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LAST CLASS WE SAW… Decision Analytic Thinking
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EVALUATING CLASSIFIERS
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= 1−error rate
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𝑅𝑒𝑐𝑎𝑙𝑙 =
TP

TP + FN

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
TP

TP + FP

𝐹 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 𝑥 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙



EVALUATING CLASSIFIERS: THE 

CONFUSION MATRIX

p n

Y True Positives False Positives 

N False Negatives True Negatives
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A KEY ANALYTICAL
FRAMEWORK

Other Evaluation Metric
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EXPECTED VALUE
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The expected value computation provides a framework that is

useful in organizing thinking about data-analytic problems.

It decomposes data-analytic thinking into:

 the structure of the problema.

 the elements of the analysis that can be extracted from the data.

 the elements of the analysis that need to be acquired from other

sources.

𝐸𝑉 = 𝑃 𝑜1 𝑣 𝑜1 + 𝑃 𝑜2 𝑣 𝑜2 + 𝑃 𝑜3 𝑣 𝑜3 +⋯
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EXAMPLE: EXPECTED VALUE FRAMEWORK IN 

USE PHASE
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Online marketing:

 Expected Benefit of Targeting

 Product Price $200

 Product Cost $100

 Targeting Cost $1

𝐸𝑉 = 𝑝𝑅(𝑥)𝑣𝑅 + (1 − 𝑝𝑅(𝑥))𝑣𝑁𝑅
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𝐸𝑉 = 𝑝𝑅 𝑥 $ 100 − 1 − (1 − 𝑝𝑅(𝑥))$1 > 0



EXAMPLE: EXPECTED VALUE FRAMEWORK IN 

USE PHASE
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Online marketing:
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𝐸𝑉 = 𝑝𝑅 𝑥 $ 100 − 1 − (1 − 𝑝𝑅(𝑥))$1 > 0

𝑝𝑅 𝑥 > 0,01



USING EXPECTED VALUE TO 
FRAME CLASSIFIER EVALUATION
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Model

Dataset

Induction

Algorithm

Holdout

Data
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Confusion Matrix

p n

Y True 

Positives 

False 

Positives 

N False 

Negatives

True 

Negatives

1



p n

Y True 

Positives 

False 

Positives 

N False 

Negatives

True 

Negatives

p n

Y TP rate

P(Y,p) 

FP rate

P(Y,n)  

N FN

P(N,p)

TN

P(N,n)

Confusion Matrix

Cost/Benefit Information

Expected Rates

(Matrix of Probabilities)

p n

Y b(Y,p) c(Y,n)  

N c(N,p) b(N,n)

∑

∏

Expected

Value
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A COST-BENEFIT MATRIX FOR THE 

MARKETING EXAMPLE
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p n

Y 99 -1  

N 0 0

P
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ss
Actual 

Class
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EXPECTED VALUE

We can get something like this:
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𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑝 𝑌, 𝑝 𝑏 𝑌, 𝑝 + 𝑝 𝑁, 𝑝 𝑏 𝑁, 𝑝 +
𝑝 𝑁, 𝑛 𝑏 𝑁, 𝑛 + 𝑝 𝑌, 𝑛 𝑏 𝑌, 𝑛
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CONDITIONAL PROBABILITY

A rule of basic probability is:

𝑝 𝑌, 𝑝 = 𝑝 𝑦 𝑝(𝑥|𝑦)
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USING CONDITIONAL PROBABILITY…
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𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑝 𝑌, 𝑝 𝑏 𝑌, 𝑝 + 𝑝 𝑁, 𝑝 𝑏 𝑁, 𝑝 +
𝑝 𝑁, 𝑛 𝑏 𝑁, 𝑛 + 𝑝 𝑌, 𝑛 𝑏 𝑌, 𝑛

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑝 𝑌|𝑝 𝑝(𝑝)𝑏 𝑌, 𝑝 + 𝑝 𝑁|𝑝 𝑝(𝑝)𝑏 𝑁, 𝑝 +
𝑝 𝑁|𝑛 𝑝(𝑛)𝑏 𝑁, 𝑛 + 𝑝 𝑌|𝑛 𝑝(𝑛)𝑏 𝑌, 𝑛

𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑝 𝑝 [𝑝 𝑌|𝑝 𝑏 𝑌, 𝑝 + 𝑝 𝑁|𝑝 𝑏 𝑁, 𝑝 ] +
𝑝 𝑛 [𝑝 𝑁|𝑛 𝑏 𝑁, 𝑛 + 𝑝 𝑌|𝑛 𝑏 𝑌, 𝑛 ]
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USING EXPECTED VALUE TO FRAME 

CLASSIFIER EVALUATION
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𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑓𝑖𝑡 = 𝑝 𝑝 [𝑝 𝑌|𝑝 𝑏 𝑌, 𝑝 + 𝑝 𝑁|𝑝 𝑏 𝑁, 𝑝 ] +
𝑝 𝑛 [𝑝 𝑁|𝑛 𝑏 𝑁, 𝑛 + 𝑝 𝑌|𝑛 𝑏 𝑌, 𝑛 ]

𝑇 = 110

𝑃 = 0.61

𝑝 𝑝 = 0.55

𝑝 𝑌|𝑝 =
56

61
= 0.92

𝑝 𝑁|𝑝 =
5

61
= 0.8

𝑁 = 49

𝑝 𝑛 = 0.45

𝑝 𝑌|𝑛 =
7

49
= 0.14

𝑝 𝑁|𝑛 =
42

49
= 0.86
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USING EXPECTED VALUE TO FRAME 

CLASSIFIER EVALUATION

𝑇 = 110

𝑃 = 0.61

𝑝 𝑝 = 0.55

𝑝 𝑌|𝑝 =
56

61
= 0.92

𝑝 𝑁|𝑝 =
5

61
= 0.8

𝑁 = 49

𝑝 𝑛 = 0.45

𝑝 𝑌|𝑛 =
7

49
= 0.14

𝑝 𝑁|𝑛 =
42

49
= 0.86
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𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝑃𝑟𝑜𝑓𝑖𝑡 = 0.55 [0.92 𝑥 99 + 0.8 𝑥 0] +
0.45 [0.86 𝑥 0 + 0.14 𝑥(−1)] ≈ $50.04
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OVERFITTING
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OVERFITTING

Finding chance occurrences in data that look like interesting 
patterns, but which do not generalize, is called over-fitting 
the data.

We want models to apply not just to the exact training set 
but to the general population from which the training data 
came.
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“If you torture the data long enough, it will confess”
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VISUALIZING MODEL 
PERFORMANCE
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RANKING INSTEAD OF CLASSIFYING

Recall the score assigned by a model can be used to
compute a decision for each individual case based on its
expected value: Classify.

A different strategy for making decisions is to rank a set 
of cases by these scores, and then take actions on the 
cases at the top of the ranked list.

Instead of deciding each case separately, we may decide 
to take the top n cases.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 23



RANKING INSTEAD OF CLASSIFYING
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Instance

Description

True

Class

Score

… p 0.99  

… p 0.98

… n 0.96

… n 0.90

… p 0.88

… n 0.87

… . .

… . .

… p 0.65

… . .

… . .

… . .

p n

Y 1 0

N 99 100
p n

Y 2 1

N 98 99

p n

Y 6 4

N 94 96

p n

Y 0 0

N 100 100



PROFIT CURVES

Each threshold, i.e., each set 
of predicted positives and 
negatives, will have a 
corresponding confusion 
matrix.

At each cut-point we record 
the percentage of the list 
predicted as positive and the 
corresponding estimated 
profit. Graphing these values 
gives us a profit curve. 
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ROC GRAPHS
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 (0, 0) : Never issuing a positive 

classification; such a classifier commits 

no false positive errors but also gains 

no true positives. 

 (1, 1): Unconditionally issuing positive  

classifications.

 (0, 1): Perfect classification. 
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ROC GRAPHS
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 Diagonal line: Policy of guessing a 

class. 

 E’s performance at (0.6, 0.6) is 

virtually random. 

 Note that no classifier should be in 

the lower right triangle of a ROC 

graph. This represents performance 

that is worse than random guessing.
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ROC GRAPHS
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 One point in ROC space is superior to 

another if it is to the northwest of the 

first. 

 Classifiers appearing on the lefthand

side of a ROC graph, near the x axis, 

may be thought of as 

“conservative”.

 Classifiers on the upper righthand

side of a ROC graph may be thought 

of as “permissive”.
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ROC CURVES
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As discussed previously, a ranking 

model can be used with a 

threshold to produce a discrete 

(binary) classifier.

If the classifier output is above 

the threshold, the classifier 

produces a Y, else an N. 

Each threshold value produces a 

different point in ROC space.
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AREA UNDER THE ROC CURVE (AUC)

The area under a classifier’s curve expressed as a 
fraction of the unit square. Its value ranges from zero to
one.
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Probability that a randomly chosen positive instance will be ranked 

ahead of a randomly chosen negative instance
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AREA UNDER THE ROC CURVE (AUC)

When is it useful?

 When a single number is needed to summarize  

performance.

 When nothing is known about the operating conditions.

But a ROC curve provides more information than its

area.
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CUMULATIVE RESPONSE CURVE
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 Percentage of positives correctly 

classified (tp rate; y axis) vs. the 

percentage of the population 

that is targeted (x axis). 

 Diagonal line x=y: Random 

performance.

 Any classifier above the 

diagonal is providing some

advantage.
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LIFT CURVE
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 The lift of a classifier 

represents the advantage it 

provides over random 

guessing. 

𝑙𝑖𝑓𝑡 =
𝑇𝑃 𝑟𝑎𝑡𝑒 (𝑥)

𝑥
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VISUALIZING MODEL PERFORMANCE

Profit Curves

ROC Curves

Cumulative 

Response

Lift Curves
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Requirements

Intuitive?
Class Priors Costs and Benefits

YES YES YES 

YES 

YES 

YES 

YES NO 

NO 

NO NO NO 



QUESTIONS?
SEE YOU ON THE NEXT CLASS!



EXAMPLE
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EXAMPLE: PERFORMANCE EVALUATION

Training Set:

Test Set:

Model Accuracy

Classification Tree 95%

Logistic Regression 93%

𝑘-Nearest Neighbors 100%

Naïve Bays 76%

Model Accuracy AUC

Classification Tree 91.8%±0.0 0.614±0.014

Logistic Regression 93.0%±0.1 0.574±0.023

𝑘-Nearest Neighbors 93.0%±0.0 0.537±0.015

Naïve Bays 76.5%±0.6 0.632±0.019
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EXAMPLE: PERFORMANCE EVALUATION
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Naïve Bayes confusion matrix:

𝑘-Nearest Neighbors confusion  

matrix:

p n

Y 127 (3%) 848 (18%)

N 200 (4%) 3518 (75%)

p n

Y 3 (0%) 15 (0%)

N 324 (7%) 4351 (93%)
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EXAMPLE: ROC CURVE

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 39



EXAMPLE: LIFT CURVE
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EXAMPLE: PROFIT CURVES

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 41


