MA3801-1: Análisis

Profesor: Juan Davila y Manuel del Pino

Auxiliares: Guillaume Grelier y Pierre Vandaële

Guía C2

P1. Compacidad

Sea (X, τ) un espacio topológico

- a) Sea $(x_n)_{n\in\mathbb{N}}$ que converge a un elemento x. Mostrar que $\{x_n : n \in \mathbb{N}\} \cup \{x\}$ es compacto.
- b) Suponemos (X, τ) Hausdorff separado y $K_n \subset X$ compactos encajonados y no vacíos (para $n \ge 1, K_{n+1} \subset K_n$). Mostrar que $K = \bigcap_{n \in \mathbb{N}} K_n \ne \emptyset$ y para todo $\omega \in \tau$ abierto que contiene a K, existe $n \ge 1$ tal que $K_n \subset \omega$.
- c) Consideramos (Y, τ') compacto, $X \times Y$ con la topología producto y $\pi: X \times Y \to X$ la proyección sobre X.

Mostrar que π es cerrada (la imagen directa todo cerrado es cerrada).

(Las preguntas son independientes.)

P2. Compactificación con un punto

Definición: Sean (X,τ) , (Y,τ') espacios topológicos. Decimos que (Y,τ') es una compactificación de (X,τ) ssi existe $\phi:(X,\tau)\to (Y,\tau')$ tal que si consideramos $\phi(X)$ con la topología inducida por τ' , entonces $\phi:X\to\phi(X)$ es un homeomorfismo y $\phi(X)$ es denso en Y.

- a) Mostrar que todo espacio compacto, Hausdorff separado (T_2) , es T_4 : es decir que toda par de cerrados disjuntos se puede separar por abiertos disjuntos.
- b) Mostrar que todo compacto en un espacio topológico T_2 es cerrado.

Consideramos (X,τ) espacio topológico, no compacto y ∞ un elemento que no pertenece a X.

Sea $X_{\infty} = X \cup \{\infty\}$ y $\tau_{\infty} = \tau \cup \{X_{\infty} \setminus K : K \subset X \text{ compacto cerrado}\}.$

- c) Mostrar que $(X_{\infty}, \tau_{\infty})$ es un espacio topológico.
- d) Mostrar que $(X_{\infty}, \tau_{\infty})$ es una compactificación de (X, τ)
- e) Mostrar que $(X_{\infty}, \tau_{\infty})$ es T_2 ssi (X, τ) es T_2 y localmente compacto (es decir : para todo $x \in X$ existe $V_x \subset X$ vecindad de x tal que $\overline{V_x}$ es compacto).

Deducir que si (X, τ) es T_2 localmente compacto entonces $(X_{\infty}, \tau_{\infty})$ es T_4 .

- f) Si (X, τ) es un espacio compacto, mostrar que para todo $x \in X$, si $X' = X \setminus \{x\}$ entonces $(X'_{\infty}, \tau_{\infty})$ es homeomorfo a (X, τ) .
- g) Deducir que para todo $n \in \mathbb{N}$, $(\mathbb{R}^n)_{\infty} = S^n$ (homeomorfos) donde S^n es la esfera unitaria en \mathbb{R}^{n+1} .

Determinar $(0,1)_{\infty}$. Deducir que la compactificación de un conjunto puede ser no única.

P3. Espacios ℓ_p

- a) Mostrar que si $1 \leq p < q$ entonces ℓ_p es un subconjunto de ℓ_q pero no es cerrado en $(\ell_q, \|.\|_q)$ (Hint: mostrar primero que ℓ_p es un subconjunto estricto de ℓ_q).
- b) Para $p \ge 1$ consideramos $F_p = \{x \in \ell_2 : \sum |x_n| \le p\}$. Mostrar que F_p es cerrado en ℓ_2 y tiene interior vació.

- c) Deducir que ℓ_1 es de primera categoría en ℓ_2 (unión numerable de nulamente densos en ℓ_2).
- d) Consideramos $p \ge 1$ y $A \subset \ell_p$. Mostrar que A es relativamente compacto en ℓ_p ssi A es acotado en norma p y

$$\forall \epsilon > 0, \exists n_0 \geqslant 1 : \sup_{x \in A} \left(\sum_{n > n_0} |x_n|^p \right) < \epsilon$$

P4. Convergencia uniforme

Sea (X, τ) un espacio compacto, $f: X \to \mathbb{R}$ continua y $f_n: X \to \mathbb{R}$ para $n \ge 1$ funciones continuas tal que $(f_n)_n$ converge puntualmente a f:

$$\forall x \in X, f_n(x) \to f(x)$$

a) Mostrar que si para cada $x \in X$, $(f_n(x))_n$ es una sucesión creciente entonces

$$\sup_{x \in X} |f_n(x) - f(x)| = ||f_n - f||_{\infty} \to 0$$

Dar ejemplos para mostrar que falla si no se supone X compacto, o si no se supone f continua.

b) Si $X=[a,b]\subset \mathbb{R}$ y para cada $n\geqslant 1,\, f_n$ es una función creciente entonces :

$$\sup_{x \in X} |f_n(x) - f(x)| = ||f_n - f||_{\infty} \to 0$$

Observar que no se necesita suponer que las funciones f_n son continuas.

P5. Topología Producto

Consideramos $X = [0,1]^{[0,1]}$ con la topología producto ([0,1] considerado con su topología inducida por \mathbb{R}).

- a) $f \in X$ se dirá simple si $\operatorname{Card}(\{x \in [0,1] : f(x) \neq 0\}) < \infty$. Mostrar que el conjunto de las simples es denso en X.
- b) Caracterizar la convergencia de sucesiones en X.
- c) Sea $f \in X$ tal que Card($\{x \in [0,1] : f(x) \neq 0\}$) > Card(\mathbb{N}). Mostrar que f no puede ser limite (considerando la topología de X) de una sucesión de simples.
- d) Deducir que X no es metrizable.
- e) Mostrar que cada simple es limite de una sucesión de funciones continuas. Mostrar que $\mathbb{1}_{\mathbb{Q}}$ es limite de una sucesión de simples pero no de continuas (pensar en Baire).

P6. S.C.I.

Consideramos un espacio métrico (E, d) y $f: E \to \mathbb{R}$.

Definición : Una función $f: E \to \mathbb{R}$ se dice semi continua inferior (sci) ssi para todo $\lambda \in \mathbb{R}$, $\{x \in E, f(x) \leq \lambda\}$ es cerrado.

- a) Mostrar que f es sci ssi para todo $\lambda \in \mathbb{R}$, $\{x \in E, f(x) > \lambda\}$ es abierto.
- b) Mostrar que f es sci ssi su epigrafo es cerrado en $E \times \mathbb{R}$ con la topología producto $(epi(f) = \{(x,\lambda) \in E \times \mathbb{R}, f(x) \leq \lambda\})$
- c) Mostrar que f es sci ssi para todo $x \in X$, y todo $\epsilon > 0$ existe $V_x \subset X$ una vecindad de x tal que $f(V_x) \subset (f(x) \epsilon, \infty)$.
- d) Deducir que f es sei ssi para todo $x \in X$ y $(x_n)_n$ tal que $x_n \to x$: $\liminf f(x_n) \ge f(x)$.
- e) Mostrar que si $(f_i)_{i\in I}$ es una familia de funciones sci y $\sup(f_i) < \infty$ entonces $\sup(f_i)$ es sci.
- f) Si (E,d) es compacto y $f: E \to \mathbb{R}$ sci entonces f es acotada inferiormente y alcanza su ínfimo.