Clase Auxiliar 9

Profesor: Elton Dusha 5 de junio de 2017

Profesores Auxiliares: Felipe Callpa y Ronald Leblebici

Problema 1: Demostraciones, modelo de Solow

Demuestre los siguientes enunciados.

- A. Una función de producción Cobb-Douglas tiene economías de escala. Es decir: $F(c\cdot K,c\cdot A\cdot L)=c\cdot F(K,A\cdot L)$, con $F(K,A\cdot L)=K^{\alpha}\cdot (A\cdot L)^{1-\alpha}$
- B. La producción por unidad de trabajo efectivo está dada por f(k) = F(k, 1).
- C. Evolución de la fuerza de trabajo (L) en el tiempo: $\frac{dL(t)}{dt} = n \cdot L(t) \Rightarrow L(t) = L(0) \cdot e^{nt}$. La misma propiedad aplica para A(t).
- D. Ecuación clave del modelo de Solow: $\dot{k} = s \cdot f(k) (\delta + n + g) \cdot k$.
- E. $\frac{\partial c^*}{\partial s} = [f'(k^*) (n+g+\delta)] \cdot \frac{\partial k^*}{\partial s}$.
- F. Elasticidad de la producción en el equilibrio respecto al ahorro: $\frac{s}{y^*} \cdot \frac{\partial y^*}{\partial s} = \frac{\alpha_k(k^*)}{1 \alpha_k(k^*)}$
- G. Elasticidad de la producción en el equilibrio respecto al la tasa de crecimiento de la fuerza de trabajo: $\frac{n}{y^*} \cdot \frac{\partial y^*}{\partial n} = \frac{-n}{n+g+\delta} \cdot \frac{\alpha_k(k^*)}{1-\alpha_k(k^*)}.$
- H. Rapidez de convergencia: $k(t) = e^{-\lambda t}(k(0) k^*) + k^* \text{ con } \lambda = (n + g + \delta)(1 \alpha_k(k^*)).$

Problema 2 (Romer 1.7): Un poco de elasticidad...

Considerar que n disminuye de un 2 % a un 1 %.

- A. Calcule la elasticidad del producto por unidad de trabajo efectivo en el estado estacionario, y^* , con respecto a la tasa de crecimiento de la población, n, si $\alpha_k(k^*) = \frac{1}{3}$, g = 2% y $\delta = 3\%$.
- B. ¿Cuánto aumenta y^* ?

Problema 3: Solow creativo (P3, C2 2016-2)

Considere una versión del modelo de Solow con $y = f(k) = k^{\alpha}$, donde y y k son la producción y el capital por unidad de trabajo efectivo. Recuerde que: $\dot{k} = sf(k) - (n+g)k$.

Suponga que las personas sólo ahorran si $k \geq \bar{k}$ donde $\bar{k} > 0$. Lo anterior significa que $\forall k < \bar{k}, s = 0$ y $\forall k \geq \bar{k}, s > 0$.

- A. En un mismo gráfico, dibuje sy y (n+g)k como función de k. [Hint: aquí pueden haber diferentes casos.]
- B. ¿Cuántos estados estacionarios tiene este modelo?
- C. Encuentre los equilibrios estables e inestables.
- D. [5 ¿Cuánto tiempo le toma al capital por unidad de trabajo efectivo quedar a medio camino de su transición desde \bar{k} a su estado estacionario dado por $k^* > 0$ si n = g = 2% y $\alpha = 1/3$?