1e 5 02

2100 6 Re 6 4000

f 5 f1Re, e/D2.

f 5 f1e/D2,
f 5 64/Re,

e

f 5 f1Re, e/D2.
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■ TA B L E 8 . 1

Equivalent Roughness for New Pipes [From Moody
(Ref. 7) and Colebrook (Ref. 8)]

Equivalent Roughness,

Pipe Feet Millimeters

Riveted steel 0.003–0.03 0.9–9.0

Concrete 0.001–0.01 0.3–3.0

Wood stave 0.0006–0.003 0.18–0.9

Cast iron 0.00085 0.26

Galvanized iron 0.0005 0.15

Commercial steel

or wrought iron 0.00015 0.045

Drawn tubing 0.000005 0.0015

Plastic, glass 0.0 1smooth2 0.0 1smooth2

E

The Moody chart

gives the friction

factor in terms of

the Reynolds num-

ber and relative

roughness.
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be developed for those conditions. For example, a company that manufactures cast iron wa-

ter pipes with diameters between 2 and 12 in. may use a simple equation valid for their con-

ditions only. The Moody chart, on the other hand, is universally valid for all steady, fully de-

veloped, incompressible pipe flows.

The following equation from Colebrook is valid for the entire nonlaminar range of the

Moody chart

(8.35)

In fact, the Moody chart is a graphical representation of this equation, which is an empiri-

cal fit of the pipe flow pressure drop data. Equation 8.35 is called the Colebrook formula. A

difficulty with its use is that it is implicit in the dependence of f. That is, for given condi-

tions it is not possible to solve for f without some sort of iterative scheme.

With the use of modern computers and calculators, such calculations are not difficult. 1As

shown in Problem 8.37 at the end of this chapter, it is possible to obtain an equation that

adequately approximates the ColebrookyMoody chart relationship but does not require an

iterative scheme.2 A word of caution is in order concerning the use of the Moody chart or

the equivalent Colebrook formula. Because of various inherent inaccuracies involved 1un-

certainty in the relative roughness, uncertainty in the experimental data used to produce the

Moody chart, etc.2, the use of several place accuracy in pipe flow problems is usually not

justified. As a rule of thumb, a 10% accuracy is the best expected.

1Re and e/D2,

1

1f
5 22.0 log ae/D

3.7
1

2.51

Re1f
b
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EXAMPLE
8.5

The turbulent por-

tion of the Moody

chart is represented

by the Colebrook

formula.

Air under standard conditions flows through a 4.0-mm-diameter drawn tubing with an aver-

age velocity of For such conditions the flow would normally be turbulent. How-

ever, if precautions are taken to eliminate disturbances to the flow 1the entrance to the tube

is very smooth, the air is dust free, the tube does not vibrate, etc.2, it may be possible to

maintain laminar flow. 1a2 Determine the pressure drop in a 0.1-m section of the tube if the

flow is laminar. 1b2 Repeat the calculations if the flow is turbulent.

SOLUTION

Under standard temperature and pressure conditions the density and viscosity are

and Thus, the Reynolds number is

which would normally indicate turbulent flow.

(a) If the flow were laminar, then and the pressure

drop in a 0.1-m-long horizontal section of the pipe would be

or

(Ans)

Note that the same result is obtained from Eq. 8.8.

¢p 5
32m/

D2
 V 5

3211.79 3 1025 N # s/m
22 10.1 m2 150 m/s2

10.004 m22 5 179 N/m
2

¢p 5 0.179 kPa

¢p 5 f 
/

D
 
1

2
 rV 2

5 10.004672 10.1 m2
10.004 m2  

1

2
 11.23 kg/m

32 150 m/s22

f 5 64/Re 5 64/13,700 5 0.00467

Re 5
rVD

m
5
11.23 kg/m

32 150 m/s2 10.004 m2
1.79 3 1025 N # s/m

2
5 13,700

m 5 1.79 3 1025 N # s/m
2.r 5 1.23 kg/m

3

V 5 50 m/s
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(b) If the flow were turbulent, then where from Table 8.1,

so that From the Moody chart with 

we obtain Thus, the pressure drop in this

case would be approximately

or

(Ans)

A considerable savings in effort to force the fluid through the pipe could be realized10.179 kPa rather than 1.076 kPa2 if the flow could be maintained as laminar flow at

this Reynolds number. In general this is very difficult to do, although laminar flow in

pipes has been maintained up to in rare instances.

An alternate method to determine the friction factor for the turbulent flow would

be to use the Colebrook formula, Eq. 8.35. Thus,

or

(1)

An iterative procedure to obtain f can be done as follows. We assume a value of f1 for example2, substitute it into the right-hand side of Eq. 1, and calculate a

new f 1 in this case2. Since the two values do not agree, the assumed value

is not the solution. Hence, we try again. This time we assume 1the last value

calculated2 and calculate the new value as Again this is still not the solu-

tion. Two more iterations show that the assumed and calculated values converge to the

solution in agreement 1within the accuracy of reading the graph2 with the

Moody chart method of 

Numerous other empirical formulas can be found in the literature 1Ref. 52 for por-

tions of the Moody chart. For example, an often-used equation, commonly referred to

as the Blasius formula, for turbulent flow in smooth pipes with 

is

For our case this gives

which is in agreement with the previous results. Note that the value of f is relatively in-

sensitive to for this particular situation. Whether the tube was smooth glass

or the drawn tubing would not make much difference in

the pressure drop. For this flow, an increase in relative roughness by a factor of 30 to1equivalent to a commercial steel surface; see Table 8.12 would give

This would represent an increase in pressure drop and head loss by a fac-

tor of compared with that for the original drawn tubing.

The pressure drop of 1.076 kPa in a length of 0.1 m of pipe corresponds to a 

change in absolute pressure [assuming ] of approximately p 5 101 kPa 1abs2 at x 5 0

0.043/0.0291 5 1.48

f 5 0.043.

e/D 5 0.0113

1e/D 5 0.00037521e/D 5 02 e/D

f 5 0.316113,700220.25
5 0.0292

f 5
0.316

Re1/4

Re 6 1051e/D 5 02

f 5 0.028.

f 5 0.0291,

f 5 0.0289.

f 5 0.0307

f 5 0.0307

f 5 0.02,

1

1f
5 22.0 log a1.01 3 1024

1
1.83 3 1024

1f
b

1

1f
5 22.0 log ae/D

3.7
1

2.51

Re1f
b 5 22.0 log a0.000375

3.7
1

2.51

1.37 3 1041f
b

Re < 100,000

¢p 5 1.076 kPa

¢p 5 f 
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D
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2
 rV 2

5 10.0282 10.1 m2
10.004 m2  

1

2
 11.23 kg/m

32 150 m/s22

f 5 0.028.1.37 3 104 and e/D 5 0.000375

Re 5e/D 5 0.0015 mm/4.0 mm 5 0.000375.

e 5 0.0015 mmf 5 f1Re, e/D2,



8.4.2 Minor Losses

As discussed in the previous section, the head loss in long, straight sections of pipe can be

calculated by use of the friction factor obtained from either the Moody chart or the Cole-

brook equation. Most pipe systems, however, consist of considerably more than straight pipes.

These additional components 1valves, bends, tees, and the like2 add to the overall head loss

of the system. Such losses are generally termed minor losses, with the apparent implication

being that the majority of the system loss is associated with the friction in the straight por-

tions of the pipes, the major losses. In many cases this is true. In other cases the minor losses

are greater than the major losses. In this section we indicate how to determine the various

minor losses that commonly occur in pipe systems.

The head loss associated with flow through a valve is a common minor loss. The pur-

pose of a valve is to provide a means to regulate the flowrate. This is accomplished by chang-

ing the geometry of the system 1i.e., closing or opening the valve alters the flow pattern

through the valve2, which in turn alters the losses associated with the flow through the valve.

The flow resistance or head loss through the valve may be a significant portion of the resis-

tance in the system. In fact, with the valve closed, the resistance to the flow is infinite—the

fluid cannot flow. Such minor losses may be very important indeed. With the valve wide

open the extra resistance due to the presence of the valve may or may not be negligible.

The flow pattern through a typical component such as a valve is shown in Fig. 8.21.

It is not difficult to realize that a theoretical analysis to predict the details of such flows to

obtain the head loss for these components is not, as yet, possible. Thus, the head loss infor-

mation for essentially all components is given in dimensionless form and based on experi-
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or about 1%. Thus, the incompressible flow assumption on which

the above calculations 1and all of the formulas in this chapter2 are based is reasonable.

However, if the pipe were 2-m long the pressure drop would be 21.5 kPa, approxi-

mately 20% of the original pressure. In this case the density would not be approxi-

mately constant along the pipe, and a compressible flow analysis would be needed.

Such considerations are discussed in Chapter 11.

101 5 0.0107,1.076/

Q Q

■ F I G U R E  8 . 2 1 Flow through a valve.

Losses occur in

straight pipes (ma-

jor losses) and pipe

system components

(minor losses).



mental data. The most common method used to determine these head losses or pressure drops

is to specify the loss coefficient, which is defined as

so that

or

(8.36)

The pressure drop across a component that has a loss coefficient of is equal to the

dynamic pressure,

The actual value of is strongly dependent on the geometry of the component con-

sidered. It may also be dependent on the fluid properties. That is,

where is the pipe Reynolds number. For many practical applications the

Reynolds number is large enough so that the flow through the component is dominated by

inertia effects, with viscous effects being of secondary importance. This is true because of

the relatively large accelerations and decelerations experienced by the fluid as it flows along

a rather curved, variable-area 1perhaps even torturous2 path through the component 1see

Fig. 8.212. In a flow that is dominated by inertia effects rather than viscous effects, it is usu-

ally found that pressure drops and head losses correlate directly with the dynamic pressure.

This is the reason why the friction factor for very large Reynolds number, fully developed

pipe flow is independent of the Reynolds number. The same condition is found to be true for

flow through pipe components. Thus, in most cases of practical interest the loss coefficients

for components are a function of geometry only,

Minor losses are sometimes given in terms of an equivalent length, In this termi-

nology, the head loss through a component is given in terms of the equivalent length of pipe

that would produce the same head loss as the component. That is,

or

where D and f are based on the pipe containing the component. The head loss of the pipe

system is the same as that produced in a straight pipe whose length is equal to the pipes of

the original system plus the sum of the additional equivalent lengths of all of the compo-

nents of the system. Most pipe flow analyses, including those in this book, use the loss co-

efficient method rather than the equivalent length method to determine the minor losses.

Many pipe systems contain various transition sections in which the pipe diameter

changes from one size to another. Such changes may occur abruptly or rather smoothly

through some type of area change section. Any change in flow area contributes losses that

are not accounted for in the fully developed head loss calculation 1the friction factor2. The

extreme cases involve flow into a pipe from a reservoir 1an entrance2 or out of a pipe into a

reservoir 1an exit2.

/eq 5
KLD

f

hL 5 KL 
V 2

2g
5 f 
/eq

D
 
V 2

2g

/eq.

KL 5 f1geometry2.

Re 5 rVD/m

KL 5 f1geometry, Re2
KL

rV 2
/2.

KL 5 1

hL 5 KL 
V 2

2g

¢p 5 KL 12rV
2

KL 5
hL

1V 2
/2g2 5

¢p
1
2rV

2

KL,
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Losses due to pipe

system components

are given in terms

of loss coefficients.



A fluid may flow from a reservoir into a pipe through any number of different shaped

entrance regions as are sketched in Fig. 8.22. Each geometry has an associated loss coeffi-

cient. A typical flow pattern for flow entering a pipe through a square-edged entrance is

sketched in Fig. 8.23. As was discussed in Chapter 3, a vena contracta region may result
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(a) (b)

(c) (d)

Vena contracta

(2) (3)(1) V2 > V3

xV1 = 0

Flow separation

at corner

Separated flow

(a)

p1

p3

x1 x2 x3 x

p

(b)

Actual

Ideal full recovery

of kinetic energy
  V 2

2____
2

ρ

  V 2
3____

2

ρ

  V 2
3____

2

ρ
KL

■ F I G U R E  8 . 2 2 Entrance flow conditions and loss coefficient (Refs. 28, 29). (a) Reen-
trant, (b) sharp-edged, (c) slightly rounded, (see Fig. 8.24),KL 5 0.2KL 5 0.5,KL 5 0.8,

■ F I G U R E  8 . 2 3 Flow pattern and pressure distribution for a sharp-edged entrance.

(d) well-rounded, (see Fig. 8.24).KL 5 0.04

A vena contracta

region is often de-

veloped at the en-

trance to a pipe.



because the fluid cannot turn a sharp right-angle corner. The flow is said to separate from

the sharp corner. The maximum velocity at section 122 is greater than that in the pipe at sec-

tion 132, and the pressure there is lower. If this high-speed fluid could slow down efficiently,

the kinetic energy could be converted into pressure 1the Bernoulli effect2, and the ideal pres-

sure distribution indicated in Fig. 8.23 would result. The head loss for the entrance would

be essentially zero.

Such is not the case. Although a fluid may be accelerated very efficiently, it is very

difficult to slow down 1decelerate2 a fluid efficiently. Thus, the extra kinetic energy of the

fluid at section 122 is partially lost because of viscous dissipation, so that the pressure does

not return to the ideal value. An entrance head loss 1pressure drop2 is produced as is indi-

cated in Fig. 8.23. The majority of this loss is due to inertia effects that are eventually dis-

sipated by the shear stresses within the fluid. Only a small portion of the loss is due to the

wall shear stress within the entrance region. The net effect is that the loss coefficient for a

square-edged entrance is approximately One-half of a velocity head is lost as the

fluid enters the pipe. If the pipe protrudes into the tank 1a reentrant entrance2 as is shown in

Fig. 8.22a, the losses are even greater.

KL 5 0.50.
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■ F I G U R E  8 . 2 4
Entrance loss coefficient as
a function of rounding of
the inlet edge (Ref. 9).

■ F I G U R E  8 . 2 5 Exit flow conditions and loss coefficient. (a) Reentrant,

(b) sharp-edged, (c) slightly rounded, (d) well-rounded, KL 5 1.0.KL 5 1.0,KL 5 1.0,

KL 5 1.0,
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flows
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the dissipation of

kinetic energy.



An obvious way to reduce the entrance loss is to round the entrance region as is shown

in Fig. 8.22c, thereby reducing or eliminating the vena contracta effect. Typical values for

the loss coefficient for entrances with various amounts of rounding of the lip are shown in

Fig. 8.24. A significant reduction in can be obtained with only slight rounding.

A head loss 1the exit loss2 is also produced when a fluid flows from a pipe into a tank

as is shown in Fig. 8.25. In these cases the entire kinetic energy of the exiting fluid 1veloc-

ity 2 is dissipated through viscous effects as the stream of fluid mixes with the fluid in the

tank and eventually comes to rest The exit loss from points 112 and 122 is therefore

equivalent to one velocity head, or 

Losses also occur because of a change in pipe diameter as is shown in Figs. 8.26

and 8.27. The sharp-edged entrance and exit flows discussed in the previous paragraphs are

limiting cases of this type of flow with either respectively. The

loss coefficient for a sudden contraction, is a function of the area ratio,

as is shown in Fig. 8.26. The value of changes gradually from one extreme of a

sharp-edged entrance with to the other extreme of no area change

with 

In many ways, the flow in a sudden expansion is similar to exit flow. As is indicated

in Fig. 8.28, the fluid leaves the smaller pipe and initially forms a jet-type structure as it en-

ters the larger pipe. Within a few diameters downstream of the expansion, the jet becomes

dispersed across the pipe, and fully developed flow becomes established again. In this process

[between sections 122 and 132] a portion of the kinetic energy of the fluid is dissipated as a

result of viscous effects. A square-edged exit is the limiting case with A1/A2 5 0.

KL 5 02.1A2/A1 5 1

KL 5 0.5021A2/A1 5 0

KLA2/A1,

KL 5 hL / 1V 2
2 /2g2,A1/A2 5 `, or A1/A2 5 0,

KL 5 1.

1V2 5 02.V1

KL

484 ■ Chapter 8 / Viscous Flow in Pipes

A1 A2
hL = KL 

V2
2

___
2g

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

A2/A1

KL

A1 A2 hL = KL 

V1
2

___
2g

1.0

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1.0

A1/A2

KL

■ F I G U R E  8 . 2 6
Loss coefficient for a sud-
den contraction (Ref. 10).
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Loss coefficient for a sudden
expansion (Ref. 10).
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A sudden expansion is one of the few components 1perhaps the only one2 for which

the loss coefficient can be obtained by means of a simple analysis. To do this we consider

the continuity and momentum equations for the control volume shown in Fig. 8.28 and the

energy equation applied between 122 and 132. We assume that the flow is uniform at sections112, 122, and 132 and the pressure is constant across the left-hand side of the control volume

The resulting three governing equations 1mass, momentum, and energy2
are

and

These can be rearranged to give the loss coefficient, as

where we have used the fact that This result, plotted in Fig. 8.27, is in good agree-

ment with experimental data. As with so many minor loss situations, it is not the viscous ef-

fects directly 1i.e., the wall shear stress2 that cause the loss. Rather, it is the dissipation of ki-

netic energy 1another type of viscous effect2 as the fluid decelerates inefficiently.

The losses may be quite different if the contraction or expansion is gradual. Typical

results for a conical diffuser with a given area ratio, are shown in Fig. 8.29. 1A dif-

fuser is a device shaped to decelerate a fluid.2 Clearly the included angle of the diffuser,

is a very important parameter. For very small angles, the diffuser is excessively long and

most of the head loss is due to the wall shear stress as in fully developed flow. For moder-

ate or large angles, the flow separates from the walls and the losses are due mainly to a dis-

sipation of the kinetic energy of the jet leaving the smaller diameter pipe. In fact, for mod-

erate or large values of 1i.e., for the case shown in Fig. 8.292, the conical diffuser

is, perhaps unexpectedly, less efficient than a sharp-edged expansion which has There

is an optimum angle 1 for the case illustrated2 for which the loss coefficient is a min-

imum. The relatively small value of for the minimum results in a long diffuser and is

an indication of the fact that it is difficult to efficiently decelerate a fluid.

It must be noted that the conditions indicated in Fig. 8.29 represent typical results only.

Flow through a diffuser is very complicated and may be strongly dependent on the area ratio

KLu

u < 8°

KL 5 1.

u 7 35°u

u,

A2/A1,

A2 5 A3.

KL 5 a1 2
A1

A2

b2

KL 5 hL / 1V 2
1/2g2,

p1

g
1

V 2
1

2g
5

p3

g
1

V 2
3

2g
1 hL

 p1A3 2 p3A3 5 rA3V31V3 2 V12
 A1V1 5 A3V3

1pa 5 pb 5 pc 5 p12.
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The loss coefficient

for a sudden expan-

sion can be theoret-

ically calculated.
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■ F I G U R E  8 . 2 8 Control volume used to calculate the loss coefficient for a sudden ex-
pansion.



specific details of the geometry, and the Reynolds number. The data are often pre-

sented in terms of a pressure recovery coefficient, which is the ra-

tio of the static pressure rise across the diffuser to the inlet dynamic pressure. Considerable

effort has gone into understanding this important topic 1Refs. 11, 122.
Flow in a conical contraction 1a nozzle; reverse the flow direction shown in Fig. 8.292

is less complex than that in a conical expansion. Typical loss coefficients based on the down-

stream 1high-speed2 velocity can be quite small, ranging from for to

for for example. It is relatively easy to accelerate a fluid efficiently.

Bends in pipes produce a greater head loss than if the pipe were straight. The losses

are due to the separated region of flow near the inside of the bend 1especially if the bend is

sharp2 and the swirling secondary flow that occurs because of the imbalance of centripetal

forces as a result of the curvature of the pipe centerline. These effects and the associated val-

ues of for large Reynolds number flows through a bend are shown in Fig. 8.30. The

friction loss due to the axial length of the pipe bend must be calculated and added to that

given by the loss coefficient of Fig. 8.30.

For situations in which space is limited, a flow direction change is often accomplished

by use of miter bends, as is shown in Fig. 8.31, rather than smooth bends. The considerable

losses in such bends can be reduced by the use of carefully designed guide vanes that help

direct the flow with less unwanted swirl and disturbances.

Another important category of pipe system components is that of commercially avail-

able pipe fittings such as elbows, tees, reducers, valves, and filters. The values of for such

components depend strongly on the shape of the component and only very weakly on the

Reynolds number for typical large Re flows. Thus, the loss coefficient for a elbow de-

pends on whether the pipe joints are threaded or flanged but is, within the accuracy of the

data, fairly independent of the pipe diameter, flow rate, or fluid properties 1the Reynolds num-

ber effect2. Typical values of for such components are given in Table 8.2. These typical

components are designed more for ease of manufacturing and costs than for reduction of the

head losses that they produce. The flowrate from a faucet in a typical house is sufficient

whether the value of for an elbow is the typical or it is reduced to 

by use of a more expensive long-radius, gradual bend 1Fig. 8.302.
Valves control the flowrate by providing a means to adjust the overall system loss co-

efficient to the desired value. When the valve is closed, the value of is infinite and noKL

KL 5 0.2KL 5 1.5,KL

KL

90°

KL

90°KL

u 5 60°,KL 5 0.07

u 5 30°,KL 5 0.02

Cp 5 1p2 2 p12/ 1rV 2
1/22,

A2/A1,
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■ F I G U R E  8 . 2 9 Loss coefficient for a typical conical diffuser (Ref. 5).
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■ F I G U R E  8 . 3 0 Character of the flow in a bend and the associated loss coefficient
(Ref. 5).
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■ F I G U R E  8 . 3 1
Character of the flow
in a mitered bend
and the associated loss
coefficient: (a) without
guide vanes, (b) with
guide vanes.

908

fluid flows. Opening of the valve reduces producing the desired flowrate. Typical cross

sections of various types of valves are shown in Fig. 8.32. Some valves 1such as the con-

ventional globe valve2 are designed for general use, providing convenient control between

the extremes of fully closed and fully open. Others 1such as a needle valve2 are designed to

provide very fine control of the flowrate. The check valve provides a diode type operation

that allows fluid to flow in one direction only.

Loss coefficients for typical valves are given in Table 8.2. As with many system com-

ponents, the head loss in valves is mainly a result of the dissipation of kinetic energy of a

high-speed portion of the flow. This is illustrated in Fig. 8.33.

KL,



■ F I G U R E  8 . 3 2 Internal structure of various valves: (a) globe valve, (b) gate valve, (c)
swing check valve, (d) stop check valve. (Courtesy of Crane Co., Valve Division.)
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■ F I G U R E  8 . 3 3 Head loss in a
valve is due to dissipation of the kinetic
energy of the large-velocity fluid near 
the valve seat.
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■ TA B L E 8 . 2

Loss Coefficients for Pipe Components (Data from Refs. 5, 10, 27)

Component

a. Elbows

Regular flanged 0.3

Regular threaded 1.5

Long radius flanged 0.2

Long radius threaded 0.7

Long radius flanged 0.2

Regular threaded 0.4

b. return bends

return bend, flanged 0.2

return bend, threaded 1.5

c. Tees

Line flow, flanged 0.2

Line flow, threaded 0.9

Branch flow, flanged 1.0

Branch flow, threaded 2.0

d. Union, threaded 0.08

*e. Valves

Globe, fully open 10

Angle, fully open 2

Gate, fully open 0.15

Gate, closed 0.26

Gate, closed 2.1

Gate, closed 17

Swing check, forward flow 2

Swing check, backward flow `

Ball valve, fully open 0.05

Ball valve, closed 5.5

Ball valve, closed 210

*See Fig. 8.36 for typical valve geometry
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ahL 5 KL 
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V
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V

EXAMPLE
8.6

Air at standard conditions is to flow through the test section [between sections 152 and 162]
of the closed-circuit wind tunnel shown in Fig. E8.6 with a velocity of 200 ftys. The flow is

driven by a fan that essentially increases the static pressure by the amount that is

needed to overcome the head losses experienced by the fluid as it flows around the circuit.

Estimate the value of and the horsepower supplied to the fluid by the fan.p1 2 p9

p1 2 p9
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SOLUTION

The maximum velocity within the wind tunnel occurs in the test section 1smallest area2. Thus,

the maximum Mach number of the flow is where and from

Eq. 1.20 the speed of sound is 

Thus, As was indicated in Chapter 3 and discussed

fully in Chapter 11, most flows can be considered as incompressible if the Mach number is

less than about 0.3. Hence, we can use the incompressible formulas for this problem.

The purpose of the fan in the wind tunnel is to provide the necessary energy to over-

come the net head loss experienced by the air as it flows around the circuit. This can be

found from the energy equation between points 112 and 192 as

where is the total head loss from 112 to 192. With and this gives

(1)

Similarly, by writing the energy equation 1Eq. 5.842 across the fan, from 192 to 112, we obtain

where is the actual head rise supplied by the pump 1fan2 to the air. Again since 

and this, when combined with Eq. 1, becomes

The actual power supplied to the air 1horsepower, 2 is obtained from the fan head by

(2)

Thus, the power that the fan must supply to the air depends on the head loss associ-

ated with the flow through the wind tunnel. To obtain a reasonable, approximate answer we

make the following assumptions. We treat each of the four turning corners as a mitered bend

with guide vanes so that from Fig. 8.31 Thus, for each corner

where, because the flow is assumed incompressible, The values of A and the

corresponding velocities throughout the tunnel are given in Table E8.6.

V 5 V5A5/A.

hLcorner
5 KL 

V 2

2g
5 0.2 

V 2

2g

KLcorner
5 0.2.

pa 5 gQhp 5 gA5V5hp 5 gA5V5hL1 – 9

pa

hp 5
1p1 2 p92
g

5 hL1 – 9

V9 5 V1

z9 5 z1hp

p9

g
1

V 2
9

2g
1 z9 1 hp 5

p1

g
1

V 2
1

2g
1 z9

p1

g
2

p9

g
5 hL1 – 9

V1 5 V9z1 5 z9hL1 – 9

p1

g
1

V 2
1

2g
1 z1 5

p9

g
1

V 2
9

2g
1 z9 1 hL1 – 9

Ma5 5 200/1117 5 0.179.5 1117 ft/s.

c5 5 1kRT521/2 5 51.411716 ft # lb/slug # °R2 3 1460 1 592°R 4 61/2

V5 5 200 ft/sMa5 5 V5 /c5,

Q

Flow-straightening

screens

(5) (6)

(7)

(8)

(9)
(1)(2)

(3)

(4)

Fan

Test

section

V5 = 200 ft/s

Location Area ( ) Velocity ( )

1 22.0 36.4

2 28.0 28.6

3 35.0 22.9

4 35.0 22.9

5 4.0 200.0

6 4.0 200.0

7 10.0 80.0

8 18.0 44.4

9 22.0 36.4

ft/sft2

■ F I G U R E  E 8 . 6
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We also treat the enlarging sections from the end of the test section 162 to the begin-

ning of the nozzle 142 as a conical diffuser with a loss coefficient of This value

is larger than that of a well-designed diffuser 1see Fig. 8.29, for example2. Since the wind

tunnel diffuser is interrupted by the four turning corners and the fan, it may not be possible

to obtain a smaller value of for this situation. Thus,

The loss coefficients for the conical nozzle between section 142 and 152 and the flow-

straightening screens are assumed to be and 1Ref. 132, respectively. We

neglect the head loss in the relatively short test section.

Thus, the total head loss is

or

or

Hence, from Eq. 1 we obtain the pressure rise across the fan as

(Ans)

From Eq. 2 we obtain the power added to the fluid as

or

(Ans)

With a closed-return wind tunnel of this type, all of the power required to maintain the

flow is dissipated through viscous effects, with the energy remaining within the closed tun-

nel. If heat transfer across the tunnel walls is negligible, the air temperature within the tun-

nel will increase in time. For steady state operations of such tunnels, it is often necessary to

provide some means of cooling to maintain the temperature at acceptable levels.

It should be noted that the actual size of the motor that powers the fan must be greater

than the calculated 62.3 hp because the fan is not 100% efficient. The power calculated above

is that needed by the fluid to overcome losses in the tunnel, excluding those in the fan. If

the fan were 60% efficient, it would require a shaft power of 

to run the fan. Determination of fan 1or pump2 efficiencies can be a complex problem that

depends on the specific geometry of the fan. Introductory material about fan performance is

presented in Chapter 12; additional material can be found in various references 1Refs. 14,

15, 16, for example2.
It should also be noted that the above results are only approximate. Clever, careful de-

sign of the various components 1corners, diffuser, etc.2 may lead to improved 1i.e., lower2

p 5 62.3 hp/ 10.602 5 104 hp

pa 5
34,300 ft # lb/s

550 1ft # lb/s2/hp
5 62.3 hp

pa 5 10.0765 lb/ft
32 14.0 ft22 1200 ft/s2 1560 ft2 5 34,300 ft # lb/s

 5 42.8 lb/ft
2

5 0.298 psi

 p1 2 p9 5 ghL1 – 9
5 10.0765 lb/ft

32 1560 ft2

hL1 – 9
5 560 ft

 1 0.2120022 1 4.0122.922 4  ft2
/s

2
/ 32132.2 ft/s

22 4
 5 30.2180.02

1 44.42
1 28.62

1 22.922 1 0.6120022
 hL1–9

5 30.21V 2
7 1 V 2

8 1 V 2
2 1 V 2

32 1 0.6V 2
6 1 0.2V 2

5 1 4.0V 2
4 4 /2g

hL1–9
5 hLcorner7

1 hLcorner8
1 hLcorner2

1 hLcorner3
1 hLdif

1 hLnoz
1 hLscr

KLscr
5 4.0KLnoz

5 0.2

hLdif
5 KLdif

 
V 2

6

2g
5 0.6 

V 2
6

2g

KLdif
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5 0.6.



8.4.3 Noncircular Conduits

Many of the conduits that are used for conveying fluids are not circular in cross section. Al-

though the details of the flows in such conduits depend on the exact cross-sectional shape,

many round pipe results can be carried over, with slight modification, to flow in conduits of

other shapes.

Theoretical results can be obtained for fully developed laminar flow in noncircular

ducts, although the detailed mathematics often becomes rather cumbersome. For an arbitrary

cross section, as is shown in Fig. 8.34, the velocity profile is a function of both y and z

This means that the governing equation from which the velocity profile is

obtained 1either the Navier–Stokes equations of motion or a force balance equation similar

to that used for circular pipes, Eq. 8.62 is a partial differential equation rather than an ordi-

nary differential equation. Although the equation is linear 1for fully developed flow the con-

vective acceleration is zero2, its solution is not as straightforward as for round pipes. Typi-

cally the velocity profile is given in terms of an infinite series representation 1Ref. 172.
Practical, easy-to-use results can be obtained as follows. Regardless of the cross-

sectional shape, there are no inertia effects in fully developed laminar pipe flow. Thus, the

friction factor can be written as where the constant C depends on the particular

shape of the duct, and is the Reynolds number, based on the hydraulic

diameter. The hydraulic diameter defined as is four times the ratio of the cross-

sectional flow area divided by the wetted perimeter, P, of the pipe as is illustrated in Fig. 8.34.

It represents a characteristic length that defines the size of a cross section of a specified shape.

The factor of 4 is included in the definition of so that for round pipes the diameter and

hydraulic diameter are equal The hydraulic diameter

is also used in the definition of the friction factor, and the relative

roughness,

The values of for laminar flow have been obtained from theory andyor ex-

periment for various shapes. Typical values are given in Table 8.3 along with the hydraulic

diameter. Note that the value of C is relatively insensitive to the shape of the conduit. Un-

less the cross section is very “thin” in some sense, the value of C is not too different from

its circular pipe value, Once the friction factor is obtained, the calculations for non-

circular conduits are identical to those for round pipes.

C 5 64.

C 5 f Reh

e/Dh.

hL 5 f 1//Dh2V 2
/2g,

3Dh 5 4A/P 5 41pD2
/42/ 1pD2 5 D 4 .Dh

Dh 5 4A/P

Reh 5 rVDh/m,Reh

f 5 C/Reh,

3V 5 u1y, z2 î 4 .
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values of the various loss coefficients, and hence lower power requirements. Since is pro-

portional to the components with the larger V tend to have the larger head loss. Thus,

even though for each of the four corners, the head loss for corner 172 is

times greater than it is for corner 132.1V7/V322 5 180/22.922 5 12.2

KL 5 0.2

V 2,

hL

A = cross-sectional

area

P = perimeter

of pipe

Dh = 4A/P = hydraulic

diameter

(a) (b)

y

z

x

z V = u(y,z)

■ F I G U R E  8 . 3 4 Noncircular duct.

The hydraulic di-
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noncircular duct

calculations.



Calculations for fully developed turbulent flow in ducts of noncircular cross section

are usually carried out by using the Moody chart data for round pipes with the diameter re-

placed by the hydraulic diameter and the Reynolds number based on the hydraulic diameter.

Such calculations are usually accurate to within about 15%. If greater accuracy is needed, a

more detailed analysis based on the specific geometry of interest is needed.
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■ TA B L E 8 . 3

Friction Factors for Laminar Flow in Noncircular Ducts (Data from Ref. 18)

Shape Parameter

0.0001 71.8

0.01 80.1

0.1 89.4

0.6 95.6

1.00 96.0

ayb

0 96.0

0.05 89.9

0.10 84.7

0.25 72.9

0.50 62.2

0.75 57.9

1.00 56.9

D1/D2

C 5 f Reh

EXAMPLE
8.7

The Moody chart,

developed for round

pipes, can also be

used for noncircu-

lar ducts.

D1

D2

Concentric AnnulusI.

Dh = D2 – D1

a

b

Dh =
2ab_____

a + b

RectangleII.

Air at a temperature of and standard pressure flows from a furnace through an 8-in.-

diameter pipe with an average velocity of 10 ftys. It then passes through a transition section

and into a square duct whose side is of length a. The pipe and duct surfaces are smooth

Determine the duct size, a, if the head loss per foot is to be the same for the pipe

and the duct.

SOLUTION

We first determine the head loss per foot for the pipe, and then size the

square duct to give the same value. For the given pressure and temperature we obtain 1from

Table B.32 so that

With this Reynolds number and with we obtain the friction factor from Fig. 8.20

as so that

Thus, for the square duct we must have

hL

/
5

0.022

1 8
12 ft2  

110 ft/s22
2132.2 ft/s

22 5 0.0512

f 5 0.022

e/D 5 0

Re 5
VD

n
5
110 ft/s2 1 8

12 ft2
1.89 3 1024 ft2

/s
5 35,300

n 5 1.89 3 1024 ft2
/s

hL // 5 1 f/D2 V 2
/2g,

1e 5 02.

120 °F



In the previous sections of this chapter, we discussed concepts concerning flow in pipes and

ducts. The purpose of this section is to apply these ideas to the solutions of various practi-

cal problems. The application of the pertinent equations is straightforward, with rather sim-

ple calculations that give answers to problems of engineering importance. The main idea in-

volved is to apply the energy equation between appropriate locations within the flow system,

with the head loss written in terms of the friction factor and the minor loss coefficients. We

will consider two classes of pipe systems: those containing a single pipe 1whose length may

be interrupted by various components2, and those containing multiple pipes in parallel, se-

ries, or network configurations.
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(1)

where

(2)

is the velocity in the duct.

By combining Eqs. 1 and 2 we obtain

or

(3)

where a is in feet. Similarly, the Reynolds number based on the hydraulic diameter is

(4)

We have three unknowns 1a, f, and Reh2 and three equations 1Eqs. 3, 4, and the third equa-

tion in graphical form, Fig. 8.20, the Moody chart2. Thus, a trial and error solution is required.

As an initial attempt, assume the friction factor for the duct is the same as for the pipe.

That is, assume From Eq. 3 we obtain while from Eq. 4 we have

From Fig. 8.20, with this Reynolds number and the given smooth duct we

obtain which does not quite agree with the assumed value of f. Hence, we do not

have the solution. We try again, using the latest calculated value of as our guess.

The calculations are repeated until the guessed value of f agrees with the value obtained from

Fig. 8.20. The final result 1after only two iterations2 is and

(Ans)

Note that the length of the side of the equivalent square duct is 

or approximately 92% of the diameter of the equivalent duct. It can be shown that this value,

92%, is a very good approximation for any pipe flow—laminar or turbulent. The cross-

sectional area of the duct is greater than that of the round pipe

Also, it takes less material to form the round pipe

than the square duct Circles are very efficient shapes.1perimeter 5 4a 5 29.4 in.2.25.1 in.2 1perimeter 5pD 51A 5pD2
/4 5 50.3 in.22. 1A 5 a2

5 53.9 in.22

a/D 5 7.34/8 5 0.918,

a 5 0.611 ft 5 7.34 in.

Reh 5 3.03 3 104,f 5 0.023,

f 5 0.023

f 5 0.023,

Reh 5 3.05 3 104.

a 5 0.606 ft,f 5 0.022.

Reh 5
VsDh

n
5
13.49/a

22a
1.89 3 1024

5
1.85 3 104

a

a 5 1.30 f 1/5

0.0512 5
f

a
 

13.49/a
222

2132.22

 Vs 5
Q

A
5

p

4
 a 8

12
 ftb2 110 ft/s2

a2
5

3.49

a2

 Dh 5 4A/P 5 4a2
/4a 5 a and

hL

/
5

f

Dh

 
V 2

s

2g
5 0.0512

8.5 Pipe Flow Examples

Pipe systems may

contain a single

pipe with compo-

nents or multiple

interconnected

pipes.



8.5.1 Single Pipes

The nature of the solution process for pipe flow problems can depend strongly on which of

the various parameters are independent parameters 1the “given”2 and which is the dependent

parameter 1the “determine”2. The three most common types of problems are shown in Table 8.4

in terms of the parameters involved. We assume the pipe system is defined in terms of the

length of pipe sections used and the number of elbows, bends, and valves needed to convey

the fluid between the desired locations. In all instances we assume the fluid properties are

given.

In a Type I problem we specify the desired flowrate or average velocity and determine

the necessary pressure difference or head loss. For example, if a flowrate of 2.0 galymin is

required for a dishwasher that is connected to the water heater by a given pipe system, what

pressure is needed in the water heater?

In a Type II problem we specify the applied driving pressure 1or, alternatively, the head

loss2 and determine the flowrate. For example, how many galymin of hot water are supplied

to the dishwasher if the pressure within the water heater is 60 psi and the pipe system de-

tails 1length, diameter, roughness of the pipe; number of elbows; etc.2 are specified?

In a Type III problem we specify the pressure drop and the flowrate and determine the

diameter of the pipe needed. For example, what diameter of pipe is needed between the wa-

ter heater and dishwasher if the pressure in the water heater is 60 psi 1determined by the city

water system2 and the flowrate is to be not less than 2.0 galymin 1determined by the manu-

facturer2?
Several examples of these types of problems follow.
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Pipe flow problems

can be categorized

by what parameters

are given and what

is to be calculated.

■ TA B L E 8 . 4

Pipe Flow Types

Variable Type I Type II Type III

a. Fluid

Density Given Given Given

Viscosity Given Given Given

b. Pipe

Diameter Given Given Determine

Length Given Given Given

Roughness Given Given Given

c. Flow

Flowrate or Average Given Determine Given

Velocity

d. Pressure

Pressure Drop or Determine Given Given

Head Loss
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EXAMPLE
8.8

(TYPE I,
DETERMINE
PRESSURE

DROP)

Water at flows from the basement to the second floor through the 

diameter copper pipe 1a drawn tubing2 at a rate of and ex-

its through a faucet of diameter 0.50 in. as shown in Fig. E8.8a. Determine the pressure at

point 112 if: 1a2 all losses are neglected, 1b2 the only losses included are major losses, or 1c2 all

losses are included.

Q 5 12.0 gal/min 5 0.0267 ft3
/s

0.75-in. 10.0625-ft2-60 °F

Q =

12.0

gal/min

(1)

(2)

(3)

15 ft

10 ft

5 ft 10 ft

10 ft 10 ft

(8)(7)
(6)

(4)

(5)

g

Threaded

90° elbows

0.75-in. diameter

copper pipe
Wide open

globe valve

0.50-in.

diameter

KL = 2 based on

pipe

velocity

■ F I G U R E  E 8 . 8 a

SOLUTION

Since the fluid velocity in the pipe is given by 

and the fluid properties are and1see Table B.12, it follows that 

Thus, the flow is turbulent.

The governing equation for either case 1a2, 1b2, or 1c2 is Eq. 8.21,

where and the outlet velocity is

We assume that the kinetic

energy coefficients and are unity. This is reasonable because turbulent velocity profiles

are nearly uniform across the pipe. Thus,

(1)

where the head loss is different for each of the three cases.

(a) If all losses are neglected Eq. 1 gives

or

(Ans)

Note that for this pressure drop, the amount due to elevation change 1the hydrostatic ef-

fect2 is and the amount due to the increase in kinetic energy is

r1V 2
2 2 V 2

12/2 5 2.07 psi.

g1z2 2 z12 5 8.67 psi

p1 5 10.7 psi

 5 11248 1 2992 lb/ft
2

5 1547 lb/ft
2

 1
1.94 slugs/ft

3

2
 c a19.6 

ft

s
b2

2 a8.70 
ft

s
b2 d

 p1 5 162.4 lb/ft
32 120 ft2

1hL 5 02,

p1 5 gz2 1
1
2r1V 2

2 2 V 2
12 1 ghL

a2a1

V2 5 Q/A2 5 10.0267 ft3
/s2/ 3p10.50/1222ft2

/4 4 5 19.6 ft/s.

z1 5 0, z2 5 20 ft, p2 5 0 1free jet2, g 5 rg 5 62.4 lb/ft
3,

p1

g
1 a1 

V 2
1

2g
1 z1 5

p2

g
1 a2 

V 2
2

2g
1 z2 1 hL

slugs/ft
32 18.70 ft/s2 10.0625 ft2/ 12.34 3 1025 lb # s/ft

22 5 45,000.

Re 5 rVD/m 5 11.94m 5 2.34 3 1025 lb # s/ft
2

r 5 1.94 slugs/ft
3ft3

/s2/ 3p10.0625 ft22/4 4 5 8.70 ft/s,

V1 5 Q/A1 5 Q/ 1pD2
/42 5 10.0267
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(b) If the only losses included are the major losses, the head loss is

From Table 8.1 the roughness for a 0.75-in.-diameter copper pipe 1drawn tubing2 is

so that With this and the calculated Reynolds

number the value of f is obtained from the Moody chart as 

Note that the Colebrook equation 1Eq. 8.352 would give the same value of f. Hence,

with the total length of the pipe as and the

elevation and kinetic energy portions the same as for part 1a2, Eq. 1 gives

or

(Ans)

Of this pressure drop, the amount due to pipe friction is approximately 

(c) If major and minor losses are included, Eq. 1 becomes

or

(2)

where the 21.3 psi contribution is due to elevation change, kinetic energy change, and

major losses [part 1b2], and the last term represents the sum of all of the minor losses.

The loss coefficients of the components 1 for each elbow and for the

wide-open globe valve2 are given in Table 8.2 1except for the loss coefficient of the

faucet, which is given in Fig. E8.8a as 2. Thus,

or

(3)

Note that we did not include an entrance or exit loss because points 112 and 122 are lo-

cated within the fluid streams, not within an attaching reservoir where the kinetic en-

ergy is zero. Thus, by combining Eqs. 2 and 3 we obtain the entire pressure drop as

(Ans)p1 5 121.3 1 9.172 psi 5 30.5 psi

a rKL 
V 2

2
5 9.17 psi 

 5 1321 lb/ft
2

 a rKL 
V 2

2
5 11.94 slugs/ft

32 18.70 ft22
2

 310 1 411.52 1 2 4
KL 5 2

KL 5 10KL 5 1.5

p1 5 21.3 psi 1 a rKL 
V 2

2

p1 5 gz2 1
1

2
 r1V 2

2 2 V 2
12 1 fg 

/

D
 
V 2

1

2g
1 a rKL 

V 2

2

psi 5 10.6 psi.

121.3 2 10.72
p1 5 21.3 psi

 5 11248 1 299 1 15152 lb/ft
2

5 3062 lb/ft
2

 1 11.94 slugs/ft
32 10.02152  a 60 ft

0.0625 ft
b 

18.70 ft/s22
2

 5 11248 1 2992 lb/ft
2

 p1 5 gz2 1
1

2
 r1V 2

2 2 V 2
12 1 rf 

/

D
 
V 2

1

2

/ 5 115 1 5 1 10 1 10 1 202 ft 5 60 ft

f 5 0.0215.1Re 5 45,0002, e/De/D 5 8 3 1025.e 5 0.00005 ft

hL 5 f 
/

D
 
V 1

2

2g



498 ■ Chapter 8 / Viscous Flow in Pipes

This pressure drop calculated by including all losses should be the most realistic an-

swer of the three cases considered.

More detailed calculations will show that the pressure distribution along the pipe

is as illustrated in Fig. E8.8b for cases 1a2 and 1c2—neglecting all losses or including

all losses. Note that not all of the pressure drop, is a “pressure loss.” The pres-

sure change due to the elevation and velocity changes is completely reversible. The 

portion due to the major and minor losses is irreversible.

p1 2 p2,

This flow can be illustrated in terms of the energy line and hydraulic grade line

concepts introduced in Section 3.7. As is shown in Fig. E8.8c, for case 1a2 there are no

losses and the energy line 1EL2 is horizontal, one velocity head above the hy-

draulic grade line 1HGL2, which is one pressure head above the pipe itself. For case

1c2 the energy line is not horizontal. Each bit of friction in the pipe or loss in a com-

ponent reduces the available energy, thereby lowering the energy line. Thus, for case

1gz2
1V 2

/2g2

30

20

10

0
0 10 20 30 40 50 60

10.7 10.7

6.37

2.07

2.07
4.84

3.09

9.93

12.411.7

30.5 psi

27.1
27.8

20.2
21.0

18.5
19.3

(a) No losses
(c) Including all

losses    

Pressure

loss

Elevation

and

kinetic

energy

p2 = 0

Distance along pipe from point (1), ft

p
, 
p
si

Location:  (1) (3) (4) (5) (6) (7) (8) (2)

6.37

80

60

40

20

0
0 10 20 30 40 50 60

Distance along pipe from point (1), ft

H
, 
e
le

va
ti

o
n
 t

o
 e

n
e
rg

y 
li
n
e
, 
ft

Energy line with no losses, case (a)

Energy line including all

losses, case (c)

Sharp drop due to component loss

Slope due to pipe friction

■ F I G U R E  E 8 . 8 b

■ F I G U R E  E 8 . 8 c



Although the governing pipe flow equations are quite simple, they can provide very

reasonable results for a variety of applications, as is shown in the next example.
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1a2 the total head remains constant throughout the flow with a value of

For case 1c2 the energy line starts at

and falls to a final value of

The elevation of the energy line can be calculated at any point along the pipe. For ex-

ample, at point 172, 50 ft from point 112,

The head loss per foot of pipe is the same all along the pipe. That is,

Thus, the energy line is a set of straight line segments of the same slope separated by

steps whose height equals the head loss of the minor component at that location. As is

seen from Fig. E8.8c, the globe valve produces the largest of all the minor losses.

hL

/
5 f 

V 2

2gD
5

0.021518.70 ft/s22
2132.2 ft/s

22 10.0625 ft2 5 0.404 ft/ft

H7 5
p7

g
1

V 2
7

2g
1 z7 5

19.93 3 1442 lb/ft
2

162.4 lb/ft
32 1

18.70 ft/s22
2132.2 ft/s

22 1 20 ft 5 44.1 ft

H2 5
p2

g
1

V 2
2

2g
1 z2 5 0 1

119.6 ft/s22
2132.2 ft/s

22 1 20 ft 5 26.0 ft

H1 5
p1

g
1

V 2
1

2g
1 z1 5

130.5 3 1442lb/ft
2

162.4 lb/ft
32 1

18.70 ft/s22
2132.2 ft/s

22 1 0 5 71.6 ft

 5
p2

g
1

V 2
2

2g
1 z2 5

p3

g
1

V 3
3

2g
1 z3 5 p

 5 26.0 ft.

 H 5  
p1

g
1

V 2
1

2g
1 z1 5

11547 lb/ft
22

162.4 lb/ft
32 1

18.70 ft/s22
2132.2 ft/s

22 1 0

EXAMPLE
8.9

(TYPE I,
DETERMINE

HEAD
LOSS)

Crude oil at with and 1about four times the

viscosity of water2 is pumped across Alaska through the Alaskan pipeline, a 799-mile-long,

4-ft-diameter steel pipe, at a maximum rate of million barrelsyday or

Determine the horsepower needed for the pumps that drive this large

system.

SOLUTION

From the energy equation 1Eq. 8.212 we obtain

where points 112 and 122 represent locations within the large holding tanks at either end of

the line and is the head provided to the oil by the pumps. We assume that 1pumpedz1 5 z2hp

p1

g
1

V 2
1

2g
1 z1 1 hp 5

p2

g
1

V 2
2

2g
1 z2 1 hL

V 5 Q/A 5 9.31 ft/s.

5 117 ft3
/s,Q 5 2.4

m 5 8 3 1025 lb # s/ft
2g 5 53.7 lb/ft

3140 °F



500 ■ Chapter 8 / Viscous Flow in Pipes

from sea level to sea level2, 1large, open tanks2 and 

Minor losses are negligible because of the large length-to-diameter ratio of

the relatively straight, uninterrupted pipe; 

Thus,

where from Fig. 8.20, since 1see

Table 8.12 and 

Thus,

and the actual power supplied to the fluid, is

(Ans)

There are many reasons why it is not practical to drive this flow with a single pump

of this size. First, there are no pumps this large! Second, the pressure at the pump outlet

would need to be No practical

4-ft-diameter pipe would withstand this pressure. An equally unfeasible alternative would be

to place the holding tank at the beginning of the pipe on top of a hill of height 

and let gravity force the oil through the 799-mi pipe!

To produce the desired flow, the actual system contains 12 pumping stations positioned

at strategic locations along the pipeline. Each station contains four pumps, three of which

operate at any one time 1the fourth is in reserve in case of emergency2. Each pump is 

driven by a 13,500-hp motor, thereby producing a total horsepower of stations 13 2 If we assume that the com-

bination is approximately 60% efficient, there is a total of 

available to drive the fluid. This number compares favorably with the 202,000-hp answer cal-

culated above.

The assumption of a oil temperature may not seem reasonable for flow across

Alaska. Note, however, that the oil is warm when it is pumped from the ground and that the

202,000 hp needed to pump the oil is dissipated as a head loss 1and therefore a temperature

rise2 along the pipe. However, if the oil temperature were rather than , the vis-

cosity would be approximately 1twice as large2, but the friction factor

would only increase from at to at

This doubling of viscosity would result in only an 11% increase

in power 1from 202,000 to 226,000 hp2. Because of the large Reynolds numbers involved,

the shear stress is due mostly to the turbulent nature of the flow. That is, the value of Re for

this flow is large enough 1on the relatively flat part of the Moody chart2 so that f is nearly

independent of Re 1or viscosity2.

70 °F 1Re 5 3.88 3 1052. f 5 0.0140140 °F 1Re 5 7.76 3 1052f 5 0.0125

16 3 1025 lb # s/ft
2

140 °F70 °F

140 °F

0.60 1486,0002 hp 5 292,000 hp

pump/motor113,500 hp/pump2 5 486,000 hp.pump/station

p 5 12

hL 5 17,700 ft

p 5 ghL 5 153.7 lb/ft
32 117,700 ft2 11 ft2

/144 in.22 5 6600 psi.

 5 202,000 hp

 5 1.11 3 108 ft # lb/s a 1 hp

550 ft # lb/s
b

 pa 5 gQhp 5 153.7 lb/ft
32 1117 ft3

/s2 117,700 ft2
pa,

hp 5 0.012511.05 3 1062 19.31 ft/s22
2132.2 ft/s

22 5 17,700 ft

7.76 3 105.

19.31 ft/s2 14.0 ft2/ 18 31025 lb # s/ft
22  5Re 5 rVD/m5 3 153.7/32.22 slugs/ft

3 4e/D 5 10.00015 ft2/ 14 ft2 5 0.0000375f 5 0.0125

hp 5 hL 5 f 
/

D
 
V 2

2g

1.05 3 106.//D 5 1799 mi2 15280 ft/mi2/ 14 ft2 5

1  f//D2V 2/2g2. hL 5p1 5 p2 5 V1 5 V2 5 0

Pipe flow problems in which it is desired to determine the flowrate for a given set of

conditions 1Type II problems2 often require trial-and-error solution techniques. This is be-



cause it is necessary to know the value of the friction factor to carry out the calculations, but

the friction factor is a function of the unknown velocity 1flowrate2 in terms of the Reynolds

number. The solution procedure is indicated in Example 8.10.
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EXAMPLE
8.10

(TYPE II,
DETERMINE
FLOWRATE)

According to an appliance manufacturer, the 4-in.-diameter galvanized iron vent on a clothes

dryer is not to contain more than 20 ft of pipe and four elbows. Under these conditions

determine the air flowrate if the pressure within the dryer is 0.20 inches of water. Assume a

temperature of and standard pressure.

SOLUTION

Application of the energy equation 1Eq. 8.212 between the inside of the dryer, point 112, and

the exit of the vent pipe, point 122, gives

(1)

where for the entrance is assumed to be 0.5 and that for each elbow is assumed to be 1.5.

In addition we assume that and 1The change in elevation is often negligible

for gas flows.2 Also, and or

Thus, with 1see Table B.32 and 1the air velocity in the pipe2, Eq. 1

becomes

or

(2)

where V is in 

The value of f is dependent on Re, which is dependent on V, an unknown. However,

from Table B.3, and we obtain

or

(3)

where again V is in 

Also, since 1see Table 8.1 for the value of 2, we

know which particular curve of the Moody chart is pertinent to this flow. Thus, we have three

relationships 1Eqs. 2, 3, and the curve of Fig. 8.202 from which we can solve

for the three unknowns f, Re, and V. This is done easily by an iterative scheme as follows.

It is usually simplest to assume a value of f, calculate V from Eq. 2, calculate Re from

Eq. 3, and look up the appropriate value of f in the Moody chart for this value of Re. If the

e/D 5 0.0015

ee/D 5 10.0005 ft2/ 14/12 ft2 5 0.0015

ft/s.

 Re 5 1860 V

 Re 5
VD

n
5

1 4
12 ft2 V

 1.79 3 1024 ft2
/s

n 5 1.79 3 1024 ft2
/s

ft/s.

945 5 17.5 1 60f 2V 2

11.04 lb/ft
22

10.0709 lb/ft
32 5 c1 1 f 

120 ft2
1 4
12 ft2 1 0.5 1 411.52 d  V 2

2132.2 ft/s
22

V2 5 Vg 5 0.0709 lb/ft
3

p1 5 10.2 in.2 a 1 ft

12 in.
b 162.4 lb/ft

32 5 1.04 lb/ft
2

p1/gH2O
5 0.2 in.,p2 5 0,

z1 5 z2.V1 5 0

KL

p1

g
1

V 2
1

2g
1 z1 5

p2

g
1

V 2
2

2g
1 z2 1 f 

/

D
 
V 2

2g
1 a KL 

V 2

2g

100 °F

90°

Some pipe flow

problems require a

trial-and-error solu-

tion technique.
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assumed f and the new f do not agree, the assumed answer is not correct—we do not have

the solution to the three equations. Although values of either f, V, or Re could be assumed as

starting values, it is usually simplest to assume a value of f because the correct value often

lies on the relatively flat portion of the Moody chart for which f is quite insensitive to Re.

Thus, we assume approximately the large Re limit for the given relative

roughness. From Eq. 2 we obtain

and from Eq. 3

With this Re and Fig. 8.20 gives which is not equal to the assumed solution1although it is close!2. We try again, this time with the newly obtained value of

which gives and With these values, Fig. 8.20 gives

which agrees with the assumed value. Thus, the solution is or

(Ans)

Note that the need for the iteration scheme is because one of the equations,

is in graphical form 1the Moody chart2. If the dependence of f on Re and

is known in equation form, this graphical dependency is eliminated, and the solution

technique may be easier. Such is the case if the flow is laminar so that the friction factor is

simply For turbulent flow, we can use the Colebrook equation rather than the

Moody chart, although this will normally require an iterative scheme also because of the

complexity of the equation. As is shown below, such a formulation is ideally suited for an

iterative computer solution.

We keep Eqs. 2 and 3 and use the Colebrook equation 1Eq. 8.35, rather than the Moody

chart2 with to give

(4)

From Eq. 2 we have which can be combined with Eq. 3 to give

(5)

The combination of Eqs. 4 and 5 provides a single equation for the determination of f

(6)

A simple iterative solution of this equation gives in agreement with the above so-

lution which used the Moody chart. [This iterative solution using the Colebrook equation can

be done as follows: 1a2 assume a value of f, 1b2 calculate a new value by using the assumed

value in the right-hand side of Eq. 6, 1c2 use this new f to recalculate another value of f, and1d2 repeat until the successive values agree.]

Note that unlike the Alaskan pipeline example 1Example 8.92 in which we assumed mi-

nor losses are negligible, minor losses are of importance in this example because of the rel-

atively small length-to-diameter ratio: The ratio of minor to major

losses in this case is The elbows and entrance pro-

duce considerably more loss than the pipe itself.

KL /1 f//D2 5 6.5/ 30.029 1602 4 5 3.74.

//D 5 20/ 14/122 5 60.

f 5 0.029,

1

1f
5 22.0 log a4.05 3 1024

1 4.39 3 1025 B60 1
7.5

f
b

Re 5
57,200

17.5 1 60 f

V 5 3945/ 17.5 1 60 f 2 4 1/2,

1

1f
5 22.0 log ae/D

3.7
1

2.51

Re1f
b 5 22.0 log a4.05 3 1024

1
2.51

Re1f
b

e/D 5 0.0015

f 5 64/Re.

e/D

f 5 f1Re, e/D2,

Q 5 AV 5
p

4
 1 4

12 ft22110.1 ft/s2 5 0.881 ft3
/s

V 5 10.1 ft/s,f 5 0.029,

Re 5 18,800.V 5 10.1 ft/sf 5 0.029,

f 5 0.022

f 5 0.029,e/D,

Re 5 1860110.42 5 19,300

V 5 c 945

7.5 1 6010.0222 d
1/2

5 10.4 ft/s

f 5 0.022,
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EXAMPLE
8.11

(TYPE II,
DETERMINE
FLOWRATE)

The turbine shown in Fig. E8.11 extracts 50 hp from the water flowing through it. The 

1-ft-diameter, 300-ft-long pipe is assumed to have a friction factor of 0.02. Minor losses are

negligible. Determine the flowrate through the pipe and turbine.

SOLUTION

The energy equation 1Eq. 8.212 can be applied between the surface of the lake 1point 1122 and

the outlet of the pipe as

(1)

where and the fluid velocity in the pipe. The

head loss is given by

where V is in ftys. Also, the turbine head is

Thus, Eq. 1 can be written as

or

(2)

where V is in ftys. The velocity of the water in the pipe is found as the solution of Eq. 2.

Surprisingly, there are two real, positive roots: The third root

is negative and has no physical meaning for this flow. Thus, the two ac-

ceptable flowrates are

(Ans)

or

(Ans)Q 5
p

4
 11 ft22124.9 ft/s2 5 19.6 ft3

/s

Q 5
p

4
 D2V 5

p

4
 11 ft2216.58 ft/s2 5 5.17 ft3

/s

1V 5 231.4 ft/s2
V 5 6.58 ft/s or V 5 24.9 ft/s.

0.109V 3
2 90V 1 561 5 0

90 5
V 2

2132.22 1 0.0932V 2
1

561

V

hT 5
pa

gQ
5

pa

g1p/42D2V
5
150 hp2 3 1550 ft # lb/s2/hp 4
162.4 lb/ft

32 3 1p/42 11 ft22V 4 5
561

V
 ft

hL 5 f 
/

D
 
V 2

2g
5 0.02 

1300 ft2
11 ft2  

V 2

2132.2 ft/s
22 5 0.0932V 2 ft

V2 5 V,p1 5 V1 5 p2 5 z2 5 0, z1 5 90 ft,

p1

g
1

V 1
2

2g
1 z1 5

p2

g
1

V 2
2

2g
1 z2 1 hL 1 hT

(2)

Free jet
Turbine

300-ft-long,

1-ft-diameter pipe

(1)

f = 0.02
z2 = 0

z1 = 90 ft
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In pipe flow problems for which the diameter is the unknown 1Type III2, an iterative tech-

nique is required. This is, again, because the friction factor is a function of the diameter—

through both the Reynolds number and the relative roughness. Thus, neither 

are known unless D is known. Examples 8.12 and 8.13 illustrate this.4rQ/pmD nor e/D

Re 5 rVD/m 5
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Either of these two flowrates gives the same power, The reason for two

possible solutions can be seen from the following. With the low flowrate 

we obtain the head loss and turbine head as and Because of the

relatively low velocity there is a relatively small head loss and, therefore, a large head available

for the turbine. With the large flowrate we find and

The high-speed flow in the pipe produces a relatively large loss due to friction,

leaving a relatively small head for the turbine. However, in either case the product of the tur-

bine head times the flowrate is the same. That is, the power extracted is iden-

tical for each case. Although either flowrate will allow the extraction of 50 hp from the wa-

ter, the details of the design of the turbine itself will depend strongly on which flowrate is

to be used. Such information can be found in Chapter 12 and various references about tur-

bomachines 1Refs. 14, 19, 202.
If the friction factor were not given, the solution to the problem would be much more

lengthy. A trial-and-error solution similar to that in Example 8.10 would be required along

with the solution of a cubic equation.

1pa 5 gQhT2
hT 5 22.5 ft.

hL 5 57.8 ft1Q 5 19.6 ft3
/s2,

hT 5 85.3 ft.hL 5 4.04 ft

1Q 5 5.17 ft3
/s2,

pa 5 gQhT.

EXAMPLE
8.12

(TYPE III
WITHOUT

MINOR
LOSSES,

DETERMINE
DIAMETER)

Air at standard temperature and pressure flows through a horizontal, galvanized iron pipe

at a rate of Determine the minimum pipe diameter if the pressure

drop is to be no more than 0.50 psi per 100 ft of pipe.

SOLUTION

We assume the flow to be incompressible with and 

Note that if the pipe were too long, the pressure drop from one end to the

other, would not be small relative to the pressure at the beginning, and compress-

ible flow considerations would be required. For example, a pipe length of 200 ft gives

which is probably

small enough to justify the incompressible assumption.

With and the energy equation 1Eq. 8.212 becomes

(1)

where or

where D is in feet. Thus, with and Eq. 1 / 5 100 ft,p1 2 p2 5 10.5 lb/in.22 1144 in.2/ft
22

V 5
2.55

D2

V 5 Q/A 5 4Q/ 1pD22 5 412.0 ft3
/s2/pD2,

p1 5 p2 1 f 
/

D
 
rV 2

2

V1 5 V2z1 5 z2

3 10.50 psi2/ 1100 ft2 4 1200 ft2/14.7 psi 5 0.068 5 6.8%,1 p1 2 p22/p1 5

p1 2 p2,

1027 lb # s/ft
2.

m 5 3.74 3r 5 0.00238 slugs/ft
3

2.0 ft3
/s.1e 5 0.0005 ft2



In the previous example we only had to consider major losses. In some instances the

inclusion of major and minor losses can cause a slightly more lengthy solution procedure,

even though the governing equations are essentially the same. This is illustrated in Example

8.13.
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becomes

or

(2)

where D is in feet. Also 

or

(3)

and

(4)

Thus, we have four equations 1Eqs. 2, 3, 4, and either the Moody chart or the Colebrook

equation2 and four unknowns 1f, D, and Re2 from which the solution can be obtained

by trial-and-error methods.

If we use the Moody chart, it is probably easiest to assume a value of f, use Eqs. 2, 3,

and 4 to calculate D, Re, and and then compare the assumed f with that from the Moody

chart. If they do not agree, try again. Thus, we assume a typical value, and obtain

which gives and 

From the Moody chart we obtain for these values

of and Re. Since this is not the same as our assumed value of f, we try again. With

we obtain and which in turn give

in agreement with the assumed value. Thus, the diameter of the pipe should be

(Ans)

If we use the Colebrook equation 1Eq. 8.352 with 

and we obtain

or

An iterative scheme 1see solution of Eq. 6 in Example 8.102 to solve this equation for f gives

and hence in agreement with the Moody chart method.D 5 0.196 ft,f 5 0.027,

1

1f
5 22.0 log a3.35 3 1024

f 1/5
1

6.26 3 1025

f 3/10
b

1

1f
5 22.0 log ae/D

3.7
1

2.51

Re1f
b

Re 5 1.62 3 104
/0.404f 1/5 5 4.01 3 104

/f 
1/5,0.00124/f 

1/5

e/D 5 0.0005/0.404f 1/5 5

D 5 0.196 ft

f 5 0.027,

Re 5 8.27 3 104,e/D 5 0.0026,D 5 0.196 ft,f 5 0.027,

e/D

f 5 0.0271.62 3 104
/0.185 5 8.76 3 104.

Re 5e/D 5 0.0005/0.185 5 0.0027D 5 0.40410.0221/5 5 0.185 ft,

f 5 0.02,

e/D,

e/D,

e

D
5

0.0005

D

Re 5
1.62 3 104

D

1027 lb # s/ft
22, Re 5 rVD/m 5 10.00238 slugs/ft

32 3 12.55/D
22 ft/s 4D/ 13.74 3

D 5 0.404 f 1/5

 5 f 
1100 ft2

D
 10.00238 slugs/ft

32 1
2

 a2.55

D2
 
ft

s
b2

 p1 2 p2 5 10.52 11442 lb/ft
2
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EXAMPLE
8.13

(TYPE III
WITH

MINOR
LOSSES,

DETERMINE
DIAMETER) (2)

(1)

Elevation z2 = 0 m

Elevation z1 = 2 m

Total length = , = 20 m

D

B

A

■ F I G U R E  E 8 . 1 3

Water at 1 see Table B.22 is to flow from reservoir A to reser-

voir B through a cast-iron pipe of length 20 m at a rate of 

as shown in Fig. E8.13. The system contains a sharp-edged entrance and six regular threaded

elbows. Determine the pipe diameter needed.90°

Q 5 0.0020 m3
/s1e 5 0.26 mm2n 5 1.307 3 1026 m2

/s,10 °C

SOLUTION

The energy equation 1Eq. 8.212 can be applied between two points on the surfaces of the

reservoirs as follows:

or

(1)

where or

(2)

is the velocity within the pipe. 1Note that the units on V and D are and m, respectively.2
The loss coefficients are obtained from Table 8.2 and Figs. 8.22 and 8.25 as 

and Thus, Eq. 1 can be written as

or, when combined with Eq. 2 to eliminate V,

(32
To determine D we must know f, which is a function of Re and where

(4)

and

(5)

where D is in meters. Again, we have four equations 1Eqs. 3, 4, 5, and the Moody chart or

the Colebrook equation2 for the four unknowns D, f, Re, and e/D.

e

D
5

2.6 3 1024

D

Re 5
VD

n
5
3 12.55 3 10232/D2 4D

1.307 3 1026
5

1.95 3 103

D

e/D,

6.03 3 106D5
2 10.5D 2 20f 5 0

2 m 5
V 2

219.81 m/s
22  e

20

D
 f 1 3611.52 1 0.5 1 1 4 f

KLexit
5 1.KLelbow

5 1.5,

KLent
5 0.5,

m/s

V 5
2.55 3 1023

D2

V 5 Q/A 5 4Q/pD2
5 412 3 1023 m3

/s2/pD2,

z1 5
V 2

2g
 af /

D
1 a

 

KLb

p1

g
1

V 2
1

2g
1 z1 5

p2

g
1

V 2
2

2g
1 z2 1 hL

1p1 5 p2 5 V1 5 V2 5 z2 5 02



8.5.2 Multiple Pipe Systems

In many pipe systems there is more than one pipe involved. The complex system of tubes in

our lungs 1beginning with the relatively large-diameter trachea and ending in minute bronchi

after numerous branchings2 and the maze of pipes in a city’s water distribution system are

typical of such systems. The governing mechanisms for the flow in multiple pipe systems

are the same as for the single pipe systems discussed in this chapter. However, because of

the numerous unknowns involved, additional complexities may arise in solving for the flow

in multiple pipe systems. Some of these complexities are discussed in this section.

The simplest multiple pipe systems can be classified into series or parallel flows, as

are shown in Fig. 8.35. The nomenclature is similar to that used in electrical circuits. Indeed,

an analogy between fluid and electrical circuits is often made as follows. In a simple elec-

trical circuit, there is a balance between the voltage 1e2, current 1i2, and resistance 1R2 as given

by Ohm’s law: In a fluid circuit there is a balance between the pressure drop 

the flowrate or velocity 1Q or V 2, and the flow resistance as given in terms of the friction fac-

tor and minor loss coefficients . For a simple flow it fol-

lows that where a measure of the resistance to the flow, is proportional to f.R
~
,¢p 5 Q2R

~
,

3¢p 5 f 1//D2 1rV 2
/22 4 ,1 f and KL2

1¢p2,e 5 iR.
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Consider the solution by using the Moody chart. Although it is often easiest to assume

a value of f and make calculations to determine if the assumed value is the correct one, with

the inclusion of minor losses this may not be the simplest method. For example, if we as-

sume and calculate D from Eq. 3, we would have to solve a fifth-order equation.

With only major losses 1see Example 8.122, the term proportional to D in Eq. 3 is absent,

and it is easy to solve for D if f is given. With both major and minor losses included 1repre-

sented by the second and third terms in Eq. 32, this solution for D 1given f 2 would require a

trial-and-error or iterative technique.

Thus, for this type of problem it is perhaps easier to assume a value of D, calculate

the corresponding f from Eq. 3, and with the values of Re and determined from Eqs. 4

and 5, look up the value of f in the Moody chart 1or the Colebrook equation2. The solution

is obtained when the two values of f are in agreement. For example, assume so

that Eq. 3 gives and Eqs. 4 and 5 give and 

With these values of Reynolds number and relative roughness, the Moody chart gives

which does not coincide with that obtained from Eq. 3 Thus,

A few more rounds of calculation will reveal that the solution is given by 

with 

(Ans)

It is interesting to attempt to solve this example if all losses are neglected so that Eq. 1

becomes Clearly from Fig. E8.13, Obviously something is wrong. A fluid

cannot flow from one elevation, beginning with zero pressure and velocity, and end up at a

lower elevation with zero pressure and velocity unless energy is removed 1i.e., a head loss or

a turbine2 somewhere between the two locations. If the pipe is short 1negligible friction2 and

the minor losses are negligible, there is still the kinetic energy of the fluid as it leaves the pipe

and enters the reservoir. After the fluid meanders around in the reservoir for some time, this

kinetic energy is lost and the fluid is stationary. No matter how small the viscosity is, the exit

loss cannot be neglected. The same result can be seen if the energy equation is written from

the free surface of the upstream tank to the exit plane of the pipe, at which point the kinetic

energy is still available to the fluid. In either case the energy equation becomes 

in agreement with the inviscid results of Chapter 3 1the Bernoulli equation2. z1 5 V 2
/2g

z1 5 2 m.z1 5 0.

D < 45 mm

f 5 0.032.

D < 0.045 m

D Þ 0.05 m.

1 f 5 0.06802.f 5 0.033,

e/D 5 5.2 3 1023.Re 5 3.90 3 104f 5 0.0680

D 5 0.05 m,

e/D

f 5 0.02

An analogy be-

tween pipe systems

and electrical cir-

cuits can be made.



The main differences between the solution methods used to solve electrical circuit prob-

lems and those for fluid circuit problems lie in the fact that Ohm’s law is a linear equation

1doubling the voltage doubles the current2, while the fluid equations are generally nonlinear

1doubling the pressure drop does not double the flowrate unless the flow is laminar2. Thus,

although some of the standard electrical engineering methods can be carried over to help

solve fluid mechanics problems, others cannot.

One of the simplest multiple pipe systems is that containing pipes in series, as is shown

in Fig. 8.35a. Every fluid particle that passes through the system passes through each of the

pipes. Thus, the flowrate 1but not the velocity2 is the same in each pipe, and the head loss

from point A to point B is the sum of the head losses in each of the pipes. The governing

equations can be written as follows:

and

where the subscripts refer to each of the pipes. In general, the friction factors will be differ-

ent for each pipe because the Reynolds numbers and the relative rough-

nesses will be different. If the flowrate is given, it is a straightforward calculation to

determine the head loss or pressure drop 1Type I problem2. If the pressure drop is given ad

the flowerate is to be calculated 1Type II problem2, an iteration scheme is needed. In this sit-

uation none of the friction factors, are known, so the calculations may involve more trial-

and-error attempts than for corresponding single pipe systems. The same is true for prob-

lems in which the pipe diameter 1or diameters2 is to be determined 1Type III problems2.
Another common multiple pipe system contains pipes in parallel, as is shown in

Fig. 8.35b. In this system a fluid particle traveling from A to B may take any of the paths

available, with the total flowrate equal to the sum of the flowrates in each pipe. However, by

writing the energy equation between points A and B it is found that the head loss experi-

enced by any fluid particle traveling between these locations is the same, independent of the

path taken. Thus, the governing equations for parallel pipes are

Q 5 Q1 1 Q2 1 Q3

fi,

1ei/Di2
1Rei 5 rViDi/m2

hLA – B
5 hL1

1 hL2
1 hL3

Q1 5 Q2 5 Q3
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Q A V1
(1) (2) (3) 

V2
D1 D2 D3 B 

Q
V3

(a)

V1

V2

V3

D3

D2

D1

(1)

(2)

(3)

Q1

Q2

Q3

B

A

(b)

■ F I G U R E  8 . 3 5 Series (a) and parallel (b) pipe systems.

Series and parallel

pipe systems are of-

ten encountered.



and

Again, the method of solution of these equations depends on what information is given and

what is to be calculated.

Another type of multiple pipe system called a loop is shown in Fig. 8.36. In this case

the flowrate through pipe 112 equals the sum of the flowrates through pipes 122 and 132, or

As can be seen by writing the energy equation between the surfaces of each

reservoir, the head loss for pipe 122 must equal that for pipe 132, even though the pipe sizes

and flowrates may be different for each. That is,

for a fluid particle traveling through pipes 112 and 122, while

for fluid that travels through pipes 112 and 132. These can be combined to give This

is a statement of the fact that fluid particles that travel through pipe 122 and particles that

travel through pipe 132 all originate from common conditions at the junction 1or node, N 2 of

the pipes and all end up at the same final conditions.

The flow in a relatively simple looking multiple pipe system may be more complex

than it appears initially. The branching system termed the three-reservoir problem shown in

Fig. 8.37 is such a system. Three reservoirs at known elevations are connected together with

three pipes of known properties 1lengths, diameters, and roughnesses2. The problem is to de-

termine the flowrates into or out of the reservoirs. If valve 112 were closed, the fluid would

flow from reservoir B to C, and the flowrate could be easily calculated. Similar calculations

could be carried out if valves 122 or 132 were closed with the others open.

hL2
5 hL3

.

pA

g
1

V 2
A

2g
1 zA 5

pB

g
1

V 2
B

2g
1 zB 1 hL1

1 hL3

pA

g
1

V 2
A

2g
1 zA 5

pB

g
1

V 2
B

2g
1 zB 1 hL1

1 hL2

Q1 5 Q2 1 Q3.

hL1
5 hL2

5 hL3
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B

A

(2)

(3)

(1)

Node, N

Q3

Q2

Q1

D1

D2

D3

V1

V2

V3

A

B

C

(3)

(2)(1)

D1, ,1

D2, ,2

D3, ,3

■ F I G U R E  8 . 3 6 Multiple pipe loop system.

■ F I G U R E  8 . 3 7 A three-reservoir system.

The three-reservoir

problem can be

quite complex.
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EXAMPLE
8.14

Three reservoirs are connected by three pipes as are shown in Fig. E8.14. For simplicity we

assume that the diameter of each pipe is 1 ft, the friction factor for each is 0.02, and because

of the large length-to-diameter ratio, minor losses are negligible. Determine the flowrate into

or out of each reservoir.

With all valves open, however, it is not necessarily obvious which direction the fluid

flows. For the conditions indicated in Fig. 8.37, it is clear that fluid flows from reservoir A

because the other two reservoir levels are lower. Whether the fluid flows into or out of reser-

voir B depends on the elevation of reservoirs B and C and the properties 1length, diameter,

roughness2 of the three pipes. In general, the flow direction is not obvious, and the solution

process must include the determination of this direction. This is illustrated in Example 8.14.

SOLUTION

It is not obvious which direction the fluid flows in pipe 122. However, we assume that it flows

out of reservoir B, write the governing equations for this case, and check our assumption.

The continuity equation requires that which, since the diameters are the same

for each pipe, becomes simply

(1)

The energy equation for the fluid that flows from A to C in pipes 112 and 132 can be written

as

By using the fact that this becomes

For the given conditions of this problem we obtain

or

(2)322 5 V 2
1 1 0.4V 2

3

100 ft 5
0.02

2132.2 ft/s
22  

1

11 ft2  3 11000 ft2V 2
1 1 1400 ft2V 2

3 4

zA 5 f1 
/1

D1

 
V 2

1

2g
1 f3 

/3

D3

 
V 2

3

2g

pA 5 pC 5 VA 5 VC 5 zC 5 0,

pA

g
1

V 2
A

2g
1 zA 5

pC

g
1

V 2
C

2g
1 zC 1 f1 

/1

D1

 
V 2

1

2g
1 f3 

/3

D3

 
V 2

3

2g

V1 1 V2 5 V3

Q1 1 Q2 5 Q3,

A
Elevation = 100 ft

Elevation =

20 ft

Elevation =

0 ft

(1)

(2)

(3)

D1 = 1 ft

,1 = 1000 ft

D2 = 1 ft

,2 = 500 ft

D3 = 1 ft

,3 = 400 ft
C

B

■ F I G U R E  E 8 . 1 4

For some pipe sys-

tems, the direction

of flow is not

known a priori.
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where and are in ftys. Similarly the energy equation for fluid flowing from B and C is

or

For the given conditions this can be written as

(3)

Equations 1, 2, and 3 1in terms of the three unknowns and 2 are the governing equa-

tions for this flow, provided the fluid flows from reservoir B. It turns out, however, that there

is no solution for these equations with positive, real values of the velocities. Although these

equations do not appear to be complicated, there is no simple way to solve them directly.

Thus, a trial-and-error solution is suggested. This can be accomplished as follows. Assume

a value of calculate from Eq. 2, and then from Eq. 3. It is found that the re-

sulting trio does not satisfy Eq. 1 for any value of assumed. There is no solu-

tion to Eqs. 1, 2, and 3 with real, positive values of and Thus, our original as-

sumption of flow out of reservoir B must be incorrect.

To obtain the solution, assume the fluid flows into reservoirs B and C and out of A.

For this case the continuity equation becomes

or

(4)

Application of the energy equation between points A and B and A and C gives

and

which, with the given data, become

(5)

and

(6)

Equations 4, 5, and 6 can be solved as follows. By substracting Eq. 5 from 6 we obtain

Thus, Eq. 5 can be written as

or

(7)

which, upon squaring both sides, can be written as

V 4
2 2 460 V 2

2 1 3748 5 0

2V22160 1 1.25V 2
2 5 98 2 2.75V 2

2

258 5 1V2 1 V322 1 0.5V 2
2 5 1V2 1 2160 1 1.25V 2

222 1 0.5V 2
2

V3 5 2160 1 1.25V 2
2

322 5 V 2
1 1 0.4 V 2

3

258 5 V 2
1 1 0.5 V 2

2

zA 5 zC 1 f1 
/1

D1

 
V 2

1

2g
1 f3 

/3

D3

 
V 3

2

2g

zA 5 zB 1 f1 
/1

D1

 
V 2

1

2g
1 f2 

/2

D2

 
V 2

2

2g

V1 5 V2 1 V3

Q1 5 Q2 1 Q3

V3.V1, V2,

V1V1, V2, V3

V2V3V1 7 0,

V3V1, V2,

64.4 5 0.5V 2
2 1 0.4V 2

3

zB 5 f2 
/2

D2

 
V 2

2

2g
1 f3 

/3

D3

 
V 2

3

2g

pB

g
1

V 2
B

2g
1 zB 5

pC

g
1

V 2
C

2g
1 zC 1 f2 

/2

D2

 
V 2

2

2g
1 f3 

/3

D3

 
V 2

3

2g

V3V1
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By using the quadratic formula we can solve for to obtain either 

Thus, either The value is not a root of the

original equations. It is an extra root introduced by squaring Eq. 7, which with 

becomes Thus, and from Eq. 5, The corre-

sponding flowrates are

(Ans)

(Ans)

and

(Ans)

Note the slight differences in the governing equations depending on the direction of the flow

in pipe 122—compare Eqs. 1, 2, and 3 with Eqs. 4, 5, and 6.

If the friction factors were not given, a trial-and-error procedure similar to that needed

for Type II problems 1see Section 8.5.12 would be required.

Q3 5 Q1 2 Q2 5 112.5 2 2.262 ft3
/s 5 10.2 ft3

/s into C

 5 2.26 ft3
/s into B

 Q2 5 A2V2 5
p

4
 D2

2V2 5
p

4
 11 ft22 12.88 ft/s2

 5 12.5 ft3
/s from A

 Q1 5 A1V1 5
p

4
 D2

1V1 5
p

4
 11 ft22 115.9 ft/s2

V1 5 15.9 ft/s.V2 5 2.88 ft/s“1140 5 21140.”

V2 5 21.3

V2 5 21.3 ft/sV2 5 21.3 ft/s or V2 5 2.88 ft/s.

V 2
2 5 452 or V 2

2 5 8.30.V 2
2

The ultimate in multiple pipe systems is a network of pipes such as that shown in

Fig. 8.38. Networks like these often occur in city water distribution systems and other sys-

tems that may have multiple “inlets” and “outlets.” The direction of flow in the various pipes

is by no means obvious—in fact, it may vary in time, depending on how the system is used

from time to time.

The solution for pipe network problems is often carried out by use of node and loop

equations similar in many ways to that done in electrical circuits. For example, the continu-

ity equation requires that for each node 1the junction of two or more pipes2 the net flowrate

is zero. What flows into a node must flow out at the same rate. In addition, the net pressure

difference completely around a loop 1starting at one location in a pipe and returning to that

location2 must be zero. By combining these ideas with the usual head loss and pipe flow

equations, the flow throughout the entire network can be obtained. Of course, trial-and-error

solutions are usually required because the direction of flow and the friction factors may not

be known. Such a solution procedure using matrix techniques is ideally suited for computer

use 1Refs. 21, 222.

■ F I G U R E  8 . 3 8 A general pipe
network.

Pipe network prob-

lems can be solved

using node and

loop concepts.



It is often necessary to determine experimentally the flowrate in a pipe. In Chapter 3 we in-

troduced various types of flow-measuring devices 1Venturi meter, nozzle meter, orifice me-

ter, etc.2 and discussed their operation under the assumption that viscous effects were not im-

portant. In this section we will indicate how to account for the ever-present viscous effects

in these flow meters. We will also indicate other types of commonly used flow meters.

8.6.1 Pipe Flowrate Meters

Three of the most common devices used to measure the instantaneous flowrate in pipes are

the orifice meter, the nozzle meter, and the Venturi meter. As was discussed in Section 3.6.3,

each of these meters operates on the principle that a decrease in flow area in a pipe causes

an increase in velocity that is accompanied by a decrease in pressure. Correlation of the pres-

sure difference with the velocity provides a means of measuring the flowrate. In the absence

of viscous effects and under the assumption of a horizontal pipe, application of the Bernoulli

equation 1Eq. 3.72 between points 112 and 122 shown in Fig. 8.39 gave

(8.37)

where Based on the results of the previous sections of this chapter, we antici-

pate that there is a head loss between 112 and 122 so that the governing equations become

and

The ideal situation has and results in Eq. 8.37. The difficulty in including the head

loss is that there is no accurate expression for it. The net result is that empirical coefficients

are used in the flowrate equations to account for the complex real world effects brought on

by the nonzero viscosity. The coefficients are discussed below.

A typical orifice meter is constructed by inserting between two flanges of a pipe a flat

plate with a hole, as shown in Fig. 8.40. The pressure at point 122 within the vena contracta

is less than that at point 112. Nonideal effects occur for two reasons. First, the vena contracta

area, is less than the area of the hole, by an unknown amount. Thus,

where is the contraction coefficient Second, the swirling flow and turbulent

motion near the orifice plate introduce a head loss that cannot be calculated theoretically.

Thus, an orifice discharge coefficient, is used to take these effects into account. That is,

(8.38)

where is the area of the hole in the orifice plate. The value of is a function

of and the Reynolds number where Typical values of CoV 5 Q/A1.Re 5 rVD/m,b 5 d/D

CoAo 5 pd 2
/4

Q 5 CoQideal 5 Co Ao B
21p1 2 p22
r11 2 b42

Co,

1Cc 6 12.Cc

A2 5 CcAo,Ao,A2,

hL 5 0

p1

g
1

V 2
1

2g
5

p2

g
1

V 2
2

2g
1 hL

Q 5 A1V1 5 A2V2

b 5 D2/D1.

Qideal 5 A2V2 5 A2 B
21 p1 2 p22
r11 2 b42
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are given in Fig. 8.41. Note that the value of depends on the specific construction of the

orifice meter 1i.e., the placement of the pressure taps, whether the orifice plate edge is square

or beveled, etc.2. Very precise conditions governing the construction of standard orifice me-

ters have been established to provide the greatest accuracy possible 1Refs. 23, 242.
Another type of pipe flow meter that is based on the same principles used in the ori-

fice meter is the nozzle meter, three variations of which are shown in Fig. 8.42. This device

uses a contoured nozzle 1typically placed between flanges of pipe sections2 rather than a sim-

ple 1and less expensive2 plate with a hole as in an orifice meter. The resulting flow pattern

for the nozzle meter is closer to ideal than the orifice meter flow. There is only a slight vena

contracta and the secondary flow separation is less severe, but there still are viscous effects.

These are accounted for by use of the nozzle discharge coefficient, where

(8.39)

with As with the orifice meter, the value of is a function of the diameter

ratio, and the Reynolds number, Typical values obtained from ex-

periments are shown in Fig. 8.43. Again, precise values of depend on the specific details

of the nozzle design. Accepted standards have been adopted 1Ref. 242. Note that 

the nozzle meter is more efficient 1less energy dissipated2 than the orifice meter.

Cn 7 Co;

Cn

Re 5 rVD/m.b 5 d/D,

CnAn 5 pd 2
/4.

Q 5 CnQideal 5 CnAn B
21 p1 2 p22
r11 2 b42

Cn,

Co
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The most precise and most expensive of the three obstruction-type flow meters is the

Venturi meter shown in Fig. 8.44 (G. B. Venturi (1746–1822)). Although the operating prin-

ciple for this device is the same as for the orifice or nozzle meters, the geometry of the Ven-

turi meter is designed to reduce head losses to a minimum. This is accomplished by provid-

ing a relatively streamlined contraction 1which eliminates separation ahead of the throat2 and

a very gradual expansion downstream of the throat 1which eliminates separation in this de-

celerating portion of the device2. Most of the head loss that occurs in a well-designed Ven-

turi meter is due to friction losses along the walls rather than losses associated with sepa-

rated flows and the inefficient mixing motion that accompanies such flow.

Thus, the flowrate through a Venturi meter is given by

where is the throat area. The range of values of the Venturi discharge coef-

ficient, is given in Fig. 8.45. The throat-to-pipe diameter ratio the Reynolds 1b 5 d/D2,
C
v
,AT 5 pd 2

/4

Q 5 C
v
Qideal 5 C

v
AT B

21p1 2 p22
r11 2 b42
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number, and the shape of the converging and diverging sections of the meter are among the

parameters that affect the value of 

Again, the precise values of and depend on the specific geometry of the de-

vices used. Considerable information concerning the design, use, and installation of standard

flow meters can be found in various books 1Refs. 23, 24, 25, 26, 312.
C
v

Cn, Co,

C
v
.
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EXAMPLE
8.15

Ethyl alcohol flows through a pipe of diameter in a refinery. The pressure drop

across the nozzle meter used to measure the flowrate is to be when the flowrate

is Determine the diameter, d, of the nozzle.

SOLUTION

From Table 1.6 the properties of ethyl alcohol are and 

Thus,

From Eq. 8.39 the flowrate through the nozzle is

or

(1)

where d is in meters. Note that Equation 1 and Fig. 8.43 represent two

equations for the two unknowns d and that must be solved by trial and error.

As a first approximation we assume that the flow is ideal, or so that Eq. 1

becomes

(2)

In addition, for many cases so that an approximate value of d can be obtained

from Eq. 2 as

d 5 11.20 3 102321/2 5 0.0346 m

1 2 b4 < 1,

d 5 11.20 3 1023 21 2 b421/2

Cn 5 1.0,

Cn

b 5 d/D 5 d/0.06.

1.20 3 1023
5

Cnd
2

21 2 b4

Q 5 0.003 m3
/s 5 Cn 

p

4
 d 2 B

214 3 103 N/m
22

789 kg/m
311 2 b42

Re 5
rVD

m
5

4rQ

pDm
5

41789 kg/m
32 10.003 m3

/s2
p10.06 m2 11.19 3 1023 N # s/m

22 5 42,200

1023 N # s/m
2.

m 5 1.19 3r 5 789 kg/m
3

Q 5 0.003 m3
/s.

¢p 5 4.0 kPa

D 5 60 mm

■ F I G U R E  8 . 4 5 Venturi
meter discharge coefficient 
(Ref. 23).

Precise standards

exist for the design

of accurate flow

meters.



Numerous other devices are used to measure the flowrate in pipes. Many of these de-

vices use principles other than the high-speed/low-pressure concept of the orifice, nozzle,

and Venturi meters.

A quite common, accurate, and relatively inexpensive flow meter is the rotameter, or

variable area meter as is shown in Fig. 8.46. In this device a float is contained within a ta-

pered, transparent metering tube that is attached vertically to the pipeline. As fluid flows
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Q

Q
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■ F I G U R E  8 . 4 6
Rotameter-type flow meter.
(Courtesy of Fischer & 
Porter Co.).

Hence, with an initial guess of or we ob-

tain from Fig. 8.43 1using 2 a value of Clearly this does not agree

with our initial assumption of Thus, we do not have the solution to Eq. 1 and Fig.

8.43. Next we assume and and solve for d from Eq. 1 to obtain

or With the new value of and we

obtain 1from Fig. 8.432 in agreement with the assumed value. Thus,

(Ans)

If numerous cases are to be investigated, it may be much easier to replace the discharge

coefficient data of Fig. 8.43 by the equivalent equation, and use a computer

to iterate for the answer. Such equations are available in the literature 1Ref. 242. This would

be similar to using the Colebrook equation rather than the Moody chart for pipe friction

problems.

Cn 5 f1b, Re2,
d 5 34.1 mm

Cn < 0.972

Re 5 42,200,b 5 0.0341/0.060 5 0.568d 5 0.0341 m.

d 5 a1.20 3 1023

0.972
 21 2 0.5774b1/2

Cn 5 0.972b 5 0.577

Cn 5 1.0.

Cn 5 0.972.Re 5 42,200

b 5 d/D 5 0.0346/0.06 5 0.577,d 5 0.0346 m

There are many

types of flow 

meters.

V8.6 Rotameter



through the meter 1entering at the bottom2, the float will rise within the tapered tube and

reach an equilibrium height that is a function of the flowrate. This height corresponds to an

equilibrium condition for which the net force on the float 1buoyancy, float weight, fluid drag2
is zero. A calibration scale in the tube provides the relationship between the float position

and the flowrate.

Another useful pipe flowrate meter is a turbine meter as is shown in Fig. 8.47. A small,

freely rotating propeller or turbine within the turbine meter rotates with an angular velocity

that is a function of 1nearly proportional to2 the average fluid velocity in the pipe. This an-

gular velocity is picked up magnetically and calibrated to provide a very accurate measure

of the flowrate through the meter.

8.6.2 Volume Flow Meters

In many instances it is necessary to know the amount 1volume or mass2 of fluid that has

passed through a pipe during a given time period, rather than the instantaneous flowrate. For

example, we are interested in how many gallons of gasoline are pumped into the tank in our

car rather than the rate at which it flows into the tank. There are numerous quantity-measuring

devices that provide such information.
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The nutating disk meter shown in Fig. 8.48 is widely used to measure the net amount

of water used in domestic and commercial water systems as well as the amount of gasoline

delivered to your gas tank. This meter contains only one essential moving part and is rela-

tively inexpensive and accurate. Its operating principle is very simple, but it may be difficult

to understand its operation without actually inspecting the device firsthand. The device con-

sists of a metering chamber with spherical sides and conical top and bottom. A disk passes

through a central sphere and divides the chamber into two portions. The disk is constrained

to be at an angle not normal to the axis of symmetry of the chamber. A radial plate 1di-

aphragm2 divides the chamber so that the entering fluid causes the disk to wobble 1nutate2,
with fluid flowing alternately above or below the disk. The fluid exits the chamber after the

disk has completed one wobble, which corresponds to a specific volume of fluid passing

through the chamber. During each wobble of the disk, the pin attached to the tip of the cen-

ter sphere, normal to the disk, completes one circle. The volume of fluid that has passed

through the meter can be obtained by counting the number of revolutions completed.

Another quantity-measuring device that is used for gas flow measurements is the bel-

lows meter as shown in Fig. 8.49. It contains a set of bellows that alternately fill and empty

as a result of the pressure of the gas and the motion of a set of inlet and outlet valves. The
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common household natural gas meter is of this type. For each cycle [1a2 through 1d 2] a known

volume of gas passes through the meter.

The nutating disk meter 1water meter2 is an example of extreme simplicity—one clev-

erly designed moving part. The bellows meter 1gas meter2, on the other hand, is relatively

complex—it contains many moving, interconnected parts. This difference is dictated by the

application involved. One measures a common, safe-to-handle, relatively high-pressure liq-

uid, whereas the other measures a relatively dangerous, low-pressure gas. Each device does

its intended job very well.

There are numerous devices used to measure fluid flow, only a few of which have been

discussed here. The reader is encouraged to review the literature to gain familiarity with other

useful, clever devices 1Refs. 25, 262.
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In the E-book, click here to go to a set of review problems com-
plete with answers and detailed solutions.

Review Problems

Problems

Note: Unless otherwise indicated use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an 1*2 are intended to be solved with the
aid of a programmable calculator or a computer. Problems des-
ignated with a 1 2 are “open-ended” problems and require crit-
ical thinking in that to work them one must make various as-
sumptions and provide the necessary data. There is not a unique
answer to these problems.

In the E-book, answers to the even-numbered problems can
be obtained by clicking on the problem number. In the E-book,
access to the videos that accompany problems can be obtained
by clicking on the “video” segment (i.e., Video 8.3) of the prob-
lem statement. The lab-type problems can be accessed by click-
ing on the “click here” segment of the problem statement.

8.1 Rainwater runoff from a parking lot flows through a 3-
ft-diameter pipe, completely filling it. Whether flow in a pipe
is laminar or turbulent depends on the value of the Reynolds
number. (See Video V8.1.) Would you expect the flow to be
laminar or turbulent? Support your answer with appropriate cal-
culations.

† 8.2 Under normal circumstances is the air flow through
your trachea 1your windpipe2 laminar or turbulent? List all as-
sumptions and show all calculations.

8.3 The flow of water in a 3-mm-diameter pipe is to remain
laminar. Plot a graph of the maximum flowrate allowed as a
function of temperature for 

8.4 Air at flows at standard atmospheric pressure in
a pipe at a rate of 0.08 lbys. Determine the maximum diame-
ter allowed if the flow is to be turbulent.

8.5 Carbon dioxide at and a pressure of 550 kPa 1abs2
flows in a pipe at a rate of 0.04 Nys. Determine the maximum
diameter allowed if the flow is to be turbulent.

8.6 It takes 20 seconds for a 0.5 cubic inch of water to flow
through the 0.046-in. diameter tube of the capillary tube vis-

20 °C

100 °F

0 6 T 6 100 °C.

†

cometer shown in Video V1.3 and Fig. P8.6. Is the flow in the
tube laminar or turbulent? Explain.

0.046 in.

■ F I G U R E  P 8 . 6

8.7 To cool a given room it is necessary to supply 
of air through an 8-in.-diameter pipe. Approximately how long
is the entrance length in this pipe?

8.8 The wall shear stress in a fully developed flow portion
of a 1.2-in.-diameter pipe carrying water is Deter-
mine the pressure gradient, where x is in the flow di-
rection, if the pipe is (a) horizontal, (b) vertical with flow up,
or (c) vertical with flow down.

8.9 The pressure drop needed to force water through a hor-
izontal l-in.-diameter pipe is 0.60 psi for every 12-ft length of
pipe. Determine the shear stress on the pipe wall. Determine

0p/0x,
1.85 lb/ft

2.

5 ft3
/s
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the shear stress at distances 0.3 and 0.5 in. away from the pipe
wall.

8.10 Repeat Problem 8.9 if the pipe is on a hill. Is the
flow up or down the hill? Explain.

8.11 Water flows in a constant diameter pipe with the fol-
lowing conditions measured: At section 1a2 and

at section 1b2 and Is the
flow from 1a2 to 1b2 or from 1b2 to 1a2? Explain.

8.12 Water flows downhill through a 3-in.-diameter steel
pipe. The slope of the hill is such that for each mile (5280 ft)
of horizontal distance, the change in elevation is Deter-
mine the maximum value of if the flow is to remain lami-
nar and the pressure all along the pipe is constant.

8.13 Some fluids behave as a non-Newtonian power-law
fluid characterized by where and
so on, and C is a constant. 1If the fluid is the customary
Newtonian fluid.2 For flow in a round pipe of a diameter D,
integrate the force balance equation 1Eq. 8.32 to obtain the ve-
locity profile

*8.14 For the flow discussed in Problem 8.13, plot the di-
mensionless velocity profile where is the centerline ve-
locity 1at 2, as a function of the dimensionless radial co-
ordinate where D is the pipe diameter. Consider values
of and 7.

8.15 A fluid of density and viscosity
flows steadily down a vertical 0.10-m-

diameter pipe and exits as a free jet from the lower end. De-
termine the maximum pressure allowed in the pipe at a loca-
tion 10 m above the pipe exit if the flow is to be laminar.

8.16 Water is pumped steadily from one large, open tank
to another at the same elevation as shown in Fig. P8.16. De-
termine the maximum power the pump can add to the water if
the flow is to remain laminar.

m 5 0.30 N ? s/m
2

r 5 1000 kg/m3

n 5 1, 3, 5,
r/ 1D/22,
r 5 0

Vcu/Vc,

u1r2 5
2n

1n 1 12  a
¢p

2/C
b1/n

 c r 1n112/n 2 aD

2
b1n112/n d

n 5 1,
n 5 1, 3, 5,t 5 2C1du/dr2n,

¢z
¢z ft.

zb 5 68.2 ft.pb 5 29.7 psiza 5 56.8 ft;
pa 5 32.4 psi

20°

0.8 mys. If the flow is laminar, determine the centerline veloc-
ity and the flowrate.

8.20 Oil 1specific weight viscosity
flows through a horizontal 23-mm-diameter tube as

shown in Fig. P8.20. A differential U-tube manometer is used
to measure the pressure drop along the tube. Determine the
range of values for h for laminar flow.

N # s/m
22 5 0.105 8900 N/m

3,

Length = 100 ft

Diameter = 0.1 ft

P

■ F I G U R E  P 8 . 1 6

Q

SG = 7.0
h

0.5 m

23 mmOil

■ F I G U R E  P 8 . 2 0

Q

SG = 0.87

4 m

20 mm

h

SG = 1.3

■ F I G U R E  P 8 . 2 2

8.17 Glycerin at flows upward in a vertical 75-
mm-diameter pipe with a centerline velocity of 1.0 mys. De-
termine the head loss and pressure drop in a 10-m length of the
pipe.

8.18 A fluid flows through a horizontal 0.1-in.-diameter
pipe. When the Reynolds number is 1500, the head loss over a
20-ft length of the pipe is 6.4 ft. Determine the fluid velocity.

8.19 A viscous fluid flows in a 0.10-m-diameter pipe such
that its velocity measured 0.012 m away from the pipe wall is

20 °C

8.21 A fluid flows in a smooth pipe with a Reynolds num-
ber of 6000. By what percent would the head loss be reduced
if the flow could be maintained as laminar flow rather than the
expected turbulent flow?

8.22 Oil of and a kinematic viscosity
flows through the vertical pipe shown in

Fig. P8.22 at a rate of Determine the manome-
ter reading, h.

4 3 1024 m3
/s.

m2
/sn 5 2.2 3 1024
SG 5 0.87

8.23 Determine the manometer reading, h, for Problem 8.22
if the flow is up rather than down the pipe. Note: The manome-
ter reading will be reversed.

8.24 For Problem 8.22, what flowrate 1magnitude and di-
rection2 will cause 

8.25 The kinetic energy coefficient, is defined in
Eq. 5.86. Show that its value for a power-law turbulent veloc-

a,

h 5 0?
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ity profile 1Eq. 8.312 is given by 

8.26 As shown in Video V8.3 and Fig. P8.26, the velocity
profile for laminar flow in a pipe is quite different from that for
turbulent flow. With laminar flow the velocity profile is para-
bolic; with turbulent flow at the velocity profile
can be approximated by the power-law profile shown in the fig-
ure. (a) For laminar flow, determine at what radial location you
would place a Pitot tube if it is to measure the average veloc-
ity in the pipe. (b) Repeat part (a) for turbulent flow with
Re 5 10,000.

Re 5 10,000

34n41n 1 32 12n 1 32 4 .
a 5 1n 1 12312n 1 123/

1.0

0.5

0 0.5 1.0

r__
R

r__
R

u__
Vc

u__
Vc

Laminar with Re < 2100

= 1 – 2( )

r__
R

u__
Vc

Turbulent with Re = 10,000

=  1 – 1/5[ ]

R r

u

Vc
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Water

Air 0.108 in.

24 in.

h
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8.32 When soup is stirred in a bowl, there is considerable
turbulence in the resulting motion (see Video V8.2). From a
very simplistic standpoint, this turbulence consists of numerous
intertwined swirls, each involving a characteristic diameter and
velocity. As time goes by, the smaller swirls (the fine scale struc-
ture) die out relatively quickly, leaving the large swirls that con-
tinue for quite some time. Explain why this is to be expected.

8.33 Determine the thickness of the viscous sublayer in a
smooth 8-in.-diameter pipe if the Reynolds number is 25,000.

8.34 Water at flows through a 6-in.-diameter pipe
with an average velocity of 15 ftys. Approximately what is the
height of the largest roughness element allowed if this pipe is
to be classified as smooth?

8.35 A 70-ft-long, 0.5-in.-diameter hose with a roughness
of ft is fastened to a water faucet where the pres-
sure is Determine if there is no nozzle attached and the
average velocity in the hose is Neglect minor losses and
elevation changes.

8.36 Repeat Problem 8.35 if there is a nozzle of diameter
0.25 in. attached to the end of the hose.

*8.37 The following equation is sometimes used in place
of the Colebrook equation 1Eq. 8.352:

for and 1Ref. 22, pg.
2202. An advantage of this equation is that given Re and 
it does not require an iteration procedure to obtain f. Plot a graph
of the percent difference in f as given by this equation and the
original Colebrook equation for Reynolds numbers in the range
of validity of the above equation, with 

8.38 Water flows at a rate of 10 gallons per minute in a
new horizontal 0.75-in.-diameter galvanized iron pipe. Deter-
mine the pressure gradient, along the pipe.

8.39 As shown in Fig. 8.3 and Video V8.1 (and quantified
by Reynolds), the character of the flow within a pipe depends
strongly on whether the flow is laminar or turbulent. One ad-
vantage of laminar flow is that the friction factor and head loss
are less than that for turbulent flow at the same Reynolds 

¢p//,

e/D 5 1024.

e/D,
5000 6 Re 6 10181026

6 e/D 6 1022

f 5
1.325

5ln 3 1e/3.7D2 1 15.74/Re0.92 4 62

6 ft/s.
p1p1.

e 5 0.0009

60 °F

8.27 Water at flows in a 6-in.-diameter pipe with a
flowrate of 2.0 cfs. What is the approximate velocity at a dis-
tance 2.0 in. away from the wall? Determine the centerline
velocity.

8.28 During a heavy rainstorm, water from a parking lot
completely fills an 18-in.-diameter, smooth, concrete storm
sewer. If the flowrate is determine the pressure drop in
a 100-ft horizontal section of the pipe. Repeat the problem if
there is a 2-ft change in elevation of the pipe per 100 ft of its
length.

8.29 Carbon dioxide at a temperature of and a pres-
sure of 600 kPa 1abs2 flows through a horizontal 40-mm-diam-
eter pipe with an average velocity of 2 mys. Determine the fric-
tion factor if the pressure drop is per 10-m length of
pipe.

8.30 Water flows through a 6-in.-diameter horizontal pipe
at a rate of 2.0 cfs and a pressure drop of 4.2 psi per 100 ft of
pipe. Determine the friction factor.

8.31 Air flows through the 0.108-in.-diameter, 24-in.-long
tube shown in Fig. P8.31. Determine the friction factor if the
flowrate is cfs when in. Compare your
results with the expression Is the flow laminar or
turbulent?

f 5 64/Re.
h 5 1.70Q 5 0.00191

235 N/m
2

0 °C

10 ft3
/s,

80 °F
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number. Under what circumstances might it be advantageous to
have turbulent rather than laminar pipe flow?

8.40 A garden hose is attached to a faucet that is fully
opened. Without a nozzle on the end of the hose, the water does
not shoot very far. However, if you place your thumb over a
portion of the end of the hose, it is possible to shoot the water
a considerable distance. Explain this phenomenon. 1Note: The
flowrate decreases as the area covered by your thumb increases.2

8.41 Air at standard temperature and pressure flows
through a 1-in.-diameter galvanized iron pipe with an average
velocity of 8 ftys. What length of pipe produces a head loss
equivalent to (a) a flanged elbow, (b) a wide-open angle
valve, or (c) a sharp-edged entrance?

*8.42 Water at flows through drawn tubings with
diameters of 0.025, 0.050, or 0.075 m. Plot the head loss in
each meter length of pipe for flowrates between 
and In your solution obtain the friction factor
from the Colebrook formula.

8.43 Air at standard temperature and pressure flows at a
rate of 7.0 cfs through a horizontal, galvanized iron duct that
has a rectangular cross-sectional shape of 12 in. by 6 in. Esti-
mate the pressure drop per 200 ft of duct.

8.44 Water flows at a rate of in an old, rusty 6-in.-
diameter pipe that has a relative roughness of 0.010. It is pro-
posed that by inserting a smooth plastic liner with an inside di-
ameter of 5 in. into the old pipe as shown in Fig. P8.44, the
pressure drop per mile can be reduced. Is it true that the lined
pipe can carry the required at a lower pressure drop
than in the old pipe? Support your answer with appropriate cal-
culations.

2.0 ft3/s

2.0 ft3/s

50 3 1024 m3
/s.

5 3 1024 m3
/s

40 °C

90°

8.47 Water flows at a rate of in a 0.12-m-
diameter pipe that contains a sudden contraction to a 0.06-m-
diameter pipe. Determine the pressure drop across the contrac-
tion section. How much of this pressure difference is due to
losses and how much is due to kinetic energy changes?

8.48 A sign like the one shown in Fig. P8.48 is often at-
tached to the side of a jet engine as a warning to airport work-
ers. Based on Video V8.4 or Figs. 8.22 and 8.25, explain why
the danger areas (indicated in color) are the shape they are.

0.040 m3
/s

6 in.

Old

5 in.

New

Liner
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C1130F

WARNING   Stand clear of

Hazard areas while engine is

running

WARNING   Stand clear of

Hazard areas while engine is

running
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Q

1__
2

in.

(1)

Flow reducer washer

50 holes of

diameter 0.05 in.
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† 8.45 Consider the process of donating blood. Blood
flows from a vein in which the pressure is greater than atmo-
spheric, through a long small-diameter tube, and into a plastic
bag that is essentially at atmospheric pressure. Based on fluid
mechanics principles, estimate the amount of time it takes to
donate a pint of blood. List all assumptions and show calcula-
tions.

8.46 To conserve water and energy, a “flow reducer” is
installed in the shower head as shown in Fig. P8.46. If the pres-
sure at point 112 remains constant and all losses except for that
in the “flow reducer” are neglected, determine the value of the
loss coefficient 1based on the velocity in the pipe2 of the “flow
reducer” if its presence is to reduce the flowrate by a factor of
2. Neglect gravity.

8.49 At time the level of water in tank A shown in
Fig. P8.49 is 2 ft above that in tank B. Plot the elevation of the
water in tank A as a function of time until the free surfaces in
both tanks are at the same elevation. Assume quasisteady
conditions—that is, the steady pipe flow equations are assumed
valid at any time, even though the flowrate does change 1slowly2
in time. Neglect minor losses. Note: Verify and use the fact that
the flow is laminar.

t 5 0
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*8.50 Repeat Problem 8.49 if the pipe diameter is changed
to 0.1 ft rather than 0.1 in. Note: The flow may not be laminar
for this case.

8.51 As shown in Fig. P8.51, water flows from one tank to
another through a short pipe whose length is n times the pipe
diameter. Head losses occur in the pipe and at the entrance and
exit. (See Video V8.4.) Determine the maximum value of n if
the major loss is to be no more than 10% of the minor loss and
the friction factor is 0.02.

3 ft 2 ft at t = 0

25 ft

0.1-in. diameter, galvanized iron

B A

3 ft

■ F I G U R E  P 8 . 4 9

D

, = nD
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Angle

valve
0.5 m

h Tee

Surge chamber

Closed

D = 0.02 m

8 m5 m

(1)
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525 ft

elevation

300-ft-long,

0.4-ft-diameter

495 ft

elevation
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duct with a flowrate of 8.2 cfs. Determine the pressure drop in
inches of water per 200-ft length of duct.

8.58 Air flows through a rectangular galvanized iron duct
of size 0.30 m by 0.15 m at a rate of Determine the
head loss in 12 m of this duct.

8.59 Air at standard conditions flows through a horizontal
1 ft by 1.5 ft rectangular wooden duct at a rate of 
Determine the head loss, pressure drop, and power supplied by
the fan to overcome the flow resistance in 500 ft of the duct.

8.60 When the valve is closed, the pressure throughout the
horizontal pipe shown in Fig. P8.60 is 400 kPa, and the water
level in the closed, air-filled surge chamber is m. If the
valve is fully opened and the pressure at point 112 remains
400 kPa, determine the new level of the water in the surge cham-
ber. Assume the friction factor is and the fittings are
threaded fittings.

f 5 0.02

h 5 0.4

5000 ft3
/min.

0.068 m3
/s.

8.52 Gasoline flows in a smooth pipe of 40-mm diameter
at a rate of If it were possible to prevent turbulence
from occurring, what would be the ratio of the head loss for the
actual turbulent flow compared to that if it were laminar flow?

8.53 A 3-ft-diameter duct is used to carry ventilating air
into a vehicular tunnel at a rate of Tests show that
the pressure drop is 1.5 in. of water per 1500 ft of duct. What
is the value of the friction factor for this duct and the approx-
imate size of the equivalent roughness of the surface of the duct?

8.54 Natural gas 1 and 2 is pumped through a horizontal 6-in.-diameter cast-
iron pipe at a rate of 800 lbyhr. If the pressure at section 112 is
50 psi 1abs2, determine the pressure at section 122 8 mi down-
stream if the flow is assumed incompressible. Is the incom-
pressible assumption reasonable? Explain.

*8.55 Water flows in a 20-mm-diameter galvanized iron pipe
with average velocities between 0.01 and 10.0 mys. Plot the head
loss per meter of pipe length over this velocity range. Discuss.

8.56 A fluid flows through a smooth horizontal 2-m-long
tube of diameter 2 mm with an average velocity of 2.1 mys.
Determine the head loss and the pressure drop if the fluid is
(a) air, (b) water, or (c) mercury.

8.57 Air at standard temperature and pressure flows
through a horizontal 2 ft by 1.3 ft rectangular galvanized iron

1025 ft2
/s

n 5 5.2 3r 5 0.0044 slugs/ft
3

9000 ft3
/min.

0.001 m3
/s.

8.61 What horsepower is added to water to pump it vertically
through a 200-ft-long, 1.0-in.-diameter drawn tubing at a rate of

if the pressures at the inlet and outlet are the same?

8.62 Water flows from a lake as is shown in Fig. P8.62 at
a rate of 4.0 cfs. Is the device inside the building a pump or a
turbine? Explain and determine the horsepower of the device.
Neglect all minor losses and assume the friction factor is 0.025.

0.060 ft3
/s

8.63 Repeat Problem 8.62 if the flowrate is 1.0 cfs.

8.64 At a ski resort, water at is pumped through a 
3-in.-diameter, 2000-ft-long steel pipe from a pond at an eleva-
tion of 4286 ft to a snow-making machine at an elevation of 4623
ft at a rate of If it is necessary to maintain a pressure
of 180 psi at the snow-making machine, determine the horse-
power added to the water by the pump. Neglect minor losses.

8.65 Water flows through the screen in the pipe shown in
Fig. P8.65 as indicated. Determine the loss coefficient for the
screen.

0.26 ft3
/s.

40 °F
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The pipes are 1-in. copper pipes with regular flanged fittings.
The faucets are globe valves.

8.71 Water at flows through the coils of the heat ex-
changer as shown in Fig. P8.71 at a rate of 0.9 galymin. De-
termine the pressure drop between the inlet and outlet of the
horizontal device.

40 °F
V = 20 ft/s

Screen

Water

6 in.

SG = 3.2
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6 in. length 6 in. length

4 in. length

Closed ball

valve

90° threaded

elbows
0.60 in. dia.

Reducer Q = 0.020 cfs

1 in. length

Tee
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Q

18 in.

0.5-in. copper pipe (drawn tubing)

Threaded 180°

return bend
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Q

Pump
3-in. diameter,

f = 0.02

30 ft

10 ft

20 ft

Threaded

elbow
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3 ft

L

D = 0.50 in.

Nozzle tip diameter = 0.30 in.

Q =
0.010 cfs

10 ft
,

Pump

Water
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8.66 Water flows steadily through the 0.75-in-diameter gal-
vanized iron pipe system shown in Video V8.6 and Fig. P8.66
at a rate of 0.020 cfs. Your boss suggests that friction losses in
the straight pipe sections are negligible compared to losses in
the threaded elbows and fittings of the system. Do you agree
or disagree with your boss? Support your answer with appro-
priate calculations.

8.67 Because of a worn-out washer in a kitchen sink faucet,
water drips at a steady rate even though the faucet is “turned
off.” Readings from a water meter of the type shown in Video

V8.7 indicate that during a one-week time period when the
home owners were away, 200 gallons of water dripped from the
faucet. (a) If the pressure within the 0.50-in-diameter pipe is
50 psi, determine the loss coefficient for the leaky faucet. (b)

What length of the pipe would be needed to produce a head
loss equivalent to the leaky faucet?

8.68 Assume a car’s exhaust system can be approximated
as 14 ft of 0.125-ft-diameter cast-iron pipe with the equivalent
of six flanged elbows and a muffler. (See Video V8.5.) The
muffler acts as a resistor with a loss coefficient of 
Determine the pressure at the beginning of the exhaust system
if the flowrate is 0.10 cfs, the temperature is and the
exhaust has the same properties as air.

8.69 Air is to flow through a smooth, horizontal, rectangu-
lar duct at a rate of with a pressure drop of not more
than 40 mm of water per 50 m of duct. If the aspect ratio 1width
to height2 is 3 to 1, determine the size of the duct.

8.70 Repeat Problem 3.14 if all head losses are included.

100 m3
/s

250 °F,

KL 5 8.5.
90°

8.72 Water at is pumped from a lake as shown in
Fig. P8.72. What is the maximum flowrate possible without cav-
itation occurring?

40 °F

8.73 The -in.-diameter hose shown in Fig. P8.73 can with-
stand a maximum pressure of 200 psi without rupturing. De-
termine the maximum length, allowed if the friction factor
is 0.022 and the flowrate is 0.010 cfs. Neglect minor losses.

/,

1
2

8.74 The hose shown in Fig. P8.73 will collapse if the pres-
sure within it is lower than 10 psi below atmospheric pressure.
Determine the maximum length, L, allowed if the friction fac-
tor is 0.015 and the flowrate is 0.010 cfs. Neglect minor losses.

8.75 The pump shown in Fig. P8.75 delivers a head of 250 ft
to the water. Determine the power that the pump adds to the wa-
ter. The difference in elevation of the two ponds is 200 ft.
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4 in.

3 in.

(1)
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Intake manifold

Muffler

Exhaus
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(1)

Irrigation

system:

pipes, fittings,

nozzles, etc.

WATER

METER
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Branch line (2) Main

line

6 ft

10 ft

All pipe is 6-in.-diameter plastic

(  /D = 0), flanged fittings∋

h

600 ft
with 15

90° elbows
900 ft
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KLvalve
 = 5.0

KLelbow
 = 1.5

Pipe length = 500 ft

Pipe diameter = 0.75 ft

Pipe roughness = 0
KLent

 = 0.8

KLexit
 = 1.0

Pump
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Assume that the pressure drop through this system is when
the engine is idling at 1000 rpm at a stop sign. Estimate the
pressure drop (in terms of ) with the engine at 3000 rpm
when you are driving on the highway. List all the assumptions
that you made to arrive at your answer.

¢p1

¢p1

8.76 As shown in Video V8.6 and Fig. P8.76, water “bub-
bles up” 3 in. above the exit of the vertical pipe attached to
three horizontal pipe segments. The total length of the 0.75-in.-
diameter galvanized iron pipe between point (1) and the exit is
21 in. Determine the pressure needed at point (1) to produce
this flow.

8.77 The pressure at section 122 shown in Fig. P8.77 is not
to fall below 60 psi when the flowrate from the tank varies from
0 to 1.0 cfs and the branch line is shut off. Determine the mini-
mum height, h, of the water tank under the assumption that (a) mi-
nor losses are negligible, (b) minor losses are not negligible.

8.81 Water flows from a large open tank, through a 50-ft-long,
0.10-ft-diameter pipe and exits with a velocity of when the
water level in the tank is 10 ft above the pipe exit. The sum of the
minor loss coefficients for the pipe system is 12. Determine the
new water level needed in the tank if the velocity is to remain

when 20 ft of the pipe is removed (i.e., when the length is
reduced to 30 ft). The minor loss coefficients remain the same.

8.82 Water is to flow at a rate of in a horizontal
aluminum pipe The inlet and outlet pres-
sures are 65 psi and 30 psi, respectively, and the pipe length is
500 ft. Determine the diameter of this water pipe.

8.83 Water flows downward through a vertical smooth pipe.
When the flowrate is there is no change in pressure
along the pipe. Determine the diameter of the pipe.

8.84 As shown in Fig. P8.84, a standard household water
meter is incorporated into a lawn irrigation system to measure
the volume of water applied to the lawn. Note that these me-
ters measure volume, not volume flowrate. (See Video V8.7.)
With an upstream pressure of the meter registered
that of water was delivered to the lawn during an “on”
cycle. Estimate the upstream pressure, needed if it is desired
to have delivered during an “on” cycle. List any as-
sumptions needed to arrive at your answer.

150 ft3
p1,

120 ft3
p1 5 50 psi

0.5 ft3
/s

1e 5 5 3 1026 ft2.
3.5 ft3

/s

5 ft/s

5 ft/s

8.85 When water flows from the tank shown in Fig. P8.85,
the water depth in the tank as a function of time is as indicated.
Determine the cross-sectional area of the tank. The total length
of the 0.60-in.-diameter pipe is 20 ft, and the friction factor is
0.03. The loss coefficients are: 0.50 for the entrance, 1.5 for
each elbow, and 10 for the valve.

8.78 Repeat Problem 8.77 with the assumption that the
branch line is open so that half of the flow from the tank goes
into the branch, and half continues in the main line.

8.79 Repeat Problem 3.43 if head losses are included.

8.80 The exhaust from your car’s engine flows through a
complex pipe system as shown in Fig. P8.80 and Video V8.5.

3 ft
Valve

h

2.0

1.5

1.0
0 100 200 300

t, s

h
, 

ft
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8.92 A fan is to produce a constant air speed of 
throughout the pipe loop shown in Fig. P8.92. The 3-m-diam-
eter pipes are smooth, and each of the four 90-degree elbows
has a loss coefficient of 0.30. Determine the power that the fan
adds to the air.

40 m/s

8.86 Water flows through a 2-in.-diameter pipe with a ve-
locity of as shown in Fig. P8.86. The relative roughness
of the pipe is 0.004, and the loss coefficient for the exit is 1.0.
Determine the height, h, to which the water rises in the piezome-
ter tube.

15 ft/s
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8.89 The pump shown in Fig. P8.89 adds 25 kW to the wa-
ter and causes a flowrate of Determine the flowrate
expected if the pump is removed from the system. Assume

for either case and neglect minor losses.f 5 0.016

0.04 m3
/s.

F

V

Free jet

f = 0.020 Pipe weighs

0.20 lb/ft

Bellows

D = 0.40 ft
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8 ft

8 ft

2 in.
15 ft/s

h

Open
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40-mm-diameter

nozzle

60-mm-diameter,

30-m-long pipe;

f = 0.016

Pump
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120 m of 0.30-m-diameter

cast iron pipe

1 m

20 m
Diffuser

T
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Fan

V = 40 m/s

D = 3 m

10 m

20 m
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20 m Bolts Filter
Free jet

50 m 75 m
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8.87 Water flows from a large tank that sits on frictionless
wheels as shown in Fig. P8.87. The pipe has a diameter of 0.50
m and a roughness of The loss coefficient for
the filter is 8; other minor losses are negligible. The tank and
the first 50-m section of the pipe are bolted to the last 75-m
section of the pipe which is clamped firmly to the floor. De-
termine the tension in the bolts.

9.2 3 1025 m.

8.88 Water flows through two sections of the vertical pipe
shown in Fig. P8.88. The bellows connection cannot support any
force in the vertical direction. The 0.4-ft-diameter pipe weighs
0.2 lbyft, and the friction factor is assumed to be 0.02. At what
velocity will the force, F, required to hold the pipe be zero?

8.90 A certain process requires 2.3 cfs of water to be de-
livered at a pressure of 30 psi. This water comes from a large
diameter supply main in which the pressure remains at 60 psi.
If the galvanized iron pipe connecting the two locations is 200
ft long and contains six threaded elbows, determine the pipe
diameter. Elevation differences are negligible.

8.91 The turbine shown in Fig. P8.91 develops 400 kW.
Determine the flowrate if (a) head losses are negligible or
(b) head loss due to friction in the pipe is considered. Assume

Note: There may be more than one solution or there
may be no solution to this problem.
f 5 0.02.

90°
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Water meter

Shower

Hot water heater

DishwasherHot

Cold
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PumpFilter

KL elbow = 1.5
KL exit = 1.0

KL ent = 0.8

KL valve = 6.0

KL filter = 12.0

200 ft of 0.1-ft-dia.

pipe with ε/D = 0.01
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80 m 40 m

75 m

C

B

A Elevations = 0

Elevation = 15 m

Diameter of each pipe = 0.10 m

■ F I G U R E  P 8 . 1 0 0

p = 0.5 psi

T = 150°F

20 ft 20 ft

1 in. 0.50 in.
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g

70 mm

4 m

3 m
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*8.96 Repeat Problem 8.95 if the downspout is circular.

8.97 Air, assumed incompressible, flows through the two
pipes shown in Fig. P8.97. Determine the flowrate if minor
losses are neglected and the friction factor in each pipe is 0.015.
Determine the flowrate if the 0.5-in.-diameter pipe were re-
placed by a 1-in.-diameter pipe. Comment on the assumption
of incompressibility.

8.93 Water is circulated from a large tank, through a filter,
and back to the tank as shown in Fig. P8.93. The power added
to the water by the pump is Determine the flowrate
through the filter.

200 ft # lb/s.

8.94 Water is to be moved from a large, closed tank in
which the air pressure is 20 psi into a large, open tank through
2000 ft of smooth pipe at the rate of The fluid level in
the open tank is 150 ft below that in the closed tank. Determine
the required diameter of the pipe. Neglect minor losses.

8.95 Rainwater flows through the galvanized iron down-
spout shown in Fig. P8.95 at a rate of Determine
the size of the downspout cross section if it is a rectangle with
an aspect ratio of 1.7 to 1 and it is completely filled with wa-
ter. Neglect the velocity of the water in the gutter at the free
surface and the head loss associated with the elbow.

0.006 m3
/s.

3 ft3
/s.

*8.98 Repeat Problem 8.97 if the pipes are galvanized iron
and the friction factors are not known a priori.

† 8.99 As shown in Fig. P8.99, cold water 
flows from the water meter to either the shower or the hot wa-
ter heater. In the hot water heater it is heated to a temperature
of Thus, with equal amounts of hot and cold water, the
shower is at a comfortable However, when the dish-
washer is turned on, the shower water becomes too cold. Indi-
cate how you would predict this new shower temperature (as-
sume the shower faucet is not adjusted). State any assumptions
needed in your analysis.

100 °F.
150 °F.

1T 5 50 °F2

8.100 With the valve closed, water flows from tank A to
tank B as shown in Fig. P8.100. What is the flowrate into tank
B when the valve is opened to allow water to flow into tank C
also? Neglect all minor losses and assume that the friction fac-
tor is 0.02 for all pipes.

*8.101 Repeat Problem 8.100 if the friction factors are not
known, but the pipes are steel pipes.

8.102 The three water-filled tanks shown in Fig. P8.102 are
connected by pipes as indicated. If minor losses are neglected,
determine the flowrate in each pipe.



8.103 Water is pumped from a lake, into a large pressur-
ized tank, and out through two pipes as shown in Fig. P8.103.
The pump head is where is in
feet and Q (the total flowrate through the pump) is in Mi-
nor losses and gravity are negligible, and the friction factor in
each pipe is 0.02. Determine the flowrates through each of the
pipes, and Q2.Q1,

ft3
/s.

hphp 5 45 1 27.5Q 2 54Q2,
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8.110 Water flows through the Venturi meter shown in
Fig. P8.110. The specific gravity of the manometer fluid is 1.52.
Determine the flowrate.Elevation = 20 m

Elevation = 60 m

Elevation = 0

= 0.10 m

= 200 m

= 0.015

D
,

f

= 0.08 m

= 400 m

= 0.020

D
,

f

= 0.08 m

= 200 m

= 0.020

D
,

f

■ F I G U R E  P 8 . 1 0 2

D1 = 6 in.
Air

700 ft

Q1

Q2
D2 = 5 in.

Free jets

1200 ft

P

■ F I G U R E  P 8 . 1 0 3

3 in.6 in.

2 in.

SG = 1.52

Q

■ F I G U R E  P 8 . 1 1 0

h

Q

d

2 in.

■ F I G U R E  P 8 . 1 1 2

Rotameter

3 in.

0

6

5

4

3

2

1
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8.104 A 2-in.-diameter orifice plate is inserted in a 3-in.-
diameter pipe. If the water flowrate through the pipe is 0.90 cfs,
determine the pressure difference indicated by a manometer
attached to the flow meter.

8.105 Air to ventilate an underground mine flows through
a large 2-m-diameter pipe. A crude flowrate meter is constructed
by placing a sheet metal “washer” between two sections of the
pipe. Estimate the flowrate if the hole in the sheet metal has a
diameter of 1.6 m and the pressure difference across the sheet
metal is 8.0 mm of water.

8.106 Gasoline flows through a 35-mm-diameter pipe at a
rate of Determine the pressure drop across a flow
nozzle placed in the line if the nozzle diameter is 20 mm.

8.107 Air at and 60 psia flows in a 4-in.-diameter
pipe at a rate of 0.52 lbys. Determine the pressure at the 2-in-
diameter throat of a Venturi meter placed in the pipe.

8.108 A 50-mm-diameter nozzle meter is installed at the
end of a 80-mm-diameter pipe through which air flows. A
manometer attached to the static pressure tap just upstream from
the nozzle indicates a pressure of 7.3 mm of water. Determine
the flowrate.

8.109 A 2.5-in.-diameter nozzle meter is installed in a 3.8-
in.-diameter pipe that carries water at If the inverted
air-water U-tube manometer used to measure the pressure dif-
ference across the meter indicates a reading of 3.1 ft, determine
the flowrate.

160 °F.

200 °F

0.0032 m3
/s.

8.111 If the fluid flowing in Problem 8.110 were air, what
would be the flowrate? Would compressibility effects be im-
portant? Explain.

8.112 Water flows through the orifice meter shown in
Fig. P8.112 at a rate of 0.10 cfs. If ft, determine the
value of h.

d 5 0.1

8.113 Water flows through the orifice meter shown in
Fig. P8.112 at a rate of 0.10 cfs. If ft, determine the
value of d.

8.114 Water flows through the orifice meter shown in
Fig. P8.112 such that ft with in. Determine the
flowrate.

8.115 The scale reading on the rotameter shown in Fig.
P8.115 and Video V8.6 (also see Fig. 8.46) is directly propor-
tional to the volumetric flowrate. With a scale reading of 2.6
the water bubbles up approximately 3 in. How far will it bub-
ble up if the scale reading is 5.0?

d 5 1.5h 5 1.6

h 5 3.8



8.116 This problem involves the determination of the fric-
tion factor in a pipe for laminar and transitional flow condi-
tions. To proceed with this problem, click here in the E-book.

8.117 This problem involves the calibration of an orifice
meter and a Venturi meter. To proceed with this problem, click
here in the E-book.

8.118 This problem involves the flow of water from a tank
and through a pipe system. To proceed with this problem, click
here in the E-book.
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8.119 This problem involves the flow of water pumped
from a tank and through a pipe system. To proceed with this
problem, click here in the E-book.

8.120 This problem involves the pressure distribution in the
entrance region of a pipe. To proceed with this problem, click
here in the E-book.

8.121 This problem involves the power loss due to friction
in a coiled pipe. To proceed with this problem, click here in
the E-book.


