
INTRODUCTION TO 
BIG DATA

Juan D. Velásquez

Felipe E. Vildoso



CHAPTER 2

IN5528 - INTRODUCTION TO BIG DATA



LECTURE 12 Chapter 2

IN5528 - INTRODUCTION TO BIG DATA



MAPREDUCE EXAMPLES

IN5528 - INTRODUCTION TO BIG DATA



IMPLEMENTING NUMBER OF PAGEVIEWS 
OVER TIME

function map(record) {

key = [record.url, toHour(record.timestamp)]

emit(key, 1)

}

function reduce(key, vals) {

emit(new HourPageviews(key[0], key[1], sum(vals)))

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 5



IMPLEMENTING GENDER INFERENCE

function map(record) {

emit(record.userid, normalizeName(record.name))

}

function reduce(userid, vals) {

allNames = new Set()

for(normalizedName in vals) {

allNames.add(normalizedName)

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 6



IMPLEMENTING GENDER INFERENCE

maleProbSum = 0.0

for(name in allNames) {

maleProbSum += maleProbabilityOfName(name)

}

maleProb = maleProbSum / allNames.size()

if(maleProb > 0.5) {

gender = "male"

} 

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 7



IMPLEMENTING GENDER INFERENCE

else {

gender = "female"

}

emit(new InferredGender(userid, gender))

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 8



IMPLEMENTING INFLUENCE SCORE

The influence-score precomputation is more complex than 
the previous two examples and requires two MapReduce 
jobs to be chained together to implement the logic.

The idea is that the output of the first MapReduce job is 
fed as the input to the second MapReduce job.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 9



IMPLEMENTING INFLUENCE SCORE

The code is as follows:

function map1(record) {

emit(record.responderId, record.sourceId)

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 10



IMPLEMENTING INFLUENCE SCORE

function reduce1(userid, sourceIds) {

influence = new Map(default=0)

for(sourceId in sourceIds) {

influence[sourceId] += 1

}

emit(topKey(influence))

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 11



IMPLEMENTING INFLUENCE SCORE

function map2(record) {

emit(record, 1)

}

function reduce2(influencer, vals) {

emit(new InfluenceScore(influencer, sum(vals)))

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 12



LOW-LEVEL NATURE OF 
MAPREDUCE

IN5528 - INTRODUCTION TO BIG DATA



LOW-LEVEL NATURE OF MAPREDUCE

Unfortunately, although MapReduce is a great primitive 
for batch computation—generic, scalable, and fault-
tolerant—it doesn’t lend itself to particularly elegant 
code. 

You’ll find that Map-Reduce programs written manually 
tend to be long, heavier, and difficult to understand.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 14



MULTISTEP COMPUTATIONS ARE 
UNNATURAL

The influence-score example showed a computation that 
required two MapReduce jobs. 

Running a MapReduce job requires more than just a 
mapper and a reducer, it also needs to know where to 
read its input and where to write its output.

That is the difficult part.

You’d need to clean up the intermediate output to 
prevent it from using up valuable disk space for longer 
than necessary.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 15



JOINS ARE VERY COMPLICATED TO 
IMPLEMENT MANUALLY

Let’s implement a join via MapReduce. 

Suppose you have two separate datasets: 

One containing records with the fields id and age.

Another containing records with the fields user_id, gender, 
and location. 

This operation is called an inner join. 

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 16

You wish to compute, for every id that exists in both datasets, 

the age, gender, and location



IN5528 - INTRODUCTION TO BIG DATA

id age

3 25

1 71

7 37

8 21

user_id gender location

1 m USA

9 f Brazil

3 m Japan

Inner Join

id age gender location

1 71 m USA

3 25 m Japan

IN5528 - INTRODUCTION TO BIG DATA 17



INNER JOIN

To do a join via MapReduce, you need to read two 
independent datasets in a single MapReduce job, so the 
job needs to be able to distinguish between records from 
the two datasets. 

MapReduce frameworks typically provide context as to 
where a record comes from, so we’ll extend our pseudo-
code to include this context.

IN5528 - INTRODUCTION TO BIG DATA 18



INNER JOIN

function join_map(sourcedir, record) {

if(sourcedir=="/data/age") {

emit(record.id, {"side" = "l", "values" = [record.age]})

} else {

emit(record.user_id,

{"side" = "r",

"values" = [record.gender, record.location]})

}

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 19



INNER JOIN

function join_reduce(id, records) {

side_l = []

side_r = []

for(record : records) {

values = record.get("values")

if(record.get("side") == "l") {

side_l.add(values)

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 20



INNER JOIN

else {

side_r.add(values)

}

}

for(l : side_l) {

for(r : side_r) {

emit(concat([id], l, r), null)

}

}

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 21



INNER JOIN

Although this is not a terrible amount of code, it’s still quite 
a bit of grunt work to get the mechanics working correctly. 

There’s complexity here: determining which side of the 
join a record belongs to is tied to specific directories, so 
you have to tweak the code to do a join on different 
directories. 

MapReduce forcing everything to be in terms of 
key/value pairs feels inappropriate for the output of this 
job, which is just a list of values.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 22



INNER JOIN

This is only a simple two-sided inner join joining on a single 
field. 

Imagine joining on multiple fields, with five sides to the 
join, with some sides as outer joins and some as inner joins. 

Obviously we don’t want to manually write out the join 
code every time, so you should be able to specify the join 
at a higher level of abstraction.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 23



LOGICAL AND PHYSICAL EXECUTION 
TIGHTLY COUPLED

Let’s extend the word-count example to filter out the 
words the and a, and have it emit the doubled count 
rather than the count. 

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 24

EXCLUDE_WORDS = Set("a", "the")

function map(sentence) {

for(word : sentence) {

if(not EXCLUDE_WORDS.contains(word)) {

emit(word, 1)

}

}

}



LOGICAL AND PHYSICAL EXECUTION 
TIGHTLY COUPLED

And the reduce function:

function reduce(word, amounts) {

result = 0

for(amt : amounts) {

result += amt

}

emit(word,result * 2)

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 25



LOGICAL AND PHYSICAL EXECUTION 
TIGHTLY COUPLED

That code works, but it seems to be mixing together 
multiple tasks into the same function.

Good programming practice involves separating 
independent functionality into their own functions. 

You could split this code so that each MapReduce job is 
doing just a single one of those functions. 

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 26



LOGICAL AND PHYSICAL EXECUTION 
TIGHTLY COUPLED

But a MapReduce job implies a specific physical execution:

First, a set of mapper processes runs to execute the map 
portion, then disk and network I/O happens to get the 
intermediate records to the reducer.

Second, a set of reducer processes runs to produce the 
output.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 27



LOGICAL AND PHYSICAL EXECUTION 
TIGHTLY COUPLED

Modularizing the code would create more MapReduce 
jobs than necessary, making the computation hugely 
inefficient.

So you have a tough trade-off to make—either weave all 
the functionality together, engaging in bad software-
engineering practices, or modularize the code, leading to 
poor resource usage. 

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 28



LOGICAL AND PHYSICAL EXECUTION 
TIGHTLY COUPLED

Modularizing the code would create more MapReduce 
jobs than necessary, making the computation hugely 
inefficient.

So you have a tough trade-off to make—either weave all 
the functionality together, engaging in bad software-
engineering practices, or modularize the code, leading to 
poor resource usage. 

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 29



In reality, you shouldn’t have to make 

this trade-off at all and should instead 

get the best of both worlds…

IN5528 - INTRODUCTION TO BIG DATA 30



QUESTIONS?
SEE YOU ON THE NEXT CLASS!


