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IMPLEMENTING NUMBER OF PAGEVIEWS 
OVER TIME

function map(record) {

key = [record.url, toHour(record.timestamp)]

emit(key, 1)

}

function reduce(key, vals) {

emit(new HourPageviews(key[0], key[1], sum(vals)))

}
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IMPLEMENTING GENDER INFERENCE

function map(record) {

emit(record.userid, normalizeName(record.name))

}

function reduce(userid, vals) {

allNames = new Set()

for(normalizedName in vals) {

allNames.add(normalizedName)

}
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IMPLEMENTING GENDER INFERENCE

maleProbSum = 0.0

for(name in allNames) {

maleProbSum += maleProbabilityOfName(name)

}

maleProb = maleProbSum / allNames.size()

if(maleProb > 0.5) {

gender = "male"

} 
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IMPLEMENTING GENDER INFERENCE

else {

gender = "female"

}

emit(new InferredGender(userid, gender))

}
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IMPLEMENTING INFLUENCE SCORE

The influence-score precomputation is more complex than 
the previous two examples and requires two MapReduce 
jobs to be chained together to implement the logic.

The idea is that the output of the first MapReduce job is 
fed as the input to the second MapReduce job.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 9



IMPLEMENTING INFLUENCE SCORE

The code is as follows:

function map1(record) {

emit(record.responderId, record.sourceId)

}
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IMPLEMENTING INFLUENCE SCORE

function reduce1(userid, sourceIds) {

influence = new Map(default=0)

for(sourceId in sourceIds) {

influence[sourceId] += 1

}

emit(topKey(influence))

}
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IMPLEMENTING INFLUENCE SCORE

function map2(record) {

emit(record, 1)

}

function reduce2(influencer, vals) {

emit(new InfluenceScore(influencer, sum(vals)))

}
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LOW-LEVEL NATURE OF 
MAPREDUCE
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LOW-LEVEL NATURE OF MAPREDUCE

Unfortunately, although MapReduce is a great primitive 
for batch computation—generic, scalable, and fault-
tolerant—it doesn’t lend itself to particularly elegant 
code. 

You’ll find that Map-Reduce programs written manually 
tend to be long, heavier, and difficult to understand.
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MULTISTEP COMPUTATIONS ARE 
UNNATURAL

The influence-score example showed a computation that 
required two MapReduce jobs. 

Running a MapReduce job requires more than just a 
mapper and a reducer, it also needs to know where to 
read its input and where to write its output.

That is the difficult part.

You’d need to clean up the intermediate output to 
prevent it from using up valuable disk space for longer 
than necessary.
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JOINS ARE VERY COMPLICATED TO 
IMPLEMENT MANUALLY

Let’s implement a join via MapReduce. 

Suppose you have two separate datasets: 

One containing records with the fields id and age.

Another containing records with the fields user_id, gender, 
and location. 

This operation is called an inner join. 
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You wish to compute, for every id that exists in both datasets, 

the age, gender, and location
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id age

3 25

1 71

7 37

8 21

user_id gender location

1 m USA

9 f Brazil

3 m Japan

Inner Join

id age gender location

1 71 m USA

3 25 m Japan
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INNER JOIN

To do a join via MapReduce, you need to read two 
independent datasets in a single MapReduce job, so the 
job needs to be able to distinguish between records from 
the two datasets. 

MapReduce frameworks typically provide context as to 
where a record comes from, so we’ll extend our pseudo-
code to include this context.
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INNER JOIN

function join_map(sourcedir, record) {

if(sourcedir=="/data/age") {

emit(record.id, {"side" = "l", "values" = [record.age]})

} else {

emit(record.user_id,

{"side" = "r",

"values" = [record.gender, record.location]})

}

}
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INNER JOIN

function join_reduce(id, records) {

side_l = []

side_r = []

for(record : records) {

values = record.get("values")

if(record.get("side") == "l") {

side_l.add(values)

}
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INNER JOIN

else {

side_r.add(values)

}

}

for(l : side_l) {

for(r : side_r) {

emit(concat([id], l, r), null)

}

}

}
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INNER JOIN

Although this is not a terrible amount of code, it’s still quite 
a bit of grunt work to get the mechanics working correctly. 

There’s complexity here: determining which side of the 
join a record belongs to is tied to specific directories, so 
you have to tweak the code to do a join on different 
directories. 

MapReduce forcing everything to be in terms of 
key/value pairs feels inappropriate for the output of this 
job, which is just a list of values.
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INNER JOIN

This is only a simple two-sided inner join joining on a single 
field. 

Imagine joining on multiple fields, with five sides to the 
join, with some sides as outer joins and some as inner joins. 

Obviously we don’t want to manually write out the join 
code every time, so you should be able to specify the join 
at a higher level of abstraction.
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LOGICAL AND PHYSICAL EXECUTION 
TIGHTLY COUPLED

Let’s extend the word-count example to filter out the 
words the and a, and have it emit the doubled count 
rather than the count. 
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EXCLUDE_WORDS = Set("a", "the")

function map(sentence) {

for(word : sentence) {

if(not EXCLUDE_WORDS.contains(word)) {

emit(word, 1)

}

}

}



LOGICAL AND PHYSICAL EXECUTION 
TIGHTLY COUPLED

And the reduce function:

function reduce(word, amounts) {

result = 0

for(amt : amounts) {

result += amt

}

emit(word,result * 2)

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 25



LOGICAL AND PHYSICAL EXECUTION 
TIGHTLY COUPLED

That code works, but it seems to be mixing together 
multiple tasks into the same function.

Good programming practice involves separating 
independent functionality into their own functions. 

You could split this code so that each MapReduce job is 
doing just a single one of those functions. 
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LOGICAL AND PHYSICAL EXECUTION 
TIGHTLY COUPLED

But a MapReduce job implies a specific physical execution:

First, a set of mapper processes runs to execute the map 
portion, then disk and network I/O happens to get the 
intermediate records to the reducer.

Second, a set of reducer processes runs to produce the 
output.
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LOGICAL AND PHYSICAL EXECUTION 
TIGHTLY COUPLED

Modularizing the code would create more MapReduce 
jobs than necessary, making the computation hugely 
inefficient.

So you have a tough trade-off to make—either weave all 
the functionality together, engaging in bad software-
engineering practices, or modularize the code, leading to 
poor resource usage. 
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In reality, you shouldn’t have to make 

this trade-off at all and should instead 

get the best of both worlds…
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QUESTIONS?
SEE YOU ON THE NEXT CLASS!


