University of Chile CEA

Macroeconomics, Theory and policy Solution set #1

Elton Dusha

Disclaimer: The following answers are only suggested solutions, and may <u>NOT</u> include a complete solution for the questions and problems in your homework, as you must present in your assignments and/or exams. In your solutions you must show your work, and demonstrate your line of thinking clearly. Please, always check my calculations for unintentional typos or miscalculations.

·

1-

Real GDP	Nominal GDP	GDP Deflator
2234	2687	120
3260	3912	120
2228	1983	89
4500	4589	102
9564	9564	100
3413	4607	135

2- (i) and (ii)

	Value-Added Approach			Expenditure Approach		
Sector	Value-Added	Value of	Value of	Consumption	Investment	Net
		Input	Output			Exports
Steel	10	0	10	0	2	0
Automobile	10	15	25	15+4=19	0	10-4-5=1
Construction	1	1	2	0	0	0
Services	6	0	6	5	0	0
Total	27	16	43	24	2	1

Value-Added Approach:

GDP = 27

Expenditure Approach:

GDP = C + I + NX = 27

(iii)- GDP falls by \$5 billion

3-

3	Electricity		Sugar		Cookies		Restaurants	GDP
a)- $GDP = (800)$	0 - 100 - 100 - 200) +	(500 - 200 - 200)	+	800	+	1200	= 2500
b)- $GDP =$	800	+	(500 - 100)	+ (3	800 - 100 - 2	+ (00	(1200 - 200 -	200) = 2500
c)- $GDP =$	(500 + 300)	+	(300 + 100)	+	(400 + 100))) +	(600 + 200	= 2500
d)- All of them are the same.								

4

a)-

2001 Nominal GDP = 10 * 2,000 + 4 * 1,000 + 1,000 * 1 = \$25,000.

2002 Nominal GDP = 12 * 3,000 + 6 * 500 + 1,000 * 1 = \$40,000.

Growth rate of nominal GDP in year 2002 = [(40,000 - 25,000)/25,000]*100=60%

b)- Real GDP for the base year (2001) would be the same as nominal GDP = \$25,000 2002 Real GDP = 12 * 2,000 + 6 * 1,000 + 1,000 * 1 = \$31,000. Growth rate of real GDP in year 2002 = [(31,000 - 25,000)/25,000] *100 = 24%

c)- Real GDP for the base year (2002) would be the same as nominal GDP = \$40,000 2001 Real GDP = 10 * 3,000 + 4 * 500 + 1,000 * 1 = \$33,000. Growth rate of real GDP in year 2002 = [(40,000 - 33,000)/33,000]*100=21.2%

d)- This is one of the troublesome aspects of this method of real GDP calculations.

5

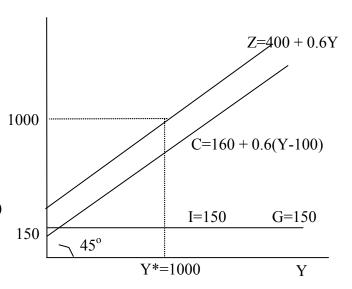
GDP deflator = Nominal GDP/Real GDP *100

- a)- GDP deflator for year 2001 = 25,000/25,000 *100 =100 GDP deflator for year 2002 = 40,000/31,000 *100 =129 Inflation of GDP deflator in year 2002 = (129 -100)/100] *100=29%
- b)- GDP deflator for year 2001 = 25,000/33,000 *100 =75.76 GDP deflator for year 2002 = 40,000/40,000 *100 =100 Inflation of GDP deflator in year 2002 = (100 -75.76)/75.76] *100=32%
- c)- Yes. Again the rates depend on choosing the base year.

6.

a)-Z = C + G + I \Rightarrow Z = 160 + 0.6*(Y-100) + 150 + 150

 \rightarrow Z=400 + 0.6 Y


Equilibrium Condition: Z = Y

Line Z = Y has a slope of 45 degree.

$$\begin{cases}
Z = 400 + 0.6 \text{ Y} \\
Z = Y
\end{cases} Y = 400 + 0.6 \text{ Y}$$

→ Y=1000 (point Y* in the graph) (Equilibrium Output/Income/Demand/Expenditure)

b)- Equilibrium Disposable Income:

$$Yd = Y - T \rightarrow Yd = 1000 - 100 = 900$$

c)- Equilibrium Consumption: C = 160 + 0.6 Yd = 160 + 0.6 * 900 \bullet C = 700