
In this chapter we consider various aspects of the flow over bodies that are immersed in a

fluid. Examples include the flow of air around airplanes, automobiles, and falling snow flakes,

or the flow of water around submarines and fish. In these situations the object is completely

surrounded by the fluid and the flows are termed external flows.

External flows involving air are often termed aerodynamics in response to the impor-

tant external flows produced when an object such as an airplane flies through the atmosphere.

Although this field of external flows is extremely important, there are many other examples

that are of equal importance. The fluid force 1lift and drag2 on surface vehicles 1cars, trucks,

bicycles2 has become a very important topic. By correctly designing cars and trucks, it has

become possible to greatly decrease the fuel consumption and improve the handling charac-

teristics of the vehicle. Similar efforts have resulted in improved ships, whether they are sur-

face vessels 1surrounded by two fluids, air and water2 or submersible vessels 1surrounded

completely by water2.
Other applications of external flows involve objects that are not completely surrounded

by fluid, although they are placed in some external-type flow. For example, the proper de-

sign of a building 1whether it is your house or a tall skyscraper2 must include consideration

of the various wind effects involved.

As with other areas of fluid mechanics, two approaches 1theoretical and experimental2
are used to obtain information on the fluid forces developed by external flows. Theoretical

1i.e., analytical and numerical2 techniques can provide much of the needed information about

such flows. However, because of the complexities of the governing equations and the com-

plexities of the geometry of the objects involved, the amount of information obtained from

purely theoretical methods is limited. With current and anticipated advancements in the area

of computational fluid mechanics, it is likely that computer prediction of forces and com-

plicated flow patterns will become more readily available.

Much of the information about external flows comes from experiments carried out, for

the most part, on scale models of the actual objects. Such testing includes the obvious wind

tunnel testing of model airplanes, buildings, and even entire cities. In some instances the
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actual device, not a model, is tested in wind tunnels. Figure 9.1 shows tests of vehicles in

wind tunnels. Better performance of cars, bikes, skiers, and numerous other objects has re-

sulted from testing in wind tunnels. The use of water tunnels and towing tanks also provides

useful information about the flow around ships and other objects.

In this chapter we consider characteristics of external flow past a variety of objects.

We investigate the qualitative aspects of such flows and learn how to determine the various

forces on objects surrounded by a moving liquid.
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9.1 General External Flow Characteristics

A body immersed in a moving fluid experiences a resultant force due to the interaction be-

tween the body and the fluid surrounding it. In some instances 1such as an airplane flying

through still air2 the fluid far from the body is stationary and the body moves through the

fluid with velocity U. In other instances 1such as the wind blowing past a building2 the body

is stationary and the fluid flows past the body with velocity U. In any case, we can fix the

coordinate system in the body and treat the situation as fluid flowing past a stationary body

For external flows

it is usually easiest

to use a coordinate

system fixed to the

object.

■ F I G U R E  9 . 1

(a) Flow past a full-
sized streamlined ve-
hicle in the GM aero-
dynamics laboratory
wind tunnel, an 18-ft
by 34-ft test section
facility driven by a
4000-hp, 43-ft-diame-
ter fan. (Photograph
courtesy of General
Motors Corporation.)
(b) Surface flow on a
model vehicle as indi-
cated by tufts at-
tached to the surface.
(Reprinted with per-
mission from Society
of Automotive Engi-
neers, Ref. 28.)



with velocity U, the upstream velocity. For the purposes of this book, we will assume that

the upstream velocity is constant in both time and location. That is, there is a uniform, con-

stant velocity fluid flowing past the object. In actual situations this is often not true. For ex-

ample, the wind blowing past a smokestack is nearly always turbulent and gusty 1unsteady2
and probably not of uniform velocity from the top to the bottom of the stack. Usually the

unsteadiness and nonuniformity are of minor importance.

Even with a steady, uniform upstream flow, the flow in the vicinity of an object may

be unsteady. Examples of this type of behavior include the flutter that is sometimes found

in the flow past airfoils 1wings2, the regular oscillation of telephone wires that “sing” in a

wind, and the irregular turbulent fluctuations in the wake regions behind bodies.

The structure of an external flow and the ease with which the flow can be described

and analyzed often depend on the nature of the body in the flow. Three general categories

of bodies are shown in Fig. 9.2. They include 1a2 two-dimensional objects 1infinitely long and

of constant cross-sectional size and shape2, 1b2 axisymmetric bodies 1formed by rotating their

cross-sectional shape about the axis of symmetry2, and 1c2 three-dimensional bodies that may

or may not possess a line or plane of symmetry. In practice there can be no truly two-di-

mensional bodies—nothing extends to infinity. However, many objects are sufficiently long

so that the end effects are negligibly small.

Another classification of body shape can be made depending on whether the body is

streamlined or blunt. The flow characteristics depend strongly on the amount of streamlin-

ing present. In general, streamlined bodies 1i.e., airfoils, racing cars, etc.2 have little effect on

the surrounding fluid, compared with the effect that blunt bodies 1i.e., parachutes, buildings,

etc.2 have on the fluid. Usually, but not always, it is easier to force a streamlined body through

a fluid than it is to force a similar-sized blunt body at the same velocity. There are impor-

tant exceptions to this basic rule.

9.1.1 Lift and Drag Concepts

When any body moves through a fluid, an interaction between the body and the fluid occurs;

this effect can be described in terms of the forces at the fluid–body interface. This can be

described in terms of the stresses—wall shear stresses, due to viscous effects and nor-

mal stresses due to the pressure, p. Typical shear stress and pressure distributions are shown

in Figs. 9.3a and 9.3b. Both and p vary in magnitude and direction along the surface.

It is often useful to know the detailed distribution of shear stress and pressure over

the surface of the body, although such information is difficult to obtain. Many times, how-

ever, only the integrated or resultant effects of these distributions are needed. The resultant

force in the direction of the upstream velocity is termed the drag, and the resultant force

normal to the upstream velocity is termed the lift, as is indicated in Fig. 9.3c. For somel,
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three-dimensional bodies there may also be a side force that is perpendicular to the plane

containing and 

The resultant of the shear stress and pressure distributions can be obtained by inte-

grating the effect of these two quantities on the body surface as is indicated in Fig. 9.4. The

x and y components of the fluid force on the small area element dA are

and

Thus, the net x and y components of the force on the object are

(9.1)

and

(9.2) l 5 #  dFy 5 2#  p sin u dA 1 #  tw cos u dA

 d 5 #  dFx 5 #  p cos u dA 1 #  tw sin u dA

 dFy 5 21p dA2 sin u 1 1tw dA2 cos u

 dFx 5 1p dA2 cos u 1 1tw dA2 sin u

l.d
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A body interacts

with the surround-

ing fluid through

pressure and shear

stresses.

■ F I G U R E  9 . 3 Forces
from the surrounding fluid on a
two-dimensional object: (a) pres-
sure force, (b) viscous force,
(c) resultant force (lift and drag).

■ F I G U R E  9 . 4 Pressure and
shear forces on a small element of the
surface of a body.
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Of course, to carry out the integrations and determine the lift and drag, we must know the

body shape 1i.e., as a function of location along the body2 and the distribution of and p

along the surface. These distributions are often extremely difficult to obtain, either experi-

mentally or theoretically. The pressure distribution can be obtained experimentally without

too much difficulty by use of a series of static pressure taps along the body surface. On the

other hand, it is usually quite difficult to measure the wall shear stress distribution.

It is seen that both the shear stress and pressure force contribute to the lift and drag,

since for an arbitrary body is neither zero nor along the entire body. The exception is

a flat plate aligned either parallel to the upstream flow or normal to the upstream

flow as is discussed in Example 9.1.1u 5 02
1u 5 90°2

90°u

twu
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EXAMPLE

9.1

Air at standard conditions flows past a flat plate as is indicated in Fig. E9.1. In case 1a2 the

plate is parallel to the upstream flow, and in case 1b2 it is perpendicular to the upstream flow.

If the pressure and shear stress distributions on the surface are as indicated 1obtained either

by experiment or theory2, determine the lift and drag on the plate.

Lift and drag on a

section of a body

depend on the ori-

entation of the sur-

face.

SOLUTION

For either orientation of the plate, the lift and drag are obtained from Eqs. 9.1 and 9.2. With

the plate parallel to the upstream flow we have on the top surface and on

the bottom surface so that the lift and drag are given by

and

(1)

where we have used the fact that because of symmetry the shear stress distribution is the

same on the top and the bottom surfaces, as is the pressure also [whether we use gage 

or absolute pressure]. There is no lift generated—the plate does not know up from1 p 5 patm2
1 p 5 02

 d 5 #
top

 tw dA 1 #
bottom

 tw dA 5 2 #
top

 tw dA

l 5 2#
top

 p dA 1 #
bottom

 p dA 5 0

u 5 270°u 5 90°

U = 25 ft/s

p = 0 (gage)

y

x

p = p(x) = 0

4 ft

b = width = 10 ft

=    (x) = (1.24 × 10–3)/  x lb/ft2

where x is in feet

√τ

(a)

w τw
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down. With the given shear stress distribution, Eq. 1 gives

or

(Ans)

With the plate perpendicular to the upstream flow, we have on the front and

on the back. Thus, from Eqs. 9.1 and 9.2

and

Again there is no lift because the pressure forces act parallel to the upstream flow 1in the di-

rection of not 2 and the shear stress is symmetrical about the center of the plate. With

the given relatively large pressure on the front of the plate 1the center of the plate is a stag-

nation point2 and the negative pressure 1less than the upstream pressure2 on the back of the

plate, we obtain the following drag

or

(Ans)

Clearly there are two mechanisms responsible for the drag. On the ultimately stream-

lined body 1a zero thickness flat plate parallel to the flow2 the drag is entirely due to the shear

stress at the surface and, in this example, is relatively small. For the ultimately blunted body

 d 5 55.6 lb

 d 5 #
2 ft

y522

 c0.744 a1 2
y 

2

4
b lb/ft

2
2 120.8932 lb/ft

2 d  110 ft2 dy

ld

 d 5 #
front

 p dA 2 #
back

 p dA

 l 5 #
front

 tw dA 2 #
back

 tw dA 5 0

u 5 180°

u 5 0°

 d 5 0.0992 lb

 d 5 2 #
4 ft

x50

 a1.24 3 1023

x1/2
 lb/ft

2b 110 ft2 dx

U = 25 ft/s

U

Low p

High p

+ ≠ 0

$ ≠ 0

(c)(b)

p = 0

p = 0.744  1 –       lb/ft2

where y is in feet

y2
__
4

y

p = –0.893 lb/ft2

x

(y) =

–   (–y) 

( )

τw

τw
τw

τw

τw
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1a flat plate normal to the upstream flow2 the drag is entirely due to the pressure difference

between the front and back portions of the object and, in this example, is relatively large.

If the flat plate were oriented at an arbitrary angle relative to the upstream flow as in-

dicated in Fig. E9.1c, there would be both a lift and a drag, each of which would be depen-

dent on both the shear stress and the pressure. Both the pressure and shear stress distribu-

tions would be different for the top and bottom surfaces.

Although Eqs. 9.1 and 9.2 are valid for any body, the difficulty in their use lies in ob-

taining the appropriate shear stress and pressure distributions on the body surface. Consid-

erable effort has gone into determining these quantities, but because of the various com-

plexities involved, such information is available only for certain simple situations.

Without detailed information concerning the shear stress and pressure distributions on

a body, Eqs. 9.1 and 9.2 cannot be used. The widely used alternative is to define dimen-

sionless lift and drag coefficients and determine their approximate values by means of either

a simplified analysis, some numerical technique, or an appropriate experiment. The lift co-

efficient, and drag coefficient, are defined as

and

where A is a characteristic area of the object 1see Chapter 72. Typically, A is taken to be frontal

area—the projected area seen by a person looking toward the object from a direction par-

allel to the upstream velocity, U. It would be the area of the shadow of the object projected

onto a screen normal to the upstream velocity as formed by a light shining along the up-

stream flow. In other situations A is taken to be the planform area—the projected area seen

by an observer looking toward the object from a direction normal to the upstream velocity

1i.e., from “above” it2. Obviously, which characteristic area is used in the definition of the

lift and drag coefficients must be clearly stated.

9.1.2 Characteristics of Flow Past an Object

External flows past objects encompass an extremely wide variety of fluid mechanics phe-

nomena. Clearly the character of the flow field is a function of the shape of the body. Flows

past relatively simple geometric shapes 1i.e., a sphere or circular cylinder2 are expected to

have less complex flow fields than flows past a complex shape such as an airplane or a tree.

However, even the simplest-shaped objects produce rather complex flows.

For a given-shaped object, the characteristics of the flow depend very strongly on

various parameters such as size, orientation, speed, and fluid properties. As is discussed in

Chapter 7, according to dimensional analysis arguments, the character of the flow should

depend on the various dimensionless parameters involved. For typical external flows the most

important of these parameters are the Reynolds number, the Mach

number, and for flows with a free surface 1i.e., flows with an interface between

two fluids, such as the flow past a surface ship2, the Froude number, 1Recall

that is some characteristic length of the object and c is the speed of sound.2
For the present, we consider how the external flow and its associated lift and drag vary

as a function of Reynolds number. Recall that the Reynolds number represents the ratio of

/

Fr 5 U/1g/.

Ma 5 U/c,

Re 5 rU//m 5 U//n,

CD 5
d

1
2rU 

2A

CL 5
l

1
2rU 

2A

CD,CL,
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inertial effects to viscous effects. In the absence of all viscous effects the Reynolds

number is infinite. On the other hand, in the absence of all inertial effects 1negligible mass

or 2, the Reynolds number is zero. Clearly, any actual flow will have a Reynolds num-

ber between 1but not including2 these two extremes. The nature of the flow past a body de-

pends strongly on whether or 

Most external flows with which we are familiar are associated with moderately sized

objects with a characteristic length on the order of In addition, typi-

cal upstream velocities are on the order of and the fluids involved

are typically water or air. The resulting Reynolds number range for such flows is approxi-

mately As a rule of thumb, flows with are dominated by iner-

tial effects, whereas flows with are dominated by viscous effects. Hence, most fa-

miliar external flows are dominated by inertia.

On the other hand, there are many external flows in which the Reynolds number is

considerably less than 1, indicating in some sense that viscous forces are more important

than inertial forces. The gradual settling of small particles of dirt in a lake or stream is gov-

erned by low Reynolds number flow principles because of the small diameter of the parti-

cles and their small settling speed. Similarly, the Reynolds number for objects moving through

large viscosity oils is small because is large. The general differences between small and

large Reynolds number flow past streamlined and blunt objects can be illustrated by con-

sidering flows past two objects—one a flat plate parallel to the upstream velocity and the

other a circular cylinder.

Flows past three flat plates of length with and are shown

in Fig. 9.5. If the Reynolds number is small, the viscous effects are relatively strong and the

plate affects the uniform upstream flow far ahead, above, below, and behind the plate. To

reach that portion of the flow field where the velocity has been altered by less than 1% of

its undisturbed value we must travel relatively far from the plate. In

low Reynolds number flows the viscous effects are felt far from the object in all directions.

As the Reynolds number is increased 1by increasing U, for example2, the region in

which viscous effects are important becomes smaller in all directions except downstream, as

is shown in Fig. 9.5b. One does not need to travel very far ahead, above, or below the plate

to reach areas in which the viscous effects of the plate are not felt. The streamlines are dis-

placed from their original uniform upstream conditions, but the displacement is not as great

as for the situation shown in Fig. 9.5a.

If the Reynolds number is large 1but not infinite2, the flow is dominated by inertial ef-

fects and the viscous effects are negligible everywhere except in a region very close to the

plate and in the relatively thin wake region behind the plate, as shown in Fig. 9.5c. Since the

fluid viscosity is not zero it follows that the fluid must stick to the solid surface

1the no-slip boundary condition2. There is a thin boundary layer region of thickness

1i.e., thin relative to the length of the plate2 next to the plate in which the fluid

velocity changes from the upstream value of to zero velocity on the plate. The thick-

ness of this layer increases in the direction of flow, starting from zero at the forward or lead-

ing edge of the plate. The flow within the boundary layer may be laminar or turbulent, de-

pending on various parameters involved.

The streamlines of the flow outside of the boundary layer are nearly parallel to the

plate. As we will see in the next section, the slight displacement of the external streamlines

that are outside of the boundary layer is due to the thickening of the boundary layer in the

direction of flow. The existence of the plate has very little effect on the streamlines outside

of the boundary layer—either ahead, above, or below the plate. On the other hand, the wake

region is due entirely to the viscous interaction between the fluid and the plate.

One of the great advancements in fluid mechanics occurred in 1904 as a result of the

insight of Ludwig Prandtl 11875–19532, a German physicist and aerodynamicist. He con-

u 5 U

d 5 d 1x2 ! /

1Re 6 ` 2,

Re 5 0.1

1i.e., U 2 u 6 0.01 U2

107Re 5 rU//m 5 0.1, 10,/

m

Re 6 1

Re 7 10010 6 Re 6 109.

0.01 m/s 6 U 6 100 m/s

0.01 m 6 / 6 10 m.

Re ! 1.Re @ 1

r 5 0

1m 5 02,
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ceived of the idea of the boundary layer—a thin region on the surface of a body in which

viscous effects are very important and outside of which the fluid behaves essentially as if it

were inviscid. Clearly the actual fluid viscosity is the same throughout; only the relative im-

portance of the viscous effects 1due to the velocity gradients2 is different within or outside

of the boundary layer. As is discussed in the next section, by using such a hypothesis it is

possible to simplify the analysis of large Reynolds number flows, thereby allowing solution

to external flow problems that are otherwise still unsolvable.

As with the flow past the flat plate described above, the flow past a blunt object 1such

as a circular cylinder2 also varies with Reynolds number. In general, the larger the Reynolds

number, the smaller the region of the flow field in which viscous effects are important. For
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Character of the steady,
viscous flow past a flat
plate parallel to the up-
stream velocity: (a) low
Reynolds number flow,
(b) moderate Reynolds
number flow, (c) large
Reynolds number flow.



objects that are not sufficiently streamlined, however, an additional characteristic of the flow

is observed. This is termed flow separation and is illustrated in Fig. 9.6.

Low Reynolds number flow past a circular cylinder is character-

ized by the fact that the presence of the cylinder and the accompanying viscous effects are

felt throughout a relatively large portion of the flow field. As is indicated in Fig. 9.6a, for

the viscous effects are important several diameters in any direction from

the cylinder. A somewhat surprising characteristic of this flow is that the streamlines are es-

sentially symmetric about the center of the cylinder—the streamline pattern is the same in

front of the cylinder as it is behind the cylinder.

As the Reynolds number is increased, the region ahead of the cylinder in which vis-

cous effects are important becomes smaller, with the viscous region extending only a short

distance ahead of the cylinder. The viscous effects are convected downstream and the flow

loses its symmetry. Another characteristic of external flows becomes important—the flow

separates from the body at the separation location as indicated in Fig. 9.6b. With the increase

in Reynolds number, the fluid inertia becomes more important and at some location on the

body, denoted the separation location, the fluid’s inertia is such that it cannot follow the

curved path around to the rear of the body. The result is a separation bubble behind the cylin-

der in which some of the fluid is actually flowing upstream, against the direction of the up-

stream flow. (See the photograph at the beginning of Chapter 9.)

At still larger Reynolds numbers, the area affected by the viscous forces is forced far-

ther downstream until it involves only a thin boundary layer on the front portion of1d ! D2

Re 5 UD/n 5 0.1,

1Re 5 UD/n 6 12
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the cylinder and an irregular, unsteady 1perhaps turbulent2 wake region that extends far down-

stream of the cylinder. The fluid in the region outside of the boundary layer and wake region

flows as if it were inviscid. Of course, the fluid viscosity is the same throughout the entire

flow field. Whether viscous effects are important or not depends on which region of the flow

field we consider. The velocity gradients within the boundary layer and wake regions are

much larger than those in the remainder of the flow field. Since the shear stress 1i.e., viscous

effect2 is the product of the fluid viscosity and the velocity gradient, it follows that viscous

effects are confined to the boundary layer and wake regions.

The characteristics described in Figs. 9.5 and 9.6 for flow past a flat plate and a circular

cylinder are typical of flows past streamlined and blunt bodies, respectively. The nature of the

flow depends strongly on the Reynolds number. (See Ref. 31 for many examples illustrating

this behavior.) Most familiar flows are similar to the large Reynolds number flows depicted in

Figs. 9.5c and 9.6c, rather than the low Reynolds number flow situations. (See the photograph

at the beginning of Chapters 7 and 11.) In the remainder of this chapter we will investigate

more thoroughly these ideas and determine how to calculate the forces on immersed bodies.
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Most familiar flows

involve large

Reynolds numbers.

V9.2 Streamlined

and blunt bodies

EXAMPLE

9.2

Reynolds (a) Model in (b) Model in
Number Glycerin Air (c) Car in Air

0.571 46.6

0.672 54.8

1.68 137.0 8.56 3 106Re/

3.42 3 106Reb

2.91 3 106Reh

It is desired to determine the various characteristics of flow past a car. The following tests

could be carried out: 1a2 flow of glycerin past a scale model that is 34-mm

tall, 100-mm long and 40-mm wide, 1b2 air flow past the scale model, or

1c2 air flow past the actual car, which is 1.7-m tall, 5-m long, and 2-m wide.

Would the flow characteristics for these three situations be similar? Explain.

SOLUTION

The characteristics of flow past an object depend on the Reynolds number. For this instance

we could pick the characteristic length to be the height, h, width, b, or length, of the car

to obtain three possible Reynolds numbers, and 

These numbers will be different because of the different values of h, b, and Once we ar-

bitrarily decide on the length we wish to use as the characteristic length, we must stick with

it for all calculations when using comparisons between model and prototype.

With the values of kinematic viscosity for air and glycerin obtained from Tables 1.8

and 1.6 as and we obtain the follow-

ing Reynolds numbers for the flows described.

Clearly, the Reynolds numbers for the three flows are quite different 1regardless of

which characteristic length we choose2. Based on the previous discussion concerning flow

past a flat plate or flow past a circular cylinder, we would expect that the flow past the ac-

tual car would behave in some way similar to the flows shown in Figs. 9.5c or 9.6c. That is,

we would expect some type of boundary layer characteristic in which viscous effects would

be confined to relatively thin layers near the surface of the car and the wake region behind

it. Whether the car would act more like a flat plate or a cylinder would depend on the amount

of streamlining incorporated into the car’s design.

nglycerin 5 1.19 3 1023 m2
/s,nair 5 1.46 3 1025 m2

/s

/.

Re/ 5 U//n.Reh 5 Uh/n, Reb 5 Ub/n,

/,

U 5 25 m/s

U 5 20 mm/s

U 5 20 mm/s



9.2 Boundary Layer Characteristics
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Because of the small Reynolds number involved, the flow past the model car in glyc-

erin would be dominated by viscous effects, in some way reminiscent of the flows depicted

in Figs. 9.5a or 9.6a. Similarly, with the moderate Reynolds number involved for the air flow

past the model, a flow with characteristics similar to those indicated in Figs. 9.5b and 9.6b

would be expected. Viscous effects would be important—not as important as with the glyc-

erin flow, but more important than with the full-sized car.

It would not be a wise decision to expect the flow past the full-sized car to be similar

to the flow past either of the models. The same conclusions result regardless of whether we

use or As is indicated in Chapter 7, the flows past the model car and the full-

sized prototype will not be similar unless the Reynolds numbers for the model and proto-

type are the same. It is not always an easy task to ensure this condition. One 1expensive2 so-

lution is to test full-sized prototypes in very large wind tunnels 1see Fig. 9.12.

Re/.Reh, Reb,

As was discussed in the previous section, it is often possible to treat flow past an object as

a combination of viscous flow in the boundary layer and inviscid flow elsewhere. If the

Reynolds number is large enough, viscous effects are important only in the boundary layer

regions near the object 1and in the wake region behind the object2. The boundary layer is

needed to allow for the no-slip boundary condition that requires the fluid to cling to any solid

surface that it flows past. Outside of the boundary layer the velocity gradients normal to the

flow are relatively small, and the fluid acts as if it were inviscid, even though the viscosity

is not zero. A necessary condition for this structure of the flow is that the Reynolds number

be large.

9.2.1 Boundary Layer Structure and Thickness on a Flat Plate

There can be a wide variety in the size of a boundary layer and the structure of the flow

within it. Part of this variation is due to the shape of the object on which the boundary layer

forms. In this section we consider the simplest situation, one in which the boundary layer is

formed on an infinitely long flat plate along which flows a viscous, incompressible fluid as

is shown in Fig. 9.7. If the surface were curved 1i.e., a circular cylinder or an airfoil2, the

boundary layer structure would be more complex. Such flows are discussed in Section 9.2.6.

If the Reynolds number is sufficiently large, only the fluid in a relatively thin bound-

ary layer on the plate will feel the effect of the plate. That is, except in the region next to

the plate the flow velocity will be essentially the upstream velocity. For the infi-

nitely long flat plate extending from to it is not obvious how to define thex 5 `,x 5 0

V 5 U î,

Large Reynolds

number flow fields

may be divided into

viscous and inviscid

regions.
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Reynolds number because there is no characteristic length. The plate has no thickness and

is not of finite length!

For a finite length plate, it is clear that the plate length, can be used as the charac-

teristic length. For an infinitely long plate we use x, the coordinate distance along the plate

from the leading edge, as the characteristic length and define the Reynolds number as

Thus, for any fluid or upstream velocity the Reynolds number will be suffi-

ciently large for boundary layer type flow 1i.e., Fig. 9.5c2 if the plate is long enough. Phys-

ically, this means that the flow situations illustrated in Fig. 9.5 could be thought of as occurring

on the same plate, but should be viewed by looking at longer portions of the plate as we step

away from the plate to see the flows in Fig. 9.5a, 9.5b, and 9.5c, respectively.

If the plate is sufficiently long, the Reynolds number is sufficiently large

so that the flow takes on its boundary layer character 1except very near the leading edge2.
The details of the flow field near the leading edge are lost to our eyes because we are stand-

ing so far from the plate that we cannot make out these details. On this scale 1Fig. 9.5c2 the

plate has negligible effect on the fluid ahead of the plate. The presence of the plate is felt

only in the relatively thin boundary layer and wake regions. As previously noted, Prandtl in

1904 was the first to hypothesize such a concept. It has become one of the major turning

points in fluid mechanics analysis.

A better appreciation of the structure of the boundary layer flow can be obtained by

considering what happens to a fluid particle that flows into the boundary layer. As is indi-

cated in Fig. 9.7, a small rectangular particle retains its original shape as it flows in the uni-

form flow outside of the boundary layer. Once it enters the boundary layer, the particle be-

gins to distort because of the velocity gradient within the boundary layer—the top of the

particle has a larger speed than its bottom. The fluid particles do not rotate as they flow along

outside the boundary layer, but they begin to rotate once they pass through the fictitious

boundary layer surface and enter the world of viscous flow. The flow is said to be irrota-

tional outside the boundary layer and rotational within the boundary layer. 1In terms of the

kinematics of fluid particles as is discussed in Section 6.1, the flow outside the boundary

layer has zero vorticity, and the flow within the boundary layer has nonzero vorticity.2
At some distance downstream from the leading edge, the boundary layer flow becomes

turbulent and the fluid particles become greatly distorted because of the random, irregular

nature of the turbulence. One of the distinguishing features of turbulent flow is the occur-

rence of irregular mixing of fluid parcels that range in size from the smallest fluid particles

up to those comparable in size with the object of interest. For laminar flow, mixing occurs

only on the molecular scale. This molecular scale is orders of magnitude smaller in size than

typical size scales for turbulent flow mixing. The transition from laminar to turbulent flow

occurs at a critical value of the Reynolds number, on the order of to 

depending on the roughness of the surface and the amount of turbulence in the upstream

flow, as is discussed in Section 9.2.4.

The purpose of the boundary layer on the plate is to allow the fluid to change its ve-

locity from the upstream value of U to zero on the plate. Thus, at and 

at with the velocity profile, bridging the boundary layer thickness. In

actuality 1both mathematically and physically2, there is no sharp “edge” to the boundary

layer. That is, as we get farther from the plate; it is not precisely at We

define the boundary layer thickness, as that distance from the plate at which the fluid velocity

is within some arbitrary value of the upstream velocity. Typically, as indicated in Fig. 9.8a,

To remove this arbitrariness 1i.e., what is so special about 99%; why not 98%?2, the

following definitions are introduced. Shown in Fig. 9.8b are two velocity profiles for flow

past a flat plate—one if there were no viscosity 1a uniform profile2 and the other if there are

d 5 y  where  u 5 0.99 U

d,

y 5 d.u 5 UuSU

u 5 u1x, y2y 5 d,

V < U îy 5 0V 5 0

3 3 106,2 3 105Rexcr,

Re 5 U//n

Rex 5 Ux/n.

/,
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viscosity and zero slip at the wall 1the boundary layer profile2. Because of the velocity deficit,

within the boundary layer, the flowrate across section b–b is less than that across

section a–a. However, if we displace the plate at section a–a by an appropriate amount 

the boundary layer displacement thickness, the flowrates across each section will be identi-

cal. This is true if

where b is the plate width. Thus,

(9.3)

The displacement thickness represents the amount that the thickness of the body must

be increased so that the fictitious uniform inviscid flow has the same mass flowrate proper-

ties as the actual viscous flow. It represents the outward displacement of the streamlines

caused by the viscous effects on the plate. This idea allows us to simulate the presence that

the boundary layer has on the flow outside of the boundary layer by adding the displacement

thickness to the actual wall and treating the flow over the thickened body as an inviscid flow.

The displacement thickness concept is illustrated in Example 9.3.

d* 5 #
`

0

 a1 2
u

U
b dy

d*b U 5 #
`

0

 1U 2 u2b dy

d*,

U 2 u,
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EXAMPLE

9.3

Air flowing into a 2-ft-square duct with a uniform velocity of 10 ftys forms a boundary layer

on the walls as shown in Fig. E9.3. The fluid within the core region 1outside the boundary

layers2 flows as if it were inviscid. From advanced calculations it is determined that for this

flow the boundary layer displacement thickness is given by

(1)

where and x are in feet. Determine the velocity of the air within the duct but

outside of the boundary layer.

U 5 U1x2d*

d* 5 0.00701x21/2
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SOLUTION

If we assume incompressible flow 1a reasonable assumption because of the low velocities in-

volved2, it follows that the volume flowrate across any section of the duct is equal to that at

the entrance 1i.e., 2. That is,

According to the definition of the displacement thickness, the flowrate across section 122
is the same as that for a uniform flow with velocity U through a duct whose walls have been

moved inward by That is,

(2)

By combining Eqs. 1 and 2 we obtain

or

(Ans)

Note that U increases in the downstream direction. For example, at

The viscous effects that cause the fluid to stick to the walls of the duct reduce

the effective size of the duct, thereby 1from conservation of mass principles2 causing the fluid

to accelerate. The pressure drop necessary to do this can be obtained by using the Bernoulli

equation 1Eq. 3.72 along the inviscid streamlines from section 112 to 122. 1Recall that this equa-

tion is not valid for viscous flows within the boundary layer. It is, however, valid for the in-

viscid flow outside the boundary layer.2 Thus,

Hence, with and we obtain

or

For example, at 

If it were desired to maintain a constant velocity along the centerline of this entrance

region of the duct, the walls could be displaced outward by an amount equal to the bound-

ary layer displacement thickness, d*.

x 5 100 ft.p 5 20.0401 lb/ft
2

 p 5 0.119 c1 2
1

11 2 0.0070x1/224 d  lb/ft
2

 5
1

2
 12.38 3 1023 slugs/ft

32 c 110 ft/s22 2
102

11 2 0.0079x1/224  ft2
/s

2 d

 p 5
1

2
 r 1U 2

1 2 U 22
p1 5 0r 5 2.38 3 1023 slugs/ft

3

p1 1
1
2rU

2
1 5 p 1

1
2rU

2

x 5 100 ft.

U 5 11.6 ft/s

U 5
10

11 2 0.0070x1/222  ft/s

40 ft3
/s 5 4U11 2 0.0070x1/222

40 ft3
/s 5 #122 u dA 5 U12 ft 2 2d*22

d*.

d*,

U1A1 5 10 ft/s 12 ft22 5 40 ft3
/s 5 #122u dA

Q1 5 Q2



Another boundary layer thickness definition, the boundary layer momentum thickness,

is often used when determining the drag on an object. Again because of the velocity

deficit, in the boundary layer, the momentum flux across section b–b in Fig. 9.8 is

less than that across section a–a. This deficit in momentum flux for the actual boundary

layer flow is given by

which by definition is the momentum flux in a layer of uniform speed U and thickness 

That is,

or

(9.4)

All three boundary layer thickness definitions, and are of use in boundary layer

analyses.

The boundary layer concept is based on the fact that the boundary layer is thin. For

the flat plate flow this means that at any location x along the plate, Similarly,

and Again, this is true if we do not get too close to the leading edge of the plate 1i.e.,

not closer than or so2.
The structure and properties of the boundary layer flow depend on whether the flow

is laminar or turbulent. As is illustrated in Fig. 9.9 and discussed in Sections 9.2.2 through

9.2.5, both the boundary layer thickness and the wall shear stress are different in these two

regimes.

9.2.2 Prandtl /Blasius Boundary Layer Solution

In theory, the details of viscous, incompressible flow past any object can be obtained by solv-

ing the governing Navier-Stokes equations discussed in Section 6.8.2. For steady, two-

dimensional laminar flows with negligible gravitational effects, these equations 1Eqs. 6.127a,

Rex 5 Ux/n 5 1000

™ ! x.

d* ! xd ! x.

™,d, d*,

™ 5 #
`

0

 
u

U
 a1 2

u

U
b dy

rbU 2
™ 5 rb#

`

0

 u1U 2 u2 dy

™.

#  ru1U 2 u2 dA 5 rb#
`

0

 u1U 2 u2  dy

U 2 u,

™,
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b, and c2 reduce to the following:

(9.5)

(9.6)

which express Newton’s second law. In addition, the conservation of mass equation, Eq. 6.31,

for incompressible flow is

(9.7)

The appropriate boundary conditions are that the fluid velocity far from the body is the up-

stream velocity and that the fluid sticks to the solid body surfaces. Although the mathemat-

ical problem is well-posed, no one has obtained an analytical solution to these equations for

flow past any shaped body! Currently much work is being done to obtain numerical solu-

tions to these governing equations for many flow geometries.

By using boundary layer concepts introduced in the previous sections, Prandtl was able

to impose certain approximations 1valid for large Reynolds number flows2, and thereby to

simplify the governing equations. In 1908, H. Blasius 11883–19702, one of Prandtl’s stu-

dents, was able to solve these simplified equations for the boundary layer flow past a flat

plate parallel to the flow. A brief outline of this technique and the results are presented be-

low. Additional details may be found in the literature 1Refs. 1, 2, 32.
Since the boundary layer is thin, it is expected that the component of velocity normal

to the plate is much smaller than that parallel to the plate and that the rate of change of any

parameter across the boundary layer should be much greater than that along the flow direc-

tion. That is,

Physically, the flow is primarily parallel to the plate and any fluid property is convected

downstream much more quickly than it is diffused across the streamlines.

With these assumptions it can be shown that the governing equations 1Eqs. 9.5, 9.6,

and 9.72 reduce to the following boundary layer equations:

(9.8)

(9.9)

Although both these boundary layer equations and the original Navier–Stokes equations are

nonlinear partial differential equations, there are considerable differences between them. For

one, the y momentum equation has been eliminated, leaving only the original, unaltered con-

tinuity equation and a modified x momentum equation. One of the variables, the pressure,

has been eliminated, leaving only the x and y components of velocity as unknowns. For

boundary layer flow over a flat plate the pressure is constant throughout the fluid. The flow

represents a balance between viscous and inertial effects, with pressure playing no role.
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The boundary conditions for the governing boundary layer equations are that the fluid

sticks to the plate

(9.10)

and that outside of the boundary layer the flow is the uniform upstream flow That is,

(9.11)

Mathematically, the upstream velocity is approached asymptotically as one moves away from

the plate. Physically, the flow velocity is within 1% of the upstream velocity at a distance of

from the plate.

In mathematical terms, the Navier–Stokes equations 1Eqs. 9.5, 9.62 and the continuity

equation 1Eq. 9.72 are elliptic equations, whereas the equations for boundary layer flow1Eqs. 9.8 and 9.92 are parabolic equations. The nature of the solutions to these two sets of

equations, therefore, is different. Physically, this fact translates to the idea that what happens

downstream of a given location in a boundary layer cannot affect what happens upstream of

that point. That is, whether the plate shown in Fig. 9.5c ends with length or is extended to

length the flow within the first segment of length will be the same. In addition, the

presence of the plate has no effect on the flow ahead of the plate.

In general, the solutions of nonlinear partial differential equations 1such as the bound-

ary layer equations, Eqs. 9.8 and 9.92 are extremely difficult to obtain. However, by apply-

ing a clever coordinate transformation and change of variables, Blasius reduced the partial

differential equations to an ordinary differential equation that he was able to solve. A brief

description of this process is given below. Additional details can be found in standard books

dealing with boundary layer flow 1Refs. 1, 22.
It can be argued that in dimensionless form the boundary layer velocity profiles on a

flat plate should be similar regardless of the location along the plate. That is,

where is an unknown function to be determined. In addition, by applying an order of

magnitude analysis of the forces acting on fluid within the boundary layer, it can be shown

that the boundary layer thickness grows as the square root of x and inversely proportional to

the square root of U. That is,

Such a conclusion results from a balance between viscous and inertial forces within the

boundary layer and from the fact that the velocity varies much more rapidly in the direction

across the boundary layer than along it.

Thus, we introduce the dimensionless similarity variable and the stream

function where is an unknown function. Recall from Section

6.2.3 that the velocity components for two-dimensional flow are given in terms of the stream

function as and which for this flow become

(9.12)

and

(9.13)

with the notation We substitute Eqs. 9.12 and 9.13 into the governing equa-

tions, Eqs. 9.8 and 9.9, to obtain 1after considerable manipulation2 the following nonlinear,

1  2 ¿ 5 d/dh.

v 5 anU
4x
b1/2

 1h f ¿ 2 f 2

u 5 Uf ¿ 1h2
v 5 20c/0x,u 5 0c/0y

f 5 f 1h2c 5 1n x U21/2 f 1h2, h 5 1U/nx21/2y

d , anx
U
b1/2

g1y/d2

u

U
5 g ay

d
b

/2/,

/

d

uSU as yS`

u 5 U.

u 5 v 5 0 on y 5 0
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third-order ordinary differential equation:

(9.14a)

The boundary conditions given in Eqs. 9.10 and 9.11 can be written as

(9.14b)

The original partial differential equation and boundary conditions have been reduced to an

ordinary differential equation by use of the similarity variable The two independent vari-

ables, x and y, were combined into the similarity variable in a fashion that reduced the par-

tial differential equation 1and boundary conditions2 to an ordinary differential equation. This

type of reduction is not generally possible. For example, this method does not work on the

full Navier-Stokes equations, although it does on the boundary layer equations 1Eqs. 9.8

and 9.92.
Although there is no known analytical solution to Eq. 9.14, it is relatively easy to

integrate this equation on a computer. The dimensionless boundary layer profile,

obtained by numerical solution of Eq. 9.14 1termed the Blasius solution2, is sketched in

Fig. 9.10a and is tabulated in Table 9.1. The velocity profiles at different x locations are sim-

ilar in that there is only one curve necessary to describe the velocity at any point in the bound-

ary layer. Because the similarity variable contains both x and y, it is seen from Fig. 9.10b

that the actual velocity profiles are a function of both x and y. The profile at location is

the same as that at except that the y coordinate is stretched by a factor of 

From the solution it is found that when Thus,

(9.15)

or

where It can also be shown that the displacement and momentum thicknesses

are given by

(9.16)

and

(9.17)

As postulated, the boundary layer is thin provided that is large as 

With the velocity profile known, it is an easy matter to determine the wall shear stress,

where the velocity gradient is evaluated at the plate. The value of 

at can be obtained from the Blasius solution to give

(9.18)

Note that the shear stress decreases with increasing x because of the increasing thickness of

the boundary layer—the velocity gradient at the wall decreases with increasing x. Also,

varies as not as U as it does for fully developed laminar pipe flow. These variations are

discussed in Section 9.2.3.
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9.2.3 Momentum-Integral Boundary Layer Equation

for a Flat Plate

One of the important aspects of boundary layer theory is the determination of the drag

caused by shear forces on a body. As was discussed in the previous section, such results

can be obtained from the governing differential equations for laminar boundary layer flow.

Since these solutions are extremely difficult to obtain, it is of interest to have an alternative

approximate method. The momentum integral method described in this section provides

such an alternative.

We consider the uniform flow past a flat plate and the fixed control volume as shown

in Fig. 9.11. In agreement with advanced theory and experiment, we assume that the pres-

sure is constant throughout the flow field. The flow entering the control volume at the lead-

ing edge of the plate [section 112] is uniform, while the velocity of the flow exiting the con-

trol volume [section 122] varies from the upstream velocity at the edge of the boundary layer

to zero velocity on the plate.

The fluid adjacent to the plate makes up the lower portion of the control surface. The

upper surface coincides with the streamline just outside the edge of the boundary layer at

section 122. It need not 1in fact, does not2 coincide with the edge of the boundary layer ex-

cept at section 122. If we apply the x component of the momentum equation 1Eq. 5.222 to the

steady flow of fluid within this control volume we obtain

a Fx 5 r#
112

 uV ? n̂ dA 1 r #
122

 uV ? n̂ dA
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where for a plate of width b

(9.19)

and is the drag that the plate exerts on the fluid. Note that the net force caused by the uni-

form pressure distribution does not contribute to this flow. Since the plate is solid and the

upper surface of the control volume is a streamline, there is no flow through these areas.

Thus,

or

(9.20)d 5 rU 2bh 2 rb #
d

0

 u2 dy

2d 5 r#
112

 U12U2 dA 1 r #
122

 u2 dA

d

a Fx 5 2d 5 2#
plate

 tw dA 5 2b #
plate

 tw dx
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Laminar Flow Along a Flat Plate (the Blasius Solution)
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Although the height h is not known, it is known that for conservation of mass the

flowrate through section 112 must equal that through section 122, or

which can be written as

(9.21)

Thus, by combining Eqs. 9.20 and 9.21 we obtain the drag in terms of the deficit of mo-

mentum flux across the outlet of the control volume as

(9.22)

If the flow were inviscid, the drag would be zero, since we would have and the

right-hand side of Eq. 9.22 would be zero. 1This is consistent with the fact that if

.2 Equation 9.22 points out the important fact that boundary layer flow on a flat plate

is governed by a balance between shear drag 1the left-hand side of Eq. 9.222 and a decrease

in the momentum of the fluid 1the right-hand side of Eq. 9.222. As x increases, increases

and the drag increases. The thickening of the boundary layer is necessary to overcome the

drag of the viscous shear stress on the plate. This is contrary to horizontal fully developed

pipe flow in which the momentum of the fluid remains constant and the shear force is over-

come by the pressure gradient along the pipe.

The development of Eq. 9.22 and its use was first put forth in 1921 by T. von 

Karman 11881–19632, a Hungarian/German aerodynamicist. By comparing Eqs. 9.22 and

9.4 we see that the drag can be written in terms of the momentum thickness, as

(9.23)

Note that this equation is valid for laminar or turbulent flows.

The shear stress distribution can be obtained from Eq. 9.23 by differentiating both sides

with respect to x to obtain

(9.24)

The increase in drag per length of the plate, occurs at the expense of an increase of

the momentum boundary layer thickness, which represents a decrease in the momentum of

the fluid.

Since 1see Eq. 9.192 it follows that

(9.25)
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Hence, by combining Eqs. 9.24 and 9.25 we obtain the momentum integral equation for the

boundary layer flow on a flat plate

(9.26)

The usefulness of this relationship lies in the ability to obtain approximate boundary

layer results easily by using rather crude assumptions. For example, if we knew the detailed

velocity profile in the boundary layer 1i.e., the Blasius solution discussed in the previous sec-

tion2, we could evaluate either the right-hand side of Eq. 9.23 to obtain the drag, or the right-

hand side of Eq. 9.26 to obtain the shear stress. Fortunately, even a rather crude guess at the

velocity profile will allow us to obtain reasonable drag and shear stress results from Eq. 9.26.

This method is illustrated in Example 9.4.

tw 5 rU 2 
d™

dx
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EXAMPLE

9.4

Consider the laminar flow of an incompressible fluid past a flat plate at The bound-

ary layer velocity profile is approximated as for and for 

as is shown in Fig. E9.4. Determine the shear stress by using the momentum integral equa-

tion. Compare these results with the Blasius results given by Eq. 9.18.

y 7 d,u 5 U0 # y # du 5 Uy/d

y 5 0.

Shear stress on a

flat plate is propor-

tional to the rate of

boundary layer

growth.

y

U u0

u = Uy/δ

δ

u = U
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SOLUTION

From Eq. 9.26 the shear stress is given by

(1)

while for laminar flow we know that For the assumed profile we have

(2)

and from Eq. 9.4

™ 5 #
`

0

 
u

U
 a1 2

u

U
b dy 5 #

d

0

 
u

U
 a1 2

u

U
b dy 5 #

d

0

 ay

d
b a1 2

y

d
b dy

tw 5 m 

U

d

tw 5 m10u/0y2y50.

tw 5 rU 2 
d™

dx



As is illustrated in Example 9.4, the momentum integral equation, Eq. 9.26, can be

used along with an assumed velocity profile to obtain reasonable, approximate boundary layer

results. The accuracy of these results depends on how closely the shape of the assumed ve-

locity profile approximates the actual profile.

Thus, we consider a general velocity profile

and

where the dimensionless coordinate varies from 0 to 1 across the boundary layer.

The dimensionless function can be any shape we choose, although it should be a rea-

sonable approximation to the boundary layer profile. In particular, it should certainly satisfy

the boundary conditions at and at That is,

g102 5 0 and g112 5 1

y 5 d.u 5 Uy 5 0u 5 0

g1Y 2
Y 5 y/d

 
u

U
5 1 for Y 7 1

 
u

U
5 g1Y 2 for 0 # Y # 1
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or

(3)

Note that as yet we do not know the value of 1but suspect that it should be a function of x2. 
By combining Eqs. 1, 2, and 3 we obtain the following differential equation for 

or

This can be integrated from the leading edge of the plate, 1where 2 to an arbi-

trary location x where the boundary layer thickness is The result is

or

(4)

Note that this approximate result 1i.e., the velocity profile is not actually the simple straight

line we assumed2 compares favorably with the 1much more laborious to obtain2 Blasius re-

sult given by Eq. 9.15.

The wall shear stress can also be obtained by combining Eqs. 1, 3, and 4 to give

(Ans)

Again this approximate result is close 1within 13%2 to the Blasius value of given by

Eq. 9.18.

tw

tw 5 0.289U3/2 B
rm

x

 d 5 3.46 B
nx

U

 
d2

2
5

6m

rU
 x

d.

d 5 0x 5 0

 d dd 5
6m

rU
 dx

 
mU

d
5
rU 2

6
 

dd

dx

d:

d

™ 5
d

6

Approximate veloc-

ity profiles are used

in the momentum

integral equation.



The linear function used in Example 9.4 is one such possible profile. Other con-

ditions, such as at could also be incorporated

into the function to more closely approximate the actual profile.

For a given the drag can be determined from Eq. 9.22 as

or

(9.27)

where the dimensionless constant has the value

Also, the wall shear stress can be written as

(9.28)

where the dimensionless constant has the value

By combining Eqs. 9.25, 9.27, and 9.28 we obtain

which can be integrated from at to give

or

(9.29)

By substituting this expression back into Eqs. 9.28 we obtain

(9.30)

To use Eqs. 9.29 and 9.30 we must determine the values of and Several assumed

velocity profiles and the resulting values of are given in Fig. 9.12 and Table 9.2. The more

closely the assumed shape approximates the acutal 1i.e., Blasius2 profile, the more accurate

the final results. For any assumed profile shape, the functional dependence of and on

the physical parameters and x is the same. Only the constants are different. That is,

or and where Rex 5 rUx/m.tw , 1rmU 3
/x21/2,dRe1/2

x /x 5 constant,d , 1mx/rU21/2

r, m, U,

twd

d

C2.C1

tw 5 B
C1C2

2
  U 3/2 A

rm

x

d

x
5
12C2/C1

1Rex

d 5 B
2nC2x

UC1

x 5 0d 5 0

d dd 5
mC2

rUC1

 dx

C2 5
dg

dY
`
Y50

C2

tw 5 m 
0u

0y
`
y50

5
mU

 d
 

dg

dY
`
Y50

5
mU

d
 C2

C1 5 #
1

0

 g1Y 2 31 2 g1Y 2 4  dY

C1

d 5 rbU 2dC1

d 5 rb#
d

0

 u1U 2 u2 dy 5 rbU 2d#
1

0

 g1Y 2 31 2 g1Y 2 4  dY

g1Y 2,g1Y 2 1i.e., 0u/0y 5 0 at y 5 d2,Y 5 1dg/dY 5 0

g1Y 2 5 Y
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Approximate

boundary layer re-

sults are obtained

from the momen-

tum integral equa-

tion.



It is often convenient to use the dimensionless local friction coefficient, defined as

(9.31)

to express the wall shear stress. From Eq. 9.30 we obtain the approximate value

while the Blasius solution result is given by

(9.32)

These results are also indicated in Table 9.2.

cf 5
0.664

1Rex

cf 5 12C1C2 A
m

rUx
5
12C1C2

1Rex

cf 5
tw

1
2 rU

2

cf ,
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The local friction

coefficient is the di-

mensionless wall

shear stress.

Parabolic

Blasius

Sine wave

Cubic

Linear

1.00.50
0

0.5

1.0

y__
δ

u__
U

■ F I G U R E  9 . 1 2 Typical 
approximate boundary layer profiles
used in the momentum integral
equation.

■ TA B L E 9 . 2

Flat Plate Momentum-Integral Results for Various Assumed Laminar Flow Velocity Profiles

Profile Character

a. Blasius solution 5.00 0.664 1.328

b. Linear 
3.46 0.578 1.156

c. Parabolic 
5.48 0.730 1.460

d. Cubic 
4.64 0.646 1.292

e. Sine wave 
4.79 0.655 1.310u/U 5 sin 3p1 y/d2/2 4

u/U 5 31 y/d2/2 2 1y/d2
3
/2

u/U 5 2y/d 2 1y/d2
2

u/U 5 y/d

CDfRe<

1/2cfRex
1/2DRex

1/2
/x



For a flat plate of length and width b, the net friction drag, can be expressed in

terms of the friction drag coefficient, as

or

(9.33)

We use the above approximate value of to obtain

where is the Reynolds number based on the plate length. The corresponding

value obtained from the Blasius solution 1Eq. 9.322 gives

These results are also indicated in Table 9.2.

The momentum-integral boundary layer method provides a relatively simple technique

to obtain useful boundary layer results. As is discussed in Sections 9.2.5 and 9.2.6, this tech-

nique can be extended to boundary layer flows on curved surfaces 1where the pressure and

fluid velocity at the edge of the boundary layer are not constant2 and to turbulent flows.

9.2.4 Transition from Laminar to Turbulent Flow

The analytical results given in Table 9.2 are restricted to laminar boundary layer flows along

a flat plate with zero pressure gradient. They agree quite well with experimental results up

to the point where the boundary layer flow becomes turbulent, which will occur for any free

stream velocity and any fluid provided the plate is long enough. This is true because the pa-

rameter that governs the transition to turbulent flow is the Reynolds number—in this case

the Reynolds number based on the distance from the leading edge of the plate,

The value of the Reynolds number at the transition location is a rather complex func-

tion of various parameters involved, including the roughness of the surface, the curvature of

the surface 1e.g., a flat plate or a sphere2, and some measure of the disturbances in the flow

outside the boundary layer. On a flat plate with a sharp leading edge in a typical air stream,

the transition takes place at a distance x from the leading edge given by to

Unless otherwise stated, we will use in our calculations.

The actual transition from laminar to turbulent boundary layer flow may occur over a

region of the plate, not at a specific single location. This occurs, in part, because of the spot-

tiness of the transition. Typically, the transition begins at random locations on the plate in

the vicinity of These spots grow rapidly as they are convected downstream un-

til the entire width of the plate is covered with turbulent flow. The photo shown in Fig. 9.13

illustrates this transition process.

The complex process of transition from laminar to turbulent flow involves the insta-

bility of the flow field. Small disturbances imposed on the boundary layer flow 1i.e., from a

vibration of the plate, a roughness of the surface, or a “wiggle” in the flow past the plate2
will either grow 1instability2 or decay 1stability2, depending on where the disturbance is in-

troduced into the flow. If these disturbances occur at a location with they willRex 6 Rexcr

Rex 5 Rexcr.

Rexcr 5 5 3 1053 3 106.

Rexcr 5 2 3 105

Rex 5 Ux/n.

CDf 5
1.328

1Re/

Re/ 5 U//n

CDf 5
18C1C2

1Re/

cf 5 12C1C2m/rUx21/2

CDf 5
1

/
 #
/

0

 cf dx

CDf 5

df

1
2 rU

2b/
5

b #
/

0

 tw dx

1
2 rU

2b/

CDf,

df,/
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The friction drag

coefficient is an in-

tegral of the local

friction coefficient.



die out, and the boundary layer will return to laminar flow at that location. Disturbances im-

posed at a location with will grow and transform the boundary layer flow down-

stream of this location into turbulence. The study of the initiation, growth, and structure of

these turbulent bursts or spots is an active area of fluid mechanics research.

Transition from laminar to turbulent flow also involves a noticeable change in the shape

of the boundary layer velocity profile. Typical profiles obtained in the neighborhood of the

transition location are indicated in Fig. 9.14. The turbulent profiles are flatter, have a larger

velocity gradient at the wall, and produce a larger boundary layer thickness than do the lam-

inar profiles.

Rex 7 Rexcr
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The boundary layer

on a flat plate will

become turbulent if

the plate is long

enough.

■ F I G U R E  9 . 1 4 Typical
boundary layer profiles on a flat plate
for laminar, transitional, and turbulent
flow (Ref. 1).

■ F I G U R E  9 . 1 3

Turbulent spots and the tran-
sition from laminar to turbu-
lent boundary layer flow on a
flat plate. Flow from left to
right. (Photograph courtesy 
of B. Cantwell, Stanford 
University.)
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9.2.5 Turbulent Boundary Layer Flow

The structure of turbulent boundary layer flow is very complex, random, and irregular. It

shares many of the characteristics described for turbulent pipe flow in Section 8.3. In par-

ticular, the velocity at any given location in the flow is unsteady in a random fashion. The

flow can be thought of as a jumbled mix of interwined eddies 1or swirls2 of different sizes1diameters and angular velocities2. The various fluid quantities involved 1i.e., mass, momen-

tum, energy2 are convected downstream in the free-stream direction as in a laminar bound-

ary layer. For turbulent flow they are also convected across the boundary layer 1in the di-

rection perpendicular to the plate2 by the random transport of finite-sized fluid particles

associated with the turbulent eddies. There is considerable mixing involved with these finite-
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Random transport

of finite-sized fluid

particles occurs

within turbulent

boundary layers.

EXAMPLE

9.5

A fluid flows steadily past a flat plate with a velocity of At approximately what

location will the boundary layer become turbulent, and how thick is the boundary layer at

that point if the fluid is 1a2 water at 1b2 standard air, or 1c2 glycerin at 

SOLUTION

For any fluid, the laminar boundary layer thickness is found from Eq. 9.15 as

The boundary layer remains laminar up to

Thus, if we assume we obtain

and

where is in and and are in feet. The values of the kinematic viscosity obtained

from Tables 1.5 and 1.7 are listed in Table E9.5 along with the corresponding and dcr.xcr

dcrxcrft2
/sn

dcr ; d 0 x5xcr
5 5 c n

10
 15 3 104 n2 d 1/2

5 354 n

 xcr 5
5 3 105

10 ft/s
 n 5 5 3 104 n

Rexcr 5 5 3 105

xcr 5
nRexcr

U

d 5 5 A
nx

U

68 °F?60 °F,

U 5 10 ft/s.

Laminar flow can be maintained on a longer portion of the plate if the viscosity is in-

creased. However, the boundary layer flow eventually becomes turbulent, provided the plate

is long enough. Similarly, the boundary layer thickness is greater if the viscosity is increased.

■ TA B L E E 9 . 5

Fluid ( ) (ft) (ft)

a. Water 0.605 0.00428

b. Air 7.85 0.0556

c. Glycerin 640.0 4.531.28 3 1022

1.57 3 1024

1.21 3 1025

Dcrxcrft2
/sN

Ans
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EXAMPLE

9.6

Consider turbulent flow of an incompressible fluid past a flat plate. The boundary layer ve-

locity profile is assumed to be for and for 

as shown in Fig. E9.6. This is a reasonable approximation of experimentally observed pro-

files, except very near the plate where this formula gives at Note the dif-

ferences between the assumed turbulent profile and the laminar profile. Also assume that the

shear stress agrees with the experimentally determined formula:

(1)

Determine the boundary layer thicknesses and and the wall shear stress, as a

function of x. Determine the friction drag coefficient,

SOLUTION

Whether the flow is laminar or turbulent, it is true that the drag force is accounted for by a

reduction in the momentum of the fluid flowing past the plate. The shear is obtained from

CDf.

tw,™d, d*,

tw 5 0.0225rU 2 a n
Ud
b1/4

y 5 0.0u/0y 5 `

Y 7 1u 5 UY 5 y/d # 1u/U 5 1y/d21/ 7
5 Y1/ 7

There are no exact

solutions available

for turbulent

boundary layer

flows.

sized eddies—considerably more than is associated with the mixing found in laminar flow

where it is confined to the molecular scale. Although there is considerable random motion

of fluid particles perpendicular to the plate, there is very little net transfer of mass across the

boundary layer—the largest flowrate by far is parallel to the plate.

There is, however, a considerable net transfer of x component of momentum perpen-

dicular to the plate because of the random motion of the particles. Fluid particles moving

toward the plate 1in the negative y direction2 have some of their excess momentum 1they come

from areas of higher velocity2 removed by the plate. Conversely, particles moving away from

the plate 1in the positive y direction2 gain momentum from the fluid 1they come from areas of

lower velocity2. The net result is that the plate acts as a momentum sink, continually extracting

momentum from the fluid. For laminar flows, such cross-stream transfer of these properties

takes place solely on the molecular scale. For turbulent flow the randomness is associated with

fluid particle mixing. Consequently, the shear force for turbulent boundary layer flow is con-

siderably greater than it is for laminar boundary layer flow 1see Section 8.3.22.
There are no “exact” solutions for turbulent boundary layer flow. As is discussed in

Section 9.2.2, it is possible to solve the Prandtl boundary layer equations for laminar flow

past a flat plate to obtain the Blasius solution 1which is “exact” within the framework of the

assumptions involved in the boundary layer equations2. Since there is no precise expression

for the shear stress in turbulent flow 1see Section 8.32, solutions are not available for turbu-

lent flow. However, considerable headway has been made in obtaining numerical 1computer2
solutions for turbulent flow by using approximate shear stress relationships. Also, progress

is being made in the area of direct, full numerical integration of the basic governing equa-

tions, the Navier-Stokes equations.

Approximate turbulent boundary layer results can also be obtained by use of the mo-

mentum integral equation, Eq. 9.26, which is valid for either laminar or turbulent flow. What

is needed for the use of this equation are reasonable approximations to the velocity profile

where and u is the time-averaged velocity 1the overbar notation, of

Section 8.3.2 has been dropped for convenience2 and a functional relationship describing the

wall shear stress. For laminar flow the wall shear stress was used as In

theory, such a technique should work for turbulent boundary layers also. However, as is dis-

cussed in Section 8.3, the details of the velocity gradient at the wall are not well understood

for turbulent flow. Thus, it is necessary to use some empirical relationship for the wall shear

stress. This is illustrated in Example 9.6.

tw 5 m10u/0y2y50.

u,Y 5 y/du 5 U g1Y 2,
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Laminar

u__
U

u__
U

=
y__
δ

y _
_

δ

Turbulent

1.00.50
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0.4

0.6

0.8

1.0

Y
 =

( )
1__

7

Eq. 9.26 in terms of the rate at which the momentum boundary layer thickness, increases

with distance along the plate as

For the assumed velocity profile, the boundary layer momentum thickness is obtained

from Eq. 9.4 as

or by integration

(2)

where is an unknown function of x. By combining the assumed shear force dependence1Eq. 12 with Eq. 2, we obtain the following differential equation for 

or

This can be integrated from at to obtain

(3) (Ans)

or in dimensionless form

d

x
5

0.370

Rex
1/5

d 5 0.370 a n
U
b1/5

 x4/5

x 5 0d 5 0

d1/4 dd 5 0.231 a n
U
b1/4

 dx

0.0225rU 2 a n
Ud
b1/4

5
7

72
 rU 2 

dd

dx

d:

d

 ™ 5 d#
1

0
 Y

1/ 7 11 2 Y1/ 72  dY 5
7

72
 d

 ™ 5 #
`

0

 
u

U
 a1 2

u

U
b dy 5 d#

1

0

 
u

U
 a1 2

u

U
b dY

tw 5 rU 2 
d™

dx

™,
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Strictly speaking, the boundary layer near the leading edge of the plate is laminar, not tur-

bulent, and the precise boundary condition should be the matching of the initial turbulent

boundary layer thickness 1at the transition location2 with the thickness of the laminar bound-

ary layer at that point. In practice, however, the laminar boundary layer often exists over a

relatively short portion of the plate, and the error associated with starting the turbulent bound-

ary layer with at can be negligible.

The displacement thickness, and the momentum thickness, can be obtained from

Eqs. 9.3 and 9.4 by integrating as follows:

Thus, by combining this with Eq. 3 we obtain

(Ans)

Similarly, from Eq. 2,

(4) (Ans)

The functional dependence for and is the same; only the constants of proportional-

ity are different. Typically,

By combining Eqs. 1 and 3, we obtain the following result for the wall shear stress

(Ans)

This can be integrated over the length of the plate to obtain the friction drag on one side of

the plate, as

or

where is the area of the plate. 1This result can also be obtained by combining Eq. 9.23

and the expression for the momentum thickness given in Eq. 4.2 The corresponding friction

drag coefficient, is

(Ans)CDf 5

df

1
2rU

2A
5

0.0720

Re/
1/5

CDf,

A 5 b/

df 5 0.0360rU 2 
A

Re/
1/5

df 5 #
/

0
 btw dx 5 b10.0288rU 22 #

/

0
 a n

Ux
b1/5

 dx

d f,

tw 5 0.0225rU 2 c n

U10.3702 1n/U21/5x4/5
d 1/4

5
0.0288rU 2

Rex
1/5

™ 6 d* 6 d.

™d, d*,

™ 5
7

72 d 5 0.0360 a n
U
b1/5

 x4/5

d* 5 0.0463 a n
U
b1/5

 x4/5

 5 d#
1

0
 11 2 Y1/72 dY 5

d

8

 d* 5 #
`

0
 a1 2

u

U
b dy 5 d#

1

0
 a1 2

u

U
b dY

™,d*,

x 5 0d 5 0



In general, the drag coefficient for a flat plate of length is a function of the Reynolds

number, and the relative roughness, The results of numerous experiments covering

a wide range of the parameters of interest are shown in Fig. 9.15. For laminar boundary layer

flow the drag coefficient is a function of only the Reynolds number—surface roughness is

not important. This is similar to laminar flow in a pipe. However, for turbulent flow, the

surface roughness does affect the shear stress and, hence, the drag coefficient. This is simi-

lar to turbulent pipe flow in which the surface roughness may protrude into or through the

viscous sublayer next to the wall and alter the flow in this thin, but very important, layer

1see Section 8.4.12. Values of the roughness, for different materials can be obtained from

Table 8.1.

The drag coefficient diagram of Fig. 9.15 1boundary layer flow2 shares many charac-

teristics in common with the familiar Moody diagram 1pipe flow2 of Fig. 8.23, even though

the mechanisms governing the flow are quite different. Fully developed horizontal pipe flow

is governed by a balance between pressure forces and viscous forces. The fluid inertia re-

mains constant throughout the flow. Boundary layer flow on a horizontal flat plate is gov-

erned by a balance between inertia effects and viscous forces. The pressure remains constant

throughout the flow. 1As is discussed in Section 9.2.6, for boundary layer flow on curved

surfaces, the pressure is not constant.2

e,

e//.Re/,

/
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Note that for the turbulent boundary layer flow the boundary layer thickness increases

with x as and the shear stress decreases as For laminar flow these de-

pendencies are and respectively. The random character of the turbulent flow causes

a different structure of the flow.

Obviously the results presented in this example are valid only in the range of validity

of the original data—the assumed velocity profile and shear stress. This range covers smooth

flat plates with 5 3 105
6 Re/ 6 107.

x21/2,x1/2

tw , x21/5.d , x4/5

0.002

      0

0.004

0.006

0.008

0.010

0.012

105 106 107 108 109

Re
,

C
D

f

Turbulent

Completely
turbulent

1 × 10–3

      2 × 10–3

     = 3 × 10–3

      5 × 10–3

ε

Laminar

5 × 10–4

2 × 10–4

1 × 10–4

5 × 10–5

5 × 10–6

1 × 10
–6

Transitional

Turbulent
smooth plate

2 × 10
–5

,

0.014

■ F I G U R E  9 . 1 5

Friction drag coefficient for a
flat plate parallel to the up-
stream flow (Ref. 18, with
permission).

The flat plate drag

coefficient is a

function of relative

roughness and

Reynolds number.



It is often convenient to have an equation for the drag coefficient as a function of the

Reynolds number and relative roughness rather than the graphical representation given in

Fig. 9.15. Although there is not one equation valid for the entire range, the equa-

tions presented in Table 9.3 do work well for the conditions indicated.

Re/ 2 e//
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Various equations

are available for

flat plate drag coef-

ficients.

■ TA B L E 9 . 3

Empirical Equations for the Flat Plate Drag Coefficient (Ref. 1)

Equation Flow Conditions

Laminar flow

Transitional with 

Turbulent, smooth plate

Completely turbulentCDf 5 31.89 2 1.62 log1e//2 4
22.5

CDf 5 0.455/ 1log Re/2
2.58

Rexcr 5 5 3 105CDf 5 0.455/ 1log Re/2
2.58

2 1700/Re/

CDf 5 1.328/ 1Re/2
0.5

EXAMPLE

9.7

The water ski shown in Fig. E9.7a moves through water with a velocity U. Estimate

the drag caused by the shear stress on the bottom of the ski for 

SOLUTION

Clearly the ski is not a flat plate, and it is not aligned exactly parallel to the upstream flow.

However, we can obtain a reasonable approximation to the shear force by using the flat plate

results. That is, the friction drag, caused by the shear stress on the bottom of the ski 1the

wall shear stress2 can be determined as

df 5
1
2rU

2
/bCDf

df,

0 6 U 6 30 ft/s.

70 °F

0
0

1

2

3

4

5

5 10 15 20 25 30

1
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5

U, ft /s

Entire boundary
layer laminar

xcr

$f

$
f,

 l
b

x c
r,
 f
t

b = width = 0.5 ft

x = 0 x = 4 ft = ,
U

x 

(a)

(b)■ F I G U R E  E 9 . 7
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With and 1see

Table B.12 we obtain

(1)

where and U are in pounds and respectively.

The friction coefficient, can be obtained from Fig. 9.15 or from the appropriate

equations given in Table 9.3. As we will see, for this problem, much of the flow lies within

the transition regime where both the laminar and turbulent portions of the boundary layer

flow occupy comparable lengths of the plate. We choose to use the values of from the

table.

For the given conditions we obtain

where U is in With or we obtain from Table 9.3

From Eq. 1 the corresponding drag is 

By covering the range of upstream velocities of interest we obtain the results shown in

Fig. E9.7b.

If the results of boundary layer theory are not valid—inertia effects are

not dominant enough and the boundary layer is not thin compared with the length of the

plate. For our problem this corresponds to For all practical purposes

U is greater than this value, and the flow past the ski is of the boundary layer type.

The approximate location of the transition from laminar to turbulent boundary layer

flow as defined by is indicated in Fig. E9.7b. Up to 

the entire boundary layer is laminar. The fraction of the boundary layer that is laminar de-

creases as U increases until only the front 0.18 ft is laminar when 

For anyone who has water skied, it is clear that it can require considerably more force

to be pulled along at than the 1two skis2 indicated in Fig. E9.7b.

As is discussed in Section 9.3, the total drag on an object such as a water ski consists of

more than just the friction drag. Other components, including pressure drag and wave-making

drag, add considerably to the total resistance.
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The free-stream ve-

locity on a curved

surface is not con-

stant.

9.2.6 Effects of Pressure Gradient

The boundary layer discussions in the previous parts of Section 9.2 have dealt with flow

along a flat plate in which the pressure is constant throughout the fluid. In general, when a

fluid flows past an object other than a flat plate, the pressure field is not uniform. As shown

in Fig. 9.6, if the Reynolds number is large, relatively thin boundary layers will develop along

the surfaces. Within these layers the component of the pressure gradient in the streamwise

direction 1i.e., along the body surface2 is not zero, although the pressure gradient normal to

the surface is negligibly small. That is, if we were to measure the pressure while moving

across the boundary layer from the body to the boundary layer edge, we would find that the

pressure is essentially constant. However, the pressure does vary in the direction along the

body surface if the body is curved. The variation in the free-stream velocity, the fluid

velocity at the edge of the boundary layer, is the cause of the pressure gradient in the bound-

ary layer. The characteristics of the entire flow 1both within and outside of the boundary

Ufs,



layer2 are often highly dependent on the pressure gradient effects on the fluid within the

boundary layer.

For a flat plate parallel to the upstream flow, the upstream velocity 1that far ahead of

the plate2 and the free-stream velocity 1that at the edge of the boundary layer2 are equal—

This is a consequence of the negligible thickness of the plate. For bodies of nonzero

thickness, these two velocities are different. This can be seen in the flow past a circular

cylinder of diameter D. The upstream velocity and pressure are U and respectively. If the

fluid were completely inviscid the Reynolds number would be infinite 

and the streamlines would be symmetrical, as are shown in Fig. 9.16a. The

fluid velocity along the surface would vary from at the very front and rear of the

cylinder 1points A and F are stagnation points2 to a maximum of at the top and bot-

tom of the cylinder 1point C 2. The pressure on the surface of the cylinder would be sym-

metrical about the vertical midplane of the cylinder, reaching a maximum value of1the stagnation pressure2 at both the front and back of the cylinder, and a min-

imum of at the top and bottom of the cylinder. The pressure and free-stream

velocity distributions are shown in Figs. 9.16b and 9.16c. These characteristics can be ob-

tained from potential flow analysis of Section 6.6.3.

Because of the absence of viscosity 1therefore, 2 and the symmetry of the pres-

sure distribution for inviscid flow past a circular cylinder, it is clear that the drag on the cylin-

der is zero. Although it is not obvious, it can be shown that the drag is zero for any object

that does not produce a lift 1symmetrical or not2 in an inviscid fluid 1Ref. 42. Based on ex-

perimental evidence, however, we know that there must be a net drag. Clearly, since there is

no purely inviscid fluid, the reason for the observed drag must lie on the shoulders of the

viscous effects.

To test this hypothesis, we could conduct an experiment by measuring the drag on an

object 1such as a circular cylinder2 in a series of fluids with decreasing values of viscosity.

To our initial surprise we would find that no matter how small we make the viscosity 1pro-
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p0 2 3rU 2
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p0 1 rU 2
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vided it is not precisely zero2 we would measure a finite drag, essentially independent of the

value of As was noted in Section 6.6.3, this leads to what has been termed d’Alembert’s

paradox—the drag on an object in an inviscid fluid is zero, but the drag on an object in a

fluid with vanishingly small 1but nonzero2 viscosity is not zero.

The reason for the above paradox can be described in terms of the effect of the pres-

sure gradient on boundary layer flow. Consider large Reynolds number flow of a real 1vis-

cous2 fluid past a circular cylinder. As was discussed in Section 9.1.2, we expect the viscous

effects to be confined to thin boundary layers near the surface. This allows the fluid to stick

to the surface—a necessary condition for any fluid, provided The basic idea

of boundary layer theory is that the boundary layer is thin enough so that it does not greatly

disturb the flow outside the boundary layer. Based on this reasoning, for large Reynolds num-

bers the flow throughout most of the flow field would be expected to be as is indicated in

Fig. 9.16a, the inviscid flow field.

The pressure distribution indicated in Fig. 9.16b is imposed on the boundary layer flow

along the surface of the cylinder. In fact, there is negligible pressure variation across the thin

boundary layer so that the pressure within the boundary layer is that given by the inviscid

flow field. This pressure distribution along the cylinder is such that the stationary fluid at the

nose of the cylinder is accelerated to its maximum velocity at

and then is decelerated back to zero velocity at the rear of the cylinder at

This is accomplished by a balance between pressure and inertia effects; viscous

effects are absent for the inviscid flow outside the boundary layer.

Physically, in the absence of viscous effects, a fluid particle traveling from the front to

the back of the cylinder coasts down the “pressure hill” from to 1from point

A to C in Fig. 9.16b2 and then back up the hill to 1from point C to F 2 without any

loss of energy. There is an exchange between kinetic and pressure energy, but there are no

energy losses. The same pressure distribution is imposed on the viscous fluid within the

boundary layer. The decrease in pressure in the direction of flow along the front half of the

cylinder is termed a favorable pressure gradient. The increase in pressure in the direction of

flow along the rear half of the cylinder is termed an adverse pressure gradient.

Consider a fluid particle within the boundary layer indicated in Fig. 9.17. In its attempt

to flow from A to F it experiences the same pressure distribution as the particles in the free

stream immediately outside the boundary layer—the inviscid flow field pressure. However, be-

cause of the viscous effects involved, the particle in the boundary layer experiences a loss of en-

ergy as it flows along. This loss means that the particle does not have enough energy to coast

all of the way up the pressure hill 1from C to F 2 and to reach point F at the rear of the cylinder.

This kinetic energy deficit is seen in the velocity profile detail at point C, shown in Fig. 9.17a.

Because of friction, the boundary layer fluid cannot travel from the front to the rear of the cylin-

der. 1This conclusion can also be obtained from the concept that due to viscous effects the par-

ticle at C does not have enough momentum to allow it to coast up the pressure hill to F.2
The situation is similar to a bicyclist coasting down a hill and up the other side of the

valley. If there were no friction the rider starting with zero speed could reach the same height

from which he or she started. Clearly friction 1rolling resistance, aerodynamic drag, etc.2
causes a loss of energy 1and momentum2, making it impossible for the rider to reach the

height from which he or she started without supplying additional energy 1i.e., peddling2. The

fluid within the boundary layer does not have such an energy supply. Thus, the fluid flows

against the increasing pressure as far as it can, at which point the boundary layer separates

from 1lifts off 2 the surface. This boundary layer separation is indicated in Fig. 9.17a. (See

the photograph at the beginning of Chapters 7, 9, and 11.) Typical velocity profiles at rep-

resentative locations along the surface are shown in Fig. 9.17b. At the separation location

1profile D2, the velocity gradient at the wall and the wall shear stress are zero. Beyond that

location 1from D to E 2 there is reverse flow in the boundary layer.
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As is indicated in Fig. 9.17c, because of the boundary layer separation, the average

pressure on the rear half of the cylinder is considerably less than that on the front half. Thus,

a large pressure drag is developed, even though 1because of small viscosity2 the viscous shear

drag may be quite small. D’Alembert’s paradox is explained. No matter how small the vis-

cosity, provided it is not zero, there will be a boundary layer that separates from the surface,

giving a drag that is, for the most part, independent of the value of 

The location of separation, the width of the wake region behind the object, and the

pressure distribution on the surface depend on the nature of the boundary layer flow. Com-

pared with a laminar boundary layer, a turbulent boundary layer flow has more kinetic energy

and momentum associated with it because: 112 as is indicated in Fig. E9.6, the velocity profile

is fuller, more nearly like the ideal uniform profile, and 122 there can be considerable en-

ergy associated with the swirling, random components of the velocity that do not appear

m.
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in the time-averaged x component of velocity. Thus, as is indicated in Fig. 9.17c, the

turbulent boundary layer can flow farther around the cylinder 1farther up the pressure hill2
before it separates than can the laminar boundary layer.

The structure of the flow field past a circular cylinder is completely different for a zero

viscosity fluid than it is for a viscous fluid, no matter how small the viscosity is, provided

it is not zero. This is due to boundary layer separation. Similar concepts hold for other shaped

bodies as well. The flow past an airfoil at zero angle of attack 1the angle between the up-

stream flow and the axis of the object2 is shown in Fig. 9.18a; flow past the same airfoil at

a angle of attack is shown in Fig. 9.18b. Over the front portion of the airfoil the pressure

decreases in the direction of flow—a favorable pressure gradient. Over the rear portion the

pressure increases in the direction of flow—an adverse pressure gradient. The boundary layer

velocity profiles at representative locations are similar to those indicated in Fig. 9.17b for

flow past a circular cylinder. If the adverse pressure gradient is not too great 1because the

body is not too “thick” in some sense2, the boundary layer fluid can flow into the slightly

increasing pressure region 1i.e., from C to the trailing edge in Fig. 9.18a2 without separating

from the surface. However, if the pressure gradient is too adverse 1because the angle of at-

tack is too large2, the boundary layer will separate from the surface as indicated in Fig. 9.18b.

Such situations can lead to the catastrophic loss of lift called stall, which is discussed in

Section 9.4.

Streamlined bodies are generally those designed to eliminate 1or at least to reduce2 the

effects of separation, whereas nonstreamlined bodies generally have relatively large drag due

to the low pressure in the separated regions 1the wake2. Although the boundary layer may be

quite thin, it can appreciably alter the entire flow field because of boundary layer separation.

These ideas are discussed in Section 9.3.

5°
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Flow visualization
photographs of flow
past an airfoil (the
boundary layer veloc-
ity profiles for the
points indicated are
similar to those indi-
cated in Fig. 9.17b):
(a) zero angle of at-
tack, no separation,
(b) angle of attack,
flow separation. Dye
in water. (Photograph
courtesy of ONERA,
France.)
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9.2.7 Momentum-Integral Boundary Layer

Equation with Nonzero Pressure Gradient

The boundary layer results discussed in Sections 9.2.2 and 9.2.3 are valid only for boundary

layers with zero pressure gradients. They correspond to the velocity profile labeled C in

Fig. 9.17b. Boundary layer characteristics for flows with nonzero pressure gradients can be

obtained from nonlinear, partial differential boundary layer equations similar to Eqs. 9.8 and

9.9, provided the pressure gradient is appropriately accounted for. Such an approach is be-

yond the scope of this book 1Refs. 1, 22.
An alternative approach is to extend the momentum integral boundary layer equation

technique 1Section 9.2.32 so that it is applicable for flows with nonzero pressure gradients.

The momentum integral equation for boundary layer flows with zero pressure gradient,

Eq. 9.26, is a statement of the balance between the shear force on the plate 1represented by

2 and rate of change of momentum of the fluid within the boundary layer [represented by

]. For such flows the free-stream velocity is constant If the free-

stream velocity is not constant [ where x is the distance measured along the

curved body], the pressure will not be constant. This follows from the Bernoulli equation

with negligible gravitational effects, since is constant along the streamlines out-

side the boundary layer. Thus,

(9.34)

For a given body the free-stream velocity and the corresponding pressure gradient on the sur-

face can be obtained from inviscid flow techniques 1potential flow2 discussed in Section 6.7.

1This is how the circular cylinder results of Fig. 9.16 were obtained.2
Flow in a boundary layer with nonzero pressure gradient is very similar to that shown

in Fig. 9.11, except that the upstream velocity, U, is replaced by the free-stream velocity,

and the pressures at sections 112 and 122 are not necessarily equal. By using the x com-

ponent of the momentum equation 1Eq. 5.222 with the appropriate shear forces and pressure

forces acting on the control surface indicated in Fig. 9.11, the following integral momentum

equation for boundary layer flows is obtained:

(9.35)

The derivation of this equation is similar to that of the corresponding equation for constant-

pressure boundary layer flow, Eq. 9.26, although the inclusion of the pressure gradient effect

brings in additional terms 1Refs. 1, 2, 32. For example, both the boundary layer momentum

thickness, and the displacement thickness, are involved.

Equation 9.35, the general momentum integral equation for two-dimensional boundary

layer flow, represents a balance between viscous forces 1represented by 2, pressure forces

1represented by 2, and the fluid momentum 1represented by the

boundary layer momentum thickness2. In the special case of a flat plate, constant,

and Eq. 9.35 reduces to Eq. 9.26.

Equation 9.35 can be used to obtain boundary layer information in a manner similar

to that done for the flat plate boundary layer 1Section 9.2.32. That is, for a given body shape

the free-stream velocity, is determined, and a family of approximate boundary layer pro-

files is assumed. Equation 9.35 is then used to provide information about the boundary layer

thickness, wall shear stress, and other properties of interest. The details of this technique are

not within the scope of this book 1Refs. 1, 32.
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9.3 Drag

9.3 Drag ■ 573

As was discussed in Section 9.1, any object moving through a fluid will experience a drag,

—a net force in the direction of flow due to the pressure and shear forces on the surface

of the object. This net force, a combination of flow direction components of the normal and

tangential forces on the body, can be determined by use of Eqs. 9.1 and 9.2, provided the

distributions of pressure, p, and wall shear stress, are known. Only in very rare instances

can these distributions be determined analytically. The boundary layer flow past a flat plate

parallel to the upstream flow as is discussed in Section 9.2 is one such case. Current ad-

vances in computational fluid dynamics 1i.e., the use of computers to solve the governing

equations of the flow field2 have provided encouraging results for more complex shapes.

However, much work in this area remains.

Most of the information pertaining to drag on objects is a result of numerous experi-

ments with wind tunnels, water tunnels, towing tanks, and other ingenious devices that are

used to measure the drag on scale models. As was discussed in Chapter 7, these data can

be put into dimensionless form and the results can be appropriately ratioed for prototype cal-

culations. Typically, the result for a given-shaped object is a drag coefficient, where

(9.36)

and is a function of other dimensionless parameters such as Reynolds number, Re, Mach

number, Ma, Froude number, Fr, and relative roughness of the surface, That is,

The character of as a function of these parameters is discussed in this section.

9.3.1 Friction Drag

Friction drag, is that part of the drag that is due directly to the shear stress, on the

object. It is a function of not only the magnitude of the wall shear stress, but also of the ori-

entation of the surface on which it acts. This is indicated by the factor in Eq. 9.1. If

the surface is parallel to the upstream velocity, the entire shear force contributes directly to

the drag. This is true for the flat plate parallel to the flow as was discussed in Section 9.2.

If the surface is perpendicular to the upstream velocity, the shear stress contributes nothing

to the drag. Such is the case for a flat plate normal to the upstream velocity as was discussed

in Section 9.1.

In general, the surface of a body will contain portions parallel to and normal to the up-

stream flow, as well as any direction in between. A circular cylinder is such a body. Because

the viscosity of most common fluids is small, the contribution of the shear force to the over-

all drag on a body is often quite small. Such a statement should be worded in dimensionless

terms. That is, because the Reynolds number of most familiar flows is quite large, the per-

cent of the drag caused directly by the shear stress is often quite small. For highly stream-

lined bodies or for low Reynolds number flow, however, most of the drag may be due to fric-

tion drag.

The friction drag on a flat plate of width b and length oriented parallel to the up-

stream flow can be calculated from

where is the friction drag coefficient. The value of given as a function of Reynolds

number, and relative surface roughness, in Fig. 9.15 and Table 9.3, ise//,Re/ 5 rU//m,
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a result of boundary layer analysis and experiments 1see Section 9.22. Typical values of

roughness, for various surfaces are given in Table 8.1. As with the pipe flow discussed in

Chapter 8, the flow is divided into two distinct categories—laminar or turbulent, with a tran-

sitional regime connecting them. The drag coefficient 1and, hence, the drag2 is not a function

of the plate roughness if the flow is laminar. However, for turbulent flow the roughness does

considerably affect the value of As with pipe flow, this dependence is a result of the sur-

face roughness elements protruding into or through the laminar sublayer 1see Section 8.32.
Most objects are not flat plates parallel to the flow; instead, they are curved surfaces

along which the pressure varies. As was discussed in Section 9.2.6, this means that the bound-

ary layer character, including the velocity gradient at the wall, is different for most objects

from that for a flat plate. This can be seen in the change of shape of the boundary layer pro-

file along the cylinder in Fig. 9.17b.

The precise determination of the shear stress along the surface of a curved body is quite

difficult to obtain. Although approximate results can be obtained by a variety of techniques1Refs. 1, 22, these are outside the scope of this text. As is shown by the following example,

if the shear stress is known, its contribution to the drag can be determined.

CDf.

e,
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EXAMPLE

9.8

A viscous, incompressible fluid flows past the circular cylinder shown in Fig. E9.8a. Ac-

cording to a more advanced theory of boundary layer flow, the boundary layer remains at-

tached to the cylinder up to the separation location at with the dimensionless

wall shear stress as is indicated in Fig. E9.8b 1Ref. 12. The shear stress on the cylinder in the

wake region, is negligible. Determine the drag coefficient for the

cylinder based on the friction drag only.

SOLUTION

The friction drag, can be determined from Eq. 9.1 as
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9.3.2 Pressure Drag

Pressure drag, is that part of the drag that is due directly to the pressure, p, on an object.

It is often referred to as form drag because of its strong dependency on the shape or form

of the object. Pressure drag is a function of the magnitude of the pressure and the orienta-

tion of the surface element on which the pressure force acts. For example, the pressure force

on either side of a flat plate parallel to the flow may be very large, but it does not contribute

to the drag because it acts in the direction normal to the upstream velocity. On the other

hand, the pressure force on a flat plate normal to the flow provides the entire drag.

dp,

9.3 Drag ■ 575

where b is the length of the cylinder. Note that is in radians 1not degrees2 to ensure the

proper dimensions of Thus,

This can be put into dimensionless form by using the dimensionless shear stress parameter,

given in Fig. E9.8b as follows:

where Thus,

(1)

The function obtained from Fig. E9.8b, is plotted in Fig. E9.8c. The necessary in-

tegration to obtain from Eq. 1 can be done by an appropriate numerical technique or by

an approximate graphical method to determine the area under the given curve.

The result is or

(Ans)

Note that the total drag must include both the shear stress 1friction2 drag and the pressure

drag. As we will see in Example 9.9, for the circular cylinder most of the drag is due to the

pressure force.

The above friction drag result is valid only if the boundary layer flow on the cylinder

is laminar. As is discussed in Section 9.3.3, for a smooth cylinder this means that 

It is also valid only for flows that have a Reynolds number sufficiently

large to ensure the boundary layer structure to the flow. For the cylinder, this means Re 7 100.
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As previously noted, for most bodies, there are portions of the surface that are paral-

lel to the upstream velocity, others normal to the upstream velocity, and the majority of which

are at some angle in between. The pressure drag can be obtained from Eq. 9.1 provided a

detailed description of the pressure distribution and the body shape is given. That is,

which can be rewritten in terms of the pressure drag coefficient, as

(9.37)

Here is the pressure coefficient, where is a reference pressure.

The level of the reference pressure does not influence the drag directly because the net pres-

sure force on a body is zero if the pressure is constant 1i.e., 2 on the entire surface.

For flows in which inertial effects are large relative to viscous effects 1i.e., large

Reynolds number flows2, the pressure difference, scales directly with the dynamic

pressure, and the pressure coefficient is independent of Reynolds number. In such

situations we expect the drag coefficient to be relatively independent of Reynolds number.

For flows in which viscous effects are large relative to inertial effects 1i.e., very small

Reynolds number flows2, it is found that both the pressure difference and wall shear stress

scale with the characteristic viscous stress, where is a characteristic length. In such

situations we expect the drag coefficient to be proportional to That is,

These characteristics are similar to the

friction factor dependence of for laminar pipe flow and constant for large

Reynolds number flow 1see Section 8.42.
If the viscosity were zero, the pressure drag on any shaped object 1symmetrical or not2 in

a steady flow would be zero. There perhaps would be large pressure forces on the front por-

tion of the object, but there would be equally large 1and oppositely directed2 pressure forces

on the rear portion. If the viscosity is not zero, the net pressure drag may be nonzero be-

cause of boundary layer separation as is discussed in Section 9.2.6. Example 9.9 illustrates

this.
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/22

 CDp 5

dp

1
2rU

2A
5

#  p cos u dA

1
2rU

2A
5

#Cp cos u dA

A

CDp,

dp 5 #  p cos u dA
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EXAMPLE

9.9

A viscous, incompressible fluid flows past the circular cylinder shown in Fig. E9.8a. The

pressure coefficient on the surface of the cylinder 1as determined from experimental mea-

surements2 is as indicated in Fig. E9.9a. Determine the pressure drag coefficient for this flow.

Combine the results of Examples 9.8 and 9.9 to determine the drag coefficient for a circu-

lar cylinder. Compare your results with those given in Fig. 9.21.

SOLUTION

The pressure 1form2 drag coefficient, can be determined from Eq. 9.37 as

or because of symmetry

CDp 5 #
p

0

 Cp cos u du

CDp 5
1

A
 #  Cp cos u  dA 5

1

bD
 #

2p

0

 Cp cos u b aD

2
b du

CDp,

The pressure coeffi-

cient is a dimen-

sionless form of the

pressure.
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where b and D are the length and diameter of the cylinder. To obtain we must integrate

the function from radians. Again, this can be done by some nu-

merical integration scheme or by determining the area under the curve shown in Fig. E9.9b.

The result is

(1) (Ans)

Note that the positive pressure on the front portion of the cylinder and the

negative pressure 1less than the upstream value2 on the rear portion produce

positive contributions to the drag. The negative pressure on the front portion of the cylinder

reduces the drag by pulling on the cylinder in the upstream direction. The

positive area under the curve is greater than the negative area—there is a net pres-

sure drag. In the absence of viscosity, these two contributions would be equal—there would

be no pressure 1or friction2 drag.

The net drag on the cylinder is the sum of friction and pressure drag. Thus, from Eq.

1 of Example 9.8 and Eq. 1 of this example, we obtain the drag coefficient

(2) (Ans)CD 5 CDf 1 CDp 5
5.93

1Re
1 1.17

Cp cos u

130 6 u 6 90°2

190 # u # 180°2
10 # u # 30°2
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u 5 0 to u 5 pCp cos u

CDp,

Experimental value

Eq. 2
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9.3.3 Drag Coefficient Data and Examples

As was discussed in previous sections, the net drag is produced by both pressure and shear

stress effects. In most instances these two effects are considered together, and an overall drag

coefficient, as defined in Eq. 9.36 is used. There is an abundance of such drag coeffi-

cient data available in the literature. This information covers incompressible and compress-

ible viscous flows past objects of almost any shape of interest—both man-made and natural

objects. In this section we consider a small portion of this information for representative sit-

uations. Additional data can be obtained from various sources 1Refs. 5, 62.
Shape Dependence. Clearly the drag coefficient for an object depends on the shape

of the object, with shapes ranging from those that are streamlined to those that are blunt. The

drag on an ellipse with aspect ratio where D and are the thickness and length paral-

lel to the flow, illustrates this dependence. The drag coefficient based

on the frontal area, where b is the length normal to the flow, is as shown in Fig. 9.19.

The more blunt the body, the larger the drag coefficient. With 1i.e., a flat plate

normal to the flow2 we obtain the flat plate value of With the corre-

sponding value for a circular cylinder is obtained. As becomes larger the value of 

decreases.

For very large aspect ratios the ellipse behaves as a flat plate parallel to the

flow. For such cases, the friction drag is greater than the pressure drag, and the value of 

based on the frontal area, would increase with increasing 1This occurs for

larger values than those shown in the figure.2 For such extremely thin bodies 1i.e., an el-

lipse with a flat plate, or very thin airfoils2 it is customary to use the planform

area, in defining the drag coefficient. After all, it is the planform area on which the

shear stress acts, rather than the much smaller 1for thin bodies2 frontal area. The ellipse drag

coefficient based on the planform area, is also shown in Fig. 9.19. Clearly

the drag obtained by using either of these drag coefficients would be the same. They merely

represent two different ways to package the same information.

The amount of streamlining can have a considerable effect on the drag. Incredibly, the

drag on the two two-dimensional objects drawn to scale in Fig. 9.20 is the same. The width

of the wake for the streamlined strut is very thin, on the order of that for the much smaller

diameter circular cylinder.

CD 5 d/ 1rU 2b//22,
A 5 b/,

//DS`,

//D

//D.A 5 bD,

CD

1//DS`2
CD//D

//D 5 1CD 5 1.9.

//D 5 0

A 5 bD,

CD 5 d/ 1rU 2 bD/22,
///D,

CD,
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This result is compared with the standard experimental value 1obtained from Fig. 9.212 in

Fig. E9.9c. The agreement is very good over a wide range of Reynolds numbers. For 

the curves diverge because the flow is not a boundary layer type flow—the shear stress and

pressure distributions used to obtain Eq. 2 are not valid in this range. The drastic divergence

in the curves for is due to the change from a laminar to turbulent bound-

ary layer, with the corresponding change in the pressure distribution. This is discussed in

Section 9.3.3.

It is of interest to compare the friction drag to the total drag on the cylinder. That is,

For and this ratio is 0.138, 0.0483, and 0.0158, respectively. Most of the

drag on the blunt cylinder is pressure drag—a result of the boundary layer separation.

105Re 5 103, 104,

df

d
5

CDf

CD

5
5.93/1Re

15.93/1Re2 1 1.17
5

1

1 1 0.1971Re

Re 7 3 3 105

Re 6 10

V9.5 Skydiving

practice

The drag coefficient

may be based on

the frontal area or

the planform area.



Reynolds Number Dependence. Another parameter on which the drag coefficient

can be very dependent is the Reynolds number. The main categories of Reynolds number de-

pendence are 112 very low Reynolds number flow, 122 moderate Reynolds number flow 1lam-

inar boundary layer2, and 132 very large Reynolds number flow 1turbulent boundary layer2.
Examples of these three situations are discussed below.

Low Reynolds number flows are governed by a balance between viscous and

pressure forces. Inertia effects are negligibly small. In such instances the drag is expected to

be a function of the upstream velocity, U, the body size, and the viscosity, That is,

From dimensional considerations 1see Section 7.7.12
(9.38)

where the value of the constant C depends on the shape of the body. If we put Eq. 9.38 into

dimensionless form using the standard definition of the drag coefficient, we obtain

where The use of the dynamic pressure, in the definition of the drag

coefficient is somewhat misleading in the case of creeping flows because it 1Re 6 12rU2
/2,Re 5 rU//m.

CD 5
d

1
2rU

2
/

2
5

2Cm/U

rU 2
/

2
5

2C

Re

d 5 Cm/U

d 5 f 1U, /, m2
m./,

1Re 6 12
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For very low

Reynolds number

flows, inertia is

negligible.

■ F I G U R E  9 . 2 0 Two objects of considerably different size that have the same drag
force: (a) circular cylinder (b) streamlined strut CD 5 0.12.CD 5 1.2;
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introduces the fluid density, which is not an important parameter for such flows 1inertia is

not important2. Use of this standard drag coefficient definition gives the dependence

for small Re drag coefficients.

Typical values of for low Reynolds number flows past a variety of objects are given

in Table 9.4. It is of interest that the drag on a disk normal to the flow is only 1.5 times

greater than that on a disk parallel to the flow. For large Reynolds number flows this ratio

is considerably larger 1see Example 9.12. Streamlining 1i.e., making the body slender2 can

produce a considerable drag reduction for large Reynolds number flows; for very small

Reynolds number flows it can actually increase the drag because of an increase in the area

on which shear forces act. For most objects, the low Reynolds number flow results are valid

up to a Reynolds number of about 1.

CD

1/Re
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■ TA B L E 9 . 4

Low Reynolds Number Drag Coefficients (Ref. 7) ( )

( )

Object ( ) Object

a. Circular disk normal c. Sphere
to flow

b. Circular disk parallel d. Hemisphere
to flow

22.2/Re13.6/Re

24.0/Re20.4/Re

CDfor Re f 1

RU2A/2CD 5 d/

Re 5 RUD/M, A 5 PD2
/4

U D

U

D

U D

U D

For very small

Reynolds number

flows, the drag co-

efficient varies in-

versely with the

Reynolds number.

EXAMPLE

9.10

A small grain of sand, diameter and specific gravity settles to the

bottom of a lake after having been stirred up by a passing boat. Determine how fast it falls

through the still water.

SOLUTION

A free-body diagram of the particle 1relative to the moving particle2 is shown in Fig. E9.10.

The particle moves downward with a constant velocity U that is governed by a balance be-

tween the weight of the particle, the buoyancy force of the surrounding water, and

the drag of the water on the particle, d.

FB,w,

SG 5 2.3,D 5 0.10 mm
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FB

$

0

U

From the free-body diagram, we obtain

where

(1)

and

(2)

We assume 1because of the smallness of the object2 that the flow will be creeping flow

with 1see Table 9.42 so that

or

(3)

We must eventually check to determine if this assumption is valid or not. Equation 3 is called

Stokes law in honor of G. G. Stokes 11819–19032, a British mathematician and physicist.

By combining Eqs. 1, 2, and 3, we obtain

or, since 

(4)

From Table 1.6 for water at we obtain and 

Thus, from Eq. 4 we obtain

or

(Ans)

Since

we see that and the form of the drag coefficient used is valid.Re 6 1,

Re 5
rDU

m
5
1999 kg/m

32 10.10 3 1023 m2 10.00632 m/s2
1.12 3 1023 N # s/m

2
5 0.564

U 5 6.32 3 1023 m/s

U 5
12.3 2 12 1999 kg/m

32 19.81 m/s
22 10.10 3 1023 m22

1811.12 3 1023 N # s/m
22

N # s/m
2.

mH2O
5 1.12 3 1023rH2O

5 999 kg/m
315.6 °C
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1SGrH2O
2 rH2O

2gD2
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Moderate Reynolds number flows tend to take on a boundary layer flow structure. For

such flows past streamlined bodies, the drag coefficient tends to decrease slightly with Reyn-

olds number. The dependence for a laminar boundary layer on a flat plate 1see

Table 9.32 is such an example. Moderate Reynolds number flows past blunt bodies gener-

ally produce drag coefficients that are relatively constant. The values for the spheres and

circular cylinders shown in Fig. 9.21a indicate this character in the range 

The structure of the flow field at selected Reynolds numbers indicated in Fig. 9.21a is

shown in Fig. 9.21b. For a given object there is a wide variety of flow situations, depending

on the Reynolds number involved. The curious reader is strongly encouraged to study the

many beautiful photographs and videos of these 1and other2 flow situations found in Refs. 8

and 31. (See also the photograph at the beginning of Chapter 7.)

For many shapes there is a sudden change in the character of the drag coefficient when

the boundary layer becomes turbulent. This is illustrated in Fig. 9.15 for the flat plate and in

Fig. 9.21 for the sphere and the circular cylinder. The Reynolds number at which this tran-

sition takes place is a function of the shape of the body.

For streamlined bodies, the drag coefficient increases when the boundary layer becomes

turbulent because most of the drag is due to the shear force, which is greater for turbulent

flow than for laminar flow. On the other hand, the drag coefficient for a relatively blunt

object, such as a cylinder or sphere, actually decreases when the boundary layer becomes

turbulent. As is discussed in Section 9.2.6, a turbulent boundary layer can travel further along

the surface into the adverse pressure gradient on the rear portion of the cylinder before

103
6 Re 6 105.

CD

CD , Re21/2
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Note that if the density of the particle were the same as the surrounding fluid, from

Eq. 4 we would obtain This is reasonable since the particle would be neutrally buoy-

ant and there would be no force to overcome the motion-induced drag. Note also that we

have assumed that the particle falls at its steady terminal velocity. That is, we have neglected

the acceleration of the particle from rest to its terminal velocity. Since the terminal velocity

is small, this acceleration time is quite small. For faster objects 1such as a free-falling sky

diver2 it may be important to consider the acceleration portion of the fall.

U 5 0.

Flow past a cylin-

der can take on a

variety of different

structures.

V9.6 Oscillating

sign

■ F I G U R E  9 . 2 1 (a) Drag coefficient as a function of Reynolds number for a smooth
circular cylinder and a smooth sphere.
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No separation

(A)

Steady separation bubble

(B)

Oscillating Karman vortex street wake

(C)

Laminar boundary layer,

wide turbulent wake

(D)

Turbulent boundary layer,

narrow turbulent wake

(E)
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■ F I G U R E  9 . 2 1

(Continued) (b) Typical flow
patterns for flow past a circular
cylinder at various Reynolds
numbers as indicated in (a).

■ F I G U R E  9 . 2 2 Character of the drag coefficient as a function of Reynolds number
for objects with various degrees of streamlining, from a flat plate normal to the upstream flow
to a flat plate parallel to the flow (two-dimensional flow) (Ref. 5).



separation occurs. The result is a thinner wake and smaller pressure drag for turbulent bound-

ary layer flow. This is indicated in Fig. 9.21 by the sudden decrease in for

In a portion of this range the actual drag 1not just the drag coefficient2 de-

creases with increasing speed. It would be very difficult to control the steady flight of such

an object in this range—an increase in velocity requires a decrease in thrust 1drag2. In all

other Reynolds number ranges the drag increases with an increase in the upstream velocity1even though may decrease with Re2.
For extremely blunt bodies, like a flat plate perpendicular to the flow, the flow sepa-

rates at the edge of the plate regardless of the nature of the boundary layer flow. Thus, the

drag coefficient shows very little dependence on the Reynolds number.

The drag coefficients for a series of two-dimensional bodies of varying bluntness are

given as a function of Reynolds number in Fig. 9.22. The characteristics described above are

evident.

CD

105
6 Re 6 106.

CD
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The drag coefficient

may change consid-

erably when the

boundary layer be-

comes turbulent.

EXAMPLE

9.11

Hail is produced by the repeated rising and falling of ice particles in the updraft of a thun-

derstorm, as is indicated in Fig. E9.11. When the hail becomes large enough, the aerody-

namic drag from the updraft can no longer support the weight of the hail, and it falls from

the storm cloud. Estimate the velocity, U, of the updraft needed to make -in.-diameter1i.e., “golf ball-sized”2 hail.

D 5 1.5

SOLUTION

As is discussed in Example 9.10, for steady-state conditions a force balance on an object

falling through a fluid gives

where is the buoyant force of the air on the particle, is the particle

weight, and is the aerodynamic drag. This equation can be rewritten as

(1)

With and since 1i.e., 2, Eq. 1 can be simplified to

(2)

By using and 

Eq. 2 becomes

or

(3)U 5
64.5

1CD

U 5 c 411.84 slugs/ft
32 132.2 ft/s

22 10.125 ft2
312.38 3 1023 slugs/ft

32CD

d 1/2

D 5 1.5 in. 5 0.125 ft,rice 5 1.84 slugs/ft
3, rair 5 2.38 3 1023 slugs/ft

3,

U 5 a4

3
 

rice

rair

 

gD

CD

b1/2

w @ FBgice @ gairV2 5 pD3
/6

1
2rairU

2 
p

4
 D2CD 5w 2 FB

d

w 5 gice V2FB 5 gair V2

w 5 d 1 FB

Anvil

Storm

movement

Ground

Hail
Updraft

Rain

40,000

to
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Compressibility Effects. The above discussion is restricted to incompressible flows.

If the velocity of the object is sufficiently large, compressibility effects become important

and the drag coefficient becomes a function of the Mach number, where c is the

speed of sound in the fluid. The introduction of Mach number effects complicates matters

because the drag coefficient for a given object is then a function of both Reynolds number

and Mach number— The Mach number and Reynolds number effects are

often closely connected because both are directly proportional to the upstream velocity. For

example, both Re and Ma increase with increasing flight speed of an airplane. The changes

in due to a change in U are due to changes in both Re and Ma.

The precise dependence of the drag coefficient on Re and Ma is generally quite com-

plex 1Ref. 132. However, the following simplifications are often justified. For low Mach num-

bers, the drag coefficient is essentially independent of Ma as is indicated in Fig. 9.23. For

this situation, if or so, compressibility effects are unimportant. On the other hand,

for larger Mach number flows, the drag coefficient can be strongly dependent on Ma, with

only secondary Reynolds number effects.

For most objects, values of increase dramatically in the vicinity of 1i.e., sonic

flow2. This change in character, indicated by Fig. 9.24, is due to the existence of shock waves

1extremely narrow regions in the flow field across which the flow parameters change in a nearly

discontinuous manner2, which are discussed in Chapter 11. Shock waves, which cannot exist

in subsonic flows, provide a mechanism for the generation of drag that is not present in the rel-

atively low-speed subsonic flows. (See the photograph at the beginning of Chapter 11.)

The character of the drag coefficient as a function of Mach number is different for

blunt bodies than for sharp bodies. As is shown in Fig. 9.24, sharp-pointed bodies develop

Ma 5 1CD

Ma 6 0.5

CD

CD 5 f1Re, Ma2.

Ma 5 U/c,
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The drag coeffi-

cient is usually in-

dependent of Mach

number for Mach

numbers up to ap-

proximately 0.5.

where U is in To determine U, we must know Unfortunately, is a function of

the Reynolds number 1see Fig. 9.212, which is not known unless U is known. Thus, we must

use an iterative technique similar to that done with the Moody chart for certain types of pipe

flow problems 1see Section 8.52.
From Fig. 9.21 we expect that is on the order of 0.5. Thus, we assume 

and from Eq. 3 obtain

The corresponding Reynolds number 1assuming 2 is

For this value of Re we obtain from Fig. 9.21, Thus, our assumed value of 

was correct. The corresponding value of U is

(Ans)

This result was obtained by using standard sea level properties for the air. If conditions at

20,000 ft altitude are used 1i.e., from Table C.1, and 

2, the corresponding result is 

Clearly, an airplane flying through such an updraft would feel its effects 1even if it were

able to dodge the hail2. As seen from Eq. 2, the larger the hail, the stronger the necessary

updraft. Hailstones greater than 6 in. in diameter have been reported. In reality, a hailstone

is seldom spherical and often not smooth. However, the calculated updraft velocities are in

agreement with measured values.

U 5 125 ft/s 5 85.2 mph.3.324 3 1027 lb # s/ft 
2

m 5rair 5 1.267 3 1023 slugs/ft
3

U 5 91.2 ft/s 5 62.2 mph

CD 5 0.5CD 5 0.5.

Re 5
UD

n
5

91.2 ft/s 10.125 ft2

1.57 3 1024 ft2
/s

5 7.26 3 104

n 5 1.57 3 1024 ft2
/s

U 5
64.5

10.5
5 91.2 ft/s

CD 5 0.5CD

CDCD.ft/s.



their maximum drag coefficient in the vicinity of 1sonic flow2, whereas the drag co-

efficient for blunt bodies increases with Ma far above This behavior is due to the

nature of the shock wave structure and the accompanying flow separation. The leading edges

of wings for subsonic aircraft are usually quite rounded and blunt, while those of supersonic

aircraft tend to be quite pointed and sharp. More information on these important topics can

be found in standard texts about compressible flow and aerodynamics 1Refs. 9, 10, 292.

Surface Roughness. As is indicated in Fig. 9.15, the drag on a flat plate parallel

to the flow is quite dependent on the surface roughness, provided the boundary layer flow is

Ma 5 1.

Ma 5 1
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■ F I G U R E  9 . 2 3

Drag coefficient as a func-
tion of Mach number for
two-dimensional objects 
in subsonic flow (Ref. 5).

■ F I G U R E  9 . 2 4

Drag coefficient as a function
of Mach number for super-
sonic flow (adapted from 
Ref. 19).
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turbulent. In such cases the surface roughness protrudes through the laminar sublayer adja-

cent to the surface 1see Section 8.42 and alters the wall shear stress. In addition to the in-

creased turbulent shear stress, surface roughness can alter the Reynolds number at which the

boundary layer flow becomes turbulent. Thus, a rough flat plate may have a larger portion

of its length covered by a turbulent boundary layer than does the corresponding smooth plate.

This also acts to increase the net drag on the plate.

In general, for streamlined bodies, the drag increases with increasing surface rough-

ness. Great care is taken to design the surfaces of airplane wings to be as smooth as possi-

ble, since protruding rivets or screw heads can cause a considerable increase in the drag. On

the other hand, for an extremely blunt body, such as a flat plate normal to the flow, the drag

is independent of the surface roughness, since the shear stress is not in the upstream flow di-

rection and contributes nothing to the drag.

For blunt bodies like a circular cylinder or sphere, an increase in surface roughness can

actually cause a decrease in the drag. This is illustrated for a sphere in Fig. 9.25. As is dis-

cussed in Section 9.2.6, when the Reynolds number reaches the critical value 1
for a smooth sphere2, the boundary layer becomes turbulent and the wake region behind the

sphere becomes considerably narrower than if it were laminar 1see Fig. 9.172. The result is a

considerable drop in pressure drag with a slight increase in friction drag, combining to give

a smaller overall drag 1and 2.
The boundary layer can be tripped into turbulence at a smaller Reynolds number by

using a rough-surfaced sphere. For example, the critical Reynolds number for a golf ball is

approximately In the range the drag on the stan-

dard rough 1i.e., dimpled2 golf ball is considerably less 

than for the smooth ball. As is shown in Example 9.12, this is precisely the Reynolds num-

ber range for well-hit golf balls—hence, the reason for dimples on golf balls. The Reynolds

number range for well-hit table tennis balls is less than Thus, table tennis

balls are smooth.

Re 5 4 3 104.

1DDrough/CDsmooth < 0.25/0.5 5 0.52
4 3 104

6 Re 6 4 3 105,Re 5 4 3 104.

CD

Re 5 3 3 105
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■ F I G U R E  9 . 2 5 The effect of surface roughness on the drag coefficient of a sphere in
the Reynolds number range for which the laminar boundary layer becomes turbulent (Ref. 5).
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EXAMPLE

9.12

A well-hit golf ball 1diameter in., weight 2 can travel at 

as it leaves the tee. A well-hit table tennis ball 1diameter weight 

can travel at as it leaves the paddle. Determine the drag on a standard golf ball,

a smooth golf ball, and a table tennis ball for the conditions given. Also determine the de-

celeration of each ball for these conditions.

SOLUTION

For either ball, the drag can be obtained from

(1)

where the drag coefficient, is given in Fig. 9.25 as a function of the Reynolds number

and surface roughness. For the golf ball in standard air

while for the table tennis ball

The corresponding drag coefficients are for the standard golf ball, for

the smooth golf ball, and for the table tennis ball. Hence, from Eq. 1 for the stan-

dard golf ball

(Ans)

for the smooth golf ball

(Ans)

and for the table tennis ball

(Ans)

The corresponding decelerations are where m is the mass of the

ball. Thus, the deceleration relative to the acceleration of gravity, 1i.e., the number of g’s

deceleration2 is or

(Ans)

(Ans)

and

(Ans)

Note that there is a considerably smaller deceleration for the rough golf ball than for the

smooth one. Because of its much larger drag-to-mass ratio, the table tennis ball slows down

a

g
5

0.0263 lb

0.00551 lb
5 4.77 for the table tennis ball

a

g
5

0.378 lb

0.0992 lb
5 3.81 for the smooth golf ball

a

g
5

0.185 lb

0.0992 lb
5 1.86 for the standard golf ball

a/g 5 d/w

a/g

a 5 d/m 5 gd/w,

d 5
1

2
 12.38 3 1023 slugs/ft

32 160 ft/s22 p
4

 a1.50

12
 ftb2

 10.502 5 0.0263 lb

d 5
1

2
 12.38 3 1023 slugs/ft

32 1200 ft/s22 p
4

 a1.69

12
 ftb2

 10.512 5 0.378 lb

d 5
1

2
 12.38 3 1023 slugs/ft

32 1200 ft/s22 p
4

 a1.69

12
 ftb2

 10.252 5 0.185 lb

CD 5 0.50

CD 5 0.51CD 5 0.25

Re 5
UD

n
5
160 ft/s2 11.50/12 ft2
1.57 3 1024 ft2

/s
5 4.78 3 104

Re 5
UD

n
5
1200 ft/s2 11.69/12 ft2

1.57 3 1024 ft2
/s

5 1.79 3 105

CD,

d 5
1

2
 rU 2 

p

4
 D2CD

U 5 60 ft/s

w5 0.00551 lb2D 51.50 in.,

U 5 200 ft/sw 5 0.0992 lbD 5 1.69
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relatively quickly and does not travel as far as the golf ball. 1Note that with the

standard golf ball has a drag of and a deceleration of consid-

erably less than the of the table tennis ball. Conversely, a table tennis ball hit

from a tee at would decelerate at a rate of or It would

not travel nearly as far as the golf ball.2
The Reynolds number range for which a rough golf ball has smaller drag than a smooth

one 1i.e., to 2 corresponds to a flight velocity range of 

This is comfortably within the range of most golfers. As is discussed in Section 9.4.2, the

dimples 1roughness2 on a golf ball also help produce a lift 1due to the spin of the ball2 that

allows the ball to travel farther than a smooth ball.

45 6 U 6 450 ft/s.4 3 1054 3 104

a/g 5 54.1.a 5 1740 ft/s
2,200 ft/s

a/g 5 4.77

a/g 5 0.202,d 5 0.0200 lb

U 5 60 ft/s

Froude Number Effects. Another parameter on which the drag coefficient may be

strongly dependent is the Froude number, As is discussed in Chapter 10, the

Froude number is a ratio of the free-stream speed to a typical wave speed on the interface

of two fluids, such as the surface of the ocean. An object moving on the surface, such as a

ship, often produces waves that require a source of energy to generate. This energy comes

from the ship and is manifest as a drag. [Recall that the rate of energy production 1power2
equals speed times force.] The nature of the waves produced often depends on the Froude

number of the flow and the shape of the object—the waves generated by a water skier “plow-

ing” through the water at a low speed 1low Fr2 are different than those generated by the skier

“planing” along the surface at high speed 1large Fr2.
Thus, the drag coefficient for surface ships is a function of Reynolds number 1viscous

effects2 and Froude number 1wave-making effects2; As was discussed in

Chapter 7, it is often quite difficult to run model tests under conditions similar to those of

CD 5 f1Re, Fr2.

Fr 5 U/1g/.

■ F I G U R E  9 . 2 6 Typical drag coefficient data as a function of Froude number and
hull characteristics for that portion of the drag due to the generation of waves (adapted from
Ref. 25).
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ρ
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√,g

The drag coefficient

for surface ships is

a function of the

Froude number.

V9.7 Jet ski



the prototype 1i.e., same Re and Fr for surface ships2. Fortunately, the viscous and wave effects

can often be separated, with the total drag being the sum of the drag of these individual ef-

fects. A detailed account of this important topic can be found in standard texts 1Ref. 112.
As is indicated in Fig. 9.26, the wave-making drag, can be a complex function of

the Froude number and the body shape. The rather “wiggly” dependence of wave drag co-

efficient, on the Froude number shown is typical. It results from the

fact that the structure of the waves produced by the hull is a strong function of the ship speed

or, in dimensionless form, the Froude number. This wave structure is also a function of the

body shape. For example, the bow wave, which is often the major contributor to the wave

drag, can be reduced by use of an appropriately designed bulb on the bow, as is indicated in

Fig. 9.26. In this instance the streamlined body 1hull without a bulb2 has more drag than the

less streamlined one.

Composite Body Drag. Approximate drag calculations for a complex body can of-

ten be obtained by treating the body as a composite collection of its various parts. For example,

the drag on an airplane can be approximated by adding the drag produced by its various com-

ponents—the wings, fuselage, tail section, and so on. Considerable care must be used in

such an approach because of the interactions between the various parts. For example, the

flow past the wing root 1near the wing-fuselage intersection2 is considerably altered by the

fuselage. Hence, it may not be correct to merely add the drag of the components to obtain

the drag of the entire object, although such approximations are often reasonable.

CDw 5 dw/ 1rU 2
/

2
/22,

dw,
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EXAMPLE

9.13

A 60-mph 1i.e., 88-fps2 wind blows past the water tower shown in Fig. E9.13a. Estimate the

moment 1torque2, M, needed at the base to keep the tower from tipping over.

SOLUTION

We treat the water tower as a sphere resting on a circular cylinder and assume that the total

drag is the sum of the drag from these parts. The free-body diagram of the tower is shown

in Fig. E.9.13b. By summing moments about the base of the tower, we obtain

(1)

where

(2)

and

(3)dc 5
1

2
 rU 2bDcCDc

ds 5
1

2
 rU 2 

p

4
 D2

sCDs

M 5 ds ab 1
Ds

2
b 1 dc ab

2
b

The drag on a com-

plex body can be

approximated as

the sum of the drag

on its parts.

U = 60 mph =

     88 fps

Ds = 40 ft

Dc = 15 ft

b = 50 ft
b

Dc

Ds
$s

$c

b + Ds /2

b/2

Rx

Ry

M

(b)(a)

0

■ F I G U R E  E 9 . 1 3
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The aerodynamic drag on automobiles provides an example of the use of composite

bodies. The power required to move a car along a level street is used to overcome the rolling

resistance and the aerodynamic drag. For speeds above approximately 30 mph, the aerody-

namic drag becomes a significant contribution to the net propulsive force needed. The con-

tribution of the drag due to various portions of car 1i.e., front end, windshield, roof, rear end,

windshield peak, rear roofytrunk, and cowl2 have been determined by numerous model and

full-sized tests as well as by numerical calculations. As a result it is possible to predict the

aerodynamic drag on cars of a wide variety of body styles.

As is indicated in Fig. 9.27, the drag coefficient for cars has decreased rather contin-

uously over the years. This reduction is a result of careful design of the shape and the de-

tails 1such as window molding, rear view mirrors, etc.2. An additional reduction in drag has

been accomplished by a reduction of the projected area. The net result is a considerable in-

crease in the gas mileage, especially at highway speeds. Considerable additional information

about the aerodynamics of road vehicles can be found in the literature 1Ref. 302.

are the drag on the sphere and cylinder, respectively. For standard atmospheric conditions,

the Reynolds numbers are

and

The corresponding drag coefficients, and can be approximated from Fig. 9.21 as

Note that the value of was obtained by an extrapolation of the given data to Reynolds

numbers beyond those given 1a potentially dangerous practice!2. From Eqs. 2 and 3 we obtain

and

From Eq. 1 the corresponding moment needed to prevent the tower from tipping is

(Ans)

The above result is only an estimate because 1a2 the wind is probably not uniform from

the top of the tower to the ground, 1b2 the tower is not exactly a combination of a smooth

sphere and a circular cylinder, 1c2 the cylinder is not of infinite length, 1d2 there will be some

interaction between the flow past the cylinder and that past the sphere so that the net drag is

not exactly the sum of the two, and 1e2 a drag coefficient value was obtained by extrapola-

tion of the given data. However, such approximate results are often quite accurate.

M 5 3470 lb a50 ft 1
40

2
 ftb 1 4840 lb a50

2
 ftb 5 3.64 3 105  ft # lb

dc 5 0.512.38 3 1023 slugs/ft
32 188 ft/s22150 ft 3 15 ft2 10.72 5 4840 lb

ds 5 0.512.38 3 1023 slugs/ft
32 188 ft/s22 p

4
 140 ft2210.32 5 3470 lb

CDs

CDs < 0.3 and CDc < 0.7

CDc,CDs

Rec 5
UDc

n
5
188 ft/s2 115 ft2

1.57 3 1024 ft2
/s

5 8.41 3 106

 Res 5
UDs

n
5
188 ft/s2 140 ft2

1.57 3 1024 ft2
/s

5 2.24 3 107

Considerable effort

has gone into re-

ducing the aerody-

namic drag of auto-

mobiles.

V9.8 Drag on a

truck



The effect of several important parameters 1shape, Re, Ma, Fr, and roughness2 on the

drag coefficient for various objects has been discussed in this section. As stated previously,

drag coefficient information for a very wide range of objects is available in the literature.

Some of this information is given in Figs. 9.28, 9.29, and 9.30 for a variety of two- and three-

dimensional, natural and manmade objects. Recall that a drag coefficient of unity is equiva-

lent to the drag produced by the dynamic pressure acting on an area of size A. That is,

if Typical nonstreamlined objects have drag coefficients

on this order.

CD 5 1.d 5
1
2rU

2ACD 5
1
2rU

2A
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9.4 Lift

As is indicated in Section 9.1, any object moving through a fluid will experience a net force

of the fluid on the object. For symmetrical objects, this force will be in the direction of the

free stream—a drag, If the object is not symmetrical 1or if it does not produce a sym-

metrical flow field, such as the flow around a rotating sphere2, there may also be a force nor-

mal to the free stream—a lift, Considerable effort has been put forth to understand the

various properties of the generation of lift. Some objects, such as an airfoil, are designed to

generate lift. Other objects are designed to reduce the lift generated. For example, the lift on

a car tends to reduce the contact force between the wheels and the ground, causing reduc-

tion in traction and cornering ability. It is desirable to reduce this lift.

9.4.1 Surface Pressure Distribution

The lift can be determined from Eq. 9.2 if the distributions of pressure and wall shear stress

around the entire body are known. As is indicated in Section 9.1, such data are usually not

known. Typically, the lift is given in terms of the lift coefficient.

(9.39)

which is obtained from experiments, advanced analysis, or numerical considerations. The

lift coefficient is a function of the appropriate dimensionless parameters and, as the drag 

CL 5

l

1
2rU

2A

l.

d.

The lift coefficient

is a dimensionless

form of the lift.

0.8

0.6

0.4

0.2

0
1920 1930 1940 1950 1960

Year

1970 1980 1990 2000

CD

■ F I G U R E  9 . 2 7 The historical trend of streamlining automobiles to reduce their aero-
dynamic drag and increase their miles per gallon (adapted from Ref. 5).



coefficient, can be written as

The Froude number, Fr, is important only if there is a free surface present, as with an un-

derwater “wing” used to support a high-speed hydrofoil surface ship. Often the surface rough-

ness, is relatively unimportant in terms of lift—it has more of an effect on the drag. The

Mach number, Ma, is of importance for relatively high-speed subsonic and supersonic flows

and the Reynolds number effect is often not great. The most important pa-

rameter that affects the lift coefficient is the shape of the object. Considerable effort has gone

into designing optimally shaped lift-producing devices. We will emphasize the effect of the

1i.e., Ma 7 0.82,

e,

CL 5 f1shape, Re, Ma, Fr, e//2
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The lift coefficient

is a function of

other dimensionless

parameters.

■ F I G U R E  9 . 2 8 Typical drag coefficients for regular two-dimensional objects (Refs. 5
and 6).

D

R

Square rod

with rounded

corners

DR

Rounded

equilateral

triangle

D
Semicircular

shell

Semicircular

cylinder
D

D T-beam

I-beamD

D Angle

D

Hexagon

,

D Rectangle

Shape
Reference area

A
(b = length)

A = bD

A = bD

A = bD

A = bD

A = bD

A = bD

A = bD

A = bD

A = bD

Drag coefficient

CD =
$________

        

U2A1__
2

ρ

R/D CD

0
0.02

0.17
0.33

2.2
2.0

1.2
1.0

R/D CD

0
0.02
0.08
0.25

1.4
1.2
1.3
1.1

2.1
2.0
1.9
1.3

2.3

1.1

2.15

1.15

1.80

1.65

1.98

1.82

2.05

1.0

,/D CD

0.1

0.5

0.65

1.0

2.0

3.0

1.9

2.5

2.9

2.2

1.6

1.3

Reynolds number

Re =   UD/ ρ

Re = 105

Re = 105

Re = 2 × 104

Re > 104

Re > 104

Re > 104

Re > 104

Re > 104

Re = 105

<

µ



shape on lift—the effects of the other dimensionless parameters can be found in the litera-

ture 1Refs. 13, 14, 292.
Most common lift-generating devices 1i.e., airfoils, fans, spoilers on cars, etc.2 operate

in the large Reynolds number range in which the flow has a boundary layer character, with

viscous effects confined to the boundary layers and wake regions. For such cases the wall

shear stress, contributes little to the lift. Most of the lift comes from the surface pressure

distribution. A typical pressure distribution on a moving car is shown in Fig. 9.31. The dis-

tribution, for the most part, is consistent with simple Bernoulli equation analysis. Locations

with high-speed flow 1i.e., over the roof and hood2 have low pressure, while locations with

low-speed flow 1i.e., on the grill and windshield2 have high pressure. It is easy to believe that

the integrated effect of this pressure distribution would provide a net upward force.

tw,
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Usually most lift

comes from pres-

sure forces, not vis-

cous forces.

■ F I G U R E  9 . 2 9 Typical drag coefficients for regular three-dimensional objects 
(Ref. 5).
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■ F I G U R E  9 . 3 0 Typical drag coefficients for objects of interest (Refs. 5, 6, 15, and 20).
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EXAMPLE

9.14

U, p0

Denotes p > p0

Denotes p < p0

For objects operating in very low Reynolds number regimes viscous

effects are important, and the contribution of the shear stress to the lift may be as important

as that of the pressure. Such situations include the flight of minute insects and the swimming

of microscopic organisms. The relative importance of and p in the generation of lift in a

typical large Reynolds number flow is shown in Example 9.14.

tw

1i.e., Re 6 12,

■ F I G U R E  9 . 3 1 Pressure distribution on the surface of an automobile.

The relative impor-

tance of shear

stress and pressure

effects depends

strongly on the

Reynolds number.

When a uniform wind of velocity U blows past the semicircular building shown in Fig. E9.14a,

the wall shear stress and pressure distributions on the outside of the building are as given

previously in Figs. E9.8b and E9.9a, respectively. If the pressure in the building is atmos-

pheric 1i.e., the value, far from the building2, determine the lift coefficient and the lift on

the roof.

SOLUTION

From Eq. 9.2 we obtain the lift as

(1)

As is indicated in Fig. E9.14a, we assume that on the inside of the building the pressure is

uniform, and that there is no shear stress. Thus, Eq. 1 can be written as

or

(2)

where b and D are the length and diameter of the building, respectively, and 

Equation 2 can be put into dimensionless form by using the dynamic pressure, plan-

form area, and dimensionless shear stress

to give

(3)

The values of the two integrals in Eq. 3 can be obtained by determining the area under the

curves of and plotted in Figs. E9.14bF1u2 cos u versus u3 1p 2 p02/ 1rU 2
/22 4  sin u versus u

l 5
1

2
 rU 2A c21

2
 #
p

0

 
1p 2 p02

1
2rU

2
 sin u du 1

1

21Re
 #
p

0

 F1u2 cos u du d

F1u2 5 tw1Re21/2
/ 1rU 2

/22
A 5 bD,

rU 2
/2,

dA 5 b1D/22du.
l 5

bD

2
 c2#

p

0

 1p 2 p02 sin u du 1 #
p

0

 tw cos u du d

l 5 2#
p

0

 1p 2 p02 sin u b aD

2
b du 1 #

p

0

 tw cos u b aD

2
b du

p 5 p0,

l 5 2#  p sin u dA 1 #  tw cos u dA

p0,
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and E9.14c. The results are

and

Thus, the lift is

or

(Ans)

and

(4) (Ans)CL 5
l

1

2rU
2A

5 0.88 1
1.96

1Re

l 5 a0.88 1
1.96

1Re
b a1

2
 rU 2Ab

l 5
1

2
 rU 2A c a21

2
b 121.762 1

1

21Re
 13.922 d

#
p

0

 F1u2 cos u du 5 3.92

#
p

0

 
1p 2 p02

1

2rU
2

 sin u du 5 21.76

d

w dA
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Consider a typical situation with and standard at-

mospheric conditions which gives

a Reynolds number of

Hence, the lift coefficient is

Note that the pressure contribution to the lift coefficient is 0.88 whereas that due to the

wall shear stress is only The Reynolds number dependency of is

quite minor. The lift is pressure dominated. Recall from Example 9.9 that this is also true

for the drag on a similar shape.

From Eq. 4, we obtain the lift for the assumed conditions as

or

There is a considerable tendency for the building to lift off the ground. Clearly this is due

to the object being nonsymmetrical. The lift force on a complete circular cylinder is zero,

although the fluid forces do tend to pull the upper and lower halves apart.

l 5 944 lb

l 5
1
2rU

2ACL 5
1
2 12.38 3 1023 slugs/ft

32 130 ft/s2
2120 ft 3 50 ft2 10.8812

CL1.96/ 1Re1/22 5 0.001.

CL 5 0.88 1
1.96

13.82 3 10621/ 2
5 0.88 1 0.001 5 0.881

Re 5
UD

n
5
130 ft/s2 120 ft2

1.57 3 1024 ft2
/s

5 3.82 3 106

1r 5 2.38 3 1023 slugs/ft
3 and n 5 1.57 3 1024 ft2

/s2,
D 5 20 ft, U 5 30 ft/s, b 5 50 ft,

A typical device designed to produce lift does so by generating a pressure distribution

that is different on the top and bottom surfaces. For large Reynolds number flows these pres-

sure distributions are usually directly proportional to the dynamic pressure, with vis-

cous effects being of secondary importance. Two airfoils used to produce lift are indicated

in Fig. 9.32. Clearly the symmetrical one cannot produce lift unless the angle of attack,

is nonzero. Because of the asymmetry of the nonsymmetric airfoil, the pressure distributions

on the upper and lower surfaces are different, and a lift is produced even with Of

course, there will be a certain value of 1less than zero for this case2 for which the lift is

zero. For this situation, the pressure distributions on the upper and lower surfaces are dif-

ferent, but their resultant 1integrated2 pressure forces will be equal and opposite.

a

a 5 0.

a,

rU 2
/2,
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Symmetrical and nonsymmetrical
airfoils.
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U

Symmetrical

Nonsymmetrical

c

α

U

Most lift-producing

objects are not sym-

metrical.



Since most airfoils are thin, it is customary to use the planform area, in the

definition of the lift coefficient. Here b is the length of the airfoil and c is the chord length—

the length from the leading edge to the trailing edge as indicated in Fig. 9.32. Typical lift

coefficients so defined are on the order of unity. That is, the lift force is on the order of the

dynamic pressure times the planform area of the wing, The wing loading,

defined as the average lift per unit area of the wing, therefore, increases with speed.

For example, the wing loading of the 1903 Wright Flyer aircraft was while for the

present-day Boeing 747 aircraft it is The wing loading for a bumble bee is ap-

proximately 1Ref. 152.
Typical lift and drag coefficient data as a function of angle of attack, and aspect ra-

tio, are indicated in Figs. 9.33a and 9.33b. The aspect ratio is defined as the ratio of the

square of the wing length to the planform area, If the chord length, c, is constant

along the length of the wing 1a rectangular planform wing2, this reduces to 

In general, the lift coefficient increases and the drag coefficient decreases with an in-

crease in aspect ratio. Long wings are more efficient because their wing tip losses are 

a 5 b/c.

a 5 b2
/A.

a,

a,

1 lb/ft
2

150 lb/ft
2.

1.5 lb/ft
2,

l/A,

l < 1rU 2
/22A.
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■ F I G U R E  9 . 3 3 Typical lift 
and drag coefficient data as a func-
tion of angle of attack and the aspect 
ratio of the airfoil: (a) lift coefficient,
(b) drag coefficient.
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relatively more minor than for short wings. The increase in drag due to the finite length

of the wing is often termed induced drag. It is due to the interaction of the com-

plex swirling flow structure near the wing tips 1see Fig. 9.372 and the free stream 1Ref. 132.
High-performance soaring airplanes and highly efficient soaring birds 1i.e., the albatross and

sea gull2 have long, narrow wings. Such wings, however, have considerable inertia that in-

hibits rapid maneuvers. Thus, highly maneuverable fighter or acrobatic airplanes and birds

1i.e., the falcon2 have small-aspect-ratio wings.

Although viscous effects and the wall shear stress contribute little to the direct gener-

ation of lift, they play an extremely important role in the design and use of lifting devices.

This is because of the viscosity-induced boundary layer separation that can occur on non-

streamlined bodies such as airfoils that have too large an angle of attack 1see Fig. 9.182. As

is indicated in Fig. 9.33, up to a certain point, the lift coefficient increases rather steadily

with the angle of attack. If is too large, the boundary layer on the upper surface separates,

the flow over the wing develops a wide, turbulent wake region, the lift decreases, and the

drag increases. The airfoil stalls. Such conditions are extremely dangerous if they occur while

the airplane is flying at a low altitude where there is not sufficient time and altitude to re-

cover from the stall.

In many lift-generating devices the important quantity is the ratio of the lift to drag de-

veloped, Such information is often presented in terms of versus 

as is shown in Fig. 9.34a, or in a lift-drag polar of versus with as a parameter, as

is shown in Fig. 9.34b. The most efficient angle of attack 1i.e., largest 2 can be found

by drawing a line tangent to the curve from the origin, as is shown in Fig. 9.34b.CL 2 CD

CL /CD

aCDCL

a,CL /CDl/d 5 CL /CD.

a

1a 6 ` 2
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At large angles of

attack the boundary

layer separates and

the wing stalls.

■ F I G U R E  9 . 3 4 Two representations of the same lift and drag data for a typical air-
foil: (a) lift-to-drag ratio as a function of angle of attack, with the onset of boundary layer sep-
aration on the upper surface indicated by the occurrence of stall, (b) the lift and drag polar di-
agram with the angle of attack indicated (Ref. 27).
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High-performance airfoils generate lift that is perhaps 100 or more times greater than their

drag. This translates into the fact that in still air they can glide a horizontal distance of 100 m

for each 1 m drop in altitude.

As is indicated above, the lift and drag on an airfoil can be altered by changing the an-

gle of attack. This actually represents a change in the shape of the object. Other shape changes

can be used to alter the lift and drag when desirable. In modern airplanes it is common to

utilize leading edge and trailing edge flaps as is shown in Fig. 9.35. To generate the neces-

sary lift during the relatively low-speed landing and takeoff procedures, the airfoil shape is

altered by extending special flaps on the front andyor rear portions of the wing. Use of the

flaps considerably enhances the lift, although it is at the expense of an increase in the drag

1the airfoil is in a “dirty” configuration2. This increase in drag is not of much concern dur-

ing landing and takeoff operations—the decrease in landing or takeoff speed is more im-

portant than is a temporary increase in drag. During normal flight with the flaps retracted

1the “clean” configuration2, the drag is relatively small, and the needed lift force is achieved

with the smaller lift coefficient and the larger dynamic pressure 1higher speed2.
The use of the complex flap systems for modern aircraft has proved to be an impor-

tant breakthrough in aeronautics. Actually, certain birds use the leading edge flap concept.

Some species have special feathers on the leading edge of their wings that extend as a lead-

ing edge flap when low-speed flight is required 1such as when their wings are fully extended

during landing2 1Ref. 152.
A wide variety of lift and drag information for airfoils can be found in standard aero-

dynamics books 1Ref. 13, 14, 292.

9.4 Lift ■ 601

Flaps alter the lift

and drag character-

istics of a wing.

No flaps

Trailing edge

slotted flap

Double slotted

trailing edge flaps

(Data not

shown)

Leading

edge flap

3.0

2.0

1.0

0
0 0.1 0.2 0.3

CD

CL

■ F I G U R E  9 . 3 5

Typical lift and drag alter-
ations possible with the use
of various types of flap de-
signs (Ref. 21).



602 ■ Chapter 9 / Flow Over Immersed Bodies

EXAMPLE

9.15

In 1977 the Gossamer Condor won the Kremer prize by being the first human-powered air-

craft to complete a prescribed figure-of-eight course around two turning points 0.5 mi apart1Ref. 222. The following data pertain to this aircraft:

Determine the lift coefficient, and the power, required by the pilot.

SOLUTION

For steady flight conditions the lift must be exactly balanced by the weight, or

Thus,

where and for

standard air. This gives

(Ans)

a reasonable number. The overall-lift-to drag ratio for the aircraft is 

23.7.
The product of the power that the pilot supplies and the power train efficiency equals

the useful power needed to overcome the drag, That is,

where

Thus,

(1)

or

(Ans) p 5 166 ft # lb/s a 1 hp

550 ft # lb/s
b 5 0.302 hp

 p 5
12.38 3 1023 slugs/ft

32 1720 ft22 10.0462 115 ft/s23
210.82

p 5
dU

h
5

1
2rU

2ACDU

h
5
rACDU 3

2h

d 5
1
2rU

2ACD

hp 5 dU

d.

CL /CD 5 1.09/0.046 5

CL 5
21210 lb2

12.38 3 1023 slugs/ft
32 115 ft/s221720 ft22 5 1.09

r 5 2.38 3 1023 slugs/ft
3A 5 bc 5 96 ft 3 7.5 ft 5 720 ft2, w 5 210 lb,

CL 5
2w

rU 2A

w 5 l 5
1
2rU

2ACL

p,CL,

 power train efficiency 5 h 5 power to overcome drag/pilot power 5 0.8

 drag coefficient 5 CD 5 0.046 1based on planform area2
 weight 1including pilot2 5w 5 210 lb

 wing size 5 b 5 96 ft, c 5 7.5 ft 1average2
 flight speed 5 U 5 15 ft/s



9.4.2 Circulation

Since viscous effects are of minor importance in the generation of lift, it should be possible

to calculate the lift force on an airfoil by integrating the pressure distribution obtained from

the equations governing inviscid flow past the airfoil. That is, the potential flow theory dis-

cussed in Chapter 6 should provide a method to determine the lift. Although the details are

beyond the scope of this book, the following is found from such calculations 1Ref. 42.
The calculation of the inviscid flow past a two-dimensional airfoil gives a flow field

as indicated in Fig. 9.36. The predicted flow field past an airfoil with no lift 1i.e., a sym-

metrical airfoil at zero angle of attack, Fig. 9.36a2 appears to be quite accurate 1except for

the absence of thin boundary layer regions2. However, as is indicated in Fig. 9.36b, the 
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This power level is obtainable by a well-conditioned athlete 1as is indicated by the fact that

the flight was successfully completed2. Note that only 80% of the pilot’s power 1i.e.,

which corresponds to a drag of 2 is needed to force the

aircraft through the air. The other 20% is lost because of the power train inefficiency. Note

from Eq. 1 that for a constant drag coefficient the power required increases as —a dou-

bling of the speed to would require an eightfold increase in power 1i.e., 2.42 hp, well

beyond the range of any human2.
30 ft/s

U3

d 5 8.86 lb0.8 3 0.302 5 0.242 hp,

Inviscid flow analy-

sis can be used to

obtain ideal flow

past airfoils.

(a)

(b)

(c)

+ =

(d)

   = 0

+ = 0

α

   > 0

+ = 0

α

   > 0

+ > 0

α

"(a) + circulation = (c)"
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Inviscid flow past an
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zero angle of attacks;
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nonzero angle of at-
tack—no lift, flow
near trailing edge not
realistic; (c) same con-
ditions as for (b) ex-
cept circulation has
been added to the
flow—nonzero lift, re-
alistic flow; (d) super-
position of flows to
produce the final flow
past the airfoil.



calculated flow past the same airfoil at a nonzero angle of attack 1but one small enough so

that boundary layer separation would not occur2 is not proper near the trailing edge. In ad-

dition, the calculated lift for a nonzero angle of attack is zero—in conflict with the known

fact that such airfoils produce lift.

In reality, the flow should pass smoothly over the top surface as is indicated in

Fig. 9.36c, without the strange behavior indicated near the trailing edge in Fig. 9.36b. As is

shown in Fig. 9.36d, the unrealistic flow situation can be corrected by adding an appropri-

ate clockwise swirling flow around the airfoil. The results are twofold: 112 The unrealistic be-

havior near the trailing edge is eliminated 1i.e., the flow pattern of Fig. 9.36b is changed to

that of Fig. 9.36c2, and 122 the average velocity on the upper surface of the airfoil is increased

while that on the lower surface is decreased. From the Bernoulli equation concepts 1i.e.,

2, the average pressure on the upper surface is decreased and

that on the lower surface is increased. The net effect is to change the original zero lift con-

dition to that of a lift-producing airfoil.

The addition of the clockwise swirl is termed the addition of circulation. The amount

of swirl 1circulation2 needed to have the flow leave the trailing edge smoothly is a function

of the airfoil size and shape and can be calculated from potential flow 1inviscid2 theory 1see

Section 6.6.3 and Ref. 292. Although the addition of circulation to make the flow field

physically realistic may seem artificial, it has well-founded mathematical and physical

grounds. For example, consider the flow past a finite length airfoil, as is indicated in Fig. 9.37.

For lift-generating conditions the average pressure on the lower surface is greater than that

on the upper surface. Near the tips of the wing this pressure difference will cause some of

the fluid to attempt to migrate from the lower to the upper surface, as is indicated in Fig. 9.37b.

At the same time, this fluid is swept downstream, forming a trailing vortex 1swirl2 from each

wing tip 1see Fig. 4.32. It is speculated that the reason some birds migrate in vee-formation

is to take advantage of the updraft produced by the trailing vortex of the preceding bird. [It

p/g 1 V 2
/2g 1 z 5 constant
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Lift generated by
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length wing: (a) the
horseshoe vortex sys-
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is calculated that for a given expenditure of energy, a flock of 25 birds flying in vee-forma-

tion could travel 70% farther than if each bird were to fly separately 1Ref. 15.2]
The trailing vortices from the right and left wing tips are connected by the bound vor-

tex along the length of the wing. It is this vortex that generates the circulation that produces

the lift. The combined vortex system 1the bound vortex and the trailing vortices2 is termed a

horseshoe vortex. The strength of the trailing vortices 1which is equal to the strength of the

bound vortex2 is proportional to the lift generated. Large aircraft 1for example, a Boeing 7472
can generate very strong trailing vortices that persist for a long time before viscous effects

finally cause them to die out. Such vortices are strong enough to flip smaller aircraft out of

control if they follow too closely behind the large aircraft.

As is indicated above, the generation of lift is directly related to the production of a

swirl or vortex flow around the object. A nonsymmetric airfoil, by design, generates its own

prescribed amount of swirl and lift. A symmetric object like a circular cylinder or sphere,

which normally provides no lift, can generate swirl and lift if it rotates.

As is discussed in Section 6.6.3, the inviscid flow past a circular cylinder has the sym-

metrical flow pattern indicated in Fig. 9.38a. By symmetry the lift and drag are zero. How-

ever, if the cylinder is rotated about its axis in a stationary real fluid, the rotation

will drag some of the fluid around, producing circulation about the cylinder as in Fig. 9.38b.

When this circulation is combined with an ideal, uniform upstream flow, the flow pattern in-

dicated in Fig. 9.38c is obtained. The flow is no longer symmetrical about the horizontal

plane through the center of the cylinder; the average pressure is greater on the lower half of

the cylinder than on the upper half, and a lift is generated. This effect is called the Magnus

effect, after Heinrich Magnus 11802–18702, a German chemist and physicist who first in-

vestigated this phenomenon. A similar lift is generated on a rotating sphere. It accounts for

the various types of pitches in baseball 1i.e., curve ball, floater, sinker, etc.2, the ability of a

soccer player to hook the ball, and the hook or slice of a golf ball.

Typical lift and drag coefficients for a smooth, spinning sphere are shown in Fig. 9.39.

Although the drag coefficient is fairly independent of the rate of rotation, the lift coefficient

is strongly dependent on it. In addition 1although not indicated in the figure2, both and 

are dependent on the roughness of the surface. As was discussed in Section 9.3, in a certain

Reynolds number range an increase in surface roughness actually decreases the drag coeffi-

cient. Similarly, an increase in surface roughness can increase the lift coefficient because the

roughness helps drag more fluid around the sphere increasing the circulation for a given an-

gular velocity. Thus, a rotating, rough golf ball travels farther than a smooth one because the

drag is less and the lift is greater. However, do not expect a severely roughed up 1cut2 ball to

CDCL

1m Þ 02
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A spinning sphere

or cylinder can

generate lift.

■ F I G U R E  9 . 3 8 Inviscid flow past a circular cylinder: (a) uniform upstream flow
without circulation, (b) free vortex at the center of the cylinder, (c) combination of free vortex
and uniform flow past a circular cylinder giving nonsymmetric flow and a lift.
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work better—extensive testing has gone into obtaining the optimum surface roughness for

golf balls.
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EXAMPLE

9.16

A table tennis ball weighing with diameter is hit at a ve-

locity of with a back spin of angular velocity as is shown in Fig. E9.16. What

is the value of if the ball is to travel on a horizontal path, not dropping due to the accel-

eration of gravity?

v

vU 5 12 m/s

D 5 3.8 3 1022 m2.45 3 1022 N

■ F I G U R E  9 . 3 9 Lift and drag
coefficients for a spinning smooth
sphere (Ref. 23).
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SOLUTION

For horizontal flight, the lift generated by the spinning of the ball must exactly balance the

weight, of the ball so that

w 5 l 5
1
2rU

2ACL

w,

ω U
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Path without
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or

where the lift coefficient, can be obtained from Fig. 9.39. For standard atmospheric con-

ditions with we obtain

which, according to Fig. 9.39, can be achieved if

or

Thus,

(Ans)

Is it possible to impart this angular velocity to the ball? With larger angular velocities

the ball will rise and follow an upward curved path. Similar trajectories can be produced by

a well-hit golf ball—rather than falling like a rock, the golf ball trajectory is actually curved

up and the spinning ball travels a greater distance than one without spin. However, if top

spin is imparted to the ball 1as in an improper tee shot2 the ball will curve downward more

quickly than under the action of gravity alone—the ball is “topped” and a negative lift is

generated. Similarly, rotation about a vertical axis will cause the ball to hook or slice to one

side or the other.

v 5 1568 rad/s2 160 s/min2 11 rev/2p rad2 5 5420 rpm

v 5
2U10.92

D
5

2112 m/s2 10.92

3.8 3 1022 m
5 568 rad/s

vD

2U
5 0.9

CL 5
212.45 3 1022 N2

11.23 kg/m
32 112 m/s2

21p/42 13.8 3 1022 m22
5 0.244

r 5 1.23 kg/m
3

CL,

CL 5
2w

rU 21p/42D
2
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Review Problems

In the E-book, click here to go to a set of review problems

complete with answers and detailed solutions.

Problems

Note: Unless otherwise indicated use the values of fluid prop-
erties found in the tables on the inside of the front cover. Prob-
lems designated with an 1*2 are intended to be solved with the
aid of a programmable calculator or a computer. Problems des-
ignated with a 1†2 are “open ended” problems and require crit-
ical thinking in that to work them one must make various as-
sumptions and provide the necessary data. There is not a unique
answer to these problems.

In the E-book, answers to the even-numbered problems
can be obtained by clicking on the problem number. In the E-
book, access to the videos that accompany problems can be ob-
tained by clicking on the “video” segment (i.e., Video 9.3) of
the problem statement. The lab-type problems can be accessed
by clicking on the “click here” segment of the problem state-
ment.



9.1 Assume that water flowing past the equilateral trian-
gular bar shown in Fig. P9.1 produces the pressure distributions
indicated. Determine the lift and drag on the bar and the cor-
responding lift and drag coefficients 1based on frontal area2. Ne-
glect shear forces.

9.2 Fluid flows past the two-dimensional bar shown in
Fig. P9.2. The pressures on the ends of the bar are as shown,
and the average shear stress on the top and bottom of the bar
is Assume that the drag due to pressure is equal to the drag
due to viscous effects. (a) Determine in terms of the dy-
namic pressure, (b) Determine the drag coefficient for
this object.

*9.3 The pressure distribution on the 1-m-diameter circu-
lar disk in Fig. P9.3 is given in the table below. Determine the
drag on the disk.

9.4 The pressure distribution on a cylinder is approximated
by the two straight line segments shown in Fig. P9.4. Deter-
mine the drag coefficient for the cylinder. Neglect shear forces.

9.5 Repeat Problem 9.1 if the object is a cone 1made by ro-
tating the equilateral triangle about the horizontal axis through
its tip2 rather than a triangular bar.

9.6 A 17-ft-long kayak moves with a speed of s (see
Video V9.2). Would a boundary layer type flow be developed
along the sides of the boat? Explain.

9.7 Typical values of the Reynolds number for various an-
imals moving through air or water are listed below. For which
cases is inertia of the fluid important? For which cases do vis-
cous effects dominate? For which cases would the flow be lam-
inar; turbulent? Explain.

† 9.8 Estimate the Reynolds numbers associated with the
following objects moving through air: (a) a snow flake settling
to the ground, (b) a mosquito, (c) the space shuttle, (d) you
walking.

9.9 Approximately how fast can the wind blow past a 0.25-
in.-diameter twig if viscous effects are to be of importance

5 ft/

rU 2
/2.

tavg

tavg.
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p = 0.5   U2

U = 5 ft /s

p = –0.25   U2

b = length = 4 ft

Linear distribution

0.1 ft

ρ

ρ
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U

Width = b

p =

 10h

 h

avgU2ρ τ

avgτ

1__
2

p = –0.2 U2ρ
1__
2( )
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r

D = 1m

p = p(r)

p = –5 kN/m2

U
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90
0

–  U2ρ

  U2ρ

180
, deg
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2

p

θ

θ

U
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r (m) p (kN )

0 4.34

0.05 4.28

0.10 4.06

0.15 3.72

0.20 3.10

0.25 2.78

0.30 2.37

0.35 1.89

0.40 1.41

0.45 0.74

0.50 0.0

/m
2 Animal Speed Re

1a2 large whale 300,000,000

1b2 flying duck 300,000

1c2 large dragonfly 30,000

1d2 invertebrate larva 0.31e2 bacterium 0.00003 0.01 mm/s
 1 mm/s

 7 m/s

 20 m/s

 10 m/s



throughout the entire flow field 1i.e., 2? Explain. Repeat
for a 0.004-in.-diameter hair and a 6-ft-diameter smokestack.

9.10 A viscous fluid flows past a flat plate such that the
boundary layer thickness at a distance 1.3 m from the leading
edge is 12 mm. Determine the boundary layer thickness at dis-
tances of 0.20, 2.0, and 20 m from the leading edge. Assume
laminar flow.

9.11 If the upstream velocity of the flow in Problem 9.10
is determine the kinematic viscosity of the fluid.

9.12 Water flows past a flat plate with an upstream veloc-
ity of Determine the water velocity a distance
of 10 mm from the plate at distances of and

from the leading edge.

*9.13 A Pitot tube connected to a water-filled U-tube
manometer is used to measure the total pressure within a bound-
ary layer. Based on the data given in the table below, determine
the boundary layer thickness, the displacement thickness,
and the momentum thickness,

9.14 Because of the velocity deficit, in the bound-
ary layer, the streamlines for flow past a flat plate are not ex-
actly parallel to the plate. This deviation can be determined by
use of the displacement thickness, For air blowing past the
flat plate shown in Fig. P9.14, plot the streamline A–B that
passes through the edge of the boundary layer 
at point B. That is, plot for streamline A–B. Assume
laminar boundary layer flow.

9.15 Air enters a square duct through a 1-ft opening as is
shown in Fig. P9.15. Because the boundary layer displacement
thickness increases in the direction of flow, it is necessary to
increase the cross-sectional size of the duct if a constant

velocity is to be maintained outside the boundary

layer. Plot a graph of the duct size, d, as a function of x for
if U is to remain constant. Assume laminar flow.

9.16 A smooth, flat plate of length and width
is placed in water with an upstream velocity of

Determine the boundary layer thickness and the
wall shear stress at the center and the trailing edge of the plate.
Assume a laminar boundary layer.

9.17 An atmospheric boundary layer is formed when the
wind blows over the earth’s surface. Typically, such velocity
profiles can be written as a power law: where the con-
stants a and n depend on the roughness of the terrain. As is in-
dicated in Fig. P9.17, typical values are for urban ar-
eas, for woodland or suburban areas, and 
for flat open country 1Ref. 232. (a) If the velocity is 20 ftys at
the bottom of the sail on your boat what is the ve-
locity at the top of the mast (b) If the average ve-
locity is 10 mph on the tenth floor of an urban building, what
is the average velocity on the sixtieth floor?

9.18 A 30-story office building 1each story is 12 ft tall2 is
built in a suburban industrial park. Plot the dynamic pressure,

as a function of elevation if the wind blows at hurricane
strength 175 mph2 at the top of the building. Use the atmos-
pheric boundary layer information of Problem 9.17.

9.19 The typical shape of small cumulus clouds is as indi-
cated in Fig. P9.19. Based on boundary layer ideas, explain why
it is clear that the wind is blowing from right to left as indicated.

9.20 Show that by writing the velocity in terms of the simi-
larity variable and the function the momentum equa-
tion for boundary layer flow on a flat plate 1Eq. 9.92 can be writ-
ten as the ordinary differential equation given by Eq. 9.14.

*9.21 Integrate the Blasius equation 1Eq. 9.142 numerically
to determine the boundary layer profile for laminar flow past a
flat plate. Compare your results with those of Table 9.1.

f 1h2,h

ru2
/2,

1y 5 30 ft2?1y 5 4 ft2,
n 5 0.16n 5 0.28

n 5 0.40

u 5 ayn,

U 5 0.5 m/s.
b 5 4 m

/ 5 6 m

0 # x # 10 ft

U 5 2 ft/s

y 5 y1x2 1y 5 dB at x 5 /2
d*.

U 2 u,

™.
d*,d,

x 5 15 m
x 5 1.5 m

U 5 0.02 m/s.

U 5 1.5 m/s,

Re 6 1
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y (mm), h (mm),
distance above plate manometer reading

0 0

2.1 10.6

4.3 21.1

6.4 25.6

10.7 32.5

15.0 36.9

19.3 39.4

23.6 40.5

26.8 41.0

29.3 41.0

32.7 41.0

yU =
1 m/s

x

, = 4 m

Edge of boundary layer

Streamline A–B

δB

B

A
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1 ft d(x) 2 ft/s

U =
2 ft/s

x
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u ~ y0.40

u ~ y0.28

u ~ y0.16

450

300

150

0

y,
 m
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9.22 An airplane flies at a speed of 400 mph at an altitude
of 10,000 ft. If the boundary layers on the wing surfaces be-
have as those on a flat plate, estimate the extent of laminar
boundary layer flow along the wing. Assume a transitional
Reynolds number of If the airplane maintains
its 400-mph speed but descends to sea level elevation, will the
portion of the wing covered by a laminar boundary layer
increase or decrease compared with its value at 10,000 ft?
Explain.

† 9.23 If the boundary layer on the hood of your car be-
haves as one on a flat plate, estimate how far from the front
edge of the hood the boundary layer becomes turbulent. How
thick is the boundary layer at this location?

9.24 A laminar boundary layer velocity profile is approxi-
mated by for and for

(a) Show that this profile satisfies the appropriate bound-
ary conditions. (b) Use the momentum integral equation to de-
termine the boundary layer thickness,

9.25 A laminar boundary layer velocity profile is approxi-
mated by the two straight-line segments indicated in Fig. P9.25.
Use the momentum integral equation to determine the bound-
ary layer thickness, and wall shear stress,
Compare these results with those in Table 9.2.

*9.26 An assumed, dimensionless laminar boundary layer
profile for flow past a flat plate is given in the table below. Use
the momentum integral equation to determine 
Compare your result with the exact Blasius solution result 1see
Table 9.22.

*9.27 For a fluid of specific gravity flowing past
a flat plate with an upstream velocity of the wall
shear stress on a flat plate was determined to be as indicated in
the table below. Use the momentum integral equation to deter-
mine the boundary layer momentum thickness, As-
sume at the leading edge,

9.28 The square, flat plate shown in Fig. P9.28a is cut
into four equal-sized prices and arranged as shown in Fig.
P9.28b. Determine the ratio of the drag on the original plate
[case (a)] to the drag on the plates in the configuration shown
in (b). Assume laminar boundary flow. Explain your answer
physically.

9.29 A plate is oriented parallel to the free stream as is in-
dicated in Fig. 9.29. If the boundary layer flow is laminar, de-
termine the ratio of the drag for case (a) to that for case (b).
Explain your answer physically.

9.30 If the drag on one side of a flat plate parallel to the
upstream flow is when the upstream velocity is U, what will
the drag be when the upstream velocity is 2U; or Assume
laminar flow.

U/2?
d

x 5 0.™ 5 0
™ 5 ™ 1x2.

U 5 5 m/s,
SG 5 0.86

d 5 d1x2.

tw 5 tw1x2.d 5 d1x2,

d 5 d1x2.
y 7 d.

u 5 Uy # d,u/U 5 32 2 1y/d2 4 1y/d2

Rexcr 5 5 3 105.
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0 0

0.080 0.133

0.16 0.265

0.24 0.394

0.32 0.517

0.40 0.630

0.48 0.729

0.56 0.811

0.64 0.876

0.72 0.923

0.80 0.956

0.88 0.976

0.96 0.988

1.00 1.000

u/Uy/D

x (m) (Ny )

0 —

0.2 13.4

0.4 9.25

0.6 7.68

0.8 6.51

1.0 5.89

1.2 6.57

1.4 6.75

1.6 6.23

1.8 5.92

2.0 5.26

m2Tw
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9.31 Air flows past a parabolic-shaped flat plate oriented
parallel to the free stream shown in Fig. P9.31. Integrate the
wall shear stress over the plate to determine the friction drag
on one side of the plate. Assume laminar flow.

9.32 It is often assumed that “sharp objects can cut through
the air better than blunt ones.” Based on this assumption, the
drag on the object shown in Fig. P9.32 should be less when the
wind blows from right to left than when it blows from left to
right. Experiments show that the opposite is true. Explain.

9.33 Two small holes are drilled opposite each other in a
circular cylinder as shown in Fig. P9.33. Thus, when air flows
past the cylinder, air will circulate through the interior of the
cylinder at a rate of where the constant K de-

pends on the geometry of the passage connecting the two holes.
It is assumed that the flow around the cylinder is not affected
by either the presence of the two holes or the small flowrate
through the passage. Let denote the flowrate when 
Plot a graph of as a function of for if (a)

the flow is inviscid, and (b) if the boundary layer on the cylin-
der is turbulent (see Fig. 9.17c for pressure data).

9.34 Water flows past a triangular flat plate oriented paral-
lel to the free stream as shown in Fig. P9.34. Integrate the wall
shear stress over the plate to determine the friction drag on one
side of the plate. Assume laminar boundary layer flow.

9.35 A three-bladed helicopter blade rotates at 200 rpm. If
each blade is 12 ft long and 1.5 ft wide, estimate the torque
needed to overcome the friction on the blades if they act as flat
plates.

0 # u # p/2uQ/Q0

u 5 0.Q0

Q 5 K 1p1 2 p22,

U

U

,

4,

,

,/4

(b)

(a)
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P
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A
T

E

,

4,
U U

PLATE

(a) (b)
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2

0y, ft

–2

4

U = 3 ft/s
x, ft

x = 4 – y2

PLATE
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U? U?
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U

(1)

Q

Q

θ

(2)
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U = 0.2 m/s

1.0 m

45°

45°
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9.36 A ceiling fan consists of five blades of 0.80-m length
and 0.10-m width which rotate at 100 rpm. Estimate the torque
needed to overcome the friction on the blades if they act as flat
plates.

9.37 As shown in Video V9.2 and Fig. P9.37a, a kayak is
a relatively streamlined object. As a first approximation in cal-
culating the drag on a kayak, assume that the kayak acts as if
it were a smooth, flat plate 17 ft long and 2 ft wide. Determine
the drag as a function of speed and compare your results with
the measured values given in Fig. P9.37b. Comment on reasons
why the two sets of values may differ.

9.38 A sphere of diameter D and density falls at a steady
rate through a liquid of density and viscosity If the
Reynolds number, is less than 1, show that the
viscosity can be determined from 

9.39 Determine the drag on a small circular disk of 0.01-ft
diameter moving through oil with a specific gravity of
0.87 and a viscosity 10,000 times that of water. The disk is ori-
ented normal to the upstream velocity. By what percent is the
drag reduced if the disk is oriented parallel to the flow?

9.40 For small Reynolds number flows the drag coefficient
of an object is given by a constant divided by the Reynolds
number 1see Table 9.42. Thus, as the Reynolds number tends to
zero, the drag coefficient becomes infinitely large. Does this
mean that for small velocities 1hence, small Reynolds numbers2
the drag is very large? Explain.

9.41 Compare the rise velocity of an -diameter air

bubble in water to the fall velocity of an -diameter water
drop in air. Assume each to behave as a solid sphere.

9.42 A 38.1-mm-diameter, 0.0245-N table tennis ball is re-

leased from the bottom of a swimming pool. With what veloc-
ity does it rise to the surface? Assume it has reached its termi-
nal velocity.

† 9.43 How fast will a toy balloon filled with helium rise
through still air? List all of your assumptions.

9.44 A hot air balloon roughly spherical in shape has a vol-
ume of and a weight of 500 lb 1including passengers,
basket, balloon fabric, etc.2. If the outside air temperature is

and the temperature within the balloon is esti-
mate the rate at which it will rise under steady-state conditions
if the atmospheric pressure is 14.7 psi.

9.45 A 500-N cube of specific gravity falls
through water at a constant speed U. Determine U if the
cube falls (a) as oriented in Fig. P9.45a, (b) as oriented in
Fig. P9.45b.

9.46 The dandelion seed shown in Fig. P9.46
settles through the air with a constant speed of De-
termine the drag coefficient for this object.

9.47 A 22 in. by 34 in. speed limit sign is supported on a
3-in. wide, 5-ft-long pole. Estimate the bending moment in the
pole at ground level when a 30-mph wind blows against the
sign. (See Video V9.6.) List any assumptions used in your cal-
culations.

9.48 Determine the moment needed at the base of 20-
m-tall, 0.12-m-diameter flag pole to keep it in place in a 
wind.

9.49 Repeat Problem 9.48 if a 2-m by 2.5-m flag is attached
to the top of the pole. See Fig. 9.30 for drag coefficient data
for flags.

† 9.50 During a flood, a 30-ft-tall, 15-ft-wide tree is up-
rooted, swept downstream, and lodged against a bridge pillar
as shown in Fig. P9.50 and Video V7.6. Estimate the force that

20 m/s

0.15 m/s.
5 3 1026 kg

SG 5 1.8

165 °F,80 °F

70,000 ft3

1
8-in.

1
8-in.

0.01 ft/s

m 5 gD21rs 2 r2/18 U.
Re 5 rDU/m,

m.r
rs

(a)

g

(b)
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0.04 m

0.15 m/s
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8

6
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2
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6 8

M
e
a
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g
 $
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the tree puts on the bridge pillar. Assume the tree is half sub-
merged and the river is flowing at See Fig. 9.30 for drag
coefficient data.

9.51 If for a given vehicle it takes 20 hp to overcome aero-
dynamic drag while being driven at 65 mph, estimate the horse-
power required at 75 mph.

9.52 Two bicycle racers ride through still air. By
what percentage is the power required to overcome aerodynamic
drag for the second cyclist reduced if she drafts closely behind
the first cyclist rather than riding alongside her? Neglect any
forces other than aerodynamic drag. 1See Fig. 9.30.2
† 9.53 Estimate the wind speed needed to tip over a
garbage can. List all assumptions and show all calculations.

9.54 On a day without any wind, your car consumes x gal-
lons of gasoline when you drive at a constant speed, U, from
point A to point B and back to point A. Assume that you repeat
the journey, driving at the same speed, on another day when
there is a steady wind blowing from B to A. Would you expect
your fuel consumption to be less than, equal to, or greater than
x gallons for this windy round-trip? Support your answer with
appropriate analysis.

9.55 A 25-ton (50,000-lb) truck coasts down a steep 
mountain grade without brakes, as shown in Fig. P9.55. The
truck’s ultimate steady-state speed, V, is determined by a bal-
ance between weight, rolling resistance, and aerodynamic drag.
Assume that the rolling resistance for a truck on concrete is 
of the weight and the drag coefficient is 0.96 for a truck with-
out an air deflector, but 0.70 if it has an air deflector (see Fig.
P9.56 and Video V9.8). Determine V for these two situations.

9.56 As shown in Video V9.8 and Fig. P9.56, the aerody-
namic drag on a truck can be reduced by the use of appropri-
ate air deflectors. A reduction in drag coefficient from

to corresponds to a reduction of how
many horsepower needed at a highway speed of 65 mph?

9.57 The structure shown in Fig. P9.57 consists of three
cylindrical support posts to which an elliptical flat-plate sign is
attached. Estimate the drag on the structure when a 50 mph
wind blows against it.

† 9.58 Estimate the maximum wind velocity in which you
can stand without holding on to something. List your
assumptions.

9.59 As shown in Video V9.5 and Fig. P9.59, a vertical
wind tunnel can be used for skydiving practice. Estimate the
vertical wind speed needed if a 150-lb person is to be able to
“float” motionless when the person (a) curls up as in a crouch-
ing position or (b) lies flat. See Fig. 9.30 for appropriate drag
coefficient data.

*9.60 The helium-filled balloon shown in Fig. P9.60 is to
be used as a wind speed indicator. The specific weight of the
helium is the weight of the balloon material
is 0.20 lb, and the weight of the anchoring cable is negligible.
Plot a graph of as a function of U for Would
this be an effective device over the range of U indicated?
Explain.

1 # U # 50 mph.u

g 5 0.011 lb/ft
3,

CD 5 0.70CD 5 0.96

1.2%

7%

30 km/hr

8 ft/s.

8 ft/s
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100

7

Truck width = 10 ft

12 ft

V
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(a) CD = 0.70

b = width = 10 ft

(b) CD = 0.96

12 ft
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9.61 A 2-in.-diameter cork sphere 1specific weight
2 is attached to the bottom of a river with a thin cable, as

is illustrated in Fig. P9.61. If the sphere has a drag coefficient
of 0.5, determine the river velocity. Both the drag on the cable
and its weight are negligible.

9.62 Two smooth spheres are attached to a thin rod that is
free to rotate in the horizontal plane about point O as shown in
Fig. P9.62. The rod is held stationary until the air speed reaches

Which direction will the rod rotate 1clockwise or coun-
terclockwise2 when the holding force is released? Explain your
answer.

9.63 A radio antenna on a car consists of a circular cylin-
der in. in diameter and 4 ft long. Determine the bending mo-
ment at the base of the antenna if the car is driven 55 mph
through still air.

† 9.64 Estimate the energy that a runner expends to over-
come aerodynamic drag while running a complete marathon
race. This expenditure of energy is equivalent to climbing a hill
of what height? List all assumptions and show all calculations.

9.65 Estimate the wind force on your hand when you hold
it out of your car window while driving 55 mph. Repeat your
calculations if you were to hold your hand out of the window
of an airplane flying 550 mph.

*9.66 Let be the power required to fly a particular air-
plane at 500 mph at sea level conditions. Plot a graph of the ra-
tio where is the power required at a speed of U, for

at altitudes of sea level, 10,000 ft,
20,000 ft, and 30,000 ft. Assume that the drag coefficient for
the aircraft behaves similarly to that of the sharp-pointed ogive
indicated in Fig. 9.24.

9.67 A 0.50-m-diameter meteor streaks through the earth’s
atmosphere with a speed of at an altitude of 
20,000 m where the air density is and the speed
of sound is The specific gravity of the meteor is 7.65.
Use the data in Fig. 9.24 to determine the rate at which the me-
teor is decelerating.

9.68 A 30-ft-tall tower is constructed of equal 1-ft segments
as is indicated in Fig. P9.68. Each of the four sides is similar.
Estimate the drag on the tower when a 75-mph wind blows
against it.

9.69 A 2-in.-diameter sphere weighing 0.14 lb is suspended
by the jet of air shown in Fig. P9.69 and Video V3.1. The drag
coefficient for the sphere is 0.5. Determine the reading on the
pressure gage if friction and gravity effects can be neglected for
the flow between the pressure gage and the nozzle exit.

300 m/s.
9 3 1022 kg/m

3
1800 m/s

500 mph # U # 3000 mph
pp/p0,

p0

1
4

50 ft/s.

lb/ft
3

5 13 

10 ft

0.6 ft

0.8 ft

1 ft 15 ft

15 ft

15 ft

5 ft

■ F I G U R E  P 9 . 5 7

U

■ F I G U R E  P 9 . 5 9

60°

U

■ F I G U R E  P 9 . 6 1

U

1.5-ft diameter

0.7-ft diameterO (pivot)

, ,

■ F I G U R E  P 9 . 6 2

U
2-ft diameter

θ

■ F I G U R E  P 9 . 6 0



616 ■ Chapter 9 / Flow Over Immersed Bodies

9.70 The United Nations Building in New York is approx-
imately 87.5-m wide and 154-m tall. (a) Determine the drag on
this building if the drag coefficient is 1.3 and the wind speed
is a uniform (b) Repeat your calculations if the veloc-
ity profile against the building is a typical profile for an urban
area 1see Problem 9.172 and the wind speed halfway up the
building is 

† 9.71 An “air-popper” popcorn machine blows hot air
past the kernels with speed U so that the unpopped ones remain
in the holder but the popped kernels are blown out
of the holder Estimate the range of air velocity al-
lowed for proper operation of the machine 
List all assumptions and show all calculations.

9.72 When the 0.9-lb box kite shown in Fig. P9.72 is flown
in a wind, the tension in the string, which is at a an-
gle relative to the ground, is 3.0 lb. (a) Determine the lift and
drag coefficients for the kite based on the frontal area of 
(b) If the wind speed increased to would the kite rise
or fall? That is, would the angle shown in the figure in-
crease or decrease? Assume the lift and drag coefficients re-
main the same. Support your answer with appropriate calcula-
tions.

9.73 A regulation football is 6.78 in. in diameter and weighs
0.91 lb. If its drag coefficient is determine its decel-
eration if it has a speed of at the top of its trajectory.

9.74 Explain how the drag on a given smokestack could be
the same in a 2 mph wind as in a 4 mph wind. Assume the val-
ues of and are the same for each case.

9.75 The faster a baseball bat is swung, the farther the ball
will travel when hit by the bat. If the aerodynamic drag on the
bat can be reduced, the bat can be swung faster. As discussed
in Section 9.3, the drag on dimpled golf balls is less than that
on equal-sized smooth balls. Thus, does it follow that dimples
on baseball bats can increase the distance that balls are hit? Ex-
plain your answer.

† 9.76 If the wind becomes strong enough, it is “impos-
sible” to paddle a canoe into the wind. Estimate the wind speed
at which this will happen. List all assumptions and show all cal-
culations.

9.77 A strong wind can blow a golf ball off the tee by piv-
oting it about point 1 as shown in Fig. P9.77. Determine the
wind speed necessary to do this.

9.78 An airplane tows a banner that is tall and
long at a speed of If the drag coefficient

based on the area is estimate the power required
to tow the banner. Compare the drag force on the banner with
that on a rigid flat plate of the same size. Which has the larger
drag force and why?

9.79 By appropriate streamlining, the drag coefficient for
an airplane is reduced by 12% while the frontal area remains
the same. For the same power output, by what percentage is the
flight speed increased?

CD 5 0.06,b/
150 km/hr./ 5 25 m

b 5 0.8 m

mr

20 ft/s
CD 5 0.2,

30°
30 ft/s,

6.0 ft2.

30°20 ft/s

1Umin 6 U 6 Umax2.
1U 7 Umin2.
1U 6 Umax2,

20 m/s.

20 m/s.

2 in.

1 in.

1 in.

1 ft

1 ft
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9.80 The dirigible Akron had a length of 239 m and a max-
imum diameter of 40.2 m. Estimate the power required at its
maximum speed of if the drag coefficient based on
frontal area is 0.060.

9.81 Estimate the power needed to overcome the aerody-
namic drag of a person who runs at a rate of 100 yds in 10 s
in still air. Repeat the calculations if the race is run into a 
20-mph headwind; a 20-mph tailwind. Explain.

† 9.82 Skydivers often join together to form patterns dur-
ing the free-fall portion of their jump. The current Guiness Book
of World Records record is 297 skydivers joined hand-to-hand.
Given that they can’t all jump from the same airplane at the
same time, describe how they manage to get together (see Video
V9.5). Use appropriate fluid mechanics equations and princi-
ples in your answer.

9.83 A fishnet consists of 0.10-in.-diameter strings tied
into squares 4 in. per side. Estimate the force needed to tow a
15-ft by 30-ft section of this net through seawater at 

9.84 An iceberg floats with approximately of its volume
in the air as is shown in Fig. P9.84. If the wind velocity is U
and the water is stationary, estimate the speed at which the wind
forces the iceberg through the water.

9.85 A Piper Cub airplane has a gross weight of 1750 lb,
a cruising speed of 115 mph, and a wing area of . De-
termine the lift coefficient of this airplane for these conditions.

9.86 A light aircraft with a wing area of and a weight
of 2000 lb has a lift coefficient of 0.40 and a drag coefficient
of 0.05. Determine the power required to maintain level flight.

9.87 As shown in Video V9.9 and Fig. P9.87, a spoiler is
used on race cars to produce a negative lift, thereby giving a
better tractive force. The lift coefficient for the airfoil shown is

, and the coefficient of friction between the wheels and
the pavement is 0.6. At a speed of 200 mph, by how much would
use of the spoiler increase the maximum tractive force that could
be generated between the wheels and ground? Assume the air
speed past the spoiler equals the car speed and that the airfoil
acts directly over the drive wheels.

9.88 The wings of old airplanes are often strengthened by
the use of wires that provided cross-bracing as shown in
Fig. P9.88. If the drag coefficient for the wings was 0.020 1based
on the planform area2, determine the ratio of the drag from the
wire bracing to that from the wings.

9.89 The jet engines on a Boeing 757 must develop a cer-
tain amount of power to propel the airplane through the air with
a speed of 570 mph at a cruising altitude of 35,000 ft. By what
percent must the power be increased if the same airplane were
to maintain its 570 mph flight speed at sea level?

9.90 A wing generates a lift when moving through sea
level air with a velocity U. How fast must the wing move
through the air at an altitude of 35,000 ft with the same lift co-
efficient if it is to generate the same lift?

*9.91 When air flows past the airfoil shown in Fig. P9.91,
the velocity just outside the boundary layer, u, is as indicated.
Estimate the lift coefficient for these conditions.

l
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9.92 To help ensure safe flights, air-traffic controllers en-
force a minimum time interval between takeoffs. During busy
times this can result in a long queue of aircraft waiting for take-
off clearance. Based on the flow shown in Fig. 9.37 and Videos
4.2, 9.1, and 9.9, explain why the interval between takeoffs can
be shortened if the wind has a cross-runway component (as op-
posed to blowing directly down the runway).

9.93 A Boeing 747 aircraft weighing 580,000 lb when
loaded with fuel and 100 passengers takes off with an airspeed
of 140 mph. With the same configuration 1i.e., angle of attack,
flap settings, etc.2, what is its takeoff speed if it is loaded with
372 passengers? Assume each passenger with luggage weighs
200 lb.

9.94 Show that for unpowered flight 1for which the lift,
drag, and weight forces are in equilibrium2 the glide slope an-
gle, is given by 

9.95 If the lift coefficient for a Boeing 777 aircraft is 15
times greater than its drag coefficient, can it glide from an al-
titude of 30,000 ft to an airport 80 mi away if it loses power
from its engines? Explain. 1See Problem 9.94.2
9.96 On its final approach to the airport, an airplane flies
on a flight path that is relative to the horizontal. What lift-
to-drag ratio is needed if the airplane is to land with its engines
idled back to zero power? 1See Problem 9.94.2
9.97 A sail plane with a lift-to-drag ratio of 25 flies with a
speed of 50 mph. It maintains or increases its altitude by fly-
ing in thermals, columns of vertically rising air produced by
buoyancy effects of nonuniformly heated air. What vertical air-
speed is needed if the sail plane is to maintain a constant alti-
tude?

9.98 Over the years there has been a dramatic increase in
the flight speed (U ) and altitude (h), weight and wing
loading ( divided by wing area) of aircraft. Use
the data given in the table below to determine the lift coeffi-
cient for each of the aircraft listed.

9.99 The landing speed of an airplane such as the Space
Shuttle is dependent on the air density. (See Video V9.1.) By
what percent must the landing speed be increased on a day when
the temperature is compared to a day when it is 
Assume that the atmospheric pressure remains constant.

9.100 Commercial airliners normally cruise at relatively
high altitudes 130,000 to 35,000 ft2. Discuss how flying at this
high altitude 1rather than 10,000 ft, for example2 can save fuel
costs.

9.101 A pitcher can pitch a “curve ball” by putting
sufficient spin on the ball when it is thrown. A ball that has
absolutely no spin will follow a “straight” path. A ball that is
pitched with a very small amount of spin 1on the order of one
revolution during its flight between the pitcher’s mound and
home plate2 is termed a knuckle ball. A ball pitched this way
tends to “jump around” and “zig-zag” back and forth. Explain
this phenomenon. Note: A baseball has seams.

9.102 Repeated controversy regarding the ability of a base-
ball to curve appeared in the literature for years. According to
a test 1Life, July 27, 19532, a baseball 1assume the diameter is
2.9 in. and weight is 5.25 oz2 spinning 1400 rpm while travel-
ing 43 mph was observed to follow a path with an 800-ft hor-
izontal radius of curvature. Based on the data of Fig. 9.39, do
you agree with this test result? Explain.

9.103 This problem involves measuring the boundary layer
profile on a flat plate. To proceed with this problem, click here
in the E-book.

9.104 This problem involves measuring the pressure distri-
bution on a circular cylinder. To proceed with this problem,
click here in the E-book.

50 °F?110 °F

w/A 5 weight
1w2,

3.0°

tan u 5 CD/CL.u,

Aircraft Year , lb U, mph h, ft

Wright Flyer 1903 750 35 1.5 0
Douglas DC-3 1935 25,000 180 25.0 10,000
Douglas DC-6 1947 105,000 315 72.0 15,000
Boeing 747 1970 800,000 570 150.0 30,000

w/A, lb/ft
2

w


