
INTRODUCTION TO
BIG DATA

Juan D. Velásquez

Felipe E. Vildoso

CHAPTER 2

IN5528 - INTRODUCTION TO BIG DATA

LECTURE 8 Chapter 2

IN5528 - INTRODUCTION TO BIG DATA

DATA STORAGE ON THE BATCH
LAYER

IN5528 - INTRODUCTION TO BIG DATA

HOW TO PHYSICALLY STORE THE DATA IN
THE BATCH LAYER?

The master dataset is typically too large to exist on a
single server.

You must choose how you’ll distribute your data across
multiple machines.

The way you store your master dataset will impact how you
consume it, so it’s vital to devise your storage strategy
with your usage patterns in mind.

IN5528 - INTRODUCTION TO BIG DATA 5

STORAGE REQUIREMENTS FOR THE
MASTER DATASET

You must consider how your data will be written and how
it will be read.

The batch layer affects both areas.

IN5528 - INTRODUCTION TO BIG DATA 6

STORAGE REQUIREMENTS FOR THE
MASTER DATASET

Two key properties of data: data is immutable and
eternally true.

Each piece of your data will be written once and only once.

There is no need to ever alter your data, the only write operation
will be to add a new data unit to your dataset.

The storage solution must therefore be optimized to
handle a large, constantly growing set of data.

IN5528 - INTRODUCTION TO BIG DATA 7

STORAGE REQUIREMENTS FOR THE
MASTER DATASET

The batch layer is also responsible for computing functions
on the dataset to produce the batch views.

The batch layer storage system needs to be good at reading lots of
data at once.

Random access to individual pieces of data is not required.

With this “write once, bulk read many times” paradigm
in mind, we can create a checklist of requirements for the
data storage.

IN5528 - INTRODUCTION TO BIG DATA 8

IN5528 - INTRODUCTION TO BIG DATA

Write

Efficient
appends of

data

Scalable
Storage

Read

Support for
parallel

processing

Both

Tunable
storage and

processing costs

Enforceable
immutability

IN5528 - INTRODUCTION TO BIG DATA 9

IN5528 - INTRODUCTION TO BIG DATA

Write

Efficient
appends of

data

Scalable
Storage

Read

Support for
parallel

processing

Both

Tunable
storage and

processing costs

Enforceable
immutability

IN5528 - INTRODUCTION TO BIG DATA 10

The only write operation is to add new pieces

of data, so it must be easy and efficient to

append a new set of data objects to the

master dataset.

The batch layer stores the complete dataset –

potentially terabytes or petabytes of data. It

must therefore be easy to scale the storage as

your dataset grows.

IN5528 - INTRODUCTION TO BIG DATA

Read

Support for
parallel

processing

Both

Tunable
storage and

processing costs

Enforceable
immutability

IN5528 - INTRODUCTION TO BIG DATA 11

Constructing the batch views requires

computing functions on the entire master

dataset. The batch storage must consequently

support parallel processing to handle large

amounts of data in a scalable manner.

IN5528 - INTRODUCTION TO BIG DATA

Both

Tunable
storage and

processing costs

Enforceable
immutability

IN5528 - INTRODUCTION TO BIG DATA 12

Storage costs money. You may choose to

compress your data to help minimize your

expenses, but decompressing your data

during computations can affect performance.

The batch layer should give you the flexibility

to decide how to store and compress your

data to suit your specific needs.

IN5528 - INTRODUCTION TO BIG DATA

Both

Tunable
storage and

processing costs

Enforceable
immutability

IN5528 - INTRODUCTION TO BIG DATA 13

It’s critical that you’re able to enforce the

immutability property on your masterdataset.

Of course, computers by their very nature are

mutable, so there will always be a way to

mutate the data you’re storing. The best you

can do is put checks in place to disallow

mutable operations. These checks should

prevent bugs or other random errors from

trampling over existing data.

CHOOSING A STORAGE SOLUTION FOR
THE BATCH LAYER

With the requirements checklist in hand, you can now
consider options for batch layer storage.

With such loose requirements (not even needing random
access to the data) you could use pretty much any
distributed database for the master dataset.

IN5528 - INTRODUCTION TO BIG DATA 14

USING A KEY/VALUE STORE
FOR THE MASTER DATASET

IN5528 - INTRODUCTION TO BIG DATA 15

KEY/VALUE STORE

It’s a data storage paradigm designed for storing,
retrieving, and managing associative arrays, a data
structure more commonly known today as a dictionary or
hash.

IN5528 - INTRODUCTION TO BIG DATA

Key Value

K1 AAA , BBB , CCC

K2 AAA , BBB

K3 AAA , DDD

K4 AAA , 2 , 01/01/2015

K5 3 , ZZZ , 5623

IN5528 - INTRODUCTION TO BIG DATA 16

KEY/VALUE STORE

We haven’t discussed distributed key/value stores yet, but
you can essentially think of them as giant persistent hash
maps that are distributed among many machines.

You have to figure out…

What the keys should be.

What the values should be. A piece of data you want to
store.

But what should a key be?

IN5528 - INTRODUCTION TO BIG DATA 17

KEY/VALUE STORE

There’s no natural key in the data model, nor is one
necessary because the data is meant to be consumed in
bulk. So you immediately hit an impedance mismatch
between the data model and how key/value stores work.

The only really viable idea is to generate a universally
unique identifier (UUID) to use as a key.

A UUID is simply a 128-bit value.

IN5528 - INTRODUCTION TO BIG DATA

de305d54-75b4-431b-adb2-eb6b9e546014

IN5528 - INTRODUCTION TO BIG DATA 18

KEY/VALUE STORE

This is only the start of the problems...

Because key/value stores need fine-grained access to
key/value pairs to do random reads and writes, you can’t
compress multiple key/value pairs together.

You’re severely limited in tuning the trade-off between
storage costs and processing costs.

IN5528 - INTRODUCTION TO BIG DATA 19

KEY/VALUE STORE

Key/value stores are meant to be used as mutable stores,
which is a problem if enforcing immutability is so crucial
for the master dataset.

Unless you modify the code of the key/value store you’re
using, you typically can’t disable the ability to modify
existing key/value pairs.

IN5528 - INTRODUCTION TO BIG DATA 20

KEY/VALUE STORE

The biggest problem is that a key/value store has a lot
of things you don’t need: random reads, random writes,
and all the machinery behind making those work.

This means the tool is enormously more complex than it
needs to be to meet your requirements, making it much
more likely you’ll have a problem with it.

The key/value store indexes your data and provides
unneeded services, which will increase your storage costs
and lower your performance when reading and writing
data.

IN5528 - INTRODUCTION TO BIG DATA 21

USING A DISTRIBUTED
FILESYSTEM

IN5528 - INTRODUCTION TO BIG DATA

FILESYSTEMS

Files are sequences of bytes.

The most efficient way to consume files is by scanning through
them.

They’re stored sequentially on disk (sometimes they’re split
into blocks, but reading and writing is still essentially
sequential).

IN5528 - INTRODUCTION TO BIG DATA 23

FILESYSTEMS

You have full control over the bytes of a file.

You have the full freedom to compress them however you
want.

Unlike a key/value store, a filesystem gives you exactly
what you need and no more, while also not limiting your
ability to tune storage cost versus processing cost.

Filesystems implement fine-grained permissions systems, which
are perfect for enforcing immutability.

IN5528 - INTRODUCTION TO BIG DATA 24

FILESYSTEMS

The problem with a regular filesystem is that it exists on
just a single machine, so you can only scale to the
storage limits and processing power of that one machine.

IN5528 - INTRODUCTION TO BIG DATA 25

DISTRIBUTED FILESYSTEMS

Similar to regular filesystems, but they spread their
storage across a cluster of computers.

They scale by adding more machines to the cluster.

Distributed filesystems are designed so that you have fault
tolerance when a machine goes down, meaning that if you lose
one machine, all your files and data will still be accessible.

The operations you can do with a distributed filesystem are
often more limited than you can do with a regular filesystem.

IN5528 - INTRODUCTION TO BIG DATA 26

DISTRIBUTED FILESYSTEMS

Oftentimes having small files can be inefficient, so you
want to make sure you keep your file sizes relatively
large to make use of the distributed filesystem properly
(the details depend on the tool, but 64 MB is a good rule
of thumb).

IN5528 - INTRODUCTION TO BIG DATA 27

HOW DISTRIBUTED FILESYSTEMS WORK

It’s tough to talk in the abstract about how any distributed
filesystem works, so we’ll ground our explanation with a
specific tool: the Hadoop Distributed File System (HDFS).

HDFS and Hadoop MapReduce are the two prongs of the
Hadoop project: a Java framework for distributed storage
and distributed processing of large amounts of data.

IN5528 - INTRODUCTION TO BIG DATA 28

HOW DISTRIBUTED FILESYSTEMS WORK

Hadoop is deployed across multiple servers, typically
called a cluster, and HDFS is a distributed and scalable
filesystem that manages how data is stored across the
cluster.

H
D

FS

(A Single)

Namenode

(Multiple)

Datanodes

Keeps the directory tree of all files

Tracks where across the cluster the file data is

kept.

It does not store the data of these files itself.

IN5528 - INTRODUCTION TO BIG DATA 29

Stores data

Client applications can talk directly to a

DataNode, once the NameNode has provided

the location of the data.

HOW DISTRIBUTED FILESYSTEMS WORK

When you upload a file to HDF, the file…

IN5528 - INTRODUCTION TO BIG DATA 30

Chunked into blocks of a fixed size

(between 64 MB and 256 MB)

Each block is replicated across multiple datanodes

(typically 3) that are chosen at random

The namenode keeps track of the file-to-block

mapping and where each block is located

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 31

Data file:

logs.txt

Datanode 1 Datanode 2 Datanode 3

Datanode 4 Datanode 5 Datanode 6

Namenode: logs.txt

1, 4, 5

1, 3, 6 2, 3, 5

2, 4, 6

All (typically large) files are

broken into blocks, usually

64 to 256 MB

These blocks are replicated

(typically with 3 copies)

among the HDFS servers

(datanodes)

The namenode provides a lookup

service for clients accessing the data

and ensures the blocks are correctly

replicated across the cluster

HOW DISTRIBUTED FILESYSTEMS WORK

Distributing a file in this way across many nodes allows it
to be easily processed in parallel.

When a program needs to access a file stored in HDFS, it
contacts the namenode to determine which datanodes host
the file contents.

IN5528 - INTRODUCTION TO BIG DATA 32

HOW DISTRIBUTED FILESYSTEMS WORK

Additionally, with each block replicated across multiple
nodes, your data remains available even when
individual nodes are offline.

There are limits to this fault tolerance: if you have a
replication factor of three, three nodes go down at once,
and you’re storing millions of blocks, chances are that
some blocks happened to exist on exactly those three
nodes and will be unavailable.

IN5528 - INTRODUCTION TO BIG DATA 33

HOW DISTRIBUTED FILESYSTEMS WORK

Implementing a distributed filesystem is a difficult task, but
you’ve now learned what’s important from a user
perspective.

Important things to know:

Files are spread across multiple machines for scalability
and also to enable parallel processing.

File blocks are replicated across multiple nodes for fault
tolerance.

Let’s now explore how to store a master dataset using a
distributed filesystem.

IN5528 - INTRODUCTION TO BIG DATA 34

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 35

1 2

Namenode: logs.txt

1, 4, 5

1, 3, 6 2, 3, 5

2, 4, 6 Datanode 1 Datanode 2

Client

Application

When an application processes

a file stores in HDFS it first

queries the namenode for the

block locations.

Once the location are known,

the application contacts the

datanodes directly to Access the

file contents.

STORING A MASTER DATASET WITH A
DISTRIBUTED FILESYSTEM

Distributed filesystems vary in the kinds of operations they
permit.

Some distributed filesystems let you modify existing files,
and others don’t.

Some allow you to append to existing files, and some
don’t have that feature.

IN5528 - INTRODUCTION TO BIG DATA 36

STORING A MASTER DATASET WITH A
DISTRIBUTED FILESYSTEM

We’ll look at how you can store a master dataset on a
distributed filesystem with only the most bare-boned of
features, where a file can’t be modified at all after being
created.

With unmodifiable files you can’t store the entire master
dataset in a single file. What you can do instead is
spread the master dataset among many files, and store all
those files in the same folder. Each file would contain many
serialized data objects.

IN5528 - INTRODUCTION TO BIG DATA 37

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 38

File: /data/file1

File: /data/file2

Folder: /data/

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 39

File: /data/file1

File: /data/file2

Folder: /data/

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

Serialized data object

File: /data/file3

Serialized data object

Serialized data object

Serialized data object

Upload

IN5528 - INTRODUCTION TO BIG DATA

Write

Efficient
appends of

data

Scalable
Storage

Read

Support for
parallel

processing

Both

Tunable
storage and

processing costs

Enforceable
immutability

IN5528 - INTRODUCTION TO BIG DATA 40

IN5528 - INTRODUCTION TO BIG DATA

Write

Efficient
appends of

data

Scalable
Storage

Read

Support for
parallel

processing

Both

Tunable
storage and

processing costs

Enforceable
immutability

IN5528 - INTRODUCTION TO BIG DATA 41

Appending new data is as simple as adding a

new file to the folder containing the master

dataset.

Distributed filesystems evenly distribute the

storage across a cluster of machines. You

increase storage space and I/0 throughput by

adding more machines.

IN5528 - INTRODUCTION TO BIG DATA

Read

Support for
parallel

processing

Both

Tunable
storage and

processing costs

Enforceable
immutability

IN5528 - INTRODUCTION TO BIG DATA 42

Distributed filesystems spread all data across many

machines, making it possible to parallelize the

processing across many machines. Distributed

filesystems typically integrate with computation

frameworks like MapReduce to make that

processing easy to do.

IN5528 - INTRODUCTION TO BIG DATA

Both

Tunable
storage and

processing costs

Enforceable
immutability

IN5528 - INTRODUCTION TO BIG DATA 43

Just like regultar filesystems, you have full

control over how you store your data units

within the files. You choose the file format for

your data as well as the level of compression.

You’re free to do individual record

compression, block-level compression, or

neither.

IN5528 - INTRODUCTION TO BIG DATA

Both

Tunable
storage and

processing costs

Enforceable
immutability

IN5528 - INTRODUCTION TO BIG DATA 44

Distributed filesystems typically have the same

permissions systems you’re used to using in

regular filesystems. To enforce immutability, you

can disable the ability to modify or delete files

in the master dataset folder for the user with

which your application runs. This redundant

check will protect your previously existing data

against bugs or other human mistakes.

STORING A MASTER DATASET WITH A
DISTRIBUTED FILESYSTEM

At a high level, distributed filesystems are straightforward
and a natural fit for the master dataset.

Like any tool they have their quirks. But it turns out that
there’s a little more you can exploit with the files and
folders abstraction to improve storage of the master
dataset.

IN5528 - INTRODUCTION TO BIG DATA 45

VERTICAL PARTITIONING

Although the batch layer is built to run functions on the
entire dataset, many computations don’t require looking
at all the data.

Ex.: You may have a computation that only requires
information collected during the past two weeks.

The batch storage should allow you to partition your data
so that a function only accesses data relevant to its
computation. This process is called vertical partitioning.

IN5528 - INTRODUCTION TO BIG DATA 46

VERTICAL PARTITIONING

Vertical partitioning can greatly contribute to making the
batch layer more efficient.

While it’s not strictly necessary for the batch layer (as it’s
capable of looking at all the data at once and filtering out
what it doesn’t need), vertical partitioning enables large
performance gains, so it’s important to know how to use the
technique.

IN5528 - INTRODUCTION TO BIG DATA 47

VERTICAL PARTITIONING

Vertically partitioning data on a distributed filesystem can
be done by sorting your data into separate folders.

Suppose you’re storing login information on a distributed
filesystem. Each login contains a username, IP address,
and timestamp.

IN5528 - INTRODUCTION TO BIG DATA 48

VERTICAL PARTITIONING

To vertically partition by day, you can create a separate
folder for each day of data.

Each day folder would have many files containing the logins
for that day.

Now if you only want to look at a particular subset of your
dataset, you can just look at the files in those particular
folders and ignore the other files.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 49

VERTICAL PARTITIONING

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 50

Folder: /logins

Folder: /logins/2012-10-25

Folder: /logins/2012-10-26

File: /logins/2012-10-25/logins-2012-10-25.txt

Alex 192.168.12.125 Thu Oct 25 22:33 – 22:46 (00:12)

Bob 192.168.8.251 Thu Oct 25 21:04 – 21:28 (00:24)

…

File: /logins/2012-10-26/logins-2012-10-26-part1.txt

File: /logins/2012-10-26/logins-2012-10-26-part2.txt

LOW-LEVEL NATURE OF DISTRIBUTED
FILESYSTEMS

While distributed filesystems provide the storage and
fault-tolerance properties you need for storing a master
dataset, you’ll find using their APIs directly too low-level
for the tasks you need to run.

We’ll illustrate this using regular Unix filesystem
operations and show the difficulties you can get into when
doing tasks like appending to a master dataset or
vertically partitioning a master dataset.

IN5528 - INTRODUCTION TO BIG DATA 51

LOW-LEVEL NATURE OF DISTRIBUTED
FILESYSTEMS

Suppose your master dataset is in the folder /master and
you have a folder of data in /new-data that you want to
put inside your master dataset. Suppose the data in the
folders is contained in files.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 52

Folder: /new-data/

File: /new-data/file2

File: /new-data/file3

File: /new-data/file9

Folder: /master/

File: /master/file1

File: /master/file2

File: /master/file8

LOW-LEVEL NATURE OF DISTRIBUTED
FILESYSTEMS

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 53

foreach file : “/new data”

Mv file “/master/”

Iterate over all files in

/new-data

Move the file into the

/master folder

LOW-LEVEL NATURE OF DISTRIBUTED
FILESYSTEMS

Unfortunately, this code has serious problems…

If the master dataset folder contains any files of the same
name, then the mv operation will fail. To do it correctly, you
have to be sure you rename the file to a random filename
and so avoid conflicts.

One of the core requirements of storage for the master
dataset is the ability to tune the trade-offs between storage
costs and processing costs.

IN5528 - INTRODUCTION TO BIG DATA 54

LOW-LEVEL NATURE OF DISTRIBUTED
FILESYSTEMS

When storing a master dataset on a distributed filesystem,
you choose a file format and compression format that
makes the trade-off you desire.

What if the files in /new-data are of a different format
than in /master? Then the mv operation won’t work at all.

You instead need to copy the records out of /new-data
and into a brand new file with the file format used in
/master.

IN5528 - INTRODUCTION TO BIG DATA 55

Folder: /master

Folder: /master/bday/Folder: /master/age/

LOW-LEVEL NATURE OF DISTRIBUTED
FILESYSTEMS

Let’s now take a look at doing the same operation but with
a vertically partitioned master dataset.

IN5528 - INTRODUCTION TO BIG DATAIN5528 - INTRODUCTION TO BIG DATA 56

Folder: /new-data/

File: /new-data/file2

File: /new-data/file3

File: /new-data/file9

File: /master/age/file2

File: /master/age/file1 File: /master/bday/file1

File: /master/bday/file2

LOW-LEVEL NATURE OF DISTRIBUTED
FILESYSTEMS

Just putting the files from /new-data into the root of
/master is wrong because it wouldn’t respect the vertical
partitioning of /master.

Either the append operation should be disallowed,
because /new-data isn’t correctly vertically partitioned, or
/new-data should be vertically partitioned as part of the
append operation.

IN5528 - INTRODUCTION TO BIG DATA 57

LOW-LEVEL NATURE OF DISTRIBUTED
FILESYSTEMS

When you’re just using a files-and-folders API directly, it’s
very easy to make a mistake and break the vertical
partitioning constraints of a dataset.

All the operations and checks that need to happen to get
these operations working correctly strongly indicate that
files and folders are too low-level of an abstraction for
manipulating datasets.

IN5528 - INTRODUCTION TO BIG DATA 58

QUESTIONS?
SEE YOU ON THE NEXT CLASS!

