MA2002-3: Cálculo Avanzado y Aplicaciones

Profesor: Gino Montecinos.

Auxiliares: Vicente Ocqueteau, Sebastián Urzúa B.

Auxiliar 7

10 de mayo de 2017

1. Resumen

Teorema 1 (Teorema de Cauchy-Goursat). Si f es una función holomorfa en un abierto simplemente conexo Ω entonces $\oint_{\Gamma} f(z)dz = 0$, para todo camino cerrado regular por trozos y simple Γ contenido en Ω .

Teorema 2 (Fórmula de Cauchy). Sea $f: \Omega \subseteq \mathcal{C} \to \mathcal{C}$ continua en Ω y holomorfa en $\Omega \setminus \{p\}$. Sea r > 0 tal que $D(\bar{p}, r) \subseteq \Omega$. Entonces, para todo $z_0 \in D(p, r)$ se tiene $f(z_0) = \frac{1}{2\pi i} \oint_{\partial D(p, r)} \frac{f(z)}{z - z_0} dz$.

Teorema 3 (Desarrollo en serie de Taylor). Mismas hipótesis de antes. Entonces existe $\{c_n\}_{n\in\mathbb{N}}\subset\mathcal{C}$ tales que $f(z)=\sum_{k\in\mathcal{N}}c_k(z-p)^k,\ \forall z\in D(p,r).$ Más aún, $c_k=\frac{1}{k!}f^{(k)}(p)=\frac{1}{2\pi i}\oint_{\partial D(p,r)}\frac{f(w)}{(w-p)^{k+1}}dw.$

2. Problemas

P1. Pruebe que si $f \in H(D(z_0, R))$ entonces para todo $r \in]0, R[$ se tiene

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{i\theta}) d\theta.$$

Deduzca que para $0 < \theta < 1$,

$$\int_0^{2\pi} \log\left(1 + re^{i\theta}\right) d\theta = 0.$$

- **P2.** (I) Encuentre el radio de convergencia de la serie $\sum_{n=0}^{\infty} \frac{e^{in}}{2n+1} \left(\frac{2}{3i}\right)^n (z+4i)^n.$
 - (II) Encuentre la serie de Taylor de $f(z) = z \log(z)$ en torno a $z_0 = i + 1$ y determine su radio de convergencia.
 - (III) Sea $f: \mathbb{C} \to \mathbb{C}$ holomorfa tal que f''(z) = 2f(z) + 1 con f(0) = 1, f'(0) = 0. Encuentre la serie de potencias de f en torno a 0 y su radio de convergencia.
- **P3.** (a) Pruebe que para $b \in (-1,1)$, se tiene $\int_0^\infty \frac{1-b^2-x^2}{(1-b^2+x^2)^2+4b^2x^2} dx = \frac{\pi}{2}$. Indicación: Integre $f(z) = \frac{1}{1+z^2}$ en un contorno rectangular adecuado.
 - (b) Si además $b \neq 0$, pruebe que

$$\int_0^\infty \frac{x}{(1-b^2-x^2)^2+4b^2x^2} dx = \frac{1}{4b} \ln \frac{1+b}{1-b}.$$