

FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS JNIVERSIDAD DE CHILE

#### INTRODUCTION TO BIG DATA

Juan D. Velásquez Felipe E. Vildoso



FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS JNIVERSIDAD DE CHILE

#### CHAPTER 2



FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS JNIVERSIDAD DE CHILE

## LECTURE 11

Chapter 2



FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS JNIVERSIDAD DE CHILE

#### LAST CLASS WE SAW...

**Decision Analytic Thinking** 

#### **EVALUATING CLASSIFIERS**

$$Precision = \frac{\text{TP}}{\text{TP} + \text{FP}}$$

$$Recall = \frac{TP}{TP + FN}$$

$$F - measure = 2\left(\frac{Precision \ x \ Recall}{Precision \ + \ Recall}\right)$$

# EVALUATING CLASSIFIERS: THE CONFUSION MATRIX

|   | р               | n               |
|---|-----------------|-----------------|
| Υ | True Positives  | False Positives |
| Ν | False Negatives | True Negatives  |



FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS JNIVERSIDAD DE CHILE

#### A KEY ANALYTICAL FRAMEWORK

Other Evaluation Metric

### **EXPECTED VALUE**

The expected value computation provides a **framework** that is useful in **organizing thinking about data-analytic problems**.

It decomposes data-analytic thinking into:

- the structure of the problema.
- the elements of the analysis that can be extracted from the data.
- the elements of the analysis that need to be acquired from other sources.

$$EV = P(o_1)v(o_1) + P(o_2)v(o_2) + P(o_3)v(o_3) + \cdots$$

# EXAMPLE: EXPECTED VALUE FRAMEWORK IN USE PHASE

#### Online marketing:

Expected Benefit of Targeting

$$EV = p_R(x)v_R + (1 - p_R(x))v_{NR}$$

- Product Price \$200
- Product Cost \$100
- Targeting Cost \$1

$$EV = p_R(x) \$ (100 - 1) - (1 - p_R(x)) \$ 1 > 0$$

# EXAMPLE: EXPECTED VALUE FRAMEWORK IN USE PHASE

Online marketing:

$$EV = p_R(x) \$ (100 - 1) - (1 - p_R(x)) \$ 1 > 0$$

 $p_R(x) > 0,01$ 

IN5528 - INTRODUCTION TO BIG DATA 10



FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS JNIVERSIDAD DE CHILE

#### USING EXPECTED VALUE TO FRAME CLASSIFIER EVALUATION





### A COST-BENEFIT MATRIX FOR THE MARKETING EXAMPLE



#### **EXPECTED VALUE**

We can get something like this:

## Expected Profit = p(Y,p)b(Y,p) + p(N,p)b(N,p) + p(N,n)b(N,n) + p(Y,n)b(Y,n)

### **CONDITIONAL PROBABILITY**

A rule of basic probability is:

$$p(Y,p) = p(y)p(x|y)$$

#### USING CONDITIONAL PROBABILITY...

Expected Profit = p(Y,p)b(Y,p) + p(N,p)b(N,p) + p(N,n)b(N,n) + p(Y,n)b(Y,n)

Expected Profit = p(Y|p)p(p)b(Y,p) + p(N|p)p(p)b(N,p) + p(N|n)p(n)b(N,n) + p(Y|n)p(n)b(Y,n)

Expected Profit = p(p) [p(Y|p)b(Y,p) + p(N|p)b(N,p)] + p(n)[p(N|n)b(N,n) + p(Y|n)b(Y,n)]

### USING EXPECTED VALUE TO FRAME CLASSIFIER EVALUATION

 T = 110 N = 49 

 P = 0.61 p(n) = 0.45 

 p(p) = 0.55  $p(Y|n) = \frac{7}{49} = 0.14$ 
 $p(Y|p) = \frac{56}{61} = 0.92$   $p(N|n) = \frac{42}{49} = 0.86$ 
 $p(N|p) = \frac{5}{61} = 0.8$   $p(N|p) = \frac{5}{61} = 0.8$ 

Expected Profit = p(p) [p(Y|p)b(Y,p) + p(N|p)b(N,p)] + p(n)[p(N|n)b(N,n) + p(Y|n)b(Y,n)]

### USING EXPECTED VALUE TO FRAME CLASSIFIER EVALUATION

 T = 110 N = 49 

 P = 0.61 p(n) = 0.45 

 p(p) = 0.55  $p(Y|n) = \frac{7}{49} = 0.14$ 
 $p(Y|p) = \frac{56}{61} = 0.92$   $p(N|n) = \frac{42}{49} = 0.86$ 
 $p(N|p) = \frac{5}{61} = 0.8$   $p(N|p) = \frac{5}{61} = 0.8$ 

Expected Profit =  $0.55 [0.92 \times 99 + 0.8 \times 0] + 0.45 [0.86 \times 0 + 0.14 \times (-1)] \approx $50.04$ 



FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

### OVERFITTING

### **OVERFITTING**

Finding chance occurrences in data that look like interesting patterns, but which **do not generalize**, is called over-fitting the data.

"If you torture the data long enough, it will confess"

We want models to apply not just to the exact training set but to the general population from which the training data came.



FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE

#### VISUALIZING MODEL PERFORMANCE

#### RANKING INSTEAD OF CLASSIFYING

Recall the score assigned by a model can be used to compute a decision for each individual case based on its expected value: Classify.

A different strategy for making decisions is to *rank* a set of cases by these scores, and then take actions on the cases at the top of the ranked list.

Instead of deciding each case separately, we may decide to take the top *n* cases.

#### RANKING INSTEAD OF CLASSIFYING

| Instance    | True  | Score | p                        | n               |
|-------------|-------|-------|--------------------------|-----------------|
| Description | Class |       | Y O                      | 0               |
| •••         | р     | 0.99  | N 100 1                  | 00              |
| •••         | р     | 0.98  |                          |                 |
| •••         | n     | 0.96  | Y 1 0                    |                 |
|             | n     | 0.90  | N 99 100 p               | n               |
| •••         | р     | 0.88  | V 2                      | 1               |
| •••         | n     | 0.87  |                          | 1               |
|             |       |       | N 98                     | 99              |
|             |       |       | p n                      |                 |
|             | р     | 0.65  | Y 6 4                    |                 |
| •••         | •     |       | N 94 96                  |                 |
| • • •       | •     |       |                          |                 |
| • • •       |       |       | IN5528 - INTRODUCTION TO | <b>BIG DATA</b> |

24

#### **PROFIT CURVES**



Each threshold, i.e., each set of predicted positives and negatives, will have a corresponding confusion matrix.

At each cut-point we record the percentage of the list predicted as positive and the corresponding estimated profit. Graphing these values gives us a profit curve.

#### **ROC GRAPHS**



- (0, 0) : Never issuing a positive classification; such a classifier commits no false positive errors but also gains no true positives.
- (1, 1): Unconditionally issuing positive classifications.
- (0, 1): Perfect classification.

#### **ROC GRAPHS**



- Diagonal line: Policy of guessing a class.
- E's performance at (0.6, 0.6) is virtually random.
- Note that no classifier should be in the lower right triangle of a ROC graph. This represents performance that is worse than random guessing.

#### **ROC GRAPHS**



- One point in ROC space is superior to another if it is to the northwest of the first.
- Classifiers appearing on the lefthand side of a ROC graph, near the x axis, may be thought of as "conservative".
- Classifiers on the upper righthand side of a ROC graph may be thought of as "permissive".

### **ROC CURVES**

As discussed previously, a ranking model can be used with a threshold to produce a discrete (binary) classifier.

If the classifier output is above the threshold, the classifier produces a **Y**, else an **N**.

Each threshold value produces a different point in ROC space.



## AREA UNDER THE ROC CURVE (AUC)

Probability that a randomly chosen positive instance will be ranked ahead of a randomly chosen negative instance

The area under a classifier's curve expressed as a **fraction of the unit square**. Its value ranges from zero to one.

### AREA UNDER THE ROC CURVE (AUC)

When is it useful?

- When a single number is needed to summarize performance.
- When nothing is known about the operating conditions.

<u>But</u> a ROC curve provides more information than its area.

#### **CUMULATIVE RESPONSE CURVE**

- Percentage of positives correctly classified (tp rate; y axis) vs. the percentage of the population that is targeted (x axis).
- Diagonal line x=y: Random performance.
- Any classifier above the diagonal is providing some advantage.



### LIFT CURVE

 The lift of a classifier represents the advantage it provides over random guessing.

$$lift = \frac{TP \, rate \, (x)}{x}$$



#### VISUALIZING MODEL PERFORMANCE

|                        | Requirements |                    | Lat. 141 2 |
|------------------------|--------------|--------------------|------------|
|                        | Class Priors | Costs and Benefits | Infulfivee |
| Profit Curves          | YES          | YES                | YES        |
| ROC Curves             | NO           | NO                 | NO         |
| Cumulative<br>Response | YES          | NO                 | YES        |
| Lift Curves            | YES          | NO                 | YES        |



FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS JNIVERSIDAD DE CHILE

#### QUESTIONS? SEE YOU ON THE NEXT CLASS!

## EXAMPLE

#### **EXAMPLE: PERFORMANCE EVALUATION**

#### Training Set:

| Model                      | Accuracy    |
|----------------------------|-------------|
| <b>Classification Tree</b> | 95%         |
| Logistic Regression        | 93%         |
| k-Nearest Neighbors        | <u>100%</u> |
| Naïve Bays                 | 76%         |

| Model                      | Accuracy  | AUC         |
|----------------------------|-----------|-------------|
| <b>Classification Tree</b> | 91.8%±0.0 | 0.614±0.014 |
| Logistic Regression        | 93.0%±0.1 | 0.574±0.023 |
| k-Nearest Neighbors        | 93.0%±0.0 | 0.537±0.015 |
| Naïve Bays                 | 76.5%±0.6 | 0.632+0.019 |

**TO BIG DATA** 

37

Test Set:

### **EXAMPLE: PERFORMANCE EVALUATION**

Naïve Bayes confusion matrix:

|   | þ        | n          |
|---|----------|------------|
| Y | 127 (3%) | 848 (18%)  |
| Ν | 200 (4%) | 3518 (75%) |

*k*-Nearest Neighbors confusion matrix:

|   | р        | n          |
|---|----------|------------|
| Y | 3 (0%)   | 15 (0%)    |
| Ν | 324 (7%) | 4351 (93%) |

#### **EXAMPLE: ROC CURVE**



#### **EXAMPLE: LIFT CURVE**



#### **EXAMPLE: PROFIT CURVES**

