Matemáticas Discretas para la Computación - CC3101 Control 2 - Semestre Otoño 2017

- 1. Sea ν el vocabulario que consiste de un solo símbolo de relación binario E. Construya una fórmula ϕ sin variables libres en $\mathcal{L}(\nu)$ es decir, en la lógica relacional definida sobre vocabulario ν que satisface lo siguiente:
 - a) Existe una estructura infinita \mathcal{A} que interpreta el vocabulario ν tal que $\mathcal{A} \models \phi$. Esto quiere decir que el dominio de \mathcal{A} es infinito.
 - b) No existe estructura *finita* \mathcal{B} que interpreta el vocabulario ν tal que $\mathcal{B} \models \phi$.

Hint: Parta por pensar en cómo construir una fórmula ψ tal que $\mathcal{A} \models \psi$, donde \mathcal{A} es la estructura cuyo dominio es \mathbb{N} y E se interpreta en \mathcal{A} como la relación de sucesor en \mathbb{N} , pero $\mathcal{B} \not\models \psi$, donde \mathcal{B} es cualquier estructura cuyo dominio es $\{0,\ldots,n\}$, para $n\geq 0$, y E se interpreta en \mathcal{B} como $\{(i,i+1)\mid 0\leq i< n\}\cup\{(n,j)\}$ para algún $0\leq j\leq n$.

Solución: La fórmula ϕ se puede definir como sigue:

$$\exists x \neg \exists y E(y, x) \land \forall x \exists y E(x, y) \land \forall x \forall y \forall z (E(x, z) \land E(y, z) \rightarrow x = y).$$

Es decir, la relación E tiene un elemento sin antecesor, todo elemento tiene al menos un sucesor, y no hay dos elementos distintos que compartan un sucesor. Note entonces que:

- a) $\mathcal{A} \models \phi$, donde \mathcal{A} es la estructura cuyo dominio es \mathbb{N} y E se interpreta en \mathcal{A} como la relación de sucesor. Esta estructura es infinita.
- b) No existe estructura finita \mathcal{B} que interpreta el vocabulario ν , tal que $\mathcal{B} \models \phi$. En efecto, asuma que tal estructura existe. Por tanto, E tiene un elemento sin antecesor, digamos c, el que tiene un sucesor d tal que $d \neq c$ (ya que si c = d se violaría que c no tiene antecesor). De la misma forma, d tiene un sucesor e tal que $e \neq c$. Además, $e \neq d$, ya que de otra forma (c,d) y (d,d) pertenecerían a la interpretación de E en \mathcal{B} , lo que violaría el hecho de que $\forall x \forall y \forall z (E(x,z) \land E(y,z) \to x = y)$. De esta forma podemos ir construyendo una cadena de elementos distintos c,d,e,\ldots tal que cada par de elementos consecutivos en la cadena pertenece a la interpretación de E. Dado que la estructura es finita, esta cadena debe llegar a un punto en el que ya no hay más sucesores que elegir. Esto viola el hecho de que $\forall x \exists y E(x,y)$.
- 2. Considere una función $f: \mathbb{N} \to \mathbb{N}$ que satisface la siguiente definición recursiva:
 - f(0) = f(1) = 1.
 - $f(n) \le f(\lfloor \frac{7n}{10} \rfloor) + f(\lfloor \frac{n}{5} \rfloor) + n$, para $n \ge 2$.

Demuestre que existe $c \ge 1$ tal que $f(n) \le cn$, para todo $n \ge 0$.

Solución: Para cumplir los casos bases basta que $c \ge 1$. Supongamos ahora inductivamente que $n \ge 2$ y $f(k) \le ck$ para todo k < n. Por tanto, por definición e HI podemos concluir que:

$$f(n) \leq f(\lfloor \frac{7n}{10} \rfloor) + f(\lfloor \frac{n}{5} \rfloor) + n \leq c \cdot \lfloor \frac{7n}{10} \rfloor + c \cdot \lfloor \frac{n}{5} \rfloor + n,$$

ya que $\lfloor \frac{7n}{10} \rfloor$ y $\lfloor \frac{n}{5} \rfloor$ son menores que n. Para que esta última expresión sea menor o igual a cn, que es lo que buscamos, basta entonces que:

$$c \cdot \frac{7n}{10} + c \cdot \frac{n}{5} + n \le cn.$$

Esto se cumple si $c \ge 10$. Por tanto, $f(n) \le 10n$ para todo $n \ge 1$.

3. Considere un grupo de n personas en que cada par de personas es mutuamente amigo o enemigo. Sea E el evento de que exista un grupo de k mutuos amigos o k mutuos enemigos, para un cierto $1 \le k \le n$. Demuestre que:

$$Pr(E) \leq \binom{n}{k} \cdot 2(\frac{1}{2})^{\binom{k}{2}}.$$

Solución: En el grupo hay exactamente $\binom{n}{k}$ formas de elegir un grupo de k personas. Sean $S_1, \ldots, S_{\binom{n}{k}}$ tales grupos. Denotemos por E_i el evento que expresa que el grupo E_i consiste de k mutuos amigos o k mutuos enemigos, para cada $1 \le i \le \binom{n}{k}$. Por tanto:

$$Pr(E) \leq \sum_{i=1}^{\binom{n}{k}} Pr(E_i).$$

Pero para cada $1 \leq i \leq \binom{n}{k}$ se tiene que $Pr(E_i) \leq Pr(F_i) + Pr(G_i)$, donde F_i es el evento que expresa que todos las personas en S_i son mutuos amigos y G_i aquella que expresa que son mutuos enemigos. Además, S_i contiene $\binom{k}{2}$ pares distintos de personas, y por tanto $Pr(F_i) = Pr(G_i) = (\frac{1}{2})^{\binom{k}{2}}$. Esto demuestra que:

$$Pr(E) \le \sum_{i=1}^{\binom{n}{k}} Pr(E_i) \le \sum_{i=1}^{\binom{n}{k}} Pr(F_i) + Pr(G_i) = \binom{n}{k} \cdot 2(\frac{1}{2})^{\binom{k}{2}}.$$