MA2002-5: Cálculo Avanzado y Aplicaciones

Profesor: Gino Montecinos G.

Auxiliares: Vicente Ocqueteau , Sebastián Urzúa B.

Auxiliar 11

14 de junio de 2017

1. Resumen

Definición 1. Se dice que $p \in \mathbb{C}$ es un **punto singular aislado** de f(z) si existe un radio R > 0 tal que $f \in H(D(p,R) \setminus \{p\})$ pero f no es holomorfa en p.

Definición 2. Se dice que p es un **punto singular estable** si, junto con ser punto singular aislado, el siguiente límite existe: $L_0(p) = \lim_{z \to p} f(z)$.

Definición 3. Se dice que $p \in \mathbb{C}$ es un **polo** de f(z) si p es un punto singular aislado de f(z) y además existe $m \in \mathbb{Z}$, $m \ge 1$ tal que el límite $L_m(p) = \lim_{z \to p} (z-p)^m f(z)$ existe y es no nulo. El menor m con dicha propiedad se llama orden del polo p.

Definición 4. Una función f se dice **meromorfa** en un abierto Ω si existe un conjunto $P \subseteq \Omega$ finito o numerable tal que $f \in H(\Omega \setminus P)$, f tiene un polo en cada punto $p \in P$ y P no posee puntos de acumulación.

Teorema 1 (Teorema de los residuos de Cauchy). Sea f una función meromorfa en un abierto Ω y sea P el conjunto de todos sus polos. Sea Γ un camino simple y cerrado, recorrido en sentido antihorario que encierra una región $D \subseteq \Omega$ y tal que $\Gamma \cap P = \emptyset$. Entonces Γ encierra un número finito de polos de f, digamos $P \cap D = \{p_1, \dots, p_n\}$ y más aún, $\oint_{\Gamma} f(z)dz = 2\pi i \sum_{j=1}^n Res(f, P_j)$.

- **P1.** Determine los polos (y sus órdenes) de $f(z) = \frac{1 \cos(z)}{z^2 \sin(z)}$
- **P2.** a) Calcule, usando residuos, $I = \oint_{\gamma} \frac{\sin(z)}{z^2(z-5)^2(z+2i)^2} dz$, donde $\gamma = \{z : |z| = 4\}$.
 - b) Calcule la integral $I=\oint_{\gamma}\frac{z^2+1-e^z}{z^2(z-2)^2}dz$, donde $\gamma=\{z:|z|=a\}$. Indicación: Considere los casos 0< a<2 y $a\geq 2$.
- **P3.** Calcule $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{1}{a + \sin^2(\theta)} d\theta$, a > 0.