MA2001-2 Cálculo en Varias Variables

Profesor:Manuel del Pino

Auxiliar: José Palacios A., Sebastián Urzúa B.

Auxiliar 15

05 de Julio de 2016

1. Resumen

Teorema 1 (Teorema de Cambio de Variable). Sea Ω acotado y $f:U \to V$ continua y biyectiva. Sea $g:f(\Omega) \to \mathbb{R}$ integrable. Luego, $g \circ f:\Omega \to \mathbb{R}$ es integrable y

$$\int_{f(\Omega)} g(x)dx = \int_{\Omega} g(f(y))|\det Df(y)|dy.$$

2. Preguntas

- **P1.** a) Calcule la integral $I = \iint_{\mathcal{D}} (x^2 xy + y^2) dx dy$ donde \mathcal{D} es la región del plano encerrada por elipse $x^2 xy + y^2 = 2$. Indicación: Puede ayudarle encontrar números positivos α , β en modo que si $x = \alpha u \beta v$, $y = \alpha u + \beta v$, entonces la elipse se escribe como $u^2 + v^2 = 1$.
 - b) Calcule $\int_0^3 \int_0^{\sqrt{9-y^2}} \int_{\sqrt{x^2+y^2}}^{\sqrt{18-x^2-y^2}} (x^2+y^2+z^2) dz dx dy$.
- **P2.** a) Usando el Teorema de Fubini, pruebe que

$$\int_0^x \int_0^{x_1} \int_0^{x_2} \cdots \int_0^{x_{n-1}} f(x_n) dx_n dx_{n-1} \cdots dx_2 dx_1 = \frac{1}{(n-1)!} \int_0^x (x-t)^{n-1} f(t) dt.$$

b) Dado $\alpha \geq 1$ y una función continua $f:[0,\infty)\to\mathbb{R}$, definimos

$$I_{\alpha}(f)(x) = \int_{0}^{x} (x-t)^{\alpha-1} f(t)dt, \ \forall x \ge 0.$$

Muestre, usando Fubini, que si α , $\beta \geq 1$, entonces $I_{\alpha}(I_{\beta}(f))(x) = C(\alpha, \beta)I_{\alpha+\beta}(f)(x)$, donde $C(\alpha, \beta) = \int_{0}^{1} y^{\alpha-1} (1-y)^{\beta-1} dy$

- **P3.** Calcule $\iiint_R \sqrt{x^2 + y^2 + z^2} dx dy dz$ donde $R = \{(x, y, z) \in \mathbb{R}^3, 1 \le x^2 + y^2 + z^2 \le 9, \ 0 \le z \le \sqrt{x^2 + y^2}\}.$
- **P4.** Hallar los valores máximo y mínimo (justifique si es que existen) de la función $f(x,y) = 2x^4 3x^2y^2 + 2y^4 x^4$ en el disco $\{(x,y), x^2 + y^2 \le 1\}$.