
INTRODUCTION TO
BIG DATA

Juan D. Velásquez

Felipe E. Vildoso

CHAPTER 2

IN5528 - INTRODUCTION TO BIG DATA

LECTURE 10 Chapter 2

IN5528 - INTRODUCTION TO BIG DATA

BATCH LAYER

IN5528 - INTRODUCTION TO BIG DATA

BATCH LAYER

You have learned how to form a data model for your
dataset and how to store your data in the batch layer in a
scalable way.

Now you’ll take the next step of learning how to compute
arbitrary functions on that data.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 5

EXAMPLE 1: PAGEVIEWS

Dataset of pageviews.

Each pageview record contains a URL and timestamp.

How can this query be written in pseudo-code?

Total number of pageviews of a URL for a range given in

hours.

IN5528 - INTRODUCTION TO BIG DATA 6

function pageviewsOverTime(masterDataset, url, startHour, endHour) {

pageviews = 0

for(record in masterDataset) {

if(record.url == url && record.time >= startHour &&
record.time <= endHour) {

pageviews += 1

}

}

return pageviews

}

IN5528 - INTRODUCTION TO BIG DATA 7

EXAMPLE 2: GENDER INFERENCE

Dataset of name records.

How can this query be written in pseudo-code?

Predict the likely gender for a person.

IN5528 - INTRODUCTION TO BIG DATA 8

IN5528 - INTRODUCTION TO BIG DATA

function genderInference(masterDataset, personId) {

names = new Set()

for(record in masterDataset) {

if(record.personId == personId) {

names.add(normalizeName(record.name))

}

}

IN5528 - INTRODUCTION TO BIG DATA 9

The algorithm first performs semantic

normalization on the names for the person,

doing conversions like Bob to Robert and Bill

to William.

IN5528 - INTRODUCTION TO BIG DATA

maleProbSum = 0.0

for(name in names) {

maleProbSum += maleProbabilityOfName(name)

}

maleProb = maleProbSum / names.size()

if(maleProb > 0.5) {

return "male"

}

else {

return "female"

}

}

IN5528 - INTRODUCTION TO BIG DATA 10

The algorithm then makes use of a model that

provides the probability of a gender for each name.

EXAMPLE 3: INFLUENCE SCORE

Twitter-inspired dataset containing reaction records.

Each reaction record contains sourceId and responderId
fields, indicating that responderId retweeted or replied
to sourceId’s post.

How can this query be written in pseudo-code?

Determine an influencer score for each person.

IN5528 - INTRODUCTION TO BIG DATA 11

IN5528 - INTRODUCTION TO BIG DATA

function influence_score(masterDataset, personId) {

influence = new Map()

for(record in masterDataset) {

curr = influence.get(record.responderId)
curr[record.sourceId] += 1

influence.set(record.sourceId, curr)

}

IN5528 - INTRODUCTION TO BIG DATA 12

The top influencer for each person is selected

based on the number of reactions the

influencer caused in that person.

IN5528 - INTRODUCTION TO BIG DATA

score = 0

for(entry in influence) {

if(topKey(entry.value) == personId) {

score += 1

}

}

return score

}

IN5528 - INTRODUCTION TO BIG DATA 13

someone’s influence score is set to the number of

people for which he or she was the top influencer.

COMPUTING ON THE BATCH
LAYER

IN5528 - INTRODUCTION TO BIG DATA

COMPUTING ON THE BATCH LAYER

Recall, the Batch Layer runs functions over the master
dataset to precompute intermediate data called batch
views.

The batch views are loaded by the serving layer, which
indexes them to allow rapid access to that data.

The speed layer compensates for the high latency of the
batch layer by providing low-latency updates using data
that has yet to be precomputed into a batch view.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 15

COMPUTING ON THE BATCH LAYER

Queries are then satisfied by processing data from the
serving layer views and the speed layer views, and
merging the results.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 16

Master

dataset
Function

Query

results

COMPUTING ON THE BATCH LAYER

But, which queries should be precomputed?

A naive strategy for computing on the batch layer would
be to precompute all possible queries and cache the
results in the serving layer.

Unfortunately you can’t always precompute everything.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 17

COMPUTING ON THE BATCH LAYER

Consider the pageviews-over-time query as an example.

If you wanted to precompute every potential query, you’d
need to determine the answer for every possible range of
hours for every URL.

How many range of hours are in a year?

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 18

COMPUTING ON THE BATCH LAYER

It’s not necessary to do it all once. Instead, you can
precompute intermediate results and then use these
results to complete queries on the fly.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 19

COMPUTING ON THE BATCH LAYER

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 20

Master

dataset

Function

FunctionFunction

Function

Query

results
Batch

view

Batch

view

Batch

view

Precomputation Low-latency query

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 21

URL Hour #Pageviews

foo.com/blog 2012/12/08 15:00 876

foo.com/blog 2012/12/08 16:00 987

foo.com/blog 2012/12/08 17:00 762

foo.com/blog 2012/12/08 18:00 413

foo.com/blog 2012/12/08 19:00 1098

foo.com/blog 2012/12/08 20:00 657

foo.com/blog 2012/12/08 21:00 101

Function:

sum

Results:

2930

COMPUTING ON THE BATCH LAYER

Thinking on the example before.

For a single year, how many values you would need to
compote on the fly? only need to precompute

This is certainly a more manageable number. Don’t you
think?

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 22

RECOMPUTATION ALGORITHMS
VS. INCREMENTAL ALGORITHMS

IN5528 - INTRODUCTION TO BIG DATA

RECOMPUTATION ALGORITHMS VS.
INCREMENTAL ALGORITHMS

Because your master dataset is continually growing, you
must have a strategy for updating your batch views when
new data becomes available.

You have two options:

Recomputation algorithms.

Incremental algorithms.

Which one do you think is a better option?

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 24

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 25

Master

dataset

New data

Merged

dataset Count

Recomputed

view:

20,612,788

records

New data Count

Batch update:

187,596

records

Old view:

20,425,192

records

Updated

view:

20,612,788

records

RECOMPUTATION ALGORITHMS VS.
INCREMENTAL ALGORITHMS

Why you would ever use a recomputation algorithm when
you can use a vastly more efficient incremental algorithm
instead.

Is efficiency is the only factor to be considered?

The key trade-offs between the two approaches are:

Performance

Human-fault tolerance

The generality of the algorithm

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 26

PERFORMANCE

There are two aspects to the performance of a batch-layer
algorithm:

The amount of resources required to update a batch view with
new data.

The size of the batch views produced.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 27

PERFORMANCE

An incremental algorithm almost always uses significantly
less resources to update a view because it uses new data
and the current state of the batch view to perform an
update.

However, the size of the batch view for an incremental
algorithm can be significantly larger than the
corresponding batch view for a recomputation algorithm.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 28

PERFORMANCE

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 29

URL
#Unique

visitors

foo.com 2217

foo.com/blog 1899

foo.com/about 524

foo.com/careers 413

foo.com/faq 1212

… …

URL
#Unique

visitors
Visitor IDs

foo.com 2217 1,4,5,7,10,12,…

foo.com/blog 1899 2,3,5,17,22,…

foo.com/about 524 3,6,7,19,…

foo.com/careers 413 12,17,19,29,…

foo.com/faq 1212 8,10,37,39,…

… … …

Incremental batch viewRecomputation batch view

HUMAN-FAULT TOLERANCE

The lifetime of a data system is extremely long, and bugs
can and will be deployed to production during that time
period.

You therefore must consider how your batch update
algorithm will tolerate such mistakes.

In this regard, recomputation algorithms are inherently
human-fault tolerant, whereas with an incremental
algorithm, human mistakes can cause serious problems.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 30

GENERALITY OF THE ALGORITHMS

Although incremental algorithms can be faster to run, they
must often be tailored to address the problem at hand.

Incremental algorithm for computing the number of unique
visitors can generate prohibitively large batch views.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 31

GENERALITY OF THE ALGORITHMS

Probabilistic counting algorithms, such as HyperLog-Log,
that store intermediate statistics to estimate the overall
unique count.

This reduces the storage cost of the batch view

Algorithm approximate instead of exact.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 32

GENERALITY OF THE ALGORITHMS

Incremental algorithms shift complexity to on-the-fly
computations.

As you improve your semantic normalization algorithm,
you’ll want to see those improvements reflected in the
results of your queries. Yet, if you do the normalization
as part of the precomputation, your batch view will be
out of date whenever you improve the normalization.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 33

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 34

Requires computational effort

to process the entire dataset

Incremental

Algorithms

Recomputation

Algorithms

Performance

Requires less computational

resources but may generate

much larger batch views

Extremely tolerant of human

errors because the batch views

are continually rebuilt

Doesn’t facilitate repairing errors

in the batch views; repairs are ad

hoc and may require estimates

Human-fault

Tolerance

Generality

Complexity of the algorithm is

addressed during precomputation,

resulting in simple batch views and

low-latency, on-the-fly processing

Conclusion

Requires special tailoring; may

shift complexity to on-the-fly

query processing

Essential to supporting a robust

data-processing system

Can increase the efficiency of

your system, but only as a

supplement to recomputation

algorithms

SCALABILITY IN THE BATCH
LAYER

IN5528 - INTRODUCTION TO BIG DATA

SCALABILITY IN THE BATCH LAYER

Scalability is the ability of a system to maintain
performance under increased load by adding more
resources.

Load in a Big Data context:

Total amount of data you have.

How much new data you receive every day.

How many requests per second your application serves.

More important than a system being scalable is a system
being linearly scalable, instead of being nonlinearly
scalable.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 36

MAPREDUCE

MapReduce is a distributed computing paradigm
originally pioneered by Google that provides primitives
for scalable and fault-tolerant batch computation.

With Map-Reduce, you write your computations in terms of
map and reduce functions that manipulate key/value pairs.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 37

MAPREDUCE

These primitives are expressive enough to implement
nearly any function, and the MapReduce framework
executes those functions over the master dataset in a
distributed and robust manner.

The canonical MapReduce example is word count.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 38

MAP FUNCTION OF THE WORD COUNT
EXAMPLE

function word_count_map(sentence) {

for(word in sentence.split(" ")) {

emit(word, 1)

}

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 39

MapReduce then arranges the output from

the map functions so that all values from

the same key are grouped together.

REDUCE FUNCTION OF THE WORD COUNT
EXAMPLE

function word_count_reduce(word, values) {

sum = 0

for(val in values) {

sum += val

}

emit(word, sum)

}

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 40

The reduce function then takes the full list of values sharing the

same key and emits new key/value pairs as the final output.

SCALABILITY

Programs written in terms of MapReduce are inherently
scalable.

A program that runs on 10 gigabytes of data will also run
on 10 petabytes of data.

MapReduce automatically parallelizes the computation
across a cluster of machines regardless of input size.

Let’s walk through how a program like word count
executes on a MapReduce cluster.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 41

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 42

Datanode 1 Datanode 2 Datanode 3

Datanode 4 Datanode 5 Datanode 6

Data file:

input.txt

File block

locations:

2, 3, 5

2, 4, 6

Distributed Filesystem

After determining the locations of the input,

MapReduce launches a number of map tasks

proportional to the input data size.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 43

Map

code

Map task:

Serever 1

Map task:

Serever 2

<to,1>, <be,1>, <or,1>,

<not,1>, <to,1>, <be,1>,

…

<brevity,1>, <is,1>,

<the,1>, <soul,1>,

<of,1>, …

Code is sent to the servers hosting the

input files to limit network traffic

across the cluster.

The map tasks generate intermediate

key/value pairs that will be

redirected to reduce tasks

1 2

Each of these tasks is assigned a subset of the input

and executes your map function on that data.

MAPREDUCE

Because the amount of the code is typically far less than
the amount of the data, MapReduce attempts to assign
tasks to servers that host the data to be processed.

Like map tasks, there are also reduce tasks spread across
the cluster.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 44

MAPREDUCE

Like map tasks, there are also reduce tasks spread across
the cluster.

Because the reduce function requires all values associated
with a given key, a reduce task can’t begin until all map
tasks are complete.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 45

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 46

<to,1>, <be,1>, <or,1>,

<not,1>, <to,1>, <be,1>,

…

<brevity,1>, <is,1>,

<the,1>, <soul,1>,

<of,1>, …

<once,1>, <more,1>,

<unto,1>, <the,1>,

<breach,1>, …

Reduce task 1 Reduce task 2

…

In this process all of the

pairs with the same key

are sent to the same

reducer

Once the map tasks finish executing, each emitted key/value

pair is sent to the reduce task responsible for processing that

key. This transfer of the intermediate key/value pairs is

called shuffling.

MAPREDUCE

Once a reduce task receives all of the key/value pairs
from every map task, it sorts the key/value pairs by key.
This has the effect of organizing all the values for any
given key to be together. The reduce function is then called
for each key and its group of values.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 47

MAPREDUCE SUMMARY

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 48

<to,1>

<and,1>

<form,1>

<to,1>

<here,1>

<from,1>

<and,1>

…

<and,1>

<and,1>

<form,1>

<from,1>

<here,1>

<to,1>

<to,1>

…

<and,2>

<form,2>

<here,1>

<to,2>

…

Sort Reduce

Map

MAPREDUCE SUMMARY

 MapReduce programs execute in a fully distributed
fashion with no central point of contention.

 MapReduce is scalable: the map and reduce functions
you provide are executed in parallel across the
cluster.

 The challenges of concurrency and assigning tasks
to machines is handled for you.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 49

FAULT-TOLERANCE

Network partitions, server crashes, and disk failures are
relatively rare for a single server, but the likelihood of
something going wrong greatly increases when
coordinating computation over a large cluster of machines.

Thankfully, in addition to being easily parallelizable and
inherently scalable, MapReduce computations are also
fault tolerant.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 50

FAULT-TOLERANCE

A program can fail for a variety of reasons:

A hard disk can reach capacity.

The process can exceed available memory.

The hardware can break down.

MapReduce watches for these errors and automatically
retries that portion of the computation on another node.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 51

FAULT-TOLERANCE

An entire application (commonly called a job) will fail only
if a task fails more than a configured number of times—
typically four.

The idea is that a single failure may arise from a server
issue, but a repeated failure is likely a problem with
your code.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 52

FAULT-TOLERANCE

Because tasks can be retried, MapReduce requires that
your map and reduce functions be deterministic.

This means that given the same inputs, your functions must
always produce the same outputs. It’s a relatively light
constraint but important for MapReduce to work correctly.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 53

IN5528 - INTRODUCTION TO BIG DATA 54

MAPREDUCE VS. SPARK

IN5528 - INTRODUCTION TO BIG DATA

New computation system

that has gained a lot of

attention.

Model: “resilient

distributed datasets”.

Spark isn’t any more

general or scalable than

MapReduce.

Higher performance: Spark is able

to cache that data in memory rather

than read it from disk every time.

QUESTIONS?
SEE YOU ON THE NEXT CLASS!

