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BATCH LAYER

You have learned how to form a data model for your 
dataset and how to store your data in the batch layer in a 
scalable way. 

Now you’ll take the next step of learning how to compute 
arbitrary functions on that data. 
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EXAMPLE 1: PAGEVIEWS

Dataset of pageviews.

Each pageview record contains a URL and timestamp. 

How can this query be written in pseudo-code?

Total number of pageviews of a URL for a range given in 

hours. 
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function pageviewsOverTime(masterDataset, url, startHour, endHour) {

pageviews = 0

for(record in masterDataset) {

if(record.url == url && record.time >= startHour && 
record.time <= endHour) {

pageviews += 1

}

}

return pageviews

}
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EXAMPLE 2: GENDER INFERENCE

Dataset of name records. 

How can this query be written in pseudo-code?

Predict the likely gender for a person. 
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function genderInference(masterDataset, personId) {

names = new Set()

for(record in masterDataset) {

if(record.personId == personId) {

names.add(normalizeName(record.name))

}

}
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The algorithm first performs semantic 

normalization on the names for the person, 

doing conversions like Bob to Robert and Bill 

to William. 
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maleProbSum = 0.0

for(name in names) {

maleProbSum += maleProbabilityOfName(name)

}

maleProb = maleProbSum / names.size()

if(maleProb > 0.5) {

return "male"

} 

else {

return "female"

}

}
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The algorithm then makes use of a model that 

provides the probability of  a gender for each name.



EXAMPLE 3: INFLUENCE SCORE

Twitter-inspired dataset containing reaction records.

Each reaction record contains sourceId and responderId
fields, indicating that responderId retweeted or replied 
to sourceId’s post.

How can this query be written in pseudo-code? 

Determine an influencer score for each person.
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function influence_score(masterDataset, personId) {

influence = new Map()

for(record in masterDataset) {

curr = influence.get(record.responderId) 
curr[record.sourceId] += 1

influence.set(record.sourceId, curr)

}
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The top influencer for each person is selected 

based on the number of reactions the 

influencer caused in that person.
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score = 0

for(entry in influence) {

if(topKey(entry.value) == personId) {

score += 1

}

}

return score

}
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someone’s influence score is set to the number of 

people for which he or she was the top influencer.



COMPUTING ON THE BATCH 
LAYER
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COMPUTING ON THE BATCH LAYER

Recall, the Batch Layer runs functions over the master 
dataset to precompute intermediate data called batch 
views. 

The batch views are loaded by the serving layer, which 
indexes them to allow rapid access to that data. 

The speed layer compensates for the high latency of the 
batch layer by providing low-latency updates using data 
that has yet to be precomputed into a batch view. 
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COMPUTING ON THE BATCH LAYER

Queries are then satisfied by processing data from the 
serving layer views and the speed layer views, and 
merging the results.
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COMPUTING ON THE BATCH LAYER

But, which queries should be precomputed?

A naive strategy for computing on the batch layer would 
be to precompute all possible queries and cache the 
results in the serving layer. 

Unfortunately you can’t always precompute everything. 
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COMPUTING ON THE BATCH LAYER

Consider the pageviews-over-time query as an example.

If you wanted to precompute every potential query, you’d 
need to determine the answer for every possible range of 
hours for every URL.

How many range of hours are in a year?
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COMPUTING ON THE BATCH LAYER

It’s not necessary to do it all once. Instead, you can 
precompute intermediate results and then use these 
results to complete queries on the fly.
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COMPUTING ON THE BATCH LAYER
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URL Hour #Pageviews

foo.com/blog 2012/12/08 15:00 876

foo.com/blog 2012/12/08 16:00 987

foo.com/blog 2012/12/08 17:00 762

foo.com/blog 2012/12/08 18:00 413

foo.com/blog 2012/12/08 19:00 1098

foo.com/blog 2012/12/08 20:00 657

foo.com/blog 2012/12/08 21:00 101

Function:

sum

Results:

2930



COMPUTING ON THE BATCH LAYER

Thinking on the example before.

For a single year, how many values you would need to 
compote on the fly? only need to precompute

This is certainly a more manageable number. Don’t you
think?
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RECOMPUTATION ALGORITHMS 
VS. INCREMENTAL ALGORITHMS
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RECOMPUTATION ALGORITHMS VS. 
INCREMENTAL ALGORITHMS

Because your master dataset is continually growing, you 
must have a strategy for updating your batch views when 
new data becomes available. 

You have two options:

Recomputation algorithms.

Incremental algorithms.

Which one do you think is a better option?
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Master 

dataset

New data

Merged

dataset Count

Recomputed

view: 

20,612,788

records

New data Count

Batch update: 

187,596

records

Old view: 

20,425,192

records

Updated

view: 

20,612,788

records



RECOMPUTATION ALGORITHMS VS. 
INCREMENTAL ALGORITHMS

Why you would ever use a recomputation algorithm when 
you can use a vastly more efficient incremental algorithm 
instead.

Is efficiency is the only factor to be considered?

The key trade-offs between the two approaches are:

Performance

Human-fault tolerance

The generality of the algorithm
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PERFORMANCE

There are two aspects to the performance of a batch-layer 
algorithm: 

The amount of resources required to update a batch view with 
new data.

The size of the batch views produced.
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PERFORMANCE

An incremental algorithm almost always uses significantly 
less resources to update a view because it uses new data 
and the current state of the batch view to perform an 
update. 

However, the size of the batch view for an incremental 
algorithm can be significantly larger than the 
corresponding batch view for a recomputation algorithm.
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PERFORMANCE
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URL
#Unique

visitors

foo.com 2217

foo.com/blog 1899

foo.com/about 524

foo.com/careers 413

foo.com/faq 1212

… …

URL
#Unique

visitors
Visitor IDs

foo.com 2217 1,4,5,7,10,12,…

foo.com/blog 1899 2,3,5,17,22,…

foo.com/about 524 3,6,7,19,…

foo.com/careers 413 12,17,19,29,…

foo.com/faq 1212 8,10,37,39,…

… … …

Incremental batch viewRecomputation batch view



HUMAN-FAULT TOLERANCE

The lifetime of a data system is extremely long, and bugs 
can and will be deployed to production during that time 
period. 

You therefore must consider how your batch  update 
algorithm will tolerate such mistakes. 

In this regard, recomputation algorithms are inherently 
human-fault tolerant, whereas with an incremental 
algorithm, human mistakes can cause serious problems.
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GENERALITY OF THE ALGORITHMS

Although incremental algorithms can be faster to run, they 
must often be tailored to address the problem at hand. 

Incremental algorithm for computing the number of unique 
visitors can generate prohibitively large batch views. 
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GENERALITY OF THE ALGORITHMS

Probabilistic counting algorithms, such as HyperLog-Log, 
that store intermediate statistics to estimate the overall 
unique count.

This reduces the storage cost of the batch view

Algorithm approximate instead of exact.
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GENERALITY OF THE ALGORITHMS

Incremental algorithms shift complexity to on-the-fly 
computations. 

As you improve your semantic normalization algorithm, 
you’ll want to see those improvements reflected in the 
results of your queries. Yet, if you do the normalization 
as part of the precomputation, your batch view will be 
out of date whenever you improve the normalization. 
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Requires computational effort

to process the entire dataset

Incremental 

Algorithms

Recomputation

Algorithms

Performance

Requires less computational

resources but may generate

much larger batch views

Extremely tolerant of human 

errors because the batch views

are continually rebuilt

Doesn’t facilitate repairing errors

in the batch views; repairs are ad 

hoc and may require estimates

Human-fault

Tolerance

Generality

Complexity of the algorithm is

addressed during precomputation, 

resulting in simple batch views and 

low-latency, on-the-fly processing

Conclusion

Requires special tailoring; may

shift complexity to on-the-fly

query processing

Essential to supporting a robust

data-processing system

Can increase the efficiency of 

your system, but only as a 

supplement to recomputation

algorithms



SCALABILITY IN THE BATCH 
LAYER
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SCALABILITY IN THE BATCH LAYER

Scalability is the ability of a system to maintain 
performance under increased load by adding more 
resources. 

Load in a Big Data context:

Total amount of data you have.

How much new data you receive every day.

How many requests per second your application serves. 

More important than a system being scalable is a system 
being linearly scalable, instead of being nonlinearly 
scalable.
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MAPREDUCE

MapReduce is a distributed computing paradigm 
originally pioneered by Google that provides primitives 
for scalable and fault-tolerant batch computation. 

With Map-Reduce, you write your computations in terms of 
map and reduce functions that manipulate key/value pairs. 
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MAPREDUCE

These primitives are expressive enough to implement 
nearly any function, and the MapReduce framework 
executes those functions over the master dataset in a 
distributed and robust manner. 

The canonical MapReduce example is word count. 
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MAP FUNCTION OF THE WORD COUNT
EXAMPLE

function word_count_map(sentence) {

for(word in sentence.split(" ")) {

emit(word, 1)

}

}
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MapReduce then arranges the output from 

the map functions so that all values from 

the same key are grouped together.



REDUCE FUNCTION OF THE WORD COUNT
EXAMPLE

function word_count_reduce(word, values) {

sum = 0

for(val in values) {

sum += val

}

emit(word, sum)

}
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The reduce function then takes the full list of values sharing the 

same key and emits new key/value pairs as the final output. 



SCALABILITY

Programs written in terms of MapReduce are inherently 
scalable. 

A program that runs on 10 gigabytes of data will also run 
on 10 petabytes of data. 

MapReduce automatically parallelizes the computation 
across a cluster of machines regardless of input size. 

Let’s walk through how a program like word count 
executes on a MapReduce cluster.
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Datanode 1 Datanode 2 Datanode 3

Datanode 4 Datanode 5 Datanode 6

Data file:

input.txt

File block 

locations:

2, 3, 5

2, 4, 6

Distributed Filesystem

After determining the locations of the input, 

MapReduce launches a number of map tasks 

proportional to the input data size. 
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Map

code

Map task:

Serever 1

Map task:

Serever 2

<to,1>, <be,1>, <or,1>, 

<not,1>, <to,1>, <be,1>, 

…

<brevity,1>, <is,1>, 

<the,1>, <soul,1>, 

<of,1>, …

Code is sent to the servers hosting the 

input files to limit network traffic 

across the cluster.

The map tasks generate intermediate 

key/value pairs that will be 

redirected to reduce tasks

1 2

Each of these tasks is assigned a subset of the input 

and executes your map function on that data. 



MAPREDUCE

Because the amount of the code is typically far less than 
the amount of the data, MapReduce attempts to assign 
tasks to servers that host the data to be processed. 

Like map tasks, there are also reduce tasks spread across 
the cluster. 
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MAPREDUCE

Like map tasks, there are also reduce tasks spread across 
the cluster. 

Because the reduce function requires all values associated 
with a given key, a reduce task can’t begin until all map 
tasks are complete.
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<to,1>, <be,1>, <or,1>, 

<not,1>, <to,1>, <be,1>, 

…

<brevity,1>, <is,1>, 

<the,1>, <soul,1>, 

<of,1>, …

<once,1>, <more,1>, 

<unto,1>, <the,1>, 

<breach,1>, …

Reduce task 1 Reduce task 2 

…

In this process all of the 

pairs with the same key 

are sent to the same 

reducer

Once the map tasks finish executing, each emitted key/value 

pair is sent to the reduce task responsible for processing that 

key. This transfer of the intermediate key/value pairs is 

called shuffling.



MAPREDUCE

Once a reduce task receives all of the key/value pairs 
from every map task, it sorts the key/value pairs by key. 
This has the effect of organizing all the values for any 
given key to be together. The reduce function is then called 
for each key and its group of values.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 47



MAPREDUCE SUMMARY
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<to,1>

<and,1>

<form,1>

<to,1>

<here,1>

<from,1>

<and,1>

…

<and,1>

<and,1>

<form,1>

<from,1>

<here,1>

<to,1>

<to,1>

…

<and,2>

<form,2>

<here,1>

<to,2>

…

Sort Reduce

Map



MAPREDUCE SUMMARY

 MapReduce programs execute in a fully distributed 
fashion with no central point of contention.

 MapReduce is scalable: the map and reduce functions 
you provide are executed in parallel across the 
cluster.

 The challenges of concurrency and assigning tasks 
to machines is handled for you.
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FAULT-TOLERANCE

Network partitions, server crashes, and disk failures are 
relatively rare for a single server, but the likelihood of 
something going wrong greatly increases when 
coordinating computation over a large cluster of machines. 

Thankfully, in addition to being easily parallelizable and 
inherently scalable, MapReduce computations are also 
fault tolerant. 
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FAULT-TOLERANCE

A program can fail for a variety of reasons: 

A hard disk can reach capacity.

The process can exceed available memory.

The hardware can break down. 

MapReduce watches for these errors and automatically 
retries that portion of the computation on another node. 
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FAULT-TOLERANCE

An entire application (commonly called a job) will fail only 
if a task fails more than a configured number of times—
typically four.

The idea is that a single failure may arise from a server 
issue, but a repeated failure is likely a problem with 
your code. 
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FAULT-TOLERANCE

Because tasks can be retried, MapReduce requires that 
your map and reduce functions be deterministic. 

This means that given the same inputs, your functions must 
always produce the same outputs. It’s a relatively light 
constraint but important for MapReduce to work correctly. 
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MAPREDUCE VS. SPARK
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New computation system

that has gained a lot of 

attention.

Model: “resilient 

distributed datasets”.

Spark isn’t any more 

general or scalable than 

MapReduce.

Higher performance: Spark is able 

to cache that data in memory rather 

than read it from disk every time. 



QUESTIONS?
SEE YOU ON THE NEXT CLASS!


